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Abstract

A firm is subject to accident risk, which the manager can mitigate by exerting effort.
An agency problem arises because effort is unobservable and the manager has limited
liability. The occurrence of accidents is modelled as a Poisson process, whose intensity
is controlled by the manager. We use martingale techniques to formulate the manager’s
incentive compatibility constraints. The optimal contract is characterized by a differential
equation with delay. The manager receives cash transfers only if no accident occurs
during a sufficiently long period of time, while the firm is downsized if accidents are too
frequent. This can be implemented by cash reserves, along with insurance, financial,
and compensation contracts. The insurance contract involves a deductible and a bonus-
penalty system. The financial contract consists of bonds that pay constant coupons
until the firm enters financial distress. Covenants requests that the firm be downsized
when its liquidity ratio falls below a threshold. The manager’s compensation policy
promises incentive wages when the accumulated performance of the firm is strong enough.
Our theoretical analysis also delivers new empirical implications about the dynamics of
insurance premia and credit yield spreads.
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‡Université de Toulouse (GREMAQ/CNRS, IDEI) and CEPR.
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1. Introduction

On March 23, 2005, a series of explosions occurred at the BP Texas City refinery, resulting
in 15 deaths, more than 170 injuries and significant economic losses.1 The U.S. Chemical
Safety and Hazard Investigation Board (CSB) as well as an independent panel, chaired by
James A. Baker, investigated the case. Both concluded that the accident occurred because
BP’s management had not exerted sufficient risk prevention effort. In October 2006, CSB
Chairman Carolyn W. Merritt stated, “BP’s global management was aware of problems
with maintenance, spending, and infrastructure well before March 2005. [...] Unsafe and
antiquated equipment designs were left in place, and unacceptable deficiencies in preventative
maintenance were tolerated.”2 In January 2007, the Baker Panel Report concluded that
“BP executive and corporate refining management have not provided effective process safety
leadership.”3 In addition to such dramatic events as the BP explosion, numerous smaller
scale accidents occur regularly in industrial firms, generating serious damages.4 Systematic
analyses of these accidents concur with the above reported conclusions: Leadership and
managerial failures are a major cause of risk.5

Under laisser-faire, firms will not fully internalize the externalities generated by such
industrial risk. This will result in socially suboptimal risk prevention efforts. One way
to stimulate risk prevention would be to make firms and managers bear the social cost of
accidents. For example, they could have to compensate all the parties hurt in an accident
and to clean up environmental damages. Yet, such Pigovian taxes are often impossible to
enforce in practice. This is because the size of the total damages often exceeds the wealth of
the managers and even the net worth of the firms, which are protected by limited liability
and bankruptcy laws.6 As a result of this, managers and firms have little incentives to lower
the probability of accidents generating losses that greatly exceed the value of their assets.7

Nevertheless, if risk prevention were observable, it would still be possible to provide managers
with appropriate incentives to exert socially optimal risk prevention efforts. To a large extent,
however, managerial risk prevention efforts are unobservable to external parties. This leads
to a moral hazard problem.

Besides moral hazard, one important dimension of risk prevention in industrial projects
is time. Indeed, severe accidents are rare and dramatic events. This contrasts with day-
to-day firm operations and cash-flows. It is therefore natural to study moral hazard in risk
prevention in a dynamic set-up, in which the timing of environmental risk differs from that of
firm operations. To do so, we focus on the simplest possible model: operating cash-flows are
constant per unit of time, while accidents follow a Poisson process whose intensity depends

1Other examples of large accidents include toxic gas leaks in Bhopal in 1989, oil spills such as Exxon Valdes
in 1989, Erika in 2000 and Prestige in 2002, and the chemical explosion at AZF in Toulouse in 2001.

2“CSB Investigation of BP Texas City Refinery Disaster Continues as Organizational Issues are Probed,”
CSB News Release, October 30, 2006.

3“The Report of the BP U.S. Refineries Independent Safety Review Panel,” January 16, 2007.
4Elliott, Wang, Lowe and Kleindorfer (2004) report that, out of 15,083 facilities storing hazardous material

in the U.S. between 1994 and 1999, 4.4% had an accident causing worker or public injury.
5See for instance Leplat and Rasmussen (1984), Gordon, Flin, Mearns and Fleming (1996), or Hollnagel

(2002).
6As Katzman (1988) reports, “In Ohio v. Kovacs (U.S.S.C. 83–1020), the U.S. Supreme Court unanimously

ruled that an industrial polluter can escape an order to clean up a toxic waste site under the umbrella of federal
bankruptcy.”

7See Shavell (1984, 1986) for a discussion of how a party’s inability of paying for the full magnitude of
harm done dilutes its incentives to reduce risk.
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on the level of risk prevention.
In this context, we study the optimal contract providing appropriate risk prevention

incentives under dynamic moral hazard. The manager of the firm is risk-neutral and protected
by limited liability. She can exert effort to reduce the instantaneous probability of accidents.8

Effort is costly to the manager and unobservable to other parties. We characterize the set
of implementable risk prevention policies. The optimal contract maximizes the expected
benefit to society from an implementable risk prevention policy, subject to the constraint
that the manager receives at least her reservation utility. The optimal contract relies on two
instruments, non-negative transfers to the manager and irreversible downsizing of the firm.
The former serve as a reward to motivate the manager, while the latter is used to punish her.
We assume constant returns to scale, in that downsizing reduces by the same factor the size
of operating profits, the social costs of accidents, and the manager’s temptation to shirk. In
the optimal contract, downsizing and payout decisions are functions of the entire past history
of the accident process. However, we show that this complex history dependence can be
summarized by two state variables: the size of the firm, reflecting past downsizing decisions,
and the continuation utility of the manager, reflecting the promise of future transfers. The
main features of the optimal contract are as follows.

C1. For a given firm size, incentive compatibility requires that the continuation utility of
the manager be reduced by at least a certain amount following an accident. This
punishment motivates the manager to exert effort. The greater the magnitude of the
moral hazard problem, the greater the necessary punishment. The induced sensitivity
of the manager’s continuation utility to the random occurrence of accidents is socially
costly because the value function is concave in this state variable. Therefore, it is
optimal to set the reduction in the manager’s continuation utility following an accident
to the minimum level consistent with incentive compatibility.

C2. Irreversible downsizing is costly, since it reduces the scale of operation of a positive net
present value project. Hence, the firm is downsized only when this cannot be avoided.
This is the case when, following an accident, the continuation utility of the manager
becomes so low that it cannot be further reduced without violating her limited liability
constraint. In that situation, the threat that can be used to motivate the manager is
limited. To cope with this limitation, it is necessary to lower the manager’s temptation
to shirk by reducing the scale of operation of the firm. Apart from such circumstances,
and in particular when no accident occurs, the firm is never downsized.

C3. In addition to these threats, the promise of future compensation helps motivating the
manager. If the initial utility of the manager is relatively low, there is a probation phase
after the firm is set up during which the manager does not receive any compensation.
This typically occurs if the frequency or the social cost of accidents are high. Then,
if a sufficiently long period of time elapses with no accidents occurring, the manager
starts receiving a constant wage per unit of time. But, as soon as an accident occurs,
the contract reverts to a probation phase.

8Unlike in Shapiro and Stiglitz (1984) or Akerlof and Katz (1989), effort merely makes accidents less likely,
but does not allow to avoid them altogether. As a result of this, accidents do occur on the equilibrium path,
and it is no longer optimal to systematically fire the manager following an accident.
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This abstract optimal mechanism can be implemented using instruments consistent with
arrangements observed in practice. In the implementation, the firm is requested to contract
with an insurance company.9 The latter is liable for the accident cost and makes sure the
manager has appropriate incentives to prevent risk. The implementation of the optimal
contract is based on four main instruments.

I1. The firm holds cash reserves, that are held on its bank account and remunerated at
the market rate. As in Biais, Mariotti, Plantin and Rochet (2007), cash reserves mirror
the evolution of the continuation utility of the manager. In the implementation, the
assets of the firm reflect its cash reserves and the size of its operations. The cash-flow
statement of the firm is characterized, as a direct implication of the implementation of
the optimal contract.

I2. Our implementation also involves contracting with an insurance company. The latter
is liable for the cost of accidents, minus a deductible, which is paid by the firm out
of its cash reserves. The payment of this deductible reflects the manager’s incentive
compatibility constraint. In any period, the firm pays an insurance premium, combining
an actuarial component with an incentive component. The latter can be interpreted as
a bonus-penalty score. If no accident occurs for a long period of time, the firm enjoys
a high bonus, which reduces its insurance premium. By contrast, the firm pays a high
premium when claims frequency is high. The incentive component of the insurance
premium decreases with the cash reserves of the firm. Finally, the insurance contract
involves a downsizing covenant, which stipulates that if the liquidity ratio of the firm
falls below a certain threshold, downsizing must take place.

I3. The compensation of the manager also reflects the evolution of the firm’s liquidity ratio.
After a long period without accident, the firm holds large cash reserves and the liquidity
ratio reaches a high water mark. At this point, the manager is compensated by cash
transfers as long as no accident occurs. This compensation is designed so that the
liquidity ratio of the firm stays constant. As soon as an accident occurs, the liquidity
ratio of the firm drops down, as the deductible is paid out of its cash reserves, and one
reverts to the regime without immediate managerial compensation.

I4. Finally, the implementation includes a financial component. The firm issues a bond,
paying a coupon that is proportional to the size of the firm. Thus, bondholders are
exposed to the risk of downsizing.

This implementation of the optimal contract rationalizes several regulatory and contractual
features observed in practice, such as compulsory insurance, deductibles, and bonus-penalty
systems for insurance premia. It also delivers new implications. There should be a decreasing
relationship between a firm’s liquidity and the insurance premium it pays. We obtain an
analytic characterization of the dynamics of the bonus-penalty score of the firm and the
insurance premium. Firms subject to greater moral hazard should have insurance premia
that decrease more strongly when there are no accidents and increase more sharply following
accidents. We also characterize the dynamics of the value of the optimal insurance policy

9Compulsory insurance is observed in practice. In the U.S., the Resource Conservation and Recovery Act
and the Comprehensive Environmental Response, Compensation, and Liability Act request firms to insure
against third-party damages, unless they are financially strong enough to bear liability risk (Katzman (1988)).
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and relate it to the moral hazard parameters and the history of the firm. Finally, our model
generates unpredictable credit risk for the bond issued by the firm, in line with empirical
evidence, and allows us to derive an explicit formula for the link between the credit yield
spread on the bond and the liquidity ratio of the firm.

Our model is related to previous analyses of dynamic moral hazard. Unlike Holmström
and Milgrom (1987), Rogerson (1985), and Sannikov (2003), we consider a risk-neutral agent,
but we assume that the agent has limited liability, as in DeMarzo and Fishman (2003),
Clementi and Hopenhayn (2006), DeMarzo and Sannikov (2006), or Biais, Mariotti, Plantin
and Rochet (2007). While these two last papers model operating cash-flows as a Brownian
motion with drift, we suppose that the manager controls the intensity of a Poisson accident
process. This leads us to extend the martingale methods of Sannikov (2003) to the case of
an unpredictable process. This gives rise to substantial differences in the optimal contract.
In Sannikov (2003), DeMarzo and Sannikov (2006), and Biais, Mariotti, Plantin and Rochet
(2007), the optimal contract is characterized by an ordinary differential equation, reflecting
that incentives are provided locally, through infinitesimal changes in the continuation value of
the manager. By contrast, in our model, the optimal contract is characterized by a differential
equation with delay, reflecting that incentives are provided non-locally, through jumps in the
continuation value of the manager. Another difference is that the optimal transfer process
in DeMarzo and Sannikov (2006) and Biais, Mariotti, Plantin and Rochet (2007) is singular,
and characterized by a local time that reflects the diffusion process followed by the manager’s
continuation utility at a dividend boundary. By contrast, the optimal transfer process that
emerges from our analysis is regular, as the manager receives a constant wage per unit of
time when she is effectively compensated. Finally, unlike in Sannikov (2003), DeMarzo and
Sannikov (2006), and Biais, Mariotti, Plantin and Rochet (2007), the size of the firm is a
key variable in our optimal continuous-time contract. Furthermore, changes in firm size are
discrete and unpredictable. This contrasts with Brownian motion models, in which no size
adjustments are required, and liquidation is predictable.

Contemporaneous work by Myerson (2007) also analyzes dynamic moral hazard in a
Poisson framework. While we focus on environmental risk, he considers a political economy
model, in which a sovereign prince seeks to deter his governors from corruption and rebellion.
The formal analysis is quite different in the two papers. Myerson (2007) considers the case
where the principal and the agent have the same discount rates. As explained in Biais,
Mariotti, Plantin and Rochet (2007), this case is not conducive to continuous-time analysis,
as an optimal contract does not exist. To cope with this difficulty, Myerson (2007) imposes
an exogenous upper bound on the continuation utility of the agent. In that constrained
problem, existence is restored. By contrast, we do not impose such an exogenous bound, but
we consider the case where the principal is more patient than the agent. While this makes
the formal analysis more complex, this also restores existence of an unconstrained optimal
contract. The boundedness of the continuation utility of the agent is an endogenous feature
of this contract.10

10Poisson processes have also proved useful in the theory of repeated games with imperfect monitoring.
Abreu, Milgrom and Pearce (1991) use a Poisson signal structure to model the arrival of information in
this class of games, and study the impact of varying the discount rate or the duration of a period on the
set of equilibrium outcomes. More recently, Kalesnik (2005) offers a partial characterization of the set of
equilibrium outcomes in a continuous-time model of repeated partnerships with Poisson signals, and Sannikov
and Skrzypacz (2006) study a mixed model in which the monitoring process is a sum of a Brownian component
and of a Poisson component. Our focus differs from these papers in that we consider a full commitment
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Sannikov (2005) also uses a Poisson payoff structure. His setup allows for both adverse
selection and ex-post moral hazard. An essential difference with our analysis lies in the way
jumps affect output. In Sannikov’s (2005) cash-flow diversion model, jumps correspond to
positive innovations of the cash-flow process. By contrast, in our insurance model, jumps
correspond to accidents and thus to negative shocks on total output. In particular, accidents
are less likely to happen if the manager exerts the equilibrium level of effort.11 This leads to
qualitatively very different results. While downsizing is a key feature of our optimal contract,
as it ensures that incentives can still be provided following a long sequence of accidents,
it plays no role in Sannikov (2005). Liquidation in his model is still required to provide
incentives, but it corresponds to a deterministic and predictable event: if a sufficiently long
period of time elapses during which which the manager reports no cash-flow, the firm is
liquidated. By contrast, downsizing in our model is unpredictable. The implementations of
the optimal contract reflect these differences in the interpretation of jumps. While Sannikov
(2005) focuses on the role of credit lines, we stress the role of insurance contracts to counter
accident risk.

This paper is also related to the rich Law and Economics literature on accident law.
Shavell (1986, 2000) points out that a firm unable to pay the full amount for which it is legally
liable has too little incentives to exert preventive effort, and tends to engage in risky activities
to a socially excessive extent. He further argues that the desirability of liability insurance
depends on the ability of insurers to monitor the firm’s prevention effort, and to link insurance
premia to the observed level of care. The basic point is that if insurers cannot observe the
firm’s level of care, making full liability insurance mandatory results in no care at all being
taken.12 In our dynamic analysis, we study how different features of the insurance contract
can be designed to mitigate the adverse effects of this lack of observability. In particular,
insurance premia contain an incentive component and can be adjusted upward or downward
according to the accident record. Moreover, the optimal insurance contract we derive ties the
firm’s allowed activity level to its accident record: following a series of accidents, the firm
can be forbidden to engage at full scale in its risky activity. These instruments provide the
manager of the firm with dynamic incentives to exert the appropriate risk prevention effort,
although the latter is not observed by the insurance company.

The paper is organized as follows. In Section 2, we present the model. In Section 3, we
characterize the optimal contract. In Section 4, we discuss the implementation of the optimal
contract and we spell out the testable implications of our model. Section 5 concludes. All
proofs are in the appendices.

2. The Model

Time is continuous, and indexed by t ≥ 0. There are two agents, the manager of a firm and
an insurance company. The insurance company is risk-neutral and has a discount rate r > 0.
The manager is also risk neutral and has a discount rate ρ > r. She is thus more impatient
than the insurance company. The manager has limited liability, that is, contracts cannot
stipulate negative payments to her.

The manager runs an industrial project that can be continuously operated over an infinite

contracting environment, in which we explicitly characterize the optimal incentive compatible contract.
11Thus jumps in our model are “bad news” in the sense of Abreu, Milgrom and Pearce (1991).
12See Jost (1996) and Polborn (1998) for important extensions and qualifications of this argument.
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horizon, but may be downsized or liquidated at any date. Downsizing is irreversible. When
the firm is downsized, a fraction of its assets are liquidated, and the firm continues to operate
at a reduced scale. For simplicity, we assume that the liquidation value of the firm’s assets is
0. For each t ≥ 0, denote by Xt the scale of the firm’s operations at date t. We assume the
project has positive net present value. Hence reducing the scale of the project or liquidating
it outright is socially costly. However, as shown below, downsizing after bad performance
can be useful as a threat to the manager. This is in line with DeMarzo and Fishman (2003),
Clementi and Hopenhayn (2006), DeMarzo and Sannikov (2006), and Biais, Mariotti, Plantin
and Rochet (2007). Without loss of generality, we normalize to 0 the set-up cost of the project,
as well as the initial cash endowment of the manager.

Previous continuous-time analyzes of principal-agent interactions have typically modelled
operating profits as diffusion processes (see for instance Holmström and Milgrom (1987),
Sannikov (2003), DeMarzo and Sannikov (2006)). By contrast, we assume that instantaneous
profits are deterministic. In addition, we assume constant returns to scale: given firm size
Xt, operating profits at date t are equal to Xtµ, for some µ > 0. We hereafter refer to µ as
size-adjusted operating profits.

While size-adjusted operating profits are constant, the firm is subject to accident risk.
The occurrence of accidents is modelled as a point process N = {Nt}t≥0, where for each t ≥ 0,
Nt is the number of accidents up to and including date t. When an accident occurs, it creates
social and environmental costs. These costs are borne by society at large rather than by the
manager of the firm. For example, an oil spill imposes huge damages on the environment and
on the inhabitants of the affected region, but has no direct impact on the manager of the oil
company. Since the manager has limited liability, she cannot be held responsible for these
costs in excess of her current wealth. As for operating profits, we assume constant returns to
scale: given firm size Xt, the social cost of an accident is XtC, for some size-adjusted social
cost C > 0. Overall, for each t ≥ 0, the net output flow generated by the firm during the
infinitesimal time interval [t, t + dt) is equal to

Xt(µdt− CdNt).

By exerting effort, the manager affects the probability with which accidents occur. The
manager’s risk prevention effort at date t is equal to the intensity of the process N at date t,
Λt. A higher level of effort reduces the probability Λtdt of an accident during the infinitesimal
time interval [t, t + dt). For simplicity, we consider only two levels of managerial effort,
Λt ∈ {λ, λ + ∆λ}, with λ > 0 and ∆λ > 0. To model the cost of effort, we adopt the same
convention as Holmström and Tirole (1997). If the manager exerts low effort at date t, that is
Λt = λ+∆λ, she receives a private benefit XtB, for some size-adjusted private benefit B > 0.
By contrast, when the manager exerts high effort at date t, that is Λt = λ, she receives no
private benefit. This formulation is equivalent to one in which the manager incurs a constant
cost per unit of time and per unit of size of the firm when exerting effort, and no cost when
shirking. We let µ > λC, so that the expected instantaneous net output flow is positive when
the manager exerts high effort. Under these circumstances, operating the project is socially
preferable to closing the firm.

Unlike profits and accidents, the manager’s effort decisions are assumed to be unobservable
to the insurance company. This leads to a moral hazard problem, whose key parameters are
B and ∆λ. The larger is B, the more attractive it is to shirk. The smaller is ∆λ, the
more difficult it is to detect shirking. We assume that C > B/∆λ, so that the private
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benefits of shirking are lower than the social cost of increased accident risk. In the absence
of moral hazard, this implies that it is socially optimal to always require high effort from
the manager.13 In Subsection 3.3, we derive the more restrictive conditions under which this
maximal risk prevention policy remains optimal under moral hazard.

The firm is required to obtain insurance against the environmental risk, so that third
parties are protected against the social costs of accidents. The insurance company has deep
pockets and is liable for the social costs. It designs the compensation contract of the manager
to give her incentives to adopt an appropriate risk prevention policy. Three contractual
instruments can be used to cope with the moral hazard problem and provide incentives to
the manager:

(i) First, the firm can be downsized. Denote by X = {Xt}t≥0 the non-increasing and
non-negative process describing the size of the firm. This process is bounded above by
some maximal initial scale of operations X0− > 0.

(ii) Next, non-negative transfers can be made to the manager. Denote by L = {Lt}t≥0

the non-decreasing and non-negative process describing the cumulative transfers to the
manager.

(iii) Last, the firm can be liquidated. Denote by τ the random time at which liquidation
occurs. We allow τ to be infinite and, without loss of generality, we assume that
τ ≤ inf{t ≥ 0 |Xt = 0}.

The contract between the insurance company and the manager is designed and agreed upon
at date 0, after which the firm operates and the contract is enforced. We assume the insurance
company and the manager can fully commit to a long-term contract Γ = (X, L, τ). Thus
we abstract from imperfect commitment problems and focus on a single source of market
imperfection, namely moral hazard in risk prevention. The manager reacts to the contract Γ
by choosing an effort process Λ = {Λt}t≥0. At any date t prior to liquidation, the sequence
of events in the infinitesimal time interval [t, t + dt) can be heuristically described as follows:

1. The size of the firm Xt is determined.

2. The agent takes her effort decision Λt.

3. With probability Λtdt, an accident occurs, in which case dNt = 1.

4. The agent receives a transfer dLt.

5. The firm is either liquidated or continued.

According to this timing, the downsizing and effort decisions are taken before knowing the
current realization of the accident process. This can be formalized by requiring X and Λ
to be FN–predictable, where FN = {FN

t }t≥0 is the filtration generated by N . By contrast,
payout and liquidation decisions at any date are taken after observing whether or not an
accident occurred at this date. Hence L and τ are FN–adapted.14 As described in detail in

13This allocation can be implemented using a constant transfer l per unit of time to the manager, conditional
on her exerting effort. When C > B/∆λ, one can choose l such that l ≥ B and µ− λC − l ≥ µ− (λ + ∆λ)C,
so that all parties find high effort desirable.

14See for instance Dellacherie and Meyer (1978, Chapter IV, Definitions 12 and 61) for precise definitions
of these concepts.
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the Appendix, an effort process Λ generates a unique probability distribution PΛ over the
paths of the accident process N . Denote by EΛ the corresponding expectation operator.

Given a contract Γ = (X, L, τ) and an effort process Λ, the expected discounted utility of
the manager is

EΛ

[∫ τ

0
e−ρt(dLt + 1{Λt=λ+∆λ}XtB dt)

]
, (1)

while the insurance company obtains an expected discounted profit

EΛ

[∫ τ

0
e−rt[Xt(µdt− CdNt)− dLt]

]
. (2)

An effort process Λ is incentive compatible with respect to a contract Γ if it maximizes the
manager’s expected utility (1) given Γ. The problem of the insurance company is to find a
contract Γ and an incentive compatible effort process Λ that maximize its expected discounted
profit (2), subject to delivering to the manager a required expected discounted utility level.
It is without loss of generality to focus on contracts Γ such that the present value of the
payments to the manager is finite, that is:

EΛ

[∫ τ

0
e−ρtdLt

]
< ∞. (3)

Indeed, by inspection of (2), if the present value of the payments to the manager were
infinite, the fact that ρ > r would imply infinitely negative expected discounted profits for
the insurance company. The latter would be better off proposing no contract altogether.

Remark. In the presentation of the model, we found it convenient to directly introduce
the insurance company as one of the parties, without waiting for the implementation to do
so. This is without loss of generality as the insurance company is assumed to cover all the
accident costs, and thus to represent the interests of society at large. Equivalently, one could
reinterpret the model as one in which the manager of the firm, acting as an agent, contracts
with the rest of society, acting as a principal.

3. The Optimal Contract

In this section, we first formulate the manager’s incentive compatibility constraints. Next,
we derive the optimal contract that induces the manager to always exert the high prevention
effort. Last, we derive conditions under which it is indeed optimal to require this level of
prevention from the manager.

3.1. Incentive Compatibility

In this subsection, we derive the incentive compatibility constraint of the manager, relying
on martingale techniques similar to those introduced by Sannikov (2003). When deciding
which effort decision to take at a date t, the agent considers how this decision will affect his
continuation utility, defined as

Wt(Γ,Λ) = EΛ

[∫ τ

t
e−ρ(s−t)(dLs + 1{Λs=λ+∆λ}XsBds) |FN

t

]
1{t<τ}. (4)

Denote by W (Γ,Λ) = {Wt(Γ,Λ)}t≥0 the manager’s continuation utility process. Note that,
by construction, W (Γ,Λ) is FN–adapted. In particular, Wt(Γ,Λ) reflects whether an accident
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occurred or not at date t. To characterize how the manager’s continuation utility evolves over
time, it is useful to consider her lifetime expected utility, evaluated conditionally upon the
information available at date t, that is:

Ut(Γ,Λ) = EΛ

[∫ τ

0
e−ρs(dLs + 1{Λs=λ+∆λ}XsBds) |FN

t

]
(5)

=
∫ t∧τ

0
e−ρs(dLs + 1{Λs=λ+∆λ}XsBds) + e−ρtWt(Γ,Λ).

Since Ut(Γ,Λ) is an expectation conditional on FN
t , the process U(Γ,Λ) = {Ut(Γ,Λ)}t≥0 is

an FN–martingale under the probability measure PΛ. Its last element is Uτ (Γ,Λ), which is
integrable by (3).

Relying on this martingale property, we now offer an alternative representation of U(Γ,Λ).
Consider the process MΛ = {MΛ

t }t≥0 defined by

MΛ
t = Nt −

∫ t

0
Λs ds (6)

for all t ≥ 0. Equation (6) is best understood when Λ is a constant process. In that case,
MΛ

t is simply the number of accidents up to and including date t, minus its expectation.
More generally, a standard result from the theory of point processes implies that MΛ is an
FN–martingale under PΛ, see the Appendix. Changes in the effort process Λ induce changes
in the distribution of accidents, which essentially amount to Girsanov transformations of the
accident process N . The martingale representation theorem for point processes implies the
following lemma.

Lemma 1. The martingale U(Γ,Λ) satisfies

Ut(Γ,Λ) = U0(Γ,Λ)−
∫ t∧τ

0
e−ρsHs(Γ,Λ) dMΛ

s (7)

for all t ≥ 0, PΛ–almost surely, for some FN–predictable process H(Γ,Λ) = {Ht(Γ,Λ)}t≥0.

Along with (6), (7) implies that the lifetime expected utility of the manager evolves in
response to the jumps of the accident process N . At any date t, the change in Ut(Γ,Λ) is
equal to the product between a predictable function of the past, namely e−ρtHt(Γ,Λ), and
a term −dMΛ

t reflecting the events occurring at date t. This term is equal to the difference
between the instantaneous probability Λtdt of an accident, and the instantaneous change dNt

in the total number of accidents, which is equal to 0 or 1. Thus Ht(Γ,Λ) can be interpreted
as the sensitivity of the manager’s utility to the occurrence of accidents. Equations (5) and
(7) imply that the continuation utility of the manager evolves as

dWt(Γ,Λ) = [ρWt(Γ,Λ)− 1{Λs=λ+∆λ}XtB]dt + Ht(Γ,Λ)(Λtdt− dNt)− dLt (8)

for all t ∈ [0, τ). Thus the higher is H(Γ,Λ), the more sensitive to accidents is the continuation
utility of the manager. Building on this analysis, and denoting b = B/∆λ, we obtain the
following result.
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Proposition 1. A necessary and sufficient condition for the effort process Λ to be incentive

compatible given the contract Γ = (X, L, τ) is that

Λt = λ if and only if Ht(Γ,Λ) ≥ Xtb (9)

for all t ∈ [0, τ), PΛ–almost surely.

It follows from (8) that, if an accident occurs at some date t ∈ [0, τ), the manager’s
continuation utility is instantaneously lowered by an amount Ht(Γ,Λ).15 Proposition 1 states
that, to incite the manager to choose a high level of risk prevention, this reduction in the
manager’s continuation utility must be at least as large as Xtb. This is because Xtb reflects
the attractiveness of the private benefits obtained by the agent when shirking.

Our characterization of incentive compatibility in a model with jumps in the output
process parallels that obtained in models where output is driven by a diffusion process. In
such Brownian models, the continuation utility of the agent must display a minimal level of
volatility in order to maintain incentive compatibility. However, there is no role for downsizing
and the optimal contract only relies on liquidation and transfers (see for instance Sannikov
(2003), DeMarzo and Sannikov (2006), or Biais, Mariotti, Plantin and Rochet (2007)). By
contrast, a distinctive feature of our Poisson formulation of uncertainty is the role of firm size
X in the provision of incentives, as can be seen from (9).

Now turn to the limited liability constraint. It is convenient to introduce the notation
Wt−(Γ,Λ) = lims↑t Ws(Γ,Λ) to denote the left-hand limit of the process W (Γ,Λ) at t > 0.
While Wt(Γ,Λ) is the continuation utility of the manager at date t after observing whether
an accident occurred or not, Wt−(Γ,Λ) is the continuation utility of the manager evaluated
before such knowledge is obtained.16 Combining the fact that the continuation utility of the
manager must remain positive according to the limited liability constraint, with the fact that
it must be lowered by Ht(Γ,Λ) after an accident according to (8), one must have

Wt−(Γ,Λ) ≥ Ht(Γ,Λ) (10)

for all t ∈ [0, τ). Condition (10) states that the manager’s continuation utility must always
stay large enough to absorb a variation −Ht(Γ,Λ)dNt while remaining non-negative.

3.2. Derivation of the Optimal Contract under Maximal Risk Prevention

In this subsection, we characterize the optimal contract that induces maximal risk prevention,
that is Λt = λ for all t ∈ [0, τ). This contract can be described with the help of two
state variables: the size of the firm, which results from past downsizing decisions, and the
continuation utility of the manager, which reflects future transfer decisions. We first provide a
heuristic derivation of the insurance company’s value function. Next, we construct a contract
that generates this value for the insurance company and incites the manager to always take
the high effort decision. This delivers the desired optimal contract.

15In full generality, one should also allow for jumps in the transfer process. For incentive reasons, it is
however never optimal to distribute transfers to the manager in case an accident occurs. Moreover, it will
turn out that the optimal transfer process is absolutely continuous, so that transfers do not come in lump-
sums. To ease the exposition, we therefore rule out jumps in the transfer process in the body of the paper.
The possibility of allowing for such jumps is explicitly taken into account when we establish an upper bound
for the insurance company’s expected discounted profit, see the proof of Proposition 3.

16W0−(Γ, Λ) is defined by (1). Note that while the process W (Γ, Λ) is FN–adapted, the process W·−(Γ, Λ) =
{Wt−(Γ, Λ)}t≥0 is FN–predictable.
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A Heuristic Derivation. In this heuristic derivation, we proceed in three steps.17 First,
we present the dynamics of the two state variables, that is, the size of the firm Xt, and the
manager’s continuation utility Wt− , both evaluated before the realization of uncertainty at
date t. Next, we discuss the dynamics of the insurance company’s value function F (Xt,Wt−).
Last, we describe the main features of the resulting contract.

Consider first the manager’s continuation utility. It follows from (8) that, under maximal
risk prevention, Wt− evolves as

dWt− = (ρWt− + λHt)dt−HtdNt − dLt (11)

at any date t prior to liquidation. Now consider the evolution of the size of the firm. Since the
project has a positive net present value, it is suboptimal to downsize the firm, except after
an accident, to improve the incentives of the manager. Correspondingly, a size adjustment
should take place at date t only if an accident occurs at this date. That is:

dXt = (Xt+ −Xt)dNt, (12)

where Xt+ = lims↓t Xs ∈ [0, Xt] stands for the size of the firm just after the date t adjustment.
We now restate the constraints facing the insurance company. First, it must incite the

manager to exert a high prevention effort at date t. By Proposition 1, this requires Ht ≥ Xtb,
or equivalently, letting ht = Ht/Xt,

ht ≥ b. (13)

Next, some downsizing may be necessary. To see why, consider the situation at the outset of
date t, when the size of the firm is Xt and the continuation utility of the manager is W−

t . If
an accident occurs at date t, the manager’s continuation utility must be reduced from W−

t to
Wt = W−

t −Xtht. At this point, the question arises whether the occurrence of this accident
implies that the firm should be downsized. Since a high prevention effort is still required
from the manager, Proposition 1 implies that, if a new accident occurred, Wt would have to
be reduced further by at least Xt+b. This would be consistent with limited liability only if
W−

t −Xtht ≥ Xt+b, or equivalently, letting wt = Wt−/Xt and xt = Xt+/Xt,

wt − ht

b
≥ xt. (14)

Hence, downsizing is necessary, that is xt < 1, only when the continuation utility of the
manager is relatively low, so that (wt − ht)/b < 1. The last constraint facing the insurance
company is that transfers to the manager at date t should be non-negative. Assuming that
transfers are absolutely continuous with respect to time and that no transfer takes place after
an accident, that is dLt = lt1{dNt=0}dt, this amounts to

lt ≥ 0. (15)

We are now in a position to characterize the evolution of the value function F (Xt,Wt−) of
the insurance company. Since it discounts the future at rate r, the expected instantaneous
change in its value function must be

rF (Xt,Wt−)dt.

17For notational convenience, we drop the arguments Γ and Λ in what follows.
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This must be equal to the sum of the expected instantaneous cash-flow it receives and of the
expected change in its continuation value. The former is equal to the expected net cash-flow
from the firm, minus the expected transfer to the manager,

[Xt(µ− λC)− lt]dt + o(dt).

To compute the change in the insurance company’s continuation value, we use the dynamics
(11) of the manager’s continuation utility along with the change of variable formula for
processes of bounded variations, which is the counterpart of Itô’s formula for these processes.
This yields the following expected change in the insurance company’s continuation value:

(ρWt− + λXtht − lt)FW (Xt,Wt−)dt− λdt[F (Wt− , Xt)− F (Wt− −Xtht, Xtxt)] + o(dt).

The first term arises because of the drift of Wt− , while the second term reflects the possibility
of jumps due to accidents. Putting these terms together, we obtain that the value function
of the insurance company satisfies the Hamilton–Jacobi–Bellman equation

rF (Xt,Wt−) = (µ− λC)Xt + max {−lt + (ρWt− + λXtht − lt)FW (Xt,Wt−)

(16)

−λ[F (Wt− , Xt)− F (Wt− −Xtht, Xtxt)]},

where the maximization in (16) is over the set of controls (ht, xt, lt) that satisfy constraints
(13) to (15).

To get more insight into the structure of the solution, we impose further restrictions on
the value function F , which will be checked to be without loss of generality in the verification
theorem below. First, because of constant returns to scale, it is natural to require F to be
homogenous of degree 1,

F (ξ, ω) = ξF

(
1,

ω

ξ

)
≡ ξf

(
ω

ξ

)
for all (ξ, ω) ∈ R++ × R+. Intuitively, f maps the size-adjusted expected discounted utility
of the manager into the size-adjusted expected discounted profit of the insurance company.
Second, we require f to be globally concave, and linear over [0, b],

f(w) =
f(b)

b
w

for all w ∈ [0, b].
We can now derive several features of the optimal controls in (16). Optimizing with

respect to lt ≥ 0 and using the homogeneity of F yields

f ′(wt) = FW (Xt,Wt−) ≥ −1, (17)

with equality only if lt > 0. Intuitively, the left-hand side of (17) is the decrease in the
expected profit of the insurance company due to an increase in the manager’s rent, while
the right-hand side is the cost to the insurance company of an immediate transfer to the
manager. It is optimal to delay transfers as long as they are more costly than rent promises,
that is, as long as the inequality in (17) is strict. The concavity of f implies that this is the
case when wt is below a given threshold. The optimal contract thus satisfies the following
property.
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Property 1. Transfers to the manager take place only if wt is at or above a threshold wm.

Suppose that wt is below the threshold wm. Then, using the homogeneity of F , one can
rewrite (16) as follows:

rf(wt) = µ− λC + max
{

(ρwt + λht)f ′(wt)− λ

[
f(wt)− xtf

(
wt − ht

xt

)]}
, (18)

where the maximization in (18) is over the set of controls (ht, xt) that satisfy (13) and (14).
Since f is concave and vanishes at 0, the mapping xt 7→ xtf((wt − ht)/xt) is non-decreasing.
It is thus optimal to let xt be as high as possible in (18), reflecting that downsizing is costly
since the project is profitable. Using (14) along with the fact that xt ≤ 1 then leads to the
second property of the optimal contract.

Property 2. The optimal downsizing policy is given by

xt = min
{

wt − ht

b
, 1
}
. (19)

This property of the optimal contract reflects that downsizing is imposed only as the
last resort, in order to maintain the consistency between the limited liability constraint and
the incentive compatibility constraint. Using the linearity of f over [0, b],18 one can then
substitute (19) into (18) to obtain

rf(wt) = µ− λC + max {(ρwt + λht)f ′(wt)− λ[f(wt)− f(wt − ht)]}. (20)

The concavity of f then implies that it is optimal to let ht be as low as possible in (20), which
according to (13) leads to the third property of the optimal contract.

Property 3. The sensitivity of the manager’s continuation utility to accidents is given by

ht = b. (21)

Because the expected discounted profit of the insurance company is a concave function
of the manager’s utility, it is optimal to reduce the manager’s exposure to risk by letting ht

equal the minimal value b consistent with a high prevention effort at date t.
To summarize this heuristic derivation, our candidate for the insurance company’s size-

adjusted value function is the solution to
f(w) = f(b)w/b if w ∈ [0, b],

rf(w) = µ− λC + (ρw + λb)f ′(w)− λ[f(w)− f(w − b)] if w ∈ (b, wm],

f(w) = wm − w + f(wm) if w ∈ (wm,∞),

(22)

for some transfer threshold wm yet to be determined. The remainder of this subsection is
organized as follows. We first show that (22) has a maximal solution in a space of suitably
regular functions. Next, we argue that this maximal solution provides an upper bound for
the insurance company’s expected discounted profit when it incites the manager to maximal
risk prevention and gives her at least her required expected discounted utility. Last, we show
that this maximal solution can indeed be attained through an incentive compatible contract,
so that it indeed coincides with the insurance company’s optimal value function.

18Instead of assuming that f is linear over [0, b], one could have first defined f over [b,∞) only with f(b)/b ≥
f ′(b), and argue that when xt = (wt − ht)/b, the term xtf((wt − ht)/xt) in (18) becomes f(b)(wt − ht)/b,
which we can then rewrite as f(wt − ht) by conventionally letting f be linear over [0, b].
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The Maximal Solution. Three objects have to be jointly determined in problem (22).
First, the slope f(b)/b of the function f over the interval [0, b). Second, the function f itself
over [b, wm]. Third, the threshold wm above which the slope of f is equal to −1. To link
these three objects, we impose that f be continuous over R+ and continuously differentiable
over (b,∞), which implies in particular that

f ′(wm) = −1

as long as wm > b. Under this restriction, the choice of the slope of f over [0, b) determines
the value taken by the threshold wm. Our goal is to show that there exists some choice of the
slope of f over [0, b) that makes f maximal among the solutions to (22) that are continuous
over R+ and continuously differentiable over (b,∞). To see this, fix some α ≥ −1 and consider
the unique continuous solution φα to

φα(w) = αw if w ∈ [0, b],

rφα(w) = µ− λC + (ρw + λb)φ′α(w)− λ[φα(w)− φα(w − b)] if w ∈ (b,∞).
(23)

One then has the following result.

Proposition 2. Whenever

µ− λC ≥ (ρ− r)b
(
2 +

r

λ

)
, (24)

the following holds:

(i) φα1 ≥ φα2 if and only if α1 ≥ α2.

(ii) There exists a maximum value of α, αm, such that φ′α(w) = −1 has a solution.

(iii) The solution wm to φ′αm
(w) = −1 is unique, and strictly greater than b.

(iv) The function φαm is concave over [0, wm], and strictly so over [b, wm].

According to Lemma 2, three cases can occur. If α ∈ [−1, αm), the equation φ′α(w) = −1
has at least one solution, but φ′α is below −1 over some range. If α ∈ (αm,∞), the equation
φ′α(w) = −1 has no solution, and φ′α is always strictly above −1. Finally, if α = αm, the
equation φ′α(w) = −1 has a unique solution wm, and φ′αm is always greater than or equal to
−1. One then define f as

f(w) =


φαm(w) if w ∈ [0, wm],

wm − w + f(wm) if w ∈ (wm,∞).
(25)

The function f defined by (25) is the maximal solution to (22) whose derivative at wm is
precisely equal to −1.

The assumption (24) is required for the value function associated with the optimal contract
to be continuously differentiable over (b,∞). We shall maintain this assumption in the
remainder of the paper. Whenever (24) fails to hold, the optimal value function is piecewise
linear. This somewhat degenerate case corresponds to the range of parameters studied in
Proposition 5 of Biais, Mariotti, Plantin and Rochet (2004).
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An Upper Bound for the Insurance Company’s Profits. The second step of our argument
consists in showing that the maximal solution f to (22) given by (25) provides an upper
bound for the insurance company’s expected profit from any incentive compatible contract
that incites the manager to exert the high prevention effort in every contingency. Specifically,
define F (ξ, ω) = ξf(ω/ξ) for all (ξ, ω) ∈ R++×R+ as in the heuristic derivation of the optimal
contract. The following result holds.

Proposition 3. For any contract Γ = (X, L, τ) that induces maximal risk prevention, that

is, Λt = λ for all t ∈ [0, τ), and delivers the manager an initial expected discounted utility

W0− given initial firm size X0, one has

F (X0,W0−) ≥ EΛ

[∫ τ

0
e−rt[Xt(µdt− CdNt)− dLt]

]
. (26)

That is, the insurance company’s expected discounted profit at date 0 is at most F (X0,W0−).

In line with the heuristic derivation of Properties 1 to 3 of the optimal contract, the proof
of this result relies in an essential way on the homogeneity of F and on the concavity of f .
It should be noted that no restriction is made on contracts in Proposition 3, besides the fact
that they induce the manager to always exert the high prevention effort. In particular, these
contracts can exhibit arbitrarily complex history dependence, and can be contingent on other
variables than the size of the firm and the continuation utility of the manager.

The Verification Theorem. We are now in a position to derive the optimal contract that
induces maximal risk prevention. Along standard lines in optimal control theory, we provide
a verification theorem. That is, we show that the upper bound for the insurance company’s
expected discounted profit derived in Proposition 3 can effectively be attained by an incentive
compatible contract. One has the following result.

Proposition 4. The optimal contract that induces maximal risk prevention, that is, Λt = λ

for all t ∈ [0, τ), and delivers the manager an initial expected discounted utility W0− given

initial firm size X0, entails expected discounted profit F (X0,W0−) for the insurance company.

The optimal contract involves two state variables, the size of the firm and the manager’s

continuation utility, which evolves as

dWt− = (ρWt− + Xtλb)dt−XtbdNt − dLt (27)

for all t ∈ [0, τ), and Wt− = 0 for all t > τ . For each t ≥ 0, the manager’s continuation

utility after the realization of uncertainty at date t is Wt = lims↓t Ws− . The optimal contract

Γ = (X, L, τ) can be described as follows:

(i) The size of the firm is given by

Xt =
∞∑

n=0

ξn1{t∈(τn,τn+1]} (28)

for all t ∈ (0, τ), where τ0 = 0, ξ0 = X0, and

τn+1 = inf{t > τn |Wt < ξnb}, (29)

ξn+1 =
Wτn+1

b
(30)
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for all n ≥ 0.

(ii) Transfers are given by

Lt = max{W0− −X0w
m, 0}+

∫ t

0
Xs(ρwm + λb)1{Ws=Xswm} ds (31)

for all t ∈ [0, τ).

(iii) Liquidation occurs with probability zero on the equilibrium path,

τ = inf{t ≥ 0 |Wt = 0} = ∞, (32)

PΛ–almost surely.

This result shows that the optimal contract that induces maximal risk prevention is only
contingent on the size of the firm and on the continuation utility of the manager. The features
of the optimal contract confirm the heuristic derivation of Properties 1 to 3. Let us examine
each of these properties in turn, starting from the last one.

P3. According to (27), the sensitivity of the manager’s continuation utility to accidents is
equal to b in size-adjusted terms, as prescribed by Property 3.

P2. Consider next the evolution of the size of the firm, which is described in equations (28)
to (30). Size adjustments take place at dates τ1, τ2, ..., and they successively lower
the size of the firm by from ξ0 to ξ1, from ξ1 to ξ2, .... It follows from (27) to (29)
that the firm is downsized at date τn+1 if and only if an accident at this date lowers
the manager’s continuation utility by Xτn+1b, and brings it at a level Wτn+1 which
lies itself below Xτn+1b. Letting wt = Wt−/Xt, and taking advantage of the fact that
Wτn+1 = Xτn+1(wτn+1 − b) and Xτn+1 = ξn, (30) then yields a downsizing factor

xτn+1 =
ξn+1

ξn
=

wτn+1 − b

b
< 1,

as prescribed by Property 2. By construction, if W0− > 0, one has wt > b and thus
Xt > 0 for all t ≥ 0.

P1. Consider finally the transfer decisions, which are summarized by (31). For each t > 0,
transfers take place at date t if and only if Wt = Xtw

m, and they are constructed in
such a way that the manager’s continuation utility stays constant at the level Xtw

m

until an accident occurs. Thus, in line with Property 1, transfers to the manager take
place if only if her size-adjusted utility wt before the realization of uncertainty at date
t is at the threshold wm, and no accident occurs at date t. By construction, wt ≤ wm

for all t ∈ (0, τ). If w0 > wm, or equivalently W0− > X0w
m, a lump-sum transfer

W0−−X0w
m is immediately distributed to the manager, after which the above transfer

policy is implemented.

It should be noted that liquidation plays virtually no role in the optimal incentive contract, as
reflected by (32). Indeed, apart from exceptional circumstances, wt = Wt−/Xt always remains
strictly greater than b. As a result of this, Wt, which is in the worst case equal to Wt− −Xtb
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if an accident occurs at date t, always remains strictly positive.19 This is in sharp contrast
with the Brownian models studied by Sannikov (2003), DeMarzo and Sannikov (2006), and
Biais, Mariotti, Plantin and Rochet (2007), in which the optimal contract relies crucially
on liquidation and involves no downsizing. Admittedly, even in the context of our Poisson
model, an alternative way to provide incentives to the manager in case of bad performance
would be to allow for randomly liquidating the firm, as is customary in discrete-time models
(see for instance DeMarzo and Fishman (2003), or Clementi and Hopenhayn (2006)). But
in contrast with what happens in Brownian models, liquidation would then necessarily have
to be both stochastic (as it would depend on the realization of a lottery at each potential
liquidation date) and unpredictable (as it would take place only after an accident occurs).
Modelling liquidation in this way would allow to achieve essentially the same outcome as
under downsizing. This would however be both less tractable analytically, and less conducive
to a realistic implementation of the optimal contract.

Initialization. Proposition 4 describes the optimal contract for a given initial firm size
X0 and a given initial promised utility W0− for the manager. We now examine how these
are determined at date 0. Consider for simplicity the case in which the insurance company
is competitive. We then seek a pair (X0,W0−) that maximizes the utilitarian social welfare
under the constraint that the insurance company breaks even on average. Letting w0 =
W0−/X0, the corresponding maximization problem is

max X0[f(w0) + w0], (33)

under the break even and feasibility constraints:

X0f(w0) ≥ 0, (34)

w0 ≥ 0, (35)

X0− ≥ X0, (36)

where X0− > 0 is the maximal initial scale of the project. Let η be the Lagrange multiplier of
the break even constraint (34), and focus on the interesting case where (1+η)f(w0)+w0 > 0
at the optimum.20 It immediately follows that it is optimal to start operating the project at
maximum scale, X0 = X0− . This result hinges on the homogeneity of the insurance company’s
value function F . As shown in (33), this enables one to separate the determination of the
firm’s size from that of the manager’s size-adjusted utility. Whenever f takes strictly positive
values, it is optimal to start operating the project at full scale.

The initial size-adjusted rent of the manager is given by the first-order condition f ′(w0) =
−1/(1 + η). Two cases may arise depending on whether the break even constraint is slack
or binding at the optimum. If f(wm) ≥ 0, one has η = 0 and w0 = wm, and social welfare
attains its unconstrained maximum in (33). If f(wm) < 0, one has η > 0 and w0 < wm, and
social welfare falls short of its unconstrained maximum in (33).

19Exceptions arise only with probability 0, for instance if W0− = X0b and an accident occurs at date 0, or
if multiple accidents occurs at the same date.

20Otherwise the solution to problem (33) to (36) is X0 = W0− = 0 and the project is not operated.
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The Long Run. Downsizing is a key component of the optimal contract. Indeed, it allows
to punish the manager in case of poor cumulative performance, which is not achievable
through transfers because the manager’s utility is bounded below. Over time, the size of
the firm decreases as downsizing activity takes place. The following result describes the
asymptotic impact of downsizing.

Proposition 5. In the long run, the size of the firm and the continuation utility of the

manager tend to 0,

lim
t→∞

Xt = lim
t→∞

Wt− = 0, (37)

PΛ–almost surely.

To maintain incentive compatibility, downsizing must take place in case of accident when
the manager’s size-adjusted utility is close to its lower bound b. Because the stochastic process
describing the manager’s size-adjusted utility is ergodic, with probability 1 this situation will
prevail over an infinite collection of time intervals. As a result of this, the size of the firm
and the continuation utility of the manager must eventually tend to 0.

The logic is different from that of Thomas and Worrall’s (1990) classic immiseration result.
In the principal-agent model they consider, the period utility function of the agent is concave
and unbounded below. Consequently, providing incentives is cheaper, the lower the agent’s
promised utility. This reflects the fact that the cost of obtaining a given spread in the agent’s
continuation utility is lower. The principal thus has an incentive to let the agent’s utility drift
to −∞, as this makes incentive compatibility cheaper to achieve on average. Instead, in our
model, the cost of incentive compatibility is high when the manager’s size-adjusted utility
is close to its lower bound b. This is because limited liability then makes it more difficult
to induce a large variability in the manager’s continuation utility. Therefore, downsizing
becomes necessary to induce the manager to exert effort.

3.3. Optimality of Maximal Risk Prevention

So far, we have focused on the optimal contract with maximal risk prevention. We now
briefly investigate under which circumstances this high level of effort is indeed optimal. Note
that the contract derived in Proposition 4 depends on B and ∆λ only through the ratio
b = B/∆λ. Thus one has one degree of freedom in the parameters of the model, as one can
move B and ∆λ while keeping b constant, leaving the optimal contract under maximal risk
prevention unaffected. Intuition suggests that when ∆λ gets large, it is indeed optimal to
prevent accidents as much as possible by requesting maximal risk prevention. To see why,
observe first that if a contract were to call the manager to exert the low prevention effort at
some date t, her continuation payoff at this date would no longer need to be affected by the
occurrence of an accident. It would thus be optimal to let Ht(Γ,Λ) = 0 in (8). To determine
whether requesting maximal risk prevention is optimal, we compare the value of the insurance
company under high prevention effort to its counterpart under low prevention effort. The
former is greater than the latter if

rf(w) ≥ µ− (λ + ∆λ)C + (ρw −B)f ′+(w). (38)

The second term on the right-hand side of (38) is the expected social cost of accident under
low effort. The third term reflects that the drift of W (Γ,Λ) under low effort is equal to
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ρW (Γ,Λ)−B. Maximal risk prevention is optimal if (38) holds for all w ≥ b. In Lemma C.7
in the Appendix, we show that

rf(w) ≥ µ− λC + (ρw + λb)f ′+(w)− λ[f(w)− f(w − b)]

for all w ≥ b. Hence a sufficient condition for (38) to hold is that

∆λ[C + bf ′+(w)] ≥ λ[f(w)− f(w − b)− bf ′+(w)] (39)

for all w ≥ b, where we have used the fact that B = b∆λ. The right-hand side of (39) is
non-negative by concavity of f , and it is bounded as f is linear over (wm,∞). Consider next
the left-hand side of (39). By assumption, maximal risk prevention is socially optimal in the
first-best, so that C > B/∆λ = b. Since f ′+ ≥ −1, this implies that the mapping C + bf ′+
is positive and bounded away from 0. Since f depends on B and ∆λ only through their
ratio b, it follows that (39) is satisfied when ∆λ is high enough, while B is adjusted so as to
keep b constant.21 Thus, all other things being equal, it is optimal to request maximal risk
prevention if the moral hazard parameters B and ∆λ are high enough.

4. Implementation

In this section, we show how realistic insurance and financial instruments can be used to
implement the abstract optimal contract derived in Section 3. We show that these instruments
are budget balanced, that is, that the net cash revenue generated by the firm is equal to the
use of funds at each point in time. This implementation gives rise to the same production
and distribution decisions as in the optimal contract, on and off the equilibrium path, which
implies that it is incentive compatible. Finally, we derive several empirical implications of
our analysis.

4.1. Insurance and Financial Contracts

There are three aspects to the relation between the insurance company and the manager.
First, the insurance company is liable in case of damages. Next, incentives must be provided
to the manager so that she always exerts the high prevention effort. Last, as the manager
is more impatient than the insurance company, she would like borrow from it to finance
consumption. While the first two features revolve around insurance issues, the third one
is about finance. Correspondingly, the implementation we propose combines insurance and
financial aspects.

Cash Reserves. A realistic feature of our implementation is that the firm must hold cash
reserves. This parallels the corporate finance model of Biais, Mariotti, Plantin and Rochet
(2007). These reserves are deposited on a bank account and earn interest at rate r. At any
point in time, changes in this account’s balance reflect the operating cash-flows of the firm,
the transfers to the insurance company and to the manager, and the earned interest income.
Cash reserves will thus be affected by the performance of the firm and the occurrence of
accidents. In our implementation, the accumulated cash reserves held by the firm will be set
equal to Wt− at the outset of any date t, and to Wt after the realization of uncertainty at

21Note that in the limit first-best case, the expected discounted profit of the insurance company is linear in
the manager’s expected discounted utility, with a slope equal to −1. Condition (39) then reduces to C > b.
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date t.22 It is convenient to interpret the ratio of cash reserves to the size of the firm as the
liquidity ratio of the firm. The manager’s compensation schedule as well as the downsizing
policy of the firm are directly contingent on this measure of the firm’s liquidity.

Insurance Contract. In line with clauses observed in practice, the insurance contract
on which our implementation relies involves both a deductible and a bonus-penalty system.
When an accident occurs at date t, the insurance company is liable for the entire size of
the damage, XtC, minus a deductible, paid by the firm out of its cash reserves. To provide
appropriate incentives to the manager, the deductible is set equal to Xtb. In each period, the
firm pays an insurance premium to the insurance company, which combines an actuarially
fair component with an incentive component. Since accidents occur with an intensity λ under
maximal risk prevention, the actuarially fair premium is given by

λXt(C − b)dt

during the infinitesimal time interval [t, t + dt). During the same time interval, the incentive
component of the insurance premium is given by

−(ρ− r)Wt−dt.

This component works as a bonus-penalty system in that it adjusts the premium paid by
the firm according to its claims frequency. As long as no accident occurs, Wt− increases up
to the threshold Xtw

m. This lowers the insurance premium, corresponding to a bonus. By
contrast, when an accident occurs, Wt− is lowered by Xtb. This raises the insurance premium,
corresponding to a penalty.

Corporate Bond. To fund its initial cash reserves W0− , the firm issues a corporate bond
at date 0, which is acquired by the insurance company. This bond first pays a constant coupon
X0(µ − λb) per unit of time. If the firm subsequently incurs a large number of accidents,
it must be downsized, which can be interpreted as a form of financial distress. When such
events happen, the coupon is also downsized. Hence, in general, the coupon on the bond is
given by

Xt(µ− λC)dt

during the infinitesimal time interval [t, t + dt). Thus, while the size-adjusted coupon is
constant and equal to µ−λC per unit of time, the bond is exposed to the risk of downsizing.
Thus credit risk arises endogenously in our model as a result of accidents and moral hazard.
This risk is reflected in the bond price, as we will see below.

22This differs from Biais, Mariotti, Plantin and Rochet (2007), in which cash reserves are a multiple of the
manager’s continuation utility, reflecting the magnitude of the moral hazard problem. The key difference lies
in the fact that they insist that financiers hold securities, defined as claims with limited liability, while we make
the insurance company liable for the social costs generated by the firm’s activity. The implementation in Biais,
Mariotti, Plantin and Rochet (2007) can easily be transposed in our context. The firm would need to hold cash
reserves WC/b > W and would use these cash reserves to cover social costs, and to pay dividends on stocks
and coupons on bonds. To ensure that coupons stay non-negative, one would need to have µ− λC ≥ wmC/b,
which requires that C/b be close enough to 1. In this alternative implementation, the firm is liable for social
costs on its cash reserves, which is why the latter have to be larger than those we need in our implementation.
Thus there is no incompatibility between liability insurance and liability for harm in our model, as they only
represent alternative ways to implement the optimal contract. Still, liability for harm requires higher cash
reserves, and additional restrictions on the parameters of the model.
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Managerial Compensation. If a sufficiently long period of time elapses without accidents
occurring, the manager is compensated with cash transfers. The latter take place after the
realization of uncertainty at date t if the liquidity ratio Wt/Xt of the firm is equal to the
contractually specified threshold wm. This requires in particular that no accident occurred
in period t. Transfers to the manager are then drawn from the cash reserves of the firm so
as to maintain these cash reserves constant. Whenever Wt/Xt = wm, the transfers to the
manager are thus given by

Xt(ρwm + λb)dt

during the infinitesimal time interval [t, t + dt). As long as no accident occurs, cash reserves
then stay constant at the level Wt = Xtw

m. As soon as an accident occurs, the firm must
pay the deductible Xtb, which reduces its cash reserves and its liquidity ratio. As a result
of this, the firm reverts to the regime in which the manager receives no immediate cash
compensation.

Downsizing Covenant. The bond and the insurance contract include a covenant. The
latter stipulates that, if an accident at date t brings the liquidity ratio Wt/Xt of the firm
below b, the firm is immediately downsized by a factor

xt =
Wt

bXt
.

This lowers the size of the firm to Xt+ = xtXt = Wt/b. Downsizing does not alter the level
Wt of the cash reserves, but it brings the liquidity ratio back to

Wt

Xt+
= b.

Since the firm thereafter operates on a smaller scale, the size of the damage in case an other
accident occurs is also reduced. Correspondingly, the deductible is lowered to

Xt+b = Wt.

The intuition is that, immediately after being downsized, the firm has just enough cash
reserves to pay the deductible in case of an other accident, without violating the limited
liability constraint.

4.2. Budget Balance

At any date t, the cash-flow statement of the firm is

Cash inflows Cash outflows

Operating cash-flow Xtµdt Coupon Xt(µ− λC)dt
Interest income rWt−dt Insurance premium λXt(C − b)dt− (ρ− r)Wt−dt

Deductible XtbdNt

Cash hoarding or wages

Table 1. Cash-flow statement of the firm.

On the left-hand side if Table 1 are the cash-flows generated by the firm, which consist of
operating cash-flows and interest earned on cash reserves. The different uses of these cash-
flows are displayed on the right-hand side of Table 1. While the coupon and the insurance
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premium are continuously paid to the insurance company, the deductible is paid only in case
an accident occurs. The last item can be interpreted as follows. (i) When Wt− < wm and no
accident occurs, it accounts for the cash hoarded by the firm and added to its cash reserves,
(ρWt− + Xtλb)dt. (ii) When an accident occurs, it accounts for the change in cash reserves
due to the payment of the deductible, −Xtb. (iii) When Wt− = Xtw

m and no accident occurs,
it accounts for the wages paid to the manager, Xt(ρwm + λb)dt.

Similarly, the cash-flow statement of the insurance company is

Cash inflows Cash outflows

Coupon Xt(µ− λC)dt Insurance liability Xt(C − b)dNt

Insurance premium λXt(C − b)dt− (ρ− r)Wt−dt Profits

Table 2. Cash-flow statement of the insurance company.

In case an accident occurs, the insurance company must cover the social cost, net of the
deductible. Its profits are therefore −Xt(C − b). When no accident occurs, the profit of the
insurance company amounts to [Xt(µ− λb)− (ρ− r)Wt− ]dt.

At date 0, the insurance company receives the bonds and commits to the insurance
contract. It also transfers an initial amount of cash W0− to the firm. The latter hoards
this as cash reserves. Throughout its history, the firm will use accumulated cash reserves to
pay coupons, insurance premia, deductibles and transfers to the manager. Thus the present
value of the insurance company’s profits is23

EΛ

[∫ ∞

0
e−rt{[Xt(µ− λb)− (ρ− r)Wt− ]dt−Xt(C − b)dNt}

]

= EΛ

[∫ ∞

0
e−rt[Xt(µdt− CdNt)− dLt]

]
+ EΛ

[∫ ∞

0
e−rt[dLt − (ρ− r)Wt−dt]

]

= F (X0,W0−)− EΛ

[∫ ∞

0
e−rtd(e−rtWt−)

]
= F (X0,W0−) + W0− ,

This identity states that the rent of the insurance company, F (X0,W0−), is equal to the
present value of its profits, minus the initial payment it makes to the firm.

The value of the bonds received by the insurance company exceeds the initial amount
of cash it pays to the firm. The difference is equal to the sum of two terms. The first
one is equal to the insurance company’s initial rent. The second term reflects the payments
that the insurance company receives and makes as a result of the insurance contract. By
construction, the actuarially fair component of the insurance premium is on average equal
to the net liabilities of the insurance company. By contrast, the incentive component of the
insurance premium involves an expected discounted cost to the insurance company of

EΛ

[∫ ∞

0
e−rt(ρ− r)Wt− dt

]
.

23The first equality follows from the fact that the process MΛ is an FN–martingale under PΛ, the second
from Proposition 4 along with the change of variable formula for processes of bounded variations and the
dynamics of the manager’s continuation utility, and the third from the fact that limt→∞ e−rtWt− = 0.
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Remark. In the implementation described above, the insurance company purchases the
bonds issued by the firm. Alternatively, one could consider the case where the firm is dealing
separately with the insurance company and a fringe of competitive, risk-neutral investors,
with discount rate r. The firm would sell the bonds to these investors. The proceeds would
be used to hoard cash reserves W0− and pay a commitment fee to the insurance company.
Note that the present value of the fees paid to the insurance company is lower than the
present value of its liabilities. If the insurance company does not hold the bond, it thus
makes negative expected discounted profits after date 0. The commitment fee initially paid
by the firm to the insurance company is then a compensation for this cost.

4.3. Incentive Compatibility

We now verify that this implementation gives rise to the same decisions as in the optimal
contract. First, the dynamics of the cash reserves and of the liquidity ratio resulting from
the implementation exactly mirror those of the promised continuation utility and the size-
adjusted utility of the manager in the optimal contract. Next, the downsizing covenant
ensures that downsizing decisions are the same in the implementation and in the optimal
contract. Thus, the real decisions arising in the implementation in response to the evolution
of the liquidity ratio exactly parallel those requested in the optimal contract. Finally, the
compensation package proposed in the implementation leads to the same transfers to the
manager as in the optimal contract. As a result of this, the insurance and financial contracts
we described are incentive compatible, and they implement the optimal allocation.

4.4. Empirical Implications

Moral Hazard, Deductible and Insurance Premia. The parameter b is large and moral
hazard is severe when risk prevention involves very costly efforts which outsiders cannot
observe. This is likely to be the case for technologically complex industrial processes involving
hazardous substances, such as in the chemical or the nuclear industry. The parameter b is
also likely to be large for projects involving a sequence of critical steps which, if not taken
properly, can have dangerous consequences. Such situations typically arise in the energy
sector. Our model implies that, in such cases, insurance contracts should have relatively
large deductibles, and insurance premia should place relatively more weight on incentive
considerations. In particular, they should increase sharply after accidents, but they also
should decrease significantly after a long period without accidents. Overall, firms with greater
moral hazard will thus have relatively more volatile insurance premia dynamics.

To go beyond these qualitative predictions, note that the different parameters in the
model are related to several observable variables. First, observing the deductible allows one
to estimate the moral hazard parameter b. Next, the intensity λ of the accident process
can be estimated by observing the rate at which accidents occur. Finally, combining these
estimations with the observation of the cash reserves’ evolution, one can estimate the discount
rate ρ. This offers a first opportunity to assess the fit of the model, by testing whether ρ

is greater than the risk-free rate r. Furthermore, the evolution of the insurance premium
during periods without accidents offers additional information about the key parameters of
the model. To see this, recall that the actuarial component pa

t = λXt(C− b) of the insurance
premium is constant as long as no downsizing takes place, and thus in particular as long as
no accident occurs. Thus only the incentive component pi

t = −(ρ − r)Wt− of the insurance
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premium varies during periods without accident, according to

dpi
t = [ρpi

t − (ρ− r)Xtb]dt.

Combining this empirical restriction with those used to identify b, λ, and ρ, one obtains a
set of overidentifying conditions. Hence one could use the generalized method of moments to
estimate the key parameters and test the model.

Pricing Credit Risk. The implementation of the optimal contract involves an infinite
maturity consol bond paying a stream of coupons {(µ − λC)Xt}t≥0. At any date t, the
market value of this bond depends on the current size Xt of the firm and on its current
liquidity ratio wt, which are the two state variables governing its future evolution. Because
of risk-neutrality and homogeneity, the price of this bond at time t can be written as

Et

[∫ ∞

t
e−r(s−t)(µ− λC)Xs ds

]
= Xtd(wt)

where the function d solves:
d(w) = d(b)w/b if w ∈ [0, b],

rd(w) = µ− λC + (ρw + λb)d′(w)− λ[d(w)− d(w − b)] if w ∈ (b, wm),

rd(wm) = µ− λC − λ[d(wm)− d(wm − b)].

(40)

One can interpret d(w) as the size-adjusted market value of the bond, given a liquidity ratio
w. The last condition in (40) reflects that when the liquidity ratio reaches its maximum
level wm, it stays there until an accident occurs. Note that the function d satisfies the same
functional equation as f , see (22), the difference between the two lying in the boundary
condition at wm, which is f ′(wm) = −1 for f , and d′(wm) = 0 for d as can be seen from (40).
Using this observation, it is straightforward to derive the following corollary along the lines
of the proof of Proposition 2.

Corollary 1. The function d is strictly increasing and strictly concave over [0, wm].

Using the expression for d(wm) in (40), a direct implication of this result is that

d(wm) <
µ− λC

r
. (41)

The economic intuition underlying Corollary 1 is the following. If many accidents occur, the
firm is downsized and repayments to bondholders are correspondingly scaled down. This
is a form of partial default. Hence accident risk generates credit risk, which is reflected in
the pricing of the bond. As the liquidity ratio of the firm increases, the risk of downscaling
decreases and the bond price increases. Thus d is increasing. However, there is a limit to
this process. Indeed, the liquidity ratio never exceeds wm and this barrier is not absorbing.
Like the risk of accident, the risk of a reduction in the liquidity ratio is thus never eliminated
and the risk of an eventual downsizing always remains. Correspondingly, the maximal value
of the debt is lower than its risk-free counterpart, as shown by (41). The concavity of d

reflects that the bond price reacts less to changes in the liquidity ratio of the firm when its
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accident record is low. By contrast, after a series of accidents, the liquidity ratio is low, and
downsizing risk is high. As a result of this, the bond price reacts strongly to firm performance
and ensuing changes in the liquidity ratio.

These statements about the value of the bond can be translated in terms of yield spreads.
The yield y(wt) on the consol bond is defined by

d(wt) =
∫ ∞

t
e−y(wt)(s−t)(µ− λC) ds.

Hence y(wt) is the ratio of the size-adjusted coupon to the size-adjusted bond price:

y(wt) =
µ− λC

d(wt)
.

It follows from Corollary 1 that the credit risk yield spread y(wt) − r is a decreasing and
convex function of the liquidity ratio wt of the firm. From (41), this spread remains strictly
positive, even when the liquidity ratio of the firm reaches its maximal value wm:

y(wm) =
µ− λC

d(wm)
> r.

Instead of considering a consol bond paying a perpetual stream of appropriately downscaled
coupons, one can analyze the value of the corresponding stream of zero-coupon bonds. To do
this, consider the zero-coupon bond paying one dollar at date T for each unit of operation of
the firm at that date. Because of risk-neutrality and homogeneity, the price of this bond at
time t < T can be written as

Et

[
e−r(T−t)XT

]
= XtdT (wt),

while the corresponding yield yT (wt) is defined by

dT (wt) = e−yT (wt)(T−t).

It follows from these two expressions that the credit yield spread yT (wt)−r on the zero-coupon
bond is strictly positive, reflecting that downsizing takes place with positive probability
between dates t and T . Similarly to the consol bond, this spread decreases with the firm’s
liquidity ratio wt, but remains strictly positive even when the firm’s liquidity ratio reaches
its maximal level wm.

Now consider what happens when the maturity T − t of the zero-coupon bond tends to 0.
Two cases then arises. If wt > 2b, then even if an accident occurs the liquidity ratio remains
above the downsizing boundary b. As a result of this, there is no credit risk and the credit
yield spread is 0 at 0 maturity. By contrast, if b < wt ≤ 2b then, with probability λdt an
accident occurs in the infinitesimal time interval [t, t + dt) and the firm is downsized by a
factor wt/b− 1. A first-order approximation of the bond price and yield formulas implies

[1− yt+dt(wt)dt] = (1− rdt)
[
1− λdt + λdt

(wt

b
− 1
)]

+ o(dt).

Hence, when b < wt ≤ 2b the credit yield spread for 0 maturity bonds is

yt(wt)− r = λ
(
2− wt

b

)
.
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This spread is maximum in the neighborhood of the downsizing boundary b, at which it is
equal to the accident intensity λ.24

To summarize, our model generates several empirical implications for credit risk in a
context where contracts, and in particular the reliance on bonds and their covenants are
endogenous. First, bond prices increase and credit risk yield spreads decrease with the
liquidity ratio of the firm. Next, credit yield spreads on consol bonds or on positive maturity
zero-coupon bonds remain strictly positive even when the firm is very liquid. Last, credit
yield spreads on zero-coupon bonds also remain strictly positive when the maturity of the
bond goes to 0 if the liquidity ratio of the firm is below a threshold. Above that threshold,
the spread goes to 0 with the maturity of the bond.

5. Conclusion

We consider a dynamic setting where managers must exert costly unobservable effort to
reduce industrial accident risk. We study how to cope with the moral hazard problem arising
in this environment. The occurrence of accidents is modelled as a Poisson process. We
use martingale techniques to characterize the optimal contract. We show that it can be
implemented with realistic contractual instruments: compulsory insurance with a deductible
and a bonus-penalty system, managerial compensation after good performance, risky bonds,
and corporate downsizing when accidents are too frequent.

Our model generates several implications for endogenous optimal insurance and financial
contracts. Firms with greater moral hazard problems have greater deductible and more
volatile insurance premia. Credit risk decreases with the liquidity ratio of the firm, but
credit default spreads remain positive even when the firm is very liquid. When the liquidity
ratio is below a given threshold, zero coupon credit spreads remain bounded away from
zero as maturities go to zero. Because it is explicitly dynamic, our model also provides an
appropriate framework for empirical analyses of the joint time series of accidents, insurance
premia and corporate bond prices.

Our analysis also delivers several policy implications. The insurance company and the
firm should be liable for damages, and should not be allowed to escape liability by passing
it to small uninsured subcontractors. Managerial compensation should clearly be negatively
linked to accidents. Corporate downsizing should occur if the frequency of accidents is too
high. Deviations from such guidelines would lead to socially irresponsible corporate behavior.

24As shown by Zhou (2001), positive credit yield spreads at 0 maturity are a natural outcome of a model
with Poisson risk. However, while jumps in the firm’s value are simply postulated in Zhou (2001), they are
an endogenous feature of the optimal contract in our setup. A related difference is that we endogenize the
financial distress threshold. Duffie and Lando (2001) provide a structural model of credit risk that generates
strictly positive credit yield spreads at 0 maturity. As in Duffie and Lando (2001), default occurs in our
framework at some intensity. While this arises in their model because of incomplete accounting information,
this results in our model from imperfect effort observation and Poisson risk.
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Appendix A: The Stochastic Environment

In this Appendix, we provide a precise description of the stochastic environment. Let (Ω,F , P) be a
complete probability space over which is defined a Poisson process N = {Nt}t≥0 of intensity λ. We
denote by FN = {FN

t }t≥0 the filtration generated by N , suitably augmented by the P–null sets. This
filtration satisfies the usual conditions (Dellacherie and Meyer (1978, Chapter IV, Definition 48)). The
process M = {Mt}t≥0 defined by

Mt = Nt − λt

for all t ≥ 0, is an FN–martingale under P. As in the text, let Λ = {Λt}t≥0 be an FN–predictable
process with values in {λ, λ+∆λ}, and denote by ZΛ = {ZΛ

t }t≥0 the unique solution to the stochastic
differential equation

dZΛ
t = ZΛ

t−

(
Λt

λ
− 1
)

dMt

for all t ≥ 0, where ZΛ
0− = 0. By the exponential formula for Stieltjes–Lebesgue calculus (Brémaud

(1981, Appendix A4, Theorem T4)), one has

ZΛ
t =

( ∞∏
n=1

ΛTn

λ
1{Tn≤t}

)
exp
(∫ t

0

(λ− Λs) ds

)
for all t ≥ 0, where (Tn)∞n=1 is the sequence of dates at which the process N jumps. From Brémaud
(1981, Chapter VI, Theorem T2), ZΛ is a non-negative FN–local martingale under P. Moreover
E[ZΛ

t ] = 1 for all t ≥ 0. A standard extension argument implies that there exists a unique probability
measure PΛ over (Ω,F) that is defined by the Radon-Nikodym derivatives

dPΛ

dP |FN
t

= ZΛ
t

for all t ≥ 0. It then follows from Brémaud (1981, Chapter VI, Theorem T3) that the process MΛ

defined by (6) is an FN–martingale under PΛ.

Appendix B: The Incentive Compatibility Constraint

Proof of Lemma 1. The process U(Γ,Λ) defined by (5) is a non-negative FN–martingale under PΛ,
of the form Ut(Γ,Λ) = EΛ[Uτ (Γ,Λ) |FN

t ] for all t ≥ 0, where Uτ (Γ,Λ) is integrable by (3). Since the
filtration FN satisfies the usual conditions, U(Γ,Λ) admits a right-continuous modification with left-
hand limits (Dellacherie and Meyer (1982, Chapter VI, Theorem 4)). The predictable representation
(7) then follows directly from Brémaud (1981, Chapter III, Theorems T9 and T17). �

Proof of Proposition 1. Following Sannikov (2003, Lemma 2), consider the manager’s lifetime expected
utility, evaluated conditionally upon the information available at some date t, when she acts according
to Λ′ = {Λ′t}t≥0 until date t and then reverts to Λ = {Λt}t≥0:

U ′
t =

∫ t∧τ

0

e−ρs(dLs + 1{Λ′
s=λ+∆λ}XsBds) + e−ρtWt(Γ,Λ). (B.1)

First, we show that if U ′ = {U ′
t}t≥0 is an FN–submartingale under PΛ′

that is not a martingale, then
Λ is suboptimal for the manager. Indeed, in that case there exists some t ≥ 0 such that

U0−(Γ,Λ) = U ′
0− < EΛ′

[U ′
t ],
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so that by (B.1) the manager is strictly better off acting according to Λ′ until date t and then reverting
to Λ. The claim follows.

Next, we show that if U ′ is a FN–supermartingale under PΛ′
, then Λ is at least as good as Λ′ for

the manager. From (5) and (B.1) along with the fact that U(Γ,Λ′) is a PΛ′
–martingale, one has

EΛ′
[U ′

t ] = U0−(Γ,Λ′) + EΛ′
[
1{t<τ}

∫ τ

t

e−ρs(1{Λs=λ+∆λ} − 1{Λ′
s=λ+∆λ})XsB ds

]
,

so that the mapping t 7→ EΛ′
[U ′

t ] is right-continuous. Since the filtration FN satisfies the usual
conditions, U ′ admits a right-continuous modification with left-hand limits (Dellacherie and Meyer
(1982, Chapter VI, Theorem 4)). Moreover, since U ′ is non-negative, it admits 0 as a last element.
Hence, by the optional sampling theorem (Dellacherie and Meyer (1982, Chapter VI, Theorem 10)),

U ′
0− ≥ EΛ′

[U ′
τ ] = U0−(Γ,Λ′),

from which the claim follows as U ′
0− = U0−(Γ,Λ) by (B.1).

Now, for each t ≥ 0,

U ′
t = Ut(Γ,Λ) +

∫ t∧τ

0

e−ρs(1{Λ′
s=λ+∆λ} − 1{Λs=λ+∆λ})XsB ds

= U0(Γ,Λ)−
∫ t∧τ

0

e−ρsHs(Γ,Λ) dMΛ
s +

∫ t∧τ

0

e−ρs(1{Λ′
s=λ+∆λ} − 1{Λs=λ+∆λ})XsB ds

= U0(Γ,Λ)−
∫ t∧τ

0

e−ρsHs(Γ,Λ) dMΛ′

s −
∫ t∧τ

0

e−ρsHs(Γ,Λ)(Λ′s − Λs) ds

+
∫ t∧τ

0

e−ρs(1{Λ′
s=λ+∆λ} − 1{Λs=λ+∆λ})XsB ds

= U0(Γ,Λ)−
∫ t∧τ

0

e−ρsHs(Γ,Λ) dMΛ′

s

+
∫ t∧τ

0

e−ρs∆λ(1{Λ′
s=λ+∆λ} − 1{Λs=λ+∆λ})[Xsb−Hs(Γ,Λ)] ds,

where the first equality follows from (5) and (B.1), the second from (7), the third from (6), and
the fourth from a straightforward computation. Since H(Γ,Λ) is FN–predictable and MΛ′

is an
FN–martingale under PΛ′

, the drift of U ′ has the same sign as

(1{Λ′
t=λ+∆λ} − 1{Λt=λ+∆λ})[Xtb−Ht(Γ,Λ)]

for all t ∈ [0, τ). If (9) holds for the effort process Λ, then this drift remains non-positive for all
t ∈ [0, τ) and all choices of Λ′t ∈ {λ, λ + ∆λ}. This implies that for any effort process Λ′, U ′ is an
FN–supermartingale under PΛ′

, and thus that Λ is at least as good as Λ′ for the manager. If (9)
does not hold for the effort process Λ, then choose Λ′ such that for all t ∈ [0, τ), Λ′t = λ if and
only if Ht(Γ,Λ) ≥ Xtb. Then the drift of U ′ is everywhere non-negative and strictly positive on a
set of PΛ′

–positive measure. As a result of this, U ′ is an FN–submartingale under PΛ′
that is not a

martingale, and thus Λ is suboptimal for the manager. This concludes the proof. �

Appendix C: The Value Function

Proof of Proposition 2. In this Appendix, we shall work with the size-adjusted value social value
function, v, instead of the size-adjusted value of the insurance company, f . These two functions are
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related by v(w) = f(w) + w for all w ≥ 0, so that the system (22) can be rewritten in terms of v as
v(w) = v(b)w/b if w ∈ [0, b],

rv(w) = µ− λC − (ρ− r)w + v′(w)(ρw + λb)− λ[v(w)− v(w − b)] if w ∈ (b, wm],

v(w) = v(wm) if w ∈ (wm,∞).

(C.1)

We assume throughout that µ− λC ≥ (ρ− r)b, and that µ− λC ≥ (ρ− r)b(2 + r/λ) in Lemmas C.3
to C.7 below. Let U be the space of continuous functions over R+ that are continuously differentiable
over (b,∞), and consider the following linear first-order differential operator with delay:

Lu(w) = (ρw + λb)u′(w)− λ[u(w)− u(w − b)], (C.2)

for all u ∈ U and w > b. Define two auxiliary functions u1 and u2 in U that solve u1(w) = 0 if w ∈ [0, b],

ru1(w) = µ− λC − (ρ− r)w + Lu1(w) if w ∈ (b,∞),
(C.3)

and  u2(w) = w if w ∈ [0, b],

ru2(w) = Lu2(w) if w ∈ (b,∞).
(C.4)

Given their initial conditions over the interval [0, b], the solutions to (C.3) and (C.4) are recursively
constructed over the intervals (b, 2b], (2b, 3b], and so on. Repeated applications of the Cauchy-Lipschitz
theorem ensure that (C.3) and (C.4) both have a unique continuous solution. Neither u1 and u2 are
differentiable at b. Indeed, using the operator L and the definitions of u1 and u2, it is straightforward
to verify that

u′1+(b) =
(ρ− r)b− µ + λC

(ρ + λ)b
< 0 = u′1−(b), (C.5)

u′2+(b) =
r + λ

ρ + λ
< 1 = u′2−(b). (C.6)

However, the continuity of u1 and u2 ensures that they are both continuously differentiable over
(b,∞). This implies in turn that they are twice continuously differentiable over (b,∞) \ {2b}, thrice
continuously differentiable over (b,∞) \ {2b, 3b}, and so on. One has the following results.

Lemma C.1. lim infw→∞ u′1(w) ≥ 1.

Proof. We first show that lim infw→∞ u′1(w) 6= −∞. Otherwise, there exists an increasing divergent
sequence (wn)n≥0 in (2b,∞) such that limn→∞ u′1(wn) = −∞ and wn = arg minw∈[0,wn]{u′1+(w)}.
For each n ≥ 0, one can find some w̃n ∈ (wn − b, wn) such that

(ρwn + λb)u′1(wn) = λ[u1(wn)− u1(wn − b)] + ru1(wn) + (ρ− r)wn − µ + λC

= λbu′1(w̃n) + ru1(wn) + (ρ− r)wn − µ + λC,

where the first equality follows from (C.2) and (C.3) and the second from the mean value theorem.
This may be conveniently rewritten as

u′1(w̃n) =
wn

λb

[
ρu′1(wn)− r

wn
u1(wn)

]
+

µ− λC

λb
+ u′1(wn)− (ρ− r)wn

λb
. (C.7)
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Since u1(0) = 0, one has u1(wn) ≥ wnu′1(wn) by construction of the sequence (wn)n≥0. Moreover,
u′1(wn) < 0 for n large enough. It then follows from (C.7) that for any such n,

u′1(w̃n) ≤ (ρ− r)wnu′1(wn)
λb

+
µ− λC

λb
.

Therefore, since u′1(wn) < 0,
u′1(w̃n)
u′1(wn)

≥ (ρ− r)wn

λb
+

µ− λC

λbu′1(wn)
,

so that the ratio u′1(w̃n)/u′1(wn) goes to ∞ as n goes to ∞. Using again the fact that u′1(wn) < 0 for
n large enough, one obtains that eventually u′1(w̃n) < u′1(wn), which, since w̃n < wn, contradicts the
fact that wn = arg minw∈[0,wn]{u′1+(w)}. Thus lim infw→∞ u′1(w) is a finite number, that we denote
l. We now show that necessarily l ≥ 1. Consider an increasing divergent sequence (wn)n≥0 in (2b,∞)
such that limn→∞ u′1(wn) = l. There exists a constant C1 such that u1(wn) ≥ lwn + C1 for all n ≥ 0.
Constructing w̃n ∈ (wn − b, wn) as in (C.7), it follows that

ρu′1(wn) + λb
u′1(wn)

wn
≥ λb

u′1(w̃n)
wn

+ rl +
rC1 − µ + λC

wn
+ ρ− r

for all n ≥ 0. Letting n go to ∞, one obtains that

(ρ− r)(l − 1) ≥ λb lim sup
n→∞

u′1(w̃n)
wn

.

If l < 1, this implies that lim supn→∞ u′1(w̃n) = −∞, which in turn contradicts the fact that
lim infw→∞ u′1(w) = l is a finite number. Hence l ≥ 1, and the result follows. �

Lemma C.2. u′2(w) > 0 for all w ∈ (b,∞).

Proof. One has u′2+(b) = (r +λ)/(ρ+λ) > 0. Now suppose that u′2 vanishes over (b,∞) and let w̃ > b

be the first point at which it does so. Then, using (C.2) and (C.4), one obtains that

−λ[u2(w̃)− u2(w̃ − b)]− ru2(w̃) = 0,

which is impossible as u2 is strictly increasing and strictly positive over (0, w̃]. Hence the result. �

Consider now the ratio −u′1+(w)/u′2+(w), which is a continuous function of w over [b,∞). This
quantity is strictly positive at w = b, and ultimately becomes strictly negative as w gets large enough
by Lemmas C.1 and C.2. Thus −u′1+/u′2+ has a maximum over [b,∞). We denote by wm the smallest
point at which this maximum is reached over [b,∞). The function u defined by

u(w) = u1(w)−
u′1+(wm)
u′2+(wm)

u2(w) (C.8)

for all w ∈ R+ then satisfies u′+(wm) = 0, and is non-decreasing as u′+ ≥ 0 over R+. By (C.3), (C.4)
and (C.8), one has u(b)/b = −u′1+(wm)/u′2+(wm), and u satisfies u(w) = u(b)w/b if w ∈ [0, b],

ru(w) = µ− λC − (ρ− r)w + Lu(w) if w ∈ (b,∞).
(C.9)

Note that since u2 is strictly positive over R++, u can alternatively be characterized as the highest
function of the form u1 + βu2 whose right derivative vanishes over [b,∞). Such functions form an
increasing family ordered by their slope β at 0, and they satisfy the analogue of (C.9) with β instead
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of u(b)/b. This immediately implies the statement in Proposition 2(i). For β > u(b)/b, the right
derivative of u1 + βu2 is always strictly positive, while it takes strictly negative values for β < u(b)/b.
Letting αm = u(b)/b − 1 and φαm(w) = u(w) − w for all w ≥ 0, one obtains that φ′αm+(wm) = −1,
and that the equation φ′α(w) = −1 admits no solution for any α > αm. To derive Proposition 2(ii), we
need only to check that φαm is actually differentiable at wm, which results from the following lemma.

Lemma C.3. If µ− λC > (ρ− r)b(2 + r/λ), then u′′+(b) < 0 and wm > b.

Proof. We first prove that
u(b)

b
≥ µ− λC − (ρ− r)b

(r + λ)b
. (C.10)

Indeed, substituting the explicit values (C.5) and (C.6) for u′1+(b) and u′2+(b) in the expression for
u′+(b) yields

u′+(b) = u′1+(b) +
u(b)

b
u′2+(b) =

(ρ− r)b− µ + λC + (r + λ)u(b)
(ρ + λ)b

, (C.11)

and (C.10) follows from the fact that u′+ ≥ 0 over R+ and thus in particular u′+(b) ≥ 0. We next
prove that u′′+(b) < 0. Differentiating (C.9) to the right of any w ≥ b leads to

(ρw + λb)u′′+(w) = λ[u′+(w)− u′+(w − b)]− (ρ− r)[u′+(w)− 1].

Applying this formula at b and using (C.10) and (C.11), one then obtains that

(ρ + λ)bu′′+(b) = λ

[
u′+(b)− u(b)

b

]
− (ρ− r)[u′+(b)− 1]

=
(λ− ρ + r)[(ρ− r)b− µ + λC] + (r − ρ)(r + 2λ)u(b)

(ρ + λ)b
+ ρ− r

≤ λ[(ρ− r)b− µ + λC]
(r + λ)b

+ ρ− r,

which is strictly negative under the assumption of the lemma. Hence the claim. We finally prove
that wm > b. A sufficient condition is that the right derivative of −u′1+/u′2+ at b be strictly positive.
Differentiating (C.3) and (C.4) to the right of b leads to

(ρ + λ)bu′′1+(b) = (λ− ρ + r)u′1+(b) + ρ− r, (C.12)

(ρ + λ)bu′′2+(b) = (λ− ρ + r)u′2+(b)− λ. (C.13)

Substituting the explicit values (C.5) and (C.6) for u′1+(b) and u′2+(b) in (C.12) and (C.13) yields

−u′′1+(b)u′2+(b) + u′′2+(b)u′1+(b) = −
(ρ− r)u′2+(b) + λu′1+(b)

(ρ + λ)b

=
λ

b2(ρ + λ)2
[
µ− λC − (ρ− r)b

(
2 +

r

λ

)]
,

which is strictly positive under the assumption of the lemma. This implies the result. �

Under the assumption of Lemma C.3, u is differentiable at wm and wm is the smallest point
at which u′ vanishes, and at which φαm equals −1. We now show that u is concave over [0, wm],
and strictly so over [b, wm]. Differentiating (C.9) to the right of 2b and using the inequalities (C.5)
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and (C.6), one can verify that u′′+(2b) > u′′−(2b). Since u is twice continuously differentiable over
(b,∞) \ {2b}, u′′+ is upper semicontinuous over [b,∞), and hence the set {w ≥ b | u′′+(w) ≥ 0} is
closed. Denote by wc its smallest element. Since u is non-decreasing and u′(wm) = 0, one must have
u′′+(wm) ≥ 0, and thus wm ≥ wc. By Lemma C.3, wc > b and u′′+ < 0 over (b, wc), so that u is strictly
concave over [b, wc]. Moreover, along with the inequalities (C.5) and (C.6), the representation (C.8)
implies that u′+(b) < u′−(b). Thus, as u is linear over [0, b], it is globally concave over [0, wc]. In order
to derive similar properties of u on the interval [0, wm], we now prove that wc actually coincides with
wm. One first has the following result.

Lemma C.4. If µ− λC > (ρ− r)b(2 + r/λ), then wc ≥ 2b.

Proof. Suppose by way of contradiction that wc ∈ (b, 2b). Since u is twice continuously differentiable
over (b, 2b), u′′(wc) = 0 and u′′ < 0 over (b, wc). We consider three cases in turn.

Case 1. Suppose first that λ ≤ ρ − r. Then, since wc − b < b and u′′(wc) = 0, differentiating
(C.9) at wc yields

λ

[
u′(wc)− u(b)

b

]
− (ρ− r)[u′(wc)− 1] = 0,

which implies that λu(b)/b− ρ + r = (λ− ρ + r)u′(wc) ≤ 0. By (C.10), it follows that

λ[µ− λC − (ρ− r)b]
b(r + λ)

≤ ρ− r,

or equivalently µ− λC ≤ (ρ− r)b(2 + r/λ), which contradicts the assumption of the lemma.

Case 2. Suppose next that λ ≥ 2ρ− r. Differentiating (C.9) twice over (b, 2b) yields

(ρw + λb)u′′′(w) = λ[u′′(w)− u′′(w − b)]− (2ρ− r)u′′(w) = (λ− 2ρ + r)u′′(w)

for all w ∈ (b, 2b), where the second inequality follows from the fact that u is linear over (0, b).
Since λ ≥ 2ρ − r and u′′ < 0 over (b, wc), one has u′′′ ≤ 0 over this interval. This implies that
u′′(wc) ≤ u′′+(b), which is impossible since u′′(wc) = 0 by construction and u′′+(b) < 0 by Lemma C.3.

Case 3. Suppose finally that ρ − r < λ < 2ρ − r. Differentiating (C.9) twice as in Case 2 and
using the fact that λ − 2ρ + r < 0 shows that u′′′ and u′′ have opposite signs over (b, 2b). It follows
that u′′′ > 0 and hence u′′ > u′′+(b) over (b, wc). Using again the fact that λ− 2ρ + r < 0, one obtains
that

u′′′(w) =
(λ− 2ρ + r)u′′(w)

ρw + λb
<

(λ− 2ρ + r)u′′+(b)
ρw + λb

for all w ∈ (b, wc). One then has

u′′(wc) = u′′+(b) +
∫ wc

b

(λ− 2ρ + r)u′′(w)
ρw + λb

dw <

[
1 +

∫ wc

b

λ− 2ρ + r

ρw + λb
dw

]
u′′+(b) ≡ C2u

′′
+(b).

Since u′′(wc) = 0 and u′′+(b) < 0, one obtains a contradiction if C2 > 0. Note that∫ wc

b

1
ρw + λb

dw <

∫ 2b

b

1
ρw + λb

dw <
1

ρ + λ
.

Since ρ− r < λ < 2ρ− r, this implies that

C2 > 1 +
λ− 2ρ + r

ρ + λ
> 0,
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and the result follows. �

The following lemma then implies that u is concave over [0, wm], and strictly so over [b, wm].

Lemma C.5. If µ− λC > (ρ− r)b(2 + r/λ), then wc = wm.

Proof. We first show that u′′ > 0 in an interval (wc, wc + ε) for some ε > 0. Whenever wc = 2b and
u′′+(2b) > 0, this is immediate. Otherwise u′′+(wc) = 0. Differentiating (C.9) twice to the right of wc

then yields

(ρwc + λb)u′′′+ (wc) = λ[u′′+(wc)− u′′+(wc − b)]− (2ρ− r)u′′+(wc) = −λu′′+(wc − b) > 0

where the strict inequality follows from the fact that wc− b ∈ [b, wc) by Lemma C.4, and that u′′+ < 0
over [b, wc). Since u′′+(wc) = 0 and u′′′+ (wc) > 0, u′′ > 0 in an interval (wc, wc + ε) for some ε > 0, as
claimed. Suppose by way of contradiction that wc 6= wm, so that actually wm > wc. Then u′(wc) > 0
as wm is the smallest point at which u′ vanishes. Since u′(wm) = u′(wc)+

∫ wm

wv u′′(w) dw, this implies
that u′′ cannot be non-negative over the whole interval (wc, wm). Let w̄c = inf{w > wc |u′′(w) < 0} ∈
(wc, wm). One has u′′ ≥ 0 over (wc, w̄c) and u′′(w̄c) = 0 since w̄c > wc ≥ 2b by Lemma C.4 and u is
twice continuously differentiable over (2b,∞). We now show that w̄c ≥ wc + b. Note that one must
have u′′′+ (w̄c) ≤ 0, since otherwise u′′ would be strictly positive in an interval (w̄c, w̄c + η) for some
η > 0. Differentiating (C.9) twice to the right of w̄c then yields

0 ≥ (ρw̄c + λb)u′′′+ (w̄c) = λ[u′′(w̄c)− u′′+(w̄c − b)]− (2ρ− r)u′′(w̄c) = −λu′′+(w̄c − b),

and thus u′′+(w̄c − b) ≥ 0. Now, u′′+ < 0 over (b, wc). Since w̄c > 2b and thus w̄c − b > b, it follows
that w̄c − b ≥ wc, which implies the claim. Since u′′ ≥ 0 over (wc, w̄c), u is convex over [w̄c − b, w̄c].
Then, since

0 = (ρw̄c + λb)u′′(w̄c) = λ[u′(w̄c)− u′(w̄c − b)]− (ρ− r)[u′(w̄c)− 1]

by differentiation of (C.9) at w̄c, one obtains that u′(w̄c) ≥ 1. One then has

ρw̄c + λbu′(w̄c) ≤ (ρw̄c + λb)u′(w̄c)

= λ[u(w̄c)− u(w̄c − b)] + ru(w̄c) + (ρ− r)w̄c − µ + λC (C.14)

≤ λbu′(w̄c) + ru(w̄c) + (ρ− r)w̄c − µ + λC,

where the first inequality follows from u′(w̄c) ≥ 1, the second from (C.9) and the third from the
convexity of u over [w̄c − b, w̄c]. As a result of (C.14), u(w̄c) ≥ w̄c + (µ− λC)/r. Since wm > w̄c and
u is non-decreasing, one must have u(w̄m) > (µ− λC)/r. However, writing (C.9) at wm yields

0 = (ρwm + λb)u′(w̄m) = λ[u(wm)− u(wm − b)] + ru(wm) + (ρ− r)wm − µ + λC,

which, since u is non-decreasing, implies that u(w̄m) < (µ − λC)/r. This contradiction establishes
that wc = wm, as claimed. �

Finally, similar arguments can be used to show that u′ vanishes only at wm, so that u is strictly
increasing over R+.

Lemma C.6. If µ− λC > (ρ− r)b(2 + r/λ), then u′ > 0 over (b,∞) \ {wm}.
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Proof. Since wc = wm, it follows as in the proof of Lemma C.5 that u′′ > 0 in an interval (wm, wm +ε)
for some ε > 0. Since u′(wm) = 0, one must have u′ > 0 over (wm, wm + ε). Suppose now that
u′(w) = 0 for some w ≥ wm +ε, and let w̄m = inf{w ≥ wm +ε |u′(w) = 0}. Because u is continuously
differentiable over (b,∞), u′(w̄m) = 0 = u′(wm). Since u′′ > 0 over (wm, wm + ε) ⊂ (wm, w̄m), this
implies that u′′ cannot be non-negative over the whole interval (wm, w̄m). Let ¯̄wc = inf{w > wm |
u′′(w) < 0} ∈ (wm, w̄m). One has u′′ ≥ 0 over (wm, ¯̄wc) and u′′( ¯̄wc) = 0 since w̄c > wm = wc ≥ 2b

by Lemmas C.4 and C.5. Proceeding as for w̄c in the proof of Lemma C.5, one can show that
¯̄wc ≥ wm +b, so that u is convex over [ ¯̄wc−b, ¯̄wc], and that u′( ¯̄wc) ≥ 1. One can then deduce similarly
that u( ¯̄wc) ≥ ¯̄wc +(µ−λC)/r, which yields a contradiction as u(w̄m) ≥ u( ¯̄wc) must be strictly smaller
than (µ− λC)/r, just as u(wm). Hence the result. �

The statements in Proposition 2(iii) and (iv) then follow from the fact that φαm(w) = u(w) − w

for all w ≥ 0. This completes the proof of Proposition 2. �

The value function v that results from the optimal contract can then be defined as

v(w) = min{u(w), u(wm)} (C.15)

for all w ≥ 0. It is linear over [0, b], globally concave and non-decreasing. It is strictly increasing over
[0, wm], flat above wm, and strictly concave over [b, wm]. The corresponding value function f for the
insurance company, defined by f(w) = v(w) − w for all w ≥ 0 or equivalently by (25), is linear over
[0, b] and globally concave. It has a slope −1 above wm, and is strictly concave over [b, wm]. The next
lemma is crucial in establishing the verification theorem. Note that f ′ = f ′+ over (b,∞).

Lemma C.7. If µ− λC > (ρ− r)b(2 + r/λ), then

Lv(w)− rv(w) ≤ (ρ− r)w − µ + λC

for all w ∈ (b,∞). As a result of this,

(ρw + λb)f ′+(w)− λ[f(w)− f(w − b)]− rf(w) ≤ −µ + λC

for all w ∈ [b,∞), with equality if w ∈ [b, wm].

Proof. For w ∈ [b, wm], the result is a consequence of (C.9) and (C.15), the case w = b following by
continuity. For any w > wm, one has

Lv(w)− rv(w)− (ρ− r)w + µ− λC = −λ[v(wm)− v(w − b)]− rv(wm)− (ρ− r)w + µ− λC,

= λ[v(w − b)− v(wm − b)]− (ρ− r)(w − wm)

≤ [λv′+(wm − b)− ρ + r](w − wm),

where the first equality follows from the fact that v is flat above wm, the second from substituting
Lv(wm) − rv(wm) = (ρ − r)wm − µ + λC into the second expression, and the inequality from the
concavity of v. By construction, v′+(wm − b) = u′+(wm − b) so that we need only to prove that

λu′+(wm − b)− ρ + r ≤ 0.

Differentiating (C.9) twice to the right of wm and taking advantage from u′(wm) = 0 yields

λu′+(wm − b)− ρ + r = −(ρwm + λb)u′′+(wm),

which is non-positive as u′′+(wm) ≥ 0. Hence the result. �
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Appendix D: An Upper Bound for the Insurance Company’s Profits

Proof of Proposition 3. Fix an arbitrary contract Γ = (X, L, τ) that induces maximal risk prevention,

Λt = λ for all t ∈ [0, τ), and delivers the manager an expected discounted utility W0− given initial
firm size X0. For simplicity, let us drop the mention of the contract Γ and of the effort process Λ in
the remainder of the proof. The manager’s continuation utility follows a process W whose dynamics is
described by (11). In line with our assumption that X is FN–predictable while W is FN–adapted, one
can assume without loss of generality that X has left-continuous paths, while W has right-continuous
paths. Now, observe that, by construction, the function f is continuously differentiable over (b,∞),
so that the function F is continuously differentiable over {(ξ, ω) ∈ R++ × R+ | ω/ξ > b}. Since
f is continuous at b and f ′+(b) is finite, one can continuously extend the derivative of F to the set
{(ξ, ω) ∈ R++×R+ |ω/ξ = b}. As limited liability and incentive compatibility imply that Wt−/Xt ≥ b

for all t ∈ [0, τ), applying the change of variable formula for multidimensional processes of bounded
variations (Dellacherie and Meyer (1982, Chapter VI, Section 92)) yields

e−rT F (XT+ ,WT ) = F (X0,W0−) +
∫ T

0

e−rt[(ρWt− + λHt)FW (Xt,Wt−)− rF (Xt,Wt−)] dt

+
∫ T

0

e−rtFX(Xt,Wt−) dXc
t −

∫ T

0

e−rtFW (Xt,Wt−) dLc
t (D.1)

+
∑

t∈[0,T ]

e−rt[F (Xt+ ,Wt)− F (Xt,Wt−)]

for all T ∈ [0, τ), where Xc and Lc stand for the pure continuous parts of X and L. For each t ∈ [0, T ],
one has the following decomposition of the jump in F (Xt,Wt−) at date t:

F (Xt+ ,Wt)− F (Xt,Wt−) = F (Xt+ ,Wt)− F (Xt,Wt)

+F (Xt,Wt− −Ht∆Nt −∆Lt)− F (Xt,Wt−)

= F (Xt+ ,Wt)− F (Xt,Wt) (D.2)

+F (Xt,Wt− −Ht∆Nt −∆Lt)− F (Xt,Wt− −Ht∆Nt)

+F (Xt,Wt− −Ht∆Nt)− F (Xt,Wt−).

To derive (D.2), we have used the fact that Wt = Wt− −Ht∆Nt −∆Lt, where ∆Nt = Nt −Nt− and
∆Lt = Lt − Lt− for all t ∈ [0, T ], with N0− = L0− = 0 by convention. Now fix T ∈ [0, τ) and, as in
Appendix A, let Mt = Nt − λt for all t ≥ 0. Using (D.2) and

∑
t∈[0,T ]

e−rt[F (Xt,Wt− −Ht∆Nt)− F (Xt,Wt−)] =
∫ T

0

e−rt[F (Xt,Wt− −Ht)− F (Xt,Wt−)] dNt,

one can then rewrite (D.1) as

e−rT F (XT+ ,WT ) = F (X0,W0−)+
∫ T

0

e−rt[F (Xt,Wt−−Ht)−F (Xt,Wt−)] dMt+A1+A2+A3, (D.3)
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where A1 is a standard integral with respect to time,

A1 =
∫ T

0

e−rt{(ρWt− + λHt)FW (Xt,Wt−)− λ[F (Xt,Wt−)− F (Xt,Wt− −Ht)]− rF (Xt,Wt−)} dt,

A2 accounts for changes in the size of firm,

A2 =
∫ T

0

e−rtFX(Xt,Wt−) dXc
t +

∑
t∈[0,T ]

e−rt[F (Xt+ ,Wt)− F (Xt,Wt)],

and A3 accounts for changes in cumulative transfers,

A3 = −
∫ T

0

e−rtFW (Xt,Wt−) dLc
t +

∑
t∈[0,T ]

e−rt[F (Xt,Wt− −Ht∆Nt −∆Lt)−F (Xt,Wt− −Ht∆Nt)].

We treat each of these terms in turn.
Consider first A1. For each t ∈ [0, T ], let wt = Wt−/Xt and ht = Ht/Xt. The homogeneity of F

implies that FW (Xt,Wt−) = f ′+(wt) for all t ∈ [0, T ]. Thus

A1 =
∫ T

0

e−rtXt{(ρwt + λht)f ′+(wt)− λ[f(wt)− f(wt − ht)]− rf(wt)} dt

≤
∫ T

0

e−rtXt{(ρwt + λb)f ′+(wt)− λ[f(wt)− f(wt − b)]− rf(wt)} dt (D.4)

≤
∫ t

0

e−rtXt(−µ + λC) dt

where the first and second inequalities respectively follow from the concavity of f and from Lemma C.7,
along with the fact that wt ≥ ht ≥ b for all t ∈ [0, T ] by limited liability and incentive compatibility.

Consider next A2. The homogeneity of F implies that FX(Xt,Wt−) = f(wt) − wtf
′(wt) for all

t ∈ [0, T ]. One can then rewrite A2 as

A2 =
∫ T

0

e−rt[f(wt)− wtf
′(wt)] dXc

t +
∑

t∈[0,T ]

e−rtWt

[
Xt+

Wt
f

(
Wt

Xt+

)
− Xt

Wt
f

(
Wt

Xt

)]
≤ 0, (D.5)

where the inequality can be justified as follows. Since f is concave and vanishes at 0, f(w)−wf ′(w) ≥ 0
for all w ≥ 0. Because Xc = {Xc

t }t≥0 is a non-increasing process, this implies that the first term
on the right-hand side of (D.5) is non-positive. The aforementioned properties of f also imply that
f(w)/w is a non-increasing function of w. Since Wt/Xt+ ≥ Wt/Xt for all t ∈ [0, T ], this implies that
the second term on the right-hand side of (D.5) is non-positive. As a result of this, A2 ≤ 0.

Consider finally A3. The homogeneity of F and the concavity of f imply that, for each t ∈ [0, T ],

F (Xt,Wt− −Ht∆Nt −∆Lt) − F (Xt,Wt− −Ht∆Nt)

= Xt

[
f

(
Wt− −Ht∆Nt −∆Lt

Xt

)
− f

(
Wt− −Ht∆Nt

Xt

)]

= −f ′
(

Wt− −Ht∆Nt

Xt

)
∆Lt

≤ ∆Lt,

36



where the last inequality follows from f ′ ≥ −1. Using the fact that −FW (Xt,Wt−) = −f ′(wt) ≤ 1 for
all t ∈ [0, T ], along with the definition of A3, one therefore obtains that

A3 ≤
∫ T

0

e−rt dLc
t +

∑
t∈[0,T ]

e−rt∆Lt =
∫ T

0

e−rt dLt. (D.6)

Using (D.3) along with the upper bounds (D.4), (D.5) and (D.6) for A1, A2 and A3, it follows that

F (X0,W0−) ≥ e−rT F (XT+ ,WT ) +
∫ T

0

e−rt[Xt(µ− λC)dt− dLt]

+
∫ T

0

e−rt[F (Xt,Wt− −Ht)− F (Xt,Wt−)] dMt

(D.7)

= e−rT F (XT+ ,WT ) +
∫ T

0

e−rt[Xt(µdt− CdNt)− dLt]

+
∫ T

0

e−rt[F (Xt,Wt−)− F (Xt,Wt− −Ht) + XtC] dMt

Using the fact that M = {Mt}t≥0 is an FN–martingale under maximal risk prevention, and that
the process defined by t 7→ e−rt[F (Xt,Wt−) − F (Xt,Wt− − Ht) + XtC] is FN–predictable, taking
expectations in (D.7) yields

F (X0,W0−) ≥ E

[
e−rT∧τF (XT∧τ+ ,WT∧τ ) +

∫ T∧τ

0

e−rt[Xt(µdt− CdNt)− dLt]

]

= E
[∫ τ

0

e−rt[Xt(µdt− CdNt)− dLt]
]

−E
[
1{T<τ}

{∫ τ

T

e−rt[Xt(µdt− CdNt)− dLt]− e−rT F (XT+ ,WT )
}]

= E
[∫ τ

0

e−rt[Xt(µdt− CdNt)− dLt]
]

(D.8)

− e−rT E
[
1{T<τ}

{
E
[∫ τ

T

e−r(t−T )[Xt(µdt− CdNt)− dLt] |FN
T

]
− F (XT+ ,WT )

}]

≥ E
[∫ τ

0

e−rt[Xt(µdt− CdNt)− dLt]
]

− e−rT E
[
1{T<τ}

[
XT (µ− λC)

r
−WT − F (XT+ ,WT )

]]
for all T ∈ R+, where the first equality follows from the fact that Wτ = 0 by (4), and the second from
the fact that ρ > r along with the definition (4) of WT and the monotonicity of X. Now, observe that
for each T ≥ 0, F (XT+ ,WT ) + WT = XT+v(WT /XT+), which is non-negative and bounded above by
X0−v(wm). Taking limits as T goes to ∞ in (D.8) then implies (26). �

Appendix E: The Verification Theorem

Proof of Proposition 4. For simplicity, let us drop the mention of the effort process Λ in the remainder
of the proof. It follows from (28) to (30) that Wt− ≥ Xtb for all t ≥ 0. Actually, using (27), it is
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easy to verify that the strict inequality Wt− > Xtb holds for all t ≥ 0. This implies that the processes
W = {Wt}t≥0 and X = {Xt}t≥0 defined by (27) and (28) remain strictly positive, so one can set
τ = ∞ as in (32). Fix some T > 0. Proceeding as for equality (D.3), one obtains that

e−rT F (XT+ ,WT ) = F (X0,W0−)+
∫ T

0

e−rt[F (Xt,Wt−−Xtb)−F (Xt,Wt−)] dMt+A1+A2+A3, (E.1)

where Mt = Nt − λt for all t ≥ 0 and A1, A2, and A3 are defined as in the proof of Proposition 3,
with Ht = Xtb for all t ≥ 0. We treat each of these terms in turn.

Consider first A1. For each t ∈ [0, T ], let wt = Wt−/Xt, which lies in [b, wm] by construction. The
homogeneity of F implies that FW (Xt,Wt−) = f ′+(wt) for all t ∈ [0, T ]. One can then rewrite A1 as

A1 =
∫ τ1

0

e−rtXt{(ρwt + λb)f ′+(wt)− λ[f(wt)− f(wt − b)]− rf(wt)} dt

(E.2)

=
∫ T

0

e−rtXt(−µ + λC) dt,

where the second equality follows from Lemma C.7 and from the fact that wt ∈ [b, wm] for all t ∈ [0, T ].
Consider next A2. Let ν = sup{n ≥ 1 |τn ≤ T}. Since the process X is purely discontinuous,

A2 =
∑

t∈[0,T ]

e−rt[F (Xt+ ,Wt)− F (Xt,Wt)]

=
ν∑

n=1

e−rτn [F (ξn,Wτn)− F (ξn−1,Wτn)]

=
ν∑

n=1

e−rτn

[
ξnf(b)− ξn−1f

(
Wτn

ξn−1

)]
(E.3)

=
ν∑

n=1

e−rτnf(b)
[
ξn −

Wτn

b

]

= 0,

where the second equality follows from (28) to (30), the third from (30) and the homogeneity of F ,
the fourth from the fact that Wτn

/ξn−1 < b and that f is linear over [0, b], and the fifth from (30).
Consider finally A3. Since the process L = {Lt}t≥0 is continuous except perhaps at date 0,

A3 = −
∫ T

0

e−rtFW (Xt,Wt−) dLc
t + F (X0,W0− − L0)− F (X0,W0−)

= −
∫ T

0

e−rtf ′(wt)Xt(ρwm + λb)1{Wt=Xtwm} dt + max{W0− −X0w
m, 0} (E.4)

=
∫ T

0

e−rt dLt,

where the second equality follows from (31) and the homogeneity of F , and the third from (31) along
with the fact that Wt = Xtw

m implies wt = wm and thus f ′(wt) = −1.
Taking expectations in (E.1) and taking advantage of (E.2), (E.3) and (E.4), one obtains that

F (X0,W0−) = E

[
e−rT F (XT+ ,WT ) +

∫ T

0

e−rt[Xt(µdt− CdNt)− dLt]

]
, (E.5)
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where we used the fact that M = {Mt}t≥0 as defined in Appendix D is an FN–martingale under
maximal risk prevention, and that the process defined by t 7→ e−rt[F (Xt,Wt−)− F (Xt,Wt− −Xtb)]
is FN–predictable. By construction, F (XT+ ,WT ) is uniformly bounded in T as XT+ ∈ [0, X0− ] and
WT ∈ [0, X0w

m] for all T > 0. Letting T go to ∞ in (E.5) and using the fact that τ = ∞ yields

F (X0,W0−) = E
[∫ τ

0

e−rt[Xt(µdt− CdNt)− dLt]
]
. (E.6)

By Proposition 3, the insurance company’s expected discounted profit from any contract that induces
maximal risk prevention is at most F (X0,W0−). Thus (E.6) implies that the contract characterized
in (27) to (32) is optimal in this class of contracts. �

Appendix F: The Long Run

Proof of Proposition 5. For each t ≥ 0, let wt = Wt−/Xt be the manager’s size-adjusted utility at
date t. It follows from (27) to (31) that the process {wt}t≥0 evolves according to

dwt = (ρwt + λb)dt−min{wt − b, b}dNt − dlt (F.1)

for all t ≥ 0, where {lt}t≥0 defined by

lt = max{w0 − wm, 0}+
∫ t

0

(ρwm + λb)1{ws+=wm} ds

for all t ≥ 0 is the size-adjusted transfer process. By construction, {wt}t≥0 is a Markov process that
satisfies the Feller property. Let P : R+ × [b, wm]× B([b, wm]) → [0, 1] be its transition function. To
each time duration t, initial position w and Borel subset A of [b, wm], it associates the probability
P (t, w, A) of transiting from w to a position in A following an interval of time t.

It is straightforward to check from (F.1) that the minimum amount of time that it takes {wt}t≥0

to transit from b to wm is

t =
1
ρ

ln
(

ρwm/b + λ

ρ + λ

)
. (F.2)

Moreover, P (t, w, {wm}) ≥ e−λt for all w ∈ [b, wm]. Hence the t–transition function P (t, ·, ·) satisfies
Condition M in Stokey and Lucas (1989, Chapter 11, Section 4). Specifically, for each A ∈ B([b, wm])
the following holds. Either wm ∈ A and P (t, w, A) ≥ e−λt for all w ∈ [b, wm], or wm 6∈ A and
P (t, w, [b, wm] \ A) ≥ e−λt for all w ∈ [b, wm]. Let T ∗t : ∆([b, wm]) → ∆([b, wm]) be the adjoint
operator associated with P (t, ·, ·) on the set of Borel probability measures on [b, wm], defined by

(T ∗t π)(A) =
∫

P (t, w, A)π(dw)

for all (π,A) ∈ ∆([b, wm])×B([b, wm]). Condition M as stated above implies that T ∗t is a contraction
of modulus 1 − e−λt on the space ∆([b, wm]) endowed with the total variation norm (Stokey and
Lucas (1989, Lemma 11.11)). Because this is a complete metric space, it follows that T ∗t has a unique
invariant measure π∗t , that is, a unique fixed point π∗t = T ∗t π∗t . Using the fact that Condition M is
stronger than Doeblin’s condition (Condition D in Stokey and Lucas (1989, Chapter 11, Section 4)),
one can deduce from the uniqueness of the invariant measure π∗t that there exists a unique ergodic
set, and that for each π0 ∈ ∆([b, wm]), the following holds:

lim
K→∞

1
K

K∑
k=1

T ∗kt π0 = π∗t (F.3)
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in the total variation norm (Stokey and Lucas (1989, Theorem 11.9)).
Consider now the behavior of the process {wt}t≥0 evaluated at dates kt, k ∈ N. The induced

discrete-time process {wkt}∞k=0 is Markov, with a transition function P (t, ·, ·) that satisfies the Feller
property. Since (F.3) holds in the total variation norm, it is a fortiori true in the topology of weak
convergence. The strong law of large numbers for Markov processes (Stokey and Lucas (1989, Theorem
14.7)) then implies that, for any continuous function g : [b, wm] → R,

lim
K→∞

1
K

K∑
k=1

g(wkt) =
∫

g(w) π∗t (dw) (F.4)

P–almost surely. It follows that for any ε > 0, wkt ∈ [b, b + ε) infinitely often, P–almost surely, that
is P [lim sup{wkt ∈ [b, b + ε)}] = 1. To see why, note that {wt}t≥0 is such that, for each k ∈ N and
w ∈ (b, wm], there is a strictly positive probability that w(k+1)t < w given that wkt ≥ w. Since
π∗t is invariant under T ∗t , this implies that the lower bound of the support of π∗t is b, and thus that
π∗t ([b, b + ε)) > 0 for all ε > 0. Fix ε > 0 and suppose that g in (F.4) is strictly positive on [b, b + ε)
and equal to 0 elsewhere. Then

∫
g(w) π∗t (dw) > 0. If in some state there exists some k0 ∈ N such

that wkt 6∈ [b, b + ε) for all k ∈ N such that k ≥ k0, the limit on the left-hand side of (F.4) is 0. Since∫
g(w) π∗t (dw) > 0, this can only happen on a set of states of measure 0, and the claim follows.

For the remainder of the proof, fix ε ∈ (0, b/2), so that b + 2ε < wm as wm ≥ 2b by Lemmas C.4
and C.5, and let inf{∅} = ∞ and ∞−∞ = 0. Define an increasing random sequence in N ∪ {∞}
inductively by K0 = inf{κ ∈ N |wκt ∈ [b, b + ε)} and Kk+1 = inf{κ ∈ N |κ > Kk and wκt ∈ [b, b + ε)}
for all k ∈ N. Note that {Kk ≤ K} ∈ FN

Kt ⊂ F , so that {Kk < ∞} =
⋃∞

K=0{Kk ≤ K} ∈ F for
all (k, K) ∈ N2. In particular,

⋂∞
k=0{Kk < ∞} = lim sup{wkt ∈ [b, b + ε)}. Using the fact that

b + 2ε < wm and proceeding as for (F.2), it is straightforward to check that the minimum amount of
time that it takes {wt}t≥0 to transit from b + ε to b + 2ε is

t′ =
1
ρ

ln
(

ρ(1 + 2ε/b) + λ

ρ(1 + ε/b) + λ

)
< t. (F.5)

As a result of this, conditional on the event
⋂∞

k=0{Kk < ∞}, for each k ∈ N it takes {wt}t≥0

strictly more than t′ to exit the interval [b, b + 2ε] starting from date Kkt. For each k ∈ N, define
τk = inf{t > Kkt | ∆Nt = 1} − Kkt. It follows from the properties of the Poisson process that,
conditional on

⋂∞
k=0{Kk < ∞}, {τk}k∈N is a sequence of independent and exponentially distributed

random variables with parameter λ. In particular, the events {τk ≤ t′} have probability 1 − e−λt′

conditional on
⋂∞

k=0{Kk < ∞}, so that
∑∞

k=0 P [τk ≤ t′ |
⋂∞

k=0{Kk < ∞}] = ∞, and they are
independent conditional on

⋂∞
k=0{Kk < ∞}. Therefore P [lim sup{τk ≤ t′} |

⋂∞
k=0{Kk < ∞}] = 1 by

the Borel–Cantelli lemma. Since the event
⋂∞

k=0{Kk < ∞} itself has P–probability 1, it follows that
P [
⋂∞

k=0{Kk < ∞} ∩ lim sup{τk ≤ t′}] = 1. Now fix some state in
⋂∞

k=0{Kk < ∞} ∩ lim sup{τk ≤ t′}.
In this state, the process {wt}t≥0 visits [b, b + ε) infinitely often at dates {Kkt}k∈N, and the process
N jumps infinitely often at dates Kki

t + τki
in the time intervals [Kki

t,Kki
t + t′], where {ki}i∈N

is some strictly increasing sequence in N. Since wKki
t+τki

∈ [b, b + 2ε) for all i ∈ N, and since
ε < b/2, each jump of N at date Kkit + τki induces downsizing, with a downsizing factor given by
xKki

t+τki
= (wKki

t+τki
− b)/b < 2ε/b. Thus, in the state under consideration, one has, for each t ≥ 0,

Xt ≤
∏

{i∈N|Kki
t+τki

≤t}

xKki
t+τki

≤
(

2ε

b

)Card{i∈N|Kki
t+τki

≤t}

,

which goes to 0 as t goes to ∞ since 2ε/b < 1 and limt→∞ Card{i ∈ N | Kkit + τki ≤ t} = ∞ by
construction. Because Wt− = Xtwt is positive and bounded above by Xtw

m, it also goes to 0 as t

goes to ∞. Hence the result since P [
⋂∞

k=0{Kk < ∞} ∩ lim sup{τk ≤ t′}] = 1. �
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