The Probability of Casting a Decisive Vote: From IC to IAC through Ehrhart’s Polynomials and m-Dependence*

Michel Le Breton† Dominique Lepelley‡ Hatem Smaoui§

April 2014

Abstract

The main purpose of this paper is to estimate the probability of casting a decisive vote for a class or random electorate models encompassing the celebrated IC and IAC models. The emphasis is on the impact of correlation across votes on the order of magnitude of this event. Our proof techniques use arguments from probability theory on one hand and the geometry of convex polytopes on the other hand.

JEL Classification Numbers: D71, D72.

Keywords: Elections, Ehrhart Polynomials, Power Measurement, Voting.

*The working paper version of this paper contains some additional insights on other models of correlation where the partitioning assumption is replaced by a mixing assumption. Early versions of this paper have been presented at the Social Choice and Welfare Meeting in Delhi and at the Computational Social Choice (COMSOC) meeting in Krakow. We thank all participants for their comments and suggestions. We also thank David Myatt who, in addition to sending his own work, calls our attention on the paper of Evren (2012) who, like him, makes a very clever use of aggregate uncertainty to explain turnout.

†Toulouse School of Economics, France.
‡CEMOI, Université de la Réunion, France. Corresponding author. E-mail address: dominique.lepelley@univ-reunion.fr. Fax: +33 (0)2 62 93 84 79.
§CEMOI, Université de la Réunion, France.
1 Introduction

The main purpose of this paper is to introduce a general model of a random electorate of \(N \) voters described by their preferences over two alternatives. Our model will admit, as special cases, the two most popular models in the literature on power measurement. The first, one called Impartial Culture (IC) is the basis of the celebrated Banzhaf power index (Banzhaf (1965, 1966, 1968)). It assumes that the preferences of the voters over the two alternatives are independent and equiprobable: correlation among the preferences of the voters is totally precluded. The second one, called Impartial Anonymous Culture (IAC) which has been pioneered independently in voting theory by Chamberlain and Rothschild (1981), Good and Mayer (1975)\(^1\), Fishburn and Gehrlein (1976) and Kuga and Nagatani (1974) is the basis (as forcefully demonstrated by Straffin (1977, 1988)) of another celebrated power index due to Shapley and Shubik (Shapley and Shubik (1954), Straffin (1977, 1988)). The IAC model introduces correlation among voters and the specific distributional assumption which is considered implies that the real random variable defined as the number of voters supporting the first alternative is uniform over all feasible integers. From a computational perspective, this distributional property of the IAC model makes it very handy as compared to some other models and probably explains its success. Further, as noted convincingly by Chamberlain and Rothschild, the IAC model is more attractive than the IC model in the sense that the electoral predictions of the IAC models don’t display a discontinuity in the neighborhood of the outcome of a tied election.

Given a random electorate \(\lambda \), the power of a voter is defined as the probability of being pivotal\(^2\) i.e. as the probability of the event “There is a majority in favor of the first alternative iff that voter supports that alternative”. Given that we will focus on a symmetric simple game (the ordinary majority game), if the model of random electorate \(\lambda \) is fully symmetric (i.e. if the preferences are interchangeable), then all voters will have the same power denoted \(Piv(\lambda, N) \). Both the IC and the IAC models are symmetric. For the IC model, this defines the Banzhaf power index \(Piv(IC, N) \) while for the IAC model this defines the Shapley-Shubik power index \(Piv(IAC, N) \). It is well known that \(Piv(IC, N) \) and \(Piv(IAC, N) \) are respectively of order \(\frac{1}{\sqrt{N}} \) and \(\frac{1}{N} \).

The main purpose of this paper is to continue the exploration of the implications of correlation on the asymptotic behavior of the power index. Precisely, we will consider a general family of models of random electorate \(\lambda \) and study the asymptotic behavior of \(Piv(\lambda, N) \).

\(^1\)We discover this important paper while reading Myatt (2012). Their result was rediscovered by Chamberlain and Rothschild.

\(^2\)Good and Mayer (1975) refers to this as the efficacy of a vote.
with respect to N. Our motivation to do so is to depart from the IAC model which assumes that the correlation is the same for all pairs of voters in the population. It is likely that the intensity of the correlation between the votes of i and j will depend upon some characteristics of i and j suggesting that the correlation may vary from one pair to another. Most of the paper will however be based on a particular pattern of heterogeneity. Precisely, we will assume that the voters are partitioned into groups and that: correlation is positive and identical for any pair of voters belonging to the same group and null for any pair of voters belonging to two different groups. We will assume that within each group the correlation is defined as in the IAC model. This gives the IC and the IAC models as special cases: the IC model emerges when all the groups are singletons and the IAC model arises when there is a unique group which is then the entire population.

While particular, this model is general enough to cover many situations. We will offer a separate treatment of two polar cases. The first case is the case where there is a bound on the size of the groups; this bound does not depend upon the size of the population. This assumption is well suited to capture local interactions (within the family or the workplace for instance). The second case is the case where there is a fixed number of groups; this means that the size of the groups grows with the size of the population. This assumption is well suited to describe large scale interactions (special interest groups, geographical territories, electoral districts, countries if the population under scrutiny is multinational,...). After offering some general results, we proceed to the study of these two cases. The analysis of the two cases uses different techniques. When λ describes the local case, the use of some local versions of the Central Limit Theorem allows to estimate $Piv(\lambda, N)$. We show that it is of order $\frac{1}{\sqrt{N}}$ and we calculate explicitly $\lim_{N \to \infty} \sqrt{N}Piv(\lambda, N)$. In contrast, when λ describes the global case, our estimation of $Piv(\lambda, N)$ is based on different mathematical techniques. We approach the problem quite differently using combinatorial tools which amounts to derive some polynomials known as Ehrhart’s polynomials and to compute the volumes of some polytopes. We show that $Piv(\lambda, N)$ is of order $\frac{1}{N}$ and we calculate explicitly $\lim_{N \to \infty} NPiv(\lambda, N)$ in some specific cases.

Related Literature

The partition random model explored in this paper has been suggested by Straffin (1977) under the name partial homogeneity. He suggests this model as an alternative to the existing IC and IAC models but does not derive any general result. Instead, he proceeds to some numerical calculations of the probability of being pivotal in the Canadian constitutional amendment process3. Straffin writes: “In the Canadian constitution example, it might be that

3This game has 10 players (the Canadian provinces) and is not the ordinary majority game analysed in
neither the independence assumption nor the homogeneity assumption describe the situation very well. British Columbia and Québec, for example, might reasonably be expected to behave independently, while the four Atlantic provinces may have common interests and might reasonably be considered to judge proposed constitutional amendment by a common set of values. The most reasonable thing to do might be to partition the provinces into subsets whose members are homogenous among themselves, but behave independently of the members of other subsets”.

Chamberlain and Rothschild also consider the case of a partition into two groups and study the asymptotics of the probability of being pivotal under some general conditions: the random draws of the parameter p (denoting the probability that any individual votes for the first alternative) in each of the two groups do not necessarily result from a uniform distribution (a feature shared with Good and Mayer) and the draws are not necessarily independent among the two groups.

Our model of correlation among voters aims to contribute to different branches of the literature. On one hand, it extends the existing studies of the implications of correlation on power measurement. Knowing the exact magnitude of the probability of being pivotal is interesting for itself but this information is also essential for the design of the optimal weights of representatives, as argued convincingly by Barbera and Jackson (2006). They discuss a block model which is quite similar to the model of partitions which is considered here except for the fact that instead of IAC, they assume perfect correlation within each block/group.

On the other hand, our model aims also to be a step towards the analysis of the implications of correlation in a general model of elections. The general (as the number of alternatives is arbitrary) model of random electorate pioneered by Weber (1978, 1995) assumes independence across individual preferences. Similarly, the model of Myerson and Weber (1993) and the general Poisson model developed by Myerson in a series of papers (1998, 2000) postulates independence. In the case where there are two alternatives and the possibility of abstention, the probability of being pivotal between the two alternatives plays a critical role in the decision of a rational voter to participate to the electoral process. To the best of our knowledge, Evren (2012) and Myatt (2012) are the unique papers where correlation is the driving force of models which explains fairly accurately the turnout rates in relative large electoral districts. Myatt writes “Most established models of turnout include a problematic feature: voter’s type (and so their decisions) are independent draws from a known distribution. This feature is also present in models of strategic voting…”⁴. Evren considers a slightly more

¹For a more detailed discussion of this important point, we refer the reader to the introduction of Myatt’s this paper. He performs numerical calculations for several different partitions including the partition where all the provinces, except Québec, are together.
complicated type space as he assumes that voters can either be selfish or altruistic. Both Evren and Myatt’s papers demonstrate convincingly that aggregate uncertainty (a generalized form of IAC) is essential to resolve the turnout paradox.

2 The Model of a Random Electorate

A random electorate is a triple \((\mathcal{N}, X, \lambda)\) where \(\mathcal{N}\) is a finite set of individuals (voters,...), \(X\) is a finite set of alternatives (candidates, parties,...) and \(\lambda\) is a probability distribution on \(\mathcal{P}^\mathcal{N}\) where \(\mathcal{P}\) is the set of linear orders over \(X\). In the case where \(X\) consists of two alternatives say 0 and 1, the set \(\mathcal{P}\) contains two preferences which will be coded 0 and 1 and \(\mathcal{P}^\mathcal{N} = \{0,1\}^\mathcal{N}\) where \(\mathcal{N}\) denotes the cardinality of \(\mathcal{N}\) i.e. the number of voters. The first popular random electorate model, called Impartial Culture (IC), is defined by \(\lambda(P) = \frac{1}{2^\mathcal{N}}\) for all profiles of preferences \(P = (P_1, P_2, ..., P_N)\) in \(\{0,1\}^\mathcal{N}\). The IC model assumes that the preferences of the voters are independent Bernoulli random variables with a parameter \(p\) equal to \(\frac{1}{2}\) (i.e. the electorate is not biased towards a particular candidate). In contrast, the second popular random electorate model, called Impartial Anonymous Culture (IAC) is defined by \(\lambda(P) = \frac{1}{(N+1)(\frac{N}{2})}\) for all profiles of preferences \(P = (P_1, P_2, ..., P_N)\) in \(\{0,1\}^\mathcal{N}\) such that \(\#N^0(P) = k\) where \(N^0(P) \equiv \{i \in \mathcal{N} : P_i = 0\}\). In the IAC model, the events \(E_k \equiv \{P \in \{0,1\}^\mathcal{N} : \# \{i \in \mathcal{N} : P_i = 0\} = k\}\) for \(k = 0, 1, ..., N\) are equally likely.

A social choice mechanism is a mapping \(\Psi\) from \(\{0,1\}^\mathcal{N}\) into \([0, 1]\) where \(\Psi(P)\) denotes the probability of choosing candidate 0 when the profile of preferences is \(P\). In this binary setting\(^5\), we will not make any distinction between preferences and behavior. There is no room for strategic behavior here: if we interpret \(\Psi\) as a direct revelation game, then voting sincerely according to his/her preference is the unique dominant strategy. Further, we will focus\(^6\) on the standard majority mechanism \(\text{Maj}\) defined as follows:

\[
\text{Maj}(P) = \begin{cases}
0 & \text{if } \#N^0(P) < \frac{N}{2} \\
1 & \text{if } \#N^0(P) > \frac{N}{2} \\
\frac{1}{2} & \text{if } \#N^0(P) = \frac{N}{2}
\end{cases}
\]

If \(N\) is odd, the third eventuality never arises and the mechanism is deterministic. If \(N\) is even, the third alternative arises when the electorate is split into two groups of equal

\(^5\)In this binary setting, a social choice mechanism is defined alternatively by a simple game (Taylor and Zwicker (1999)). A simple game is a monotonic family of coalitions \(\mathcal{W}\). The mechanism is then defined as follows: \(\Psi(P) = 0\) iff \(\{i \in \mathcal{N} : P_i = 0\} \in \mathcal{W}\).

\(^6\)In the last section, we will outline the difficulties in generalizing our formula to arbitrary simple games like those considered in the power measurement literature.
size and the tie is broken fairly. The whole paper is about evaluating the probability of an event. We will say that voter \(i \in \mathcal{N} \) is pivotal if either \(\# \mathcal{N}^0(P_{-i}) = \frac{N-1}{2} \) when \(N \) is odd or \(\# \mathcal{N}^0(P_{-i}) = \frac{N}{2} \) or \(\# \mathcal{N}^0(P_{-i}) = \frac{N-2}{2} \) when \(N \) is even. We denote by \(E_i \) this event and \(Piv(\lambda, i) \) is the probability of \(E_i \) i.e. \(Piv(\lambda, i) = \lambda(E_i) \). There is a slight difference between the even and odd cases. In the odd case, the preference of \(i \) will be the social preference when \(i \) is pivotal. In contrast, in the even case, if \(i \) is pivotal and say on the 0 side, his preference will be for sure the social preference if \(\# \mathcal{N}^0(P_{-i}) = \frac{N}{2} \) and will be the social preference with probability \(\frac{1}{2} \) if \(\# \mathcal{N}^0(P_{-i}) = \frac{N-2}{2} \). Up to this qualification, the two cases will be analyzed with similar methods.

When the simple game is symmetric, if the probability measure is symmetric, then \(Piv(\lambda, i) \) does not depend on \(i \) and will be denoted shortly by \(Piv(\lambda) \). \(Piv(\lambda) \) has been calculated for the two popular models of random electorate which have just been defined. For the IC model, \(Piv(\lambda) = (\frac{N-1}{2}) \frac{1}{2^{N-1}} \) when \(N \) is odd and \(Piv(\lambda) = (\frac{N-1}{N-2}) \frac{1}{2^{N-2}} \) when \(N \) is even. For the IAC model, \(Piv(\lambda) = \frac{1}{N} \) for both cases. Using Strirling’s formula, \(N! \approx \sqrt{2\pi N} \left(\frac{N}{e}\right)^N \), we deduce that when \(N \) gets large \(Piv(\text{IC}) \) behaves like \(\sqrt{\frac{2}{\pi N}} \approx \frac{0.707107}{\sqrt{N}} \).

In this paper, we assume that the electorate \(\mathcal{N} \) is partitioned into \(K \) groups \(\mathcal{N}_1, \mathcal{N}_2, ..., \mathcal{N}_K \) i.e. \(\bigcup_{1 \leq k \leq K} \mathcal{N}_k = \mathcal{N} \) and \(\mathcal{N}_k \cap \mathcal{N}_{k'} = \emptyset \) for all \(k, k' \) such that \(k \neq k' \). We will denote by \(N_k \) the size of group \(k \): \(\sum_{k=1}^{K} N_k = N \) and without loss of generality we assume that \(N_1 \geq N_2 \geq ... \geq N_K \). We consider the following random electorate model.

We assume that the preferences of any voter \(i \) from group \(\mathcal{N}_k \) is the realization of a Bernoulli random variable with parameter \(p_k \) and that conditional on \(p_k \), the preferences of any two voters in that group are independent. We assume that the coordinates of the vector \((p_1, p_2, ..., p_K) \) are the realizations of \(K \) independent random variables with a uniform distribution on \([0, 1]\). Let \(i \) be an arbitrary voter in \(\mathcal{N}_k \). Consider first the case where \(N \) is odd. We obtain:

\[
Piv(\lambda, k) = \sum_{\pi(\frac{N-1}{2}, N_1, ..., N_{k-1}, N_{k+1}, ..., N_K)} \binom{N_k - 1}{x_k} \left(\int_{0}^{1} p_k^{x_k} (1 - p_k) \right)^{N_k - x_k} \frac{1}{2^{N_k}}
\]

\[
\times \left[\prod_{l \neq k} \binom{N_l}{x_l} \left(\int_{0}^{1} p_l^{x_l} (1 - p_l) \right)^{N_l - x_l} \frac{1}{2^{N_l}} \right]
\]

where \(\Pi(\ M, R_1, ..., R_k, ..., R_K) \) denotes the set of decompositions of the integer \(M \) into \(K \) ordered integers under the constraint that the \(k^{th} \) integer does not exceed \(R_k \). By using the formula:
\[\int_0^1 p^{t-1}(1-p)^{n-t} \, dp = \frac{(t-1)!(n-t)!}{n!} \]

we deduce:

\[
Piv(\lambda, k) = \sum_{\pi(\frac{N-2}{2}, N_1, N_{k-1}, N_k-1, N_{k+1}, \ldots, N_K)} \frac{1}{N_k} \left(\prod_{l \neq k} \frac{1}{N_l+1} \right) = \pi \left(\frac{N-1}{2}, N_1, \ldots, N_{k-1}, N_k-1, N_{k+1}, \ldots, N_K \right) \frac{1}{N_k} \left(\prod_{l \neq k} \frac{1}{N_l+1} \right) \quad (1.a)\]

where \(\pi(M, R_1, \ldots, R_k, \ldots, R_K) \) denotes the cardinality of \(\pi(\frac{N-2}{2}, N_1, N_{k-1}, N_k-1, N_{k+1}, \ldots, N_K) \) i.e. the number of decompositions of the integer \(M \) into \(K \) ordered integers under the constraint that the \(k^{th} \) integer does not exceed \(R_k \).

When \(N \) is even, we obtain along the same lines:

\[
2Piv(\lambda, k) = \sum_{\pi(\frac{N-2}{2}, N_1, N_{k-1}, N_k-1, N_{k+1}, \ldots, N_K)} \left(\frac{N_k-1}{x_k} \right) \left(\int_0^1 p_k^{x_k} (1-p_k)^{N_k-x_k-1} \, dp_k \right)
\times \left[\prod_{l \neq k} \left(\frac{N_l}{x_l} \right) \left(\int_0^1 p_l^{x_l} (1-p_l)^{N_l-x_l-1} \, dp_l \right) \right]
\]

\[
+ \sum_{\pi(\frac{N-2}{2}, N_1, N_{k-1}, N_k-1, N_{k+1}, \ldots, N_K)} \left(\frac{N_k-1}{x_k} \right) \left(\int_0^1 p_k^{x_k} (1-p_k)^{N_k-x_k-1} \, dp_k \right)
\times \left[\prod_{l \neq k} \left(\frac{N_l}{x_l} \right) \left(\int_0^1 p_l^{x_l} (1-p_l)^{N_l-x_l-1} \, dp_l \right) \right]
\]

and therefore:

\[
Piv(\lambda, k) = \frac{1}{2} \left[\pi \left(\frac{N-2}{2}, N_1, \ldots, N_{k-1}, N_k-1, N_{k+1}, \ldots, N_K \right) \right.
\]

\[
+ \pi \left(\frac{N}{2}, N_1, \ldots, N_{k-1}, N_k-1, N_{k+1}, \ldots, N_K \right) \frac{1}{N_k} \left(\prod_{l \neq k} \frac{1}{N_l+1} \right)
\]

7
\[\pi \left(\frac{N - 2}{2}, N_1, ..., N_{k-1}, N_k - 1, N_{k+1}, ..., N_K \right) \frac{1}{N_k} \left(\prod_{i \neq k} \frac{1}{N_i + 1} \right) \quad (1.b) \]

as \(\pi \left(\frac{N - 2}{2}, N_1, ..., N_{k-1}, N_k - 1, N_{k+1}, ..., N_K \right) = \pi \left(\frac{N}{2}, N_1, ..., N_{k-1}, N_k - 1, N_{k+1}, ..., N_K \right) \).

The factor \(\frac{1}{2} \) corresponds to the fact that when \(i \) is pivotal, there is only a chance of \(\frac{1}{2} \) to be effective i.e. a chance of \(\frac{1}{2} \) that the tie is broken in his favor. The interest of the two formulas above lies in the fact that the calculation of the pivot probabilities is equivalent to a well defined \emph{combinatorial problem} which amounts to count the number of possible decompositions of a given integer into \(K \) integers under some constraints. Note however that there are at most \(K \) cells i.e. \(K \) non zero integers in the decomposition. This means that the problem is different from the problem of counting the number of partitions of a given integer. Further, for each cell, there is an upper bound on the integer for that cell.

Let us check quickly that the IC and IAC models correspond to two extreme special cases of this general framework. The IC value is attached to the case where \(K = N \) i.e. where the partition structure consists of \(N \) singletons:

\[
Piv(IC, k) = \pi \left(\frac{N - 1}{2}, 1, ..., 1, N_k - 1, 1, ..., 1 \right) \frac{1}{2^N} = \left(\frac{N - 1}{2} \right) \frac{1}{2^{N-1}}
\]

since \(\pi \left(\frac{N - 1}{2}, 1, ..., 1, 0, 1, ..., 1 \right) = \left(\frac{N - 1}{2} \right) \). The IAC value is attached to the case where \(K = 1 \) i.e. where the partition structure consists of a single set: the set \(N \):

\[
Piv(IAC, k) = \pi \left(\frac{N - 1}{2}, N - 1 \right) \frac{1}{N} = \frac{1}{N}
\]

since \(\pi \left(\frac{N - 1}{2}, N - 1 \right) = 1 \).

An alternative approach to the counting problem is based on probability. Let \(X_{ik} \) denote the Bernoulli random variable describing the preference of voter \(i \) in group \(k \) and let \(S_k \) and \(\hat{S} \) denote respectively the sums \(\sum_{j \in N_k} X_{jk} \) and \(\sum_{k=1}^{K} \sum_{j \in N_k} X_{jk} = \sum_{k=1}^{K} S_k \). With these notations, we can express the pivot probabilities as follows:

\[
Piv(\lambda, k) = \lambda \left(\frac{\hat{S}_{-i} = \frac{N - 1}{2}}{2} \right) \] when \(N \) is odd and

\[
Piv(\lambda, k) = \frac{1}{2} \left(\lambda \left(\frac{\hat{S}_{-i} = \frac{N - 2}{2}}{2} \right) + \lambda \left(\frac{\hat{S}_{-i} = \frac{N}{2}}{2} \right) \right) \] when \(N \) is even

This probabilistic approach will be very useful when we will focus on the asymptotic behavior of \(Piv(\lambda, k) \) when \(N \) tends to infinity. Note that all the random variables \(X_{ik} \) are
symmetric in the sense that $\Pr(X_{ik} = 0) = \Pr(X_{ik} = 1) = \frac{1}{2}$ since $\Pr(X_{ik} = 0) = \int_{0}^{1} p dp = \frac{1}{2}$. We have $E[X_{ik}] = \int_{0}^{1} p dp = \frac{1}{2}$ and $\text{Var}[X_{ik}] = \frac{1}{4}$. But two random variables X_{ik} and X_{jl} are independent iff $k \neq l$. If not, we have:

$$\Pr(X_{ik} = 0, X_{jk} = 0) = \int_{0}^{1} p^2 dp = \frac{1}{3} > \frac{1}{4}$$

The two variables are positively correlated: $\text{Cov}(X_{ik}, X_{jk}) = \frac{1}{3} - \frac{1}{4} = \frac{1}{12}$; the coefficient of correlation ρ is then equal to $\frac{1}{3}$.

3 The case of Many Small Groups

In this section, we will focus on the case where there is an exogenous upper bound S on the size of the groups in the partition $(N_1, N_2, ..., N_K)$. This implies that as N gets large, then the number of groups increases.

To motivate the general result which will be presented hereafter, it is instructive to consider the case where $S = 2$. In any such partition structure, the groups are either singletons or pairs. We can think of this partition as describing a society where there are singles and couples but no other family types. Consider the case where N is even and all the groups are exactly of size 2. From (1.b), we deduce that:

$$Piv(\lambda, k) = \frac{1}{2} \left(\frac{1}{3} \right)^{\frac{N-2}{2}}$$

We can check that:

$$\pi \left(\frac{N-2}{2}, 1, 2, ..., 2, 2 \right) = \sum_{k=0}^{\left\lfloor \frac{N-4}{4} \right\rfloor} \frac{\left(\frac{N-2}{2} \right)!}{(k!)^2 \left(\left(\frac{N-2}{2} - 2k \right)! \right)} \left(\frac{N-2}{2} - k \right) \left(\frac{N-2}{2} - k + 1 \right)$$

Indeed, counting how many decompositions of $\frac{N-2}{2}$ into $\frac{N}{2}$ integers chosen in $\{0, 1, 2\}$ amounts first to choose how many pairs k we choose among $\frac{N-2}{2}$. The number of possibilities is $\frac{\left(\frac{N-2}{2} \right)!}{(k!)^2 \left(\left(\frac{N-2}{2} - 2k \right)! \right)}$. This value of k cannot exceed $\left\lfloor \frac{N-4}{4} \right\rfloor$. To reach the integer $\frac{N-2}{2}$, we need $\frac{N-2}{2} - 2k$ singletons which can be chosen among $\frac{N}{2} - k$. The number of possibilities is $\frac{\left(\frac{N-2}{2} - k \right)!}{(\frac{N-2}{2} - 2k)! (k+1)!}$. After collecting the terms, we obtain the expression reported above.

Calculating the above sum is not an immediate combinatorial exercise and we will mostly focus on the asymptotic behavior of $Piv(\lambda)$.

7 $\lfloor x \rfloor$ denotes the integer part of x.

8 We were not able to derive a closed form value of this sum through the use of combinatorial identities.
We conjecture that:

\[
\lim_{N \to \infty} \Phi(N) \equiv \sqrt{N} \left(\sum_{k=0}^{\left\lfloor \frac{N-2}{4} \right\rfloor} \frac{(\frac{N-2}{2}!)^2}{(k!)^2 \left(\left(\frac{N-2}{2} - 2k \right)! \right)} \times \frac{N - 2k}{2k + 2} \right) \times \frac{1}{2} \times \left(\frac{1}{3} \right)^{\frac{N-2}{2}}
\]

exists.

The following table contains some numerical values of \(\Phi(N) \) which supports this conjecture:

<table>
<thead>
<tr>
<th>(N)</th>
<th>102</th>
<th>202</th>
<th>1002</th>
<th>5002</th>
<th>100002</th>
</tr>
</thead>
<tbody>
<tr>
<td>(\Phi(N))</td>
<td>0.69015</td>
<td>0.69056</td>
<td>0.6909</td>
<td>0.69097</td>
<td>0.69098</td>
</tr>
</tbody>
</table>

Table 1: Values of \(\Phi(N) \)

Interestingly, the function \(\Phi \) seems to behave asymptotically as the function \(\Upsilon \) defined as follows:

\[
\Upsilon(N) \equiv \sqrt{N} \left(\sum_{k=0}^{\left\lfloor \frac{N-2}{4} \right\rfloor} \frac{(\frac{N-2}{2}!)^2}{(k!)^2 \left(\left(\frac{N-2}{2} - 2k \right)! \right)} \right) \times \left(\frac{1}{3} \right)^{\frac{N-2}{2}}
\]

The following table contains some numerical values of \(\Upsilon(N) \) which supports this guess:

<table>
<thead>
<tr>
<th>(N)</th>
<th>102</th>
<th>202</th>
<th>1002</th>
<th>10002</th>
<th>100002</th>
</tr>
</thead>
<tbody>
<tr>
<td>(\Upsilon(N))</td>
<td>0.69525</td>
<td>0.69314</td>
<td>0.69143</td>
<td>0.69103</td>
<td>0.69099</td>
</tr>
</tbody>
</table>

Table 1 bis: Values of \(\Upsilon(N) \)

We now prove a generalized version of the conjecture. To proceed, we use a probabilistic approach. We assume that all the groups have a size smaller than \(S \) and we will be interested in societies where the set of voters is partitioned into groups of size \(s \) where \(s \) runs from 1 to \(S \). We will consider societies where \(N \) gets indefinitely large but such that the proportion of the population in each type of group (described by its size) remains invariant in the population growth process. We will denote by \(\gamma^s \) the proportion of voters in a group of size \(s \). We assume that \(\gamma^s = \frac{sK^s}{K} \) where \(K^s \) is an integer for all \(s = 1, \ldots, S \) and \(K = \sum_{s=1}^{S} sK^s \).

The initial society contains \(K^s \) groups of size \(s \). For any integer \(R \), its \(R^{th} \) replica has \(N \) voters where \(N \) is defined as follows:

\[
N = N(R) = R \sum_{s=1}^{S} K^s s
\]
For all R and all $i = 1, 2, ..., N(R)$, we arrange the random variables X_i^R describing the individual votes in the R^{th} replica in a triangular array defined as follows: the first RK^1 variables describe the vote of voters in groups of size 1, the next $2RK^2$ variables describe the votes of voters in groups of size 2 and so on.

We obtain

$$
\sigma^2(R) \equiv Var(\sum_{i=1}^{N} X_i^R) = \sum_{i=1}^{N} Var(X_i^R) + \sum_{s=1}^{S} RK^s s(s-1) Cov(X_i^R, X_j^R)
$$

where $Cov(X_i^R, X_j^R)$ denotes the covariance between when i and j belong to the same group. We have shown before that:

$$
Var(X_i^R) = \frac{1}{4} \text{ for all } i = 1, 2, ..., N
$$

$$
Cov(X_i^R, X_j^R) = \frac{1}{12} \text{ for all } i, j = 1, ..., N \text{ if } i \text{ and } j \text{ belong to the same group}
$$

We obtain:

$$
\sigma(R) = \sqrt{\frac{1}{6} + \frac{\gamma^1}{12} + \frac{1}{12} \sum_{s=2}^{S} \gamma^s s}
$$

A random variable X_i^R is of type s if $R \sum_{i=1}^{s-1} lK^l < i \leq R \sum_{i=1}^{s} lK^l$. We pack the sRK^s random variables of type s into RK^s random variables $(Z_{ks}^R)_{1 \leq k \leq RK^s}$ where Z_{ks}^R is defined as follows:

$$
Z_{ks}^R = r \text{ iff } \sum_{i=(k-1)s+1}^{ks} X_{is}^R = r
$$

This defines a new triangular array $(Z_{ks}^R)_{1 \leq s \leq S, 1 \leq k \leq RK^s}$ (indexed by R) where the random variables Z_{ks}^R are independent. Hereafter, we will refer to Z_{ks}^R as a random variable of type s. We note that all random variables are integer valued: the support of a random variable of type s is $\{0, 1, ..., s\}$. Let $1 \leq i \leq N(R)$ be a member of a group of type s and for each value of the row index R, consider the random variable S_i^R defined as follows:

$$
S_i^R = \sum_{j=1, j \neq i}^{N(R)} X_j^R = \sum_{l=1, l \neq s}^{K^l} \sum_{k=1}^{K^l} Z_{kl}^R + \sum_{k=s}^{K^s-1} Z_{ks}^R + W_i^R
$$

A triangular array is a collection of $(y^k_1, y^k_2, ..., y^k_{n(k)})_{k \geq 1}$ of random variables on a probability space.
where $W_i^R = \sum_{j=2}^{s} \mathbb{1}_{X_{ij}^R}$. The probability that i of type s is pivotal, $Piv(\lambda_R, s)$ is equal to the probability of the event $\{S_i^R = \frac{N-1}{2}\}$ if N is odd and to half the probability of the event $\{S_i^R = \frac{N-2}{2}\} \cup \{S_i^R = \frac{N}{2}\}$ if N is even.

We note that the span of the random variables Z_{kl}^R for $1 \leq l \leq S$ and $1 \leq k \leq K^l$ and W_i^R is equal to 1. Further, the distribution functions of these random variables belong to a finite set of cardinality at most S, are not degenerate and occur infinitely often (except possibly W_i^R) in the sequence $(Z_{kl}^R)_{1 \leq l \leq S, 1 \leq k \leq K^l} \cup \{W_i^R\}_{R \geq 1}$. Let $\epsilon > 0$.

If N is odd, since $E[S_{Ri}^R] = \frac{N-1}{2}$, we deduce from Petrov’s theorem in Appendix 1 that if R is large enough:

$$\left| \sigma(R) Piv(\lambda_R, s) - \frac{1}{\sqrt{2\pi}} \right| \leq \epsilon$$

Similarly, if N is even, since $E[S_{Ri}^R] = \frac{N-1}{2}$, we deduce from Petrov’s theorem that if R is large enough:

$$\left| \sigma(S_{Ri}^R) \Pr(S_{Ri}^R = \frac{N-2}{2}) - \frac{e^{-\frac{1}{2\pi\sigma^2(R)}}}{\sqrt{2\pi}} \right| \leq \epsilon$$

$$\left| \sigma(S_{Ri}^R) \Pr(S_{Ri}^R = \frac{N}{2}) - \frac{e^{-\frac{1}{2\pi\sigma^2(R)}}}{\sqrt{2\pi}} \right| \leq \epsilon$$

Since $\frac{e^{-\frac{1}{2\pi\sigma^2(R)}}}{\sqrt{2\pi}}$ tends to $\frac{1}{\sqrt{2\pi}}$ and $\frac{\sigma(S_{Ri}^R)}{\sigma(R)} = \frac{\sigma(R) - \frac{1}{2\pi\sigma^2(R)}}{\sigma(R)}$ tends to 1 when R tends to $+\infty$, we deduce that if R is large enough:

$$\left| \sigma(R) Piv(\lambda_R, s) - \frac{1}{\sqrt{2\pi}} \right| \leq \epsilon.$$

Proposition 1: Let λ_R be the random electorate defined above. For all $s = 1, 2, ..., S$

$$\lim_{R \to \infty} \sqrt{N} Piv(\lambda_R, s) = \frac{1}{\sqrt{\frac{1}{6} + \frac{1}{12} + \frac{1}{12} \sum_{l=2}^{S} \gamma^l}} \sqrt{2\pi}.$$

The random variable $S_{Ri}^R = S^R - X_{Ri}^R$ introduced in the proof of Proposition 1 counts the number of votes in favor of 1 in the population without individual i. Proposition 1 provides information on the asymptotic behavior of the probability of the event $\{S_{Ri}^R = \frac{N-1}{2}\}$. To illustrate Proposition 1, consider the case of an electorate, denoted λ_R, where all the groups have the same size s. In such case, we deduce from our result that:
\[Piv(\lambda_R^s) \simeq \frac{1}{\sqrt{N}} \times 2 \sqrt{\frac{3}{2\pi (2 + s)}} \]

The following table lists a sample of values of the probability of being pivotal for a sample of values of \(s \).

\[
\begin{array}{cccccccccc}
\sqrt{N}Piv(\lambda_R^s) & 0.798 & 0.691 & 0.618 & 0.564 & 0.522 & \ldots & 0.399 \\
\end{array}
\]

Table 2: \(\sqrt{N} \times \) Probability of being pivotal as a function of \(s \)

We can also handle mixed situations i.e. random electorates \(\lambda \) where the sizes of the groups differ across voters. For instance, when the random electorate \(\lambda \) is such and \(\gamma^1 = 0.2, \gamma^2 = 0.3, \gamma^3 = 0.4 \) and \(\gamma^4 = 0.1 \), we obtain: \(Piv(\lambda_R^s) \simeq 0.658.85 \). We could interpret these groups as family groups: singles, couples without children voting, couples with one children voting, and so on.

The proof strategy of Proposition 1 based on Petrov’s local Central Limit Theorem has exploited the fact that the individuals could be packed in a regular way. We could imagine a more general situation where the individuals could be arranged from left to right in such a way that two individuals distant from each other by more than some given number \(m \) (which may vary with the size of the population) vote independently. We could proceed as in the proof of Proposition 1 i.e. pack together \(m \) consecutive individual random variables. Even when \(m \) is fixed, we have no guarantee that the number of distributions in the sequence of random variables which is constructed through this packing process is finite and we cannot therefore apply Petrov’s theorem. To handle such more general situations, we need to appeal to a more general local Central Limit Theorem\(^\text{10}\).

A different way to look at the probability of being pivotal of a small group consists in considering a small group of size \(\epsilon \sqrt{N} \) where \(\epsilon > 0 \) is fixed instead of a group of size 1 as done until now. Such a group, acting as a block, is pivotal iff:

\[
\frac{N}{2} - \frac{\epsilon \sqrt{N}}{2} \leq S^R_N \leq \frac{N}{2} + \frac{\epsilon \sqrt{N}}{2}
\]

where:

\[
S^R_N = \sum_{i=1}^{N(R)} X^R_i
\]

\(^{10}\)Like the version proved by Mc Donald (1979).
and \((X^R_i)_{1 \leq i \leq N(R)}\) is an arbitrary triangular array of Bernoulli random variables of parameter \(\frac{1}{2}\). Let us assume that this triangular array is \(m(R)\)-dependent and such that for some \(\epsilon > 0\) and some constant \(K\):

\[
Var(X^R_{i+1} + \ldots + X^R_j) \leq (j - i) K \quad \text{for all } i, j, \text{ and } R
\]

\[
\lim_{R \to \infty} \frac{Var(X^R_1 + \ldots + X^R_n)}{N(R)} \quad \text{exists and is nonzero}
\]

\[
\lim_{R \to \infty} \frac{m(R)^{2+\epsilon}}{N(R)} = 0
\]

Since the Bernoulli variables have moments of any order, we deduce from Berk’s theorem in Appendix 2 that \(\frac{X^R_1 + \ldots + X^R_n}{\sqrt{N(R)}}\) is asymptotically normal with mean 0 and variance \(v\), where \(v = \lim_{R \to \infty} \frac{Var(X^R_1 + \ldots + X^R_n)}{N(R)}\). We deduce that the probability of a group of relative size \(\epsilon\sqrt{N}\) to be pivotal denoted \(Piv(\epsilon, N)\) is approximatively equal to

\[
\text{Prob} \left\{ \frac{N}{2} - \frac{\epsilon \sqrt{N}}{2} \leq S^R_N \leq \frac{N}{2} + \frac{\epsilon \sqrt{N}}{2} \right\} \approx \text{Prob} \left\{ -\frac{\epsilon}{2\sqrt{v}} \leq N(0, 1) \leq \frac{\epsilon}{2\sqrt{v}} \right\}
\]

\[
\approx \epsilon \sqrt{\frac{1}{2\pi v}}
\]

This weak version of the pivotality result holds in a much larger class of electorates. The notion of \(m\)-dependency matches our intuitive notion of local interaction. The groups can even have their size increasing slowly with \(N\): for instance, \(M(R) = N(R)^{\frac{1}{4}}\) is fine. What is essential, as reflected by the other two conditions of Berck’s theorem, is to bound in an appropriate way the variance of any pack of random variables and to have the variance of the electorate to behave asymptotically as the size of the electorate. Let us insist that this definition of a small group is relative i.e. the size of the group is small when divided by the population of voters. Besides Proposition 1, we don’t know if the above result holds more generally when \(\epsilon\) decreases with \(N\), in particular when \(\epsilon = \frac{1}{\sqrt{N}}\).

4 The Case of Few Large Groups

In this section we consider the polar case of a society divided into a finite (possibly large) number of groups. This means that as \(N\) gets larger and larger, the number of voters in
each group gets larger and larger. We could apply the probabilistic approach which has been used in the preceding section. It was using extensively the observation that the sequence of Bernoulli random variables describing the votes of the citizens was exhibiting a property of \(m \)-dependence where \(m \) was independent of the size of the electorate. This approach cannot be used here as assumption (iv) on the growth of \(m \) in Berk’s theorem is not satisfied when there is a finite number of groups. To circumvent this difficulty, we will approach the problem from a combinatorial angle and use quasi-polynomials, Ehrart’s theory and some of its developments\(^\text{11}\).

4.1 Ehrhart theory and Barvinok’s algorithm

For fixed values of \(K \), the general problem of computing the number \(\pi(M, R_1, \ldots, R_k, \ldots, R_K) \) can be phrased as counting the exact number of integer solutions of a system of linear inequalities with integer coefficients, where the variables are \(x_k \ (k = 1, \ldots, K) \) and the parameters are \(M \) and \(R_k \ (k = 1, \ldots, K) \). This system is:

\[
\begin{align*}
 x_k &\geq 0 \text{ for all } k = 1, \ldots, K \\
 x_k &\leq R_k \text{ for all } k = 1, \ldots, K \\
 \sum_{k=1}^{K} x_k &\leq M \\
 \sum_{k=1}^{K} -x_k &\leq -M
\end{align*}
\]

There is a well established mathematical theory for performing such a calculation, based on the use of (parametric) polytopes and Ehrhart polynomials. Lepelley et al. (2008) and Wilson and Pritchard (2007) were the first to introduce these tools in probability calculations under IAC hypothesis in voting theory. We refer to their papers for more details and we limit ourself, in this paragraph, to a short presentation of Ehrhart theorem and its extensions. Also, we only sketch the key idea of the algorithm we have used to compute Ehrhart polynomials.

Consider a finite system of linear inequalities with integer coefficients: \(Ax \leq b \), where \(x \) is in \(\mathbb{R}^d \), \(A \) is an \(m \times d \) integer matrix, \(b \) an integer vector with \(m \) components and \(m \) the number of independent linear inequalities. Let \(\mathbf{P} \) be the set of all solutions of this system, \(\mathbf{P} \)

\(^1\text{11}\)There is a voluminous literature on this topic Brion (1995, 1998). For more details on Ehrhart theory we refer to Beck and Robins (2007) and for a general background on algorithms computing Ehrhart polynomials, we recommend the technical report produced by Verdoolage et al. (2005).
is called a rational polyhedron. If P is bounded, it is called a rational polytope. An extremal point of P is called a vertex, and P can be defined equivalently as the convex hull of its vertices. A simple case of parametric polytope is the dilatation of a rational polytope P by a positive integer parameter n: $nP = \{nx | x \in P\}$. Let L_P be the function defined by $L_P(n) = |nP \cap \mathbb{Z}^d|$, giving the number of integer points inside the dilated polytope nP. To describe the general form of this function, we need the two following notions. A rational periodic number, of period q, on the integer variable n is a function $U: \mathbb{Z} \to \mathbb{Q}$ such that $U(n) = U(n')$ whenever $n \equiv n' \mod q$. A quasi-polynomial (or Ehrhart polynomial) on n is a polynomial expression $f(n)$ on the variable n, $f(n) = \sum_{i=0}^{n} c_i(n)n^i$, where the coefficients $c_i(n)$ are rational periodic numbers on n. The period of a quasi-polynomial is the last common multiple (lcm) of the periods of its coefficients.

Theorem (Ehrhart (1962)): Let P be a rational polytope in \mathbb{R}^d. If P is d-dimensional, then\(^{12}\):

1. The function $L(P, n)$ is given by a degree-d quasi-polynomial.

2. The coefficient of the leading term is independent of n and is equal to the volume of P.

3. The period of the quasi-polynomial is a divisor of the lcm of the denominators of the vertices of nP. When all the vertices of P have integral coordinates, $L_P(n)$ is simply a polynomial.

The above result can be extended to more general situations with more than one parameter. Define a (linearly) parameterized polyhedron as the solution set of a system of linear inequalities where the constant terms in each constraint is an affine combination of a set of integer parameters: $P_p = \{x \in \mathbb{R}^d | Ax \leq Cp + b\}$, where A and C are integer matrices, b is an integer vector and p a vector of r integer parameters. When P_p is bounded for each value of p, it will be called a parametric polytope. The coordinates of the vertices of a parametric polytope are affine functions of the parameters. Each vertex only exists for a subset of the possible parameter values. Separate regions of the vector parameter space \mathbb{N}^r where the vertices have stable expressions are called validity domains. Clauss and Loechner (1998) consider the enumerator function $E(P_p)$ that describes the number of integer points

\(^{12}\)Note that P can be not full-dimensional; this is the case when the linear system describing P contains equalities. However there is no loss of generality with assuming P full-dimensional: If this is not the case, P can be transformed into another polytope which has the same number of integer points and is full-dimensional in a lower dimensional space (see Verdooolage et al. (2004), (2005)).
in a d-dimensional parametric polytope \mathbf{P}_p. They extended Ehrhart’s result by showing that $E(\mathbf{P}_p)$ can be described by a finite set of multivariate quasi-polynomials\(^{13}\) of degree d in p, each being valid on a different validity domain. They also proposed an algorithm for computing Ehrhart polynomials, based on the classical technique of interpolation. However, this method is seriously limited because the computation time is generally exponential and, in some cases, the algorithm can fail to produce a solution (Beyls (2004)).

To avoid these problems, an alternative approach for computing $E(\mathbf{P}_p)$ was proposed by Verdoolaege et al. (2004). This method, known under the name of Parameterized Barvinok’s algorithm, is essentially an adaptation of Barvinok’s algorithm (Barvinok (1994), Barvinok and Pommersheim (1999)) to parametric polytopes. Barvinok’s algorithm is a powerful tool that guarantees the polynomial-time counting of integer points inside rational polytopes (for fixed dimension)\(^{14}\). The key idea is to encode all the integer points inside a rational polyhedron \mathbf{P} (not necessarily a polytope) into a multivariate generating function defined by:

$$ f(\mathbf{P}, x) = \sum_{z \in \mathbf{P} \cap \mathbb{Z}^d} x^z $$

where $x = (x_1, \ldots, x_d)$, $z = (z_1, \ldots, z_d)$ and $x^z = x_1^{z_1} \ldots x_d^{z_d}$. It is clear that, when \mathbf{P} is a polytope, this sum is a (Laurent) polynomial and the number of integer points in \mathbf{P} is equal to the number of monomials in the generating function. Thus, the number of integer points in \mathbf{P} can be obtained by rewriting $f(\mathbf{P}, x)$ as a reasonably short function and then evaluating it at $x = (1, \ldots, 1)$. Barvinok’s method uses a crucial identity of Brion (1995) to distribute the computation of $f(\mathbf{P}, x)$ on the vertices of \mathbf{P} by considering the supporting cone at each vertex\(^{15}\). Indeed, Brion’s theorem states that the generating function of a polytope is equal to the sum of the generating functions of the supporting cones at each vertex. The remainder of Barvinok’s procedure uses an inclusion-exclusion method to replace the generating function of each supporting cone with a signed sum of polynomial number (in the size of the data) of unimodular cones\(^{16}\). The generating functions of these cones are simple and short rational functions that can be calculated explicitly. The function $f(\mathbf{P}, x)$ is then

\[^{13}\text{A multivariate quasi-polynomial is a multivariate polynomial expression where the coefficients depend periodically on each variable.}\]

\[^{14}\text{It was later refined and implemented in the software LattE by De Loera et al. (2004).}\]

\[^{15}\text{The supporting cone at a vertex is the polyhedron defined by the constraints that are saturated by the vertex, i.e., those for which equality holds for the vertex.}\]

\[^{16}\text{Let } v, u_1, \ldots, u_t \text{ in } \mathbb{R}^d. \text{ The (shifted) cone with apex } v \text{ and generators } u_1, \ldots, u_t \text{ is the set } C \text{ defined by } C = \{v + \sum_{i=1}^t \alpha_i u_i | \alpha_i \geq 0\}. \text{ The cone } C \text{ is called unimodular if its generators form a basis of the lattice } \mathbb{Z}^d.\]
the sum of short rational functions. Note that the point \((1, \ldots, 1)\) is a pole of all these functions, the evaluation of \(f(P, x)\) at this point is obtained by computing the residues\(^{17}\).

Parameterized Barvinok’s algorithm, which allows to compute Ehrhart polynomials analytically, keeps the overall structure of Barvinok’s algorithm, but takes into account validity domains and handles periodic numbers. This technique always produces a solution in polynomial time, when the number of variables in the inequalities is fixed\(^ {18}\). The results presented in subsections 4.4 and 4.5 (for \(K = 5, 7, 9, 11\)) have been obtained by applying this algorithm.

4.2 A Preliminary Result

It can be noticed that, when the number \(N_1\) of voters in the largest group represents more than 50\% of the total number of voters, then the probability of casting a decisive vote only depends, in each group, on the value of \(N_1\). More precisely, we have the following general result (Recall that \(\lfloor x \rfloor\) denotes the integer part of \(x\)).

Proposition 2: If \(N_1 \geq \lfloor \frac{N}{2} \rfloor + 1\), then \(Piv(\lambda, 1) = \frac{1}{N_1}\) and \(Piv(\lambda, k) = \frac{1}{N_{1}+1}\) for \(k = 2, 3, \ldots, K\).

Proof. Let \(x_k\) be the value of the \(k\)th term in the decomposition of \(\lfloor \frac{N-1}{2} \rfloor\): \(x_1 + \ldots + x_k + \ldots + x_K = \lfloor \frac{N-1}{2} \rfloor\). If \(N_1 \geq \lfloor \frac{N}{2} \rfloor + 1\), then \(N_2 + N_3 + \ldots + N_k + \ldots + N_K \leq \lfloor \frac{N-1}{2} \rfloor\). Consequently, for \(k = 2, 3, \ldots, K, x_k\) can take any integer value between 0 and \(N_k\) (including 0 and \(N_k\)) and when \(x_2, x_3, \ldots, x_K\) are set, the value of \(x_1\) is given in a unique way by \(x_1 = \lfloor \frac{N-1}{2} \rfloor - x_2 - x_3 - \ldots - x_K\). The number of possible decompositions is then given by

\[
\pi(\lfloor \frac{N-1}{2} \rfloor, N_1, N_2, \ldots, N_k, \ldots, N_K) = (N_2 + 1)(N_3 + 1)\ldots(N_K + 1)
\]

and the result follows from relations (1.a) and (1.b). \(\Box\)

4.3 The Case of Two Groups

Let us consider the case where \(K = 2\) i.e. the situation where the voters are partitioned into two groups. This setting has been examined by various authors in the literature including Beck (1975), Kleiner (1980), Chamberlain and Rothschild (1981) and Le Breton et Lepelley (2010).

\(^{17}\)For detailed explanation, see De Loera (2004) and Verdoolage et al. (2005).

\(^{18}\)For a rigorous description of this algorithm and for implementation details, see Verdoolage et al. (2005).
In such a case, if N is odd, then $N_1 > N_2$ as the two integers don’t have the same parity. It is easily seen that:

$$\pi \left(\frac{N-1}{2}, N_1-1, N_2 \right) = N_2 + 1 \quad \text{and} \quad \pi \left(\frac{N-1}{2}, N_1, N_2-1 \right) = N_2$$

and therefore:

$$Piv(\lambda, 1) = \frac{1}{N_1} \quad \text{and} \quad Piv(\lambda, 2) = \frac{1}{N_1 + 1}$$

in accordance with Proposition 2.

4.4 Three groups of voters

In this section, we consider the case where the population is divided into three groups of voters i.e. $K = 3$: $N_1 \geq N_2 \geq N_3$ and $N_1 + N_2 + N_3 = \tilde{N} + 1$, with \tilde{N} even.

The value of $\pi(\frac{\tilde{N}}{2}, N_1 - 1, N_2, N_3)$ is given by the number of integer solutions of the following set of (in)equalities, where x_k can be interpreted as the number of voters voting Left in group k, $k = 1, 2, 3$:

$$0 \leq x_1 \leq N_1 - 1$$
$$0 \leq x_2 \leq N_2$$
$$0 \leq x_3 \leq N_3$$
$$x_1 + x_2 + x_3 = \frac{\tilde{N}}{2}$$

Given the last equality, $N_3 = N - N_1 - N_2$ and the above set of inequalities reduces to:

$$0 \leq x_1 \leq N_1 - 1$$
$$0 \leq x_2 \leq N_2$$
$$0 \leq x_3 \leq N - N_1 - N_2$$
$$x_1 + x_2 + x_3 = \frac{\tilde{N}}{2}$$

where the parameters satisfy:

- $N_1 \geq N_2$
- $2N_2 + N_1 - N - 1 \geq 0$ and
- $N_1 + N_2 \leq N + 1$

A representation for the number of integer solutions of this set of inequalities with three variables and three parameters (N_1, N_2 and N) can be derived by using the multiparameter version of the Barvinok’s algorithm (see Lepelley et al. (2008)). We obtain:

$$\pi(\frac{\tilde{N}}{2}, N_1 - 1, N_2, N_3) = (\tilde{N} - N_1 - N_2 + 2)(N_2 + 1) = (N_3 + 1)(N_2 + 1)$$
if $N_1 \geq \frac{N}{2} + 1$ and

$$\pi\left(\frac{N}{2}, N_1 - 1, N_2, N_3\right) = (-\tilde{N}^2 + 2\tilde{N}(2N_1 + 2N_2 - 1) - 4(N_1^2 + N_1(N_2 - 2) + N_2(N_2 - 1))/4$$

if $N_1 \leq \frac{N}{2}$.

Representations for $\pi\left(\frac{N}{2}, N_1, N_2 - 1, N_3\right)$ and $\pi\left(\frac{N}{2}, N_1, N_2, N_3 - 1\right)$ can be derived in a similar way to obtain:

$$\pi\left(\frac{N}{2}, N_1, N_2 - 1, N_3\right) = (\tilde{N} - N_1 - N_2 + 2)N_2 = (N_3 + 1)N_2$$

if $N_1 \geq \frac{N}{2} + 1$ and

$$\pi\left(\frac{N}{2}, N_1, N_2 - 1, N_3\right) = (-\tilde{N}^2 + 2\tilde{N}(2N_1 + 2N_2 - 1) - 4(N_1^2 + N_1(N_2 - 1) + N_2(N_2 - 1))/4$$

if $N_1 \leq \frac{N}{2}$;

$$\pi\left(\frac{N}{2}, N_1, N_2, N_3 - 1\right) = (\tilde{N} - N_1 - N_2 + 1)(N_2 + 1) = N_3(N_2 + 1)$$

if $N_1 \geq \frac{N}{2} + 1$ and

$$\pi\left(\frac{N}{2}, N_1, N_2, N_3 - 1\right) = (-\tilde{N}^2 + 2\tilde{N}(2N_1 + 2N_2 + 1) - 4(N_1^2 + N_1N_2 + N_2^2 - 1))/4$$

if $N_1 \leq \frac{N}{2}$.

Observe that we recover the results we have mentioned for two groups by taking $N_3 = 0$. From the above results, we can now derive the probability of casting a decisive vote for a voter belonging to each of the three groups. We obtain:

$$Piv(\lambda, 1) = \frac{(N_3 + 1)(N_2 + 1)}{N_1(N_2 + 1)(N_3 + 1)} = \frac{1}{N_1}$$

$$Piv(\lambda, 2) = \frac{(N_3 + 1)N_2}{(N_1 + 1)N_2(N_3 + 1)} = \frac{1}{N_1 + 1}$$

$$Piv(\lambda, 3) = \frac{N_3(N_2 + 1)}{(N_1 + 1)(N_2 + 1)N_3} = \frac{1}{N_1 + 1}$$

if $N_1 \geq \frac{N}{2} + 1$ (in accordance with our preliminary result), and

$$Piv(\lambda, 1) = \frac{4N_1^2 + 4N_1(N_2 - \tilde{N} - 2) + 4N_2^2 - 4N_2(\tilde{N} + 1) + \tilde{N}(\tilde{N} + 2)}{4N_1(N_2 + 1)(N_1 + N_2 - \tilde{N} - 2)}$$

(2)
\[
Piv(\lambda, 2) = \frac{4N_1^2 + 4N_1(N_2 - \tilde{N} - 1) + 4N_2^2 - 4N_2(\tilde{N} + 2) + \tilde{N}(\tilde{N} + 2)}{4(N_1 + 1)N_2(N_1 + N_2 - \tilde{N} - 2)} \quad (3)
\]

\[
Piv(\lambda, 3) = \frac{4N_1^2 + 4N_1(N_2 - \tilde{N}) + 4N_2^2 - 4N_2\tilde{N} + \tilde{N}^2 - 2\tilde{N} - 4)}{4(N_1 + 1)(N_2 + 1)(N_1 + N_2 - \tilde{N} - 1)} \quad (4)
\]

if \(N_1 \leq \frac{\tilde{N}}{2} \).

In order to simplify the above three representations, let \(\alpha_1 = N_1/\tilde{N} \) and \(\alpha_2 = N_2/\tilde{N} \) denote the proportion of voters in the first and the second group. Replacing \(N_1 \) by \(\alpha_1\tilde{N} \) and \(N_2 \) by \(\alpha_2\tilde{N} \) and assuming that \(\tilde{N} \) is large give, for \(k = 1, 2, 3 \) and \(\alpha_1 \leq 0.50 \):

\[
Piv(\lambda, k) \approx \frac{4\alpha_1^2 + 4\alpha_1\alpha_2 - 4\alpha_1 + 4\alpha_2^2 - 4\alpha_2 + 1}{4\alpha_1\alpha_2(\alpha_1 + \alpha_2 - 1)} \times \frac{1}{\tilde{N}}.
\]

Let \(c_3(\alpha_1, \alpha_2) = \frac{4\alpha_1^2 + 4\alpha_1\alpha_2 - 4\alpha_1 + 4\alpha_2^2 - 4\alpha_2 + 1}{4\alpha_1\alpha_2(\alpha_1 + \alpha_2 - 1)} \) if \(\alpha_1 \leq 0.50 \) and \(c_3(\alpha_1, \alpha_2) = 1/\alpha_1 \) if \(\alpha_1 > 0.50 \).

We finally obtain that, for \(N \) large, the probability of casting a decisive vote for a voter belonging to an electorate divided in three groups is approximately equal to the Shapley-Shubik index multiplied by \(c_3(\alpha_1, \alpha_2) \). We give in Table 3 some computed values of \(c_3(\alpha_1, \alpha_2) \) for various values of \(\alpha_1 \) and \(\alpha_2 \).

<table>
<thead>
<tr>
<th>(\alpha_1/\alpha_2)</th>
<th>1/3</th>
<th>0.35</th>
<th>0.40</th>
<th>0.45</th>
<th>0.50</th>
</tr>
</thead>
<tbody>
<tr>
<td>1/3</td>
<td>2.250</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
</tr>
<tr>
<td>0.35</td>
<td>2.248</td>
<td>2.245</td>
<td>-</td>
<td>-</td>
<td>-</td>
</tr>
<tr>
<td>0.40</td>
<td>2.219</td>
<td>2.214</td>
<td>2.188</td>
<td>-</td>
<td>-</td>
</tr>
<tr>
<td>0.45</td>
<td>2.145</td>
<td>2.143</td>
<td>2.130</td>
<td>2.099</td>
<td>-</td>
</tr>
<tr>
<td>0.50</td>
<td>2</td>
<td>2</td>
<td>2</td>
<td>2</td>
<td>2</td>
</tr>
<tr>
<td>> 0.50</td>
<td>1/\alpha_1</td>
<td>1/\alpha_1</td>
<td>1/\alpha_1</td>
<td>1/\alpha_1</td>
<td>1/\alpha_1</td>
</tr>
</tbody>
</table>

Table 3 : Values of \(c_3(\alpha_1, \alpha_2) \)

These values show that the probability of casting a decisive vote is maximum when \(\alpha_1 = \alpha_2 = 1/3 \), i.e. when each of the three groups has the same size.

4.5 The Symmetric Case

We consider here the case with \(N_1 = N_2 = \ldots = N_K = \frac{\tilde{N} + 1}{K} \) and we assume that \(N = \tilde{N} + 1 \) is a multiple of \(K \), which implies that \(K \) is odd. In this symmetric case, the value of \(\pi(\frac{\tilde{N}}{2}, \frac{\tilde{N} + 1}{K}, \ldots, \frac{\tilde{N} + 1}{K}) \) is given as the number of integer solutions of the following set of (in)equalities:
\[
0 \leq x_1 \leq \frac{\hat{N} + 1}{K} - 1 \\
0 \leq x_2 \leq \frac{\hat{N} + 1}{K} \\
\vdots \\
0 \leq x_K \leq \frac{\hat{N} + 1}{K} \\
x_1 + x_2 + \ldots + x_K = \frac{\hat{N}}{2}
\]

For specific small values of \(K\), it is fairly easy to obtain close forms of and of the probability of being pivotal as a function of the parameter \(N\). Let us consider the first values of \(K\).

\(\bullet\) \(K = 3\). To compute \(\pi\left(\frac{\hat{N}}{2}, \frac{\hat{N} + 1}{3} - 1, \frac{\hat{N} + 1}{3}, \frac{\hat{N} + 1}{3}\right)\), we proceed as follows. Let \(\hat{K} = \frac{\hat{N} + 1}{3}\) and \(m\) be the number of voters taken from the smallest group. Of course: \(0 \leq m \leq \hat{K} - 1\).

Given \(m\), how many voters \(x_2\) can we take in the second group?

The smallest number \(\underline{x}\) is solution of
\[
m + \underline{x} + \hat{K} = \frac{3\hat{K} - 1}{2}
\]
i.e. \(\underline{x} = \frac{\hat{K} - 1}{2} - m\). This bound is derived when we chose the largest possible number (i.e. \(\hat{K}\)) in the third group. This integer is larger than or equal to 0 when \(m \leq \frac{\hat{K} - 1}{2}\). On the other hand, the largest number \(\overline{x}\) is solution of
\[
m + \overline{x} + 0 = \frac{3\hat{K} - 1}{2}
\]
i.e. \(\overline{x} = \frac{3\hat{K} - 1}{2} - m\). This integer is smaller than or equal to \(\hat{K}\) when \(m \geq \frac{\hat{K} - 1}{2}\).

Case 1: \(m \leq \frac{\hat{K} - 1}{2}\). In such case: \(x_2 = \hat{K} - \left(\frac{3\hat{K} - 1}{2} - m\right) + 1 = \frac{\hat{K} + 1}{2} + m + 1\)

Case 2: \(m \geq \frac{\hat{K} - 1}{2}\). In such case: \(x_2 = \left(\frac{3\hat{K} - 1}{2} - m\right) - 0 + 1 = \frac{3\hat{K} - 1}{2} - m + 1\)

From that, we deduce:

\[
\pi\left(\hat{K} - 1, \hat{K}, \hat{K}\right) = \sum_{m=0}^{\frac{\hat{K}-1}{2}} \left(\frac{\hat{K} + 1}{2} + m + 1\right) + \sum_{m=\frac{\hat{K}+1}{2}}^{\hat{K}-1} \left(\frac{3\hat{K} - 1}{2} - m + 1\right)
\]
\[
= \left(\frac{\hat{K} + 1}{2}\right)^2 + \frac{(\hat{K} - 1)(\hat{K} + 1)}{8} + \frac{(3\hat{K} - 1)(\hat{K} - 1)}{4}
\]
\[
- \hat{K}(\hat{K} - 1) + \frac{(\hat{K} - 1)(\hat{K} + 1)}{8} + \hat{K}
\]

which simplifies to:

\[
\pi\left(\hat{K} - 1, \hat{K}, \hat{K}\right) = \frac{3\hat{K}^2 + 4\hat{K} + 1}{4}
\]

From that, we derive:
\[Piv(\lambda) = \frac{3\hat{K}^2 + 4\hat{K} + 1}{4\hat{K}(\hat{K} + 1)^2} \]

Changing to the variable \(N = 3\hat{K} \), we obtain:

\[Piv(\lambda) = \frac{3\left(\frac{N}{3}\right)^2 + 4\frac{N}{3} + 1}{4\left(\frac{N}{3}\right)\left(\frac{N}{3} + 1\right)^2} = \frac{9N^2 + 36N + 27}{4N^3 + 24N^2 + 36N} = \frac{9(N + 1)}{4N(N + 3)} \]

or equivalently

\[Piv(\lambda) = \frac{9(\hat{N} + 2)}{4(\hat{N} + 1)(\hat{N} + 4)} \quad (5) \]

for \(\hat{N} = 2 \) modulo 6 (recall that \(\hat{N} + 1 \) must be an odd multiple of 3). Notice that these results are consistent with the representations given in Section 2: Replacing \(N_1 \) and \(N_2 \) by \((N + 1)/3\) in (2), (3) or (4) leads to (5).

Hence, we get for \(N \) large:

\[Piv(\lambda) \approx c_3 \frac{1}{N} \]

with \(c_3 = \frac{9}{4} = 2.25 \), in accordance with the result obtained in the preceding subsection for \(\alpha_1 = \alpha_2 = 1/3 \).

- \(K = 5 \). We obtain:

\[\pi\left(\frac{\hat{N}}{2}, \frac{\hat{N} + 1}{5}, \frac{\hat{N} + 1}{5}, \frac{\hat{N} + 1}{5}, \frac{\hat{N} + 1}{5}\right) = \frac{(\hat{N} + 2)(\hat{N} + 6)(23\hat{N}^2 + 276\hat{N} + 928)}{24000} \]

and

\[Piv(\lambda) = \frac{25(\hat{N} + 2)(23\hat{N}^2 + 276\hat{N} + 928)}{192(\hat{N} + 1)(\hat{N} + 6)^3} \]

for \(\hat{N} = 4 \) modulo 10. In this case, the limiting value of the probability of casting a decisive vote is given as:

\[Piv(\lambda) \approx c_5 \frac{1}{N} \]

with \(c_5 = \frac{575}{192} = 2.995 \).

- \(K = 7 \). The probability of casting a decisive vote is given as:

\[Piv(\lambda) = \frac{48(841\hat{N}^6 + 35322\hat{N}^5 + 616300\hat{N}^4 + 3859680\hat{N}^3 + 23167384\hat{N}^2 + 67791768\hat{N} + 66810120)}{11520(\hat{N} + 1)(\hat{N} + 8)^6} \]
for $\tilde{N} = 6$ modulo 14. And for N large:

$$Piv(\lambda) \simeq c_7 \frac{1}{N}$$

with $c_7 = \frac{41209}{11520} = 3.577$.

- $K = 9$ and $K = 11$. Although we have been able to obtain the complete polynomial associated with $\pi(\frac{\tilde{N}}{2}, \frac{\tilde{N}+1}{9} - 1, \frac{\tilde{N}+1}{9}, \ldots, \frac{\tilde{N}+1}{9})$ and with $\pi(\frac{\tilde{N}}{2}, \frac{\tilde{N}+1}{11} - 1, \frac{\tilde{N}+1}{11}, \ldots, \frac{\tilde{N}+1}{11})$, we only give here the values of c_9 and c_{11}:

$$c_9 = \frac{2337507}{573440} = 4.076$$

and

$$c_{11} = \frac{4199504287}{928972800} = 4.521.$$

For values of K higher than 11, the implementation of the Barvinok’s algorithm demands a very long computation time that prevents from obtaining some numerical results. The following proposition describes the asymptotic behavior of $\pi(\frac{\tilde{N}}{2}, \frac{\tilde{N}+1}{K} - 1, \frac{\tilde{N}+1}{K}, \ldots, \frac{\tilde{N}+1}{K})$ when N gets large.

Proposition 3: Let K be an odd number ($K \geq 3$).

Let $\varphi(K) = \lim_{N \rightarrow +\infty} \left[\frac{1}{N^K} \pi(\frac{\tilde{N}}{2}, \frac{\tilde{N}+1}{K} - 1, \frac{\tilde{N}+1}{K}, \ldots, \frac{\tilde{N}+1}{K}) \right]$. Then, for each fixed value of K, we have:

$$\varphi(K) = \frac{1}{(K-1)!} \sum_{m=0}^{K-1} (-1)^m \binom{K}{m} \left(\frac{K-2m}{2K} \right)^{K-1}.$$

Proof. By definition, $\pi(\frac{\tilde{N}}{2}, \frac{\tilde{N}+1}{K} - 1, \frac{\tilde{N}+1}{K}, \ldots, \frac{\tilde{N}+1}{K})$ is the number of integer solutions of the following parametric linear system:

$$\begin{align*}
0 &\leq x_1 \leq \frac{N}{K} - 1 \\
0 &\leq x_k \leq \frac{N}{K} \quad \text{for all } k = 2, \ldots, K \\
\sum_{k=1}^{K} x_k &\leq \frac{N - 1}{2}
\end{align*}$$

We know by Ehrhart’s theorem that this number is a quasi-polynomial of degree $K - 1$ on the variable N. Hence, $\varphi(K)$ is equal to the leading coefficient of this quasi-polynomial. The additive constants in the second member of the constraints do not affect this coefficient, $\varphi(K)$ is also the leading coefficient of the quasi-polynomial computing the number of integer solutions of the system.
The system represents the dilatation by the factor \(N \) of the rational \((K-1)\)-dimensional polytope \(Q \) defined by:

\[
\begin{aligned}
0 \leq x_k &\leq \frac{1}{K} \quad \text{for all } k = 1, \ldots, K \\
\sum_{k=1}^{K} x_k &= \frac{1}{2}
\end{aligned}
\]

By the second assertion of Ehrhart’s theorem, and by definition of \(\varphi(K) \), we know that \(\varphi(K) \) is equal to the relative volume of \(Q \), which is the (normalized) volume in \(\mathbb{R}^{K-1} \) of the full-dimensional polytope \(P \) defined by:

\[
\begin{aligned}
0 \leq x_k &\leq \frac{1}{K} \quad \text{for all } k = 1, \ldots, K - 1 \\
\frac{K - 2}{2K} &\leq \sum_{k=1}^{K-1} x_k \leq \frac{1}{2}
\end{aligned}
\]

Let \(\text{Vol}(P) \) be the volume of \(P \). To compute this volume, we consider some particular subsets of \(\mathbb{R}^{K-1} \). Let \(\Delta \) and \(\Delta' \) be the \(K - 1 \)-dimensional simplices defined by:

\[
\Delta = \{ x \in \mathbb{R}^{K-1} : x_k \geq 0 \text{ for all } k = 1, \ldots, K - 1 \text{ and } x_1 + \ldots + x_{K-1} \leq 1/2 \}
\]

\[
\Delta' = \{ x \in \mathbb{R}^{K-1} : x_k \geq 0 \text{ for all } k = 1, \ldots, K - 1 \text{ and } x_1 + \ldots + x_{K-1} \leq (K - 2)/2K \}
\]

It is easy to see that \(\text{Vol}(P) = \text{Vol}(A) - \text{Vol}(B) \), where:

\[
A = \{ x \in \Delta : x_k \leq 1/K, \forall k = 1, \ldots, K - 1 \}
\]

\[
B = \{ x \in \Delta' : x_k \leq 1/K, \forall k = 1, \ldots, K - 1 \}
\]

We only show how to compute \(\text{Vol}(A) \), the same method will be applied to obtain \(\text{Vol}(B) \). For each \(i \) in \{1, \ldots, K - 1\} let \(\Delta_i = \{ x \in \Delta : x_i \geq 1/K \} \). More generally, for each non-empty subset \(S \) of \{1, \ldots, K - 1\}, we define \(\Delta_S \) by \(\Delta_S = \cap_{i \in S} \Delta_i \). Note that \(\Delta_S = \emptyset \) for \(|S| > \frac{K-1}{2} \).

For \(S \) such that \(|S| \leq \frac{K-1}{2} \), let \(|S| = m \) and let \(t_u \) be the translation of vector \(u \), where \(u \) is the vector of \(\mathbb{R}^{K-1} \) defined by \(u_i = -\frac{1}{K} \) if \(i \in S \) and \(u_i = 0 \) if not. It is obvious that
\(t_u(\Delta_S) = \Delta(m) \), where \(\Delta(m) = \{ x \in \mathbb{R}^{K-1} : x_k \geq 0 \text{ for all } k = 1, \ldots, K-1 \text{ and } x_1 + \ldots + x_{K-1} \leq (K - 2m)/2K \} \). Since translations conserve volumes, and applying the formula giving the volume of a simplex, we obtain:

\[
\text{Vol}(\Delta_S) = \text{Vol}(\Delta(m)) = \frac{1}{(K-1)!} \left(\frac{K-2m}{2K} \right)^{K-1}
\]

On the other hand, we can write \(\text{Vol}(A) = \text{Vol}(\Delta) - \text{Vol}(\cup_{i=1}^{K-1} \Delta_i) \). Applying the inclusion-exclusion principle, we get:

\[
\text{Vol}(\cup_{i=1}^{K-1} \Delta_i) = \sum_{m=1}^{K-2} (-1)^m \sum_{s, |s| = m} \text{Vol}(\Delta_S)
\]

\[
= \sum_{m=1}^{K-2} (-1)^m \binom{K-1}{m} \frac{1}{(K-1)!} \left(\frac{K-2m}{2K} \right)^{K-1}
\]

Since \(\text{Vol}(\Delta) = \frac{1}{(K-1)!} \binom{1}{(K-1)/2}^{K-1} \), we obtain:

\[
\text{Vol}(A) = \frac{1}{(K-1)!} \sum_{m=0}^{K-2} (-1)^m \binom{K-1}{m} \left(\frac{K-2-2m}{2K} \right)^{K-1}
\]

Now, \(\text{Vol}(B) \) can be computed in a similar way and we can easily establish that:

\[
\text{Vol}(B) = \frac{1}{(K-1)!} \sum_{m=0}^{K-2} (-1)^m \binom{K-1}{m} \left(\frac{K-2-2m}{2K} \right)^{K-1}.
\]

Finally, the following simple calculus gives the result:

\[
\text{Vol}(P) = \frac{1}{(K-1)!} \left(\sum_{m=0}^{K-2} (-1)^m \binom{K-1}{m} \left(\frac{K-2m}{2K} \right)^{K-1} - \sum_{m=0}^{K-3} (-1)^m \binom{K-1}{m} \left(\frac{K-2-2m}{2K} \right)^{K-1} \right)
\]

\[
= \frac{1}{(K-1)!} \left(\left(\frac{1}{2} \right)^{K-1} + \sum_{m=1}^{K-2} (-1)^m \binom{K-1}{m} + \binom{K-1}{m-1} \right) \left(\frac{K-2m}{2K} \right)^{K-1}
\]

\[
= \frac{1}{(K-1)!} \left(\left(\frac{1}{2} \right)^{K-1} + \sum_{m=1}^{K-2} (-1)^m \binom{K}{m} \left(\frac{K-2m}{2K} \right)^{K-1} \right)
\]

\[
= \frac{1}{(K-1)!} \sum_{m=0}^{K-2} (-1)^m \binom{K}{m} \left(\frac{K-2m}{2K} \right)^{K-1}.
\]

Using the analytical expression obtained in the previous Proposition, we can extend the calculation of \(c_K = K^K \varphi(K) \) to larger values of \(K \). The following table gives the exact value of \(c_K \) for \(K = 5 \) to 49 (\(K \) odd).
Table 4: Exact values of c_K

Notice that the limiting result obtained in this subsection can be easily extended to the case where N is even and the population is divided into K groups of size $\frac{N}{K}$. The integer K can be odd or even and the unique assumption is that N is an even multiple of K. Let $\psi(K) = \lim_{N \to +\infty} \left[\frac{1}{N^{K-1}} \pi \left(\frac{N-2}{K}, \frac{N}{K} - 1, \frac{N}{K}, ..., \frac{N}{K} \right) \right]$. With slight modifications in the proof of Proposition 3, we obtain:

$$\psi(K) = \frac{1}{(K-1)!} \sum_{m=0}^{K-1} (-1)^m \binom{K}{m} \left(\frac{K-2m}{2K} \right)^{K-1}$$

if K is odd, and

$$\psi(K) = \frac{1}{(K-1)!} \sum_{m=0}^{K/2} (-1)^m \binom{K}{m} \left(\frac{K-2m}{2K} \right)^{K-1}$$

if K is even.

4.6 A Probabilistic Argument

To study the asymptotic behavior of the above expression i.e. to understand how c_K behaves when K tends to ∞, we develop a probabilistic argument. To this end, we will consider as in the end of section 3 the probability of being pivotal from the perspective of a small group of size ϵN where $\epsilon > 0$ is fixed instead of a group of size 1 as done until now.

Such a group, acting as a block, is pivotal iff:

$$\frac{N}{2} - \epsilon N \leq S_N \leq \frac{N}{2} + \epsilon N$$

where:

$$S_N = \sum_{k=1}^{K} S_N^k \text{ where } S_N^k = \sum_{i=1}^{N_k} X_i^k \text{ and } N_k = \frac{N}{K}$$

The random variables $S_N^1, S_N^2, ..., S_N^K$ are independent and identically distributed. Following the argument used in Proposition 4 of Chamberlain and Rothschild (1981), we deduce that for all $k = 1, ..., K$, $\frac{S_N^k}{N_k}$ converges weakly to the uniform law on the interval $[0, 1]$.

<table>
<thead>
<tr>
<th>K</th>
<th>5</th>
<th>7</th>
<th>9</th>
<th>11</th>
<th>13</th>
<th>15</th>
<th>17</th>
<th>19</th>
<th>21</th>
<th>23</th>
<th>25</th>
<th>27</th>
</tr>
</thead>
<tbody>
<tr>
<td>\tilde{K}</td>
<td>29</td>
<td>31</td>
<td>33</td>
<td>35</td>
<td>37</td>
<td>39</td>
<td>41</td>
<td>43</td>
<td>45</td>
<td>47</td>
<td>49</td>
<td></td>
</tr>
</tbody>
</table>
when $N_k \to \infty$. Since the S_N^k are independent, this implies that $rac{S_N^k}{N}$ converges weakly to $Z = \frac{1}{K} \sum_{k=1}^{K} U_k$ where the random variables U_k are independent and identically distributed. Their common distribution is the uniform distribution on $[0, 1]$. From the central limit theorem, we deduce that if K is large then:

$$\frac{\sum_{k=1}^{K} U_k}{K} - \frac{1}{2} \simeq N\left(0, \frac{1}{\sqrt{12K}}\right)$$

since $\sqrt{\frac{1}{12}}$ is the standard deviation of the uniform variable on $[0, 1]$. We deduce that the probability of a group of relative size ϵ to be pivotal denoted $Piv(\epsilon, N)$ is approximatively equal to

$$\Pr\left\{ -\frac{\epsilon}{2} \leq \frac{\sum_{k=1}^{K} U_k}{K} - \frac{1}{2} \leq \epsilon \right\} \simeq \Pr\left\{ -\frac{\epsilon}{2} \leq N\left(0, \frac{1}{\sqrt{12K}}\right) \leq \frac{\epsilon}{2} \right\}$$

$$\simeq \epsilon \sqrt{\frac{6K}{\pi}}$$

From that computation, we conjecture that $c_K \simeq \sqrt{\frac{6K}{\pi}}$ when K is large and therefore:

$$Piv(\lambda) \simeq \frac{1}{N} \sqrt{\frac{6K}{\pi}} \text{ when } K \text{ is large}$$

We have tabulated few values of $\sqrt{\frac{6K}{\pi}}$ below:

<table>
<thead>
<tr>
<th>K</th>
<th>3</th>
<th>5</th>
<th>7</th>
<th>9</th>
<th>11</th>
<th>...</th>
<th>51</th>
<th>...</th>
<th>99</th>
</tr>
</thead>
<tbody>
<tr>
<td>$\sqrt{\frac{6K}{\pi}}$</td>
<td>2.3937</td>
<td>3.0902</td>
<td>3.6564</td>
<td>4.1459</td>
<td>4.5835</td>
<td>...</td>
<td>9.8693</td>
<td>...</td>
<td>13.7505</td>
</tr>
</tbody>
</table>

Table 5 : Approximate values of c_K

5 Further Considerations on Correlation and Partitioning

In this paper, we have mostly focused on a specific pattern of correlation that we have called the IAC partitioning model. It is important to recall that this model is specific on two grounds. First, it is based on a partition of the individuals such that individuals belonging to two different groups in that partition have independent preferences. Second, it has been assumed that in each group the correlations among the preferences in the group were resulting
from the IAC model. In this last section, we keep the partitioning assumption but examine two different generalizations of the existing IAC version.

In the IAC setting, the correlation coefficient between the votes of two voters from the same group is equal to $\frac{1}{3}$. Let us consider instead the case where the correlation coefficient between the votes of two voters is positive but arbitrary\(^{19}\) and denoted ρ: $\text{Cov}(X_{ik}, X_{jk})$, the covariance between the votes of i and j when they belong to the same group is then equal to $\frac{\rho}{4}$. As before, as long as $\rho \neq 1$ we obtain:

$$\lim_{R \to \infty} \sqrt{N} \text{Piv}(\lambda_R, s) = \frac{1}{\left(\sqrt{\frac{1-\rho+\rho\gamma}{4} + \frac{\rho}{4} \sum_{l=2}^{S} \gamma^l l}\right) \sqrt{2\pi}}$$

In particular, in the case where N is a multiple of s and all groups are of size s, we obtain:

$$\lim_{R \to \infty} \sqrt{N} \text{Piv}(\lambda_R, s) = \sqrt{\frac{2}{\pi}} \frac{1}{\sqrt{1 + \rho (s - 1)}}$$

We observe that $\sqrt{N} \text{Piv}(\lambda_R, s)$ decreases with s and with ρ. This is consistent with intuition as an increase in s or an increase in ρ leads to more correlation among the votes and less room for pivotality. However, in the case of perfect correlation i.e. $\rho = 1$, we need to be more careful as we cannot use Petrov’s theorem. The reason is easy to see in the case where all the groups are of same size s. In such case the variables Z^R_k and W^R_i introduced in the proof of Proposition 1 have respectively a span of s and a span of $s - 1$. Only the Z^R_k variables appear infinitely often. To see what is going on, consider the case where $s = 2$ i.e. the case where the N random variables are grouped into $M \equiv \frac{N}{2}$ packs of size 2. Let us focus on the case where M is odd. In such case:

$$\text{Piv}(\lambda_R, 2) = \text{Prob}(S^R_i - W^R_i = \frac{N - 2}{2})$$

Since all the variables in the sum are independent, identically distributed with a maximal span of 2 and a variance equal to 1, we deduce from the standard Moivre-Laplace’s local theorem\(^{20}\) that:

$$\lim_{R \to \infty} \frac{1}{2} \sqrt{\frac{N - 2}{2}} \text{Prob}(S^R_i - W^R_i = \frac{N - 2}{2}) = \frac{1}{\sqrt{2\pi}}$$

\(^{19}\)In appendix 3, we offer a slight generalization of the IAC model which allow to cover all conceivable positive values of ρ.

\(^{20}\)Alternatively, it is also a direct consequence of Gnedenko ‘s theorem (1948) (theorem 1 in chapter 7 of Petrov (1975)) as all the variables in the sum are independent, identically distributed with a maximal span of 2 and variance equal to 1.
and therefore:
\[
\lim_{R \to \infty} \sqrt{N} \text{Piv}(\lambda_R, 2) = \frac{2}{\sqrt{\pi}} \approx 1.1284
\]

which is different from corresponds to the value of \(\sqrt{\frac{2 \pi}{\sqrt{1+\rho(s-1)}}} = \frac{1}{\sqrt{\pi}} \approx 0.5642 \) when \(\rho = 1 \) and \(s = 2 \). More generally, consider the case of an arbitrary value of \(s \) i.e. the case where the \(N \) random variables are grouped into \(M \equiv \frac{N}{s} \) of size \(s \) which correspond to \(M = \frac{N}{s} \) independent and identically distributed Bernouilli random variables. Let us focus on the case where \(M \) is odd. As above, we deduce that:

\[
\text{Piv}(\lambda_R, s) = \text{Prob}(S_R^R - W^R_i = \frac{N-s}{2}) \approx \sqrt{\frac{2}{\pi}} \frac{1}{\sqrt{M}} = \sqrt{\frac{2s}{\pi}} \frac{1}{\sqrt{N}}
\]

and therefore:

\[
\lim_{R \to \infty} \sqrt{N} \text{Piv}(\lambda_R, s) = \frac{\sqrt{2s}}{\pi}
\]

For the case where \(s = 3 \), we obtain \(\sqrt{\frac{6}{\pi}} = 1.382 \) which is larger than \(\sqrt{\frac{2}{\pi}} \frac{1}{\sqrt{1+\rho(s-1)}} = \sqrt{\frac{2}{\pi}} \frac{1}{\sqrt{3}} = 0.46066 \). This discontinuity (we jump from \(\sqrt{\frac{2}{\pi}} \frac{1}{\sqrt{s}} \) to \(\sqrt{\frac{2s}{\pi}} \)) in the neighborhood of \(\rho = 1 \) is rather peculiar but corresponds to the fact that when \(\rho = 1 \), the voters belonging to the same group vote as a block. Everything is as if we had a population of \(\frac{N}{s} \) independent voters.

In the above generalization, the covariance is the same for all pairs but we could run the same computations without assuming that the covariances are constant within each group. An interesting situation of that kind appears in the Le Breton and Lepelley (2011) study of the French electoral law of June 29 1820. This electoral law, known as the law of double vote, has been used in France to elect the deputies from 1820 to 1830. France was divided into a number of electoral districts (the so-called French “départements”) and each district sent a number of deputies to the chamber. Each district was divided itself into subdistricts (the so-called “arrondissements”). Each arrondissement elected one deputy and to be voter in an arrondissement, your amount of tax had to be above some fixed level (called the “cens”). In addition, the voters in the top quartile of the income distribution of the voters in the département were members of an additional electoral college which elected \(D \) additional deputies. These “rich” voters had a double vote: they voted in their arrondissement and also in the electoral college constituted at the level of the département. This explains the name which was given to this law. It was decided that \(\frac{3}{5} \) of the deputies was elected by the arrondissements and \(\frac{2}{5} \) by the voters in the top colleges. Le Breton and
Lepelley (2011) study a symmetric version of that problem where there are \(K \) départements, with \(A \) arrondissements in each département and \(4r+1 \) voters in each arrondissement where \(r \) is an odd integer denoting the number of voters with two votes in that arrondissement. The size \(N \) of the chamber is therefore \(K(A+D) \). A good approximation of the French data at that time is given by \(K = 86, A = 3 \) and \(D = 2 \) leading to \(N = 430 \): 258 being elected in arrondissements and 172 elected by the top colleges. Hereafter, we will limit however our attention to the case where \(K \) is odd. In the case where \(A = 3 \) and \(D = 2 \), the \(5K \) deputies are partitioned into groups of size 5. These legislators have in common to be elected from the same territory. Even if we assume that the preferences of the \(A(4r+1) \) voters across the \(A \) districts are independent, the preferences of the deputies are not independent because some voters have a double vote. Let \((S^1_j, S^2_j, S^3_j, S^4_j, S^5_j) \) be the profile of the five votes in the \(j \)th département where the first three coordinates denote the votes in the three arrondissements and the last two the votes in the top college. When \(r \) is large this random vector is approximatively Gaussian with (after normalization) the matrix of variances-covariances:

\[
\Omega = \begin{pmatrix}
\frac{\sqrt{4r+1}}{2} & 0 & 0 & \frac{\sqrt{r}}{2} & \frac{\sqrt{r}}{2} \\
0 & \frac{\sqrt{4r+1}}{2} & 0 & \frac{\sqrt{r}}{2} & \frac{\sqrt{r}}{2} \\
\frac{\sqrt{r}}{2} & 0 & \frac{\sqrt{r}}{2} & \frac{\sqrt{2r}}{2} & \frac{\sqrt{2r}}{2} \\
\frac{\sqrt{r}}{2} & \frac{\sqrt{r}}{2} & \frac{\sqrt{r}}{2} & \frac{\sqrt{2r}}{2} & \frac{\sqrt{2r}}{2} \\
\frac{\sqrt{r}}{2} & \frac{\sqrt{r}}{2} & \frac{\sqrt{r}}{2} & \frac{\sqrt{2r}}{2} & \frac{\sqrt{2r}}{2}
\end{pmatrix}
\]

We note that the coefficient of correlation \(\rho \) between any of the first three variables and any of the last two ones is equal to \(\sqrt{\frac{1}{12}} \). Consider now the 5-dimensional vector of Bernoulli variables \((X^1_j, X^2_j, X^3_j, X^4_j, X^5_j) \) where \(X^l_j = 1 \) if \(S^l_j \geq 2r+1 \) for \(l = 1, 2, 3 \) and \(X^l_j = 1 \) if \(S^l_j \geq \frac{4r+1}{2} \) for \(l = 4, 5 \). Based on the Gaussian orthonormal probabilities, the matrix of variances-covariances of this vector is:

\[
\begin{pmatrix}
\frac{1}{4} & 0 & 0 & \frac{1}{4} & \frac{\arcsin \rho}{2\pi} \\
0 & \frac{1}{4} & 0 & \frac{1}{4} & \frac{\arcsin \rho}{2\pi} \\
0 & 0 & \frac{1}{4} & \frac{1}{4} & \frac{\arcsin \rho}{2\pi} \\
\frac{1}{4} & \frac{\arcsin \rho}{2\pi} & \frac{1}{4} & \frac{1}{4} & \frac{\arcsin \rho}{2\pi} \\
\frac{1}{4} & \frac{\arcsin \rho}{2\pi} & \frac{1}{4} & \frac{1}{4} & \frac{\arcsin \rho}{2\pi}
\end{pmatrix}
\]

In the specific case where \(\rho = \sqrt{\frac{1}{12}} \), we obtain that \(\frac{1}{4} + \frac{\arcsin \rho}{2\pi} = 0.29849 \). Since the random variables \(X^1_j, X^2_j, X^3_j, X^4_j \) and \(X^5_j \) are independent, identically distributed and have a span equal to 1, by using the same argument as in the proof of Proposition 1, we deduce that the

\[\text{21 They assumed that } A \text{ is an odd integer and that } D \text{ is an even integer.}\]
the probability for a deputy to be pivotal if both \(r \) and \(K \) are large integers is approximatively equal to:

\[
\frac{1}{\left(\frac{1}{4} + \frac{1}{\sqrt{5}} \left[\frac{1}{2} + 6 \times 0.29849\right]\right) \sqrt{2\pi N}} \approx \frac{0.31301}{\sqrt{N}}
\]

6 Concluding Remarks

In this paper, we have studied the impact of correlation across preferences and votes on the probability of being pivotal. The analysis has been conducted under a number of assumptions and we think that it would be of interest to examine how far we can go without being too much specific. One key assumption is the neutrality among the two alternatives. We have assumed that the two alternatives were similar ex ante. One interesting generalization could consist in assuming that there is a partition of the population into groups where in each group the preferences are as here correlated but also possibly biased towards one candidate. The bias could of course vary from group to another. In such a setting a group could be defined as a subset of individuals displaying some homogeneity defined through a vector of characteristics.

We are not aware of an ambitious attempt to generalize the current theory to a setting that would allow for differences across alternatives. To the best of our knowledge, the only model along these lines is due to Beck (1975). He considers a population divided into two groups of equal size. In the first group, the votes are independent and people vote left with probability \(p > \frac{1}{2} \). In the second group, votes are also independent and people vote left with probability \(1 - p \). Beck estimates numerically the probability for a voter to be pivotal for several values of the parameter \(p \). Modulo a simple adjustment of the proof of Proposition 1, we obtain an asymptotic exact value of the probability of being pivotal in Beck’s model. Precisely, we obtain:

\[
\lim_{N \to \infty} \sqrt{N} Piv(N) = \frac{1}{\sqrt{2\pi p(1-p)}}
\]

When \(p = \frac{1}{2} \), we obtain the traditional constant \(\sqrt{\frac{2}{\pi}} = 0.79788 \). When \(p = \frac{3}{4} \), we obtain \(\frac{1}{\sqrt{2\pi \times \frac{1}{5}}} = 0.92132 \) and when \(p = \frac{4}{5} \), we obtain \(\frac{1}{\sqrt{2\pi \times \frac{1}{5}}} = 0.99736 \). Moving towards polarization increases drastically the probability of being pivotal!

\[22\text{See also Berg (1990) for another illustration.}\]
7 Appendix

7.1 Petrov’s Local Central Limit Theorem

Let k be an arbitrary fixed positive integer. A sequence of random variables $(y_n)_{n\geq 1}$ is said to be a k–sequence if the number of different distribution functions in the sequence of the distribution functions corresponding to $(y_n)_{n\geq 1}$ is equal to k. Consider a k–sequence of independent integer-valued random variables $(y_n)_{n\geq 1}$ each having finite variance. We denote by $F_1^k, ..., F_l^k$ the l distributions which are non-degenerate and occur infinitely often in the sequence $(F^k)_1 \leq i \leq k$. We denote by H^r the maximal span of F^r for $r = 1, ..., l$. Let $S_n = \sum_{j=1}^n y_j, M_n = \sum_{j=1}^n E(y_j), B_n = \sum_{j=1}^n E(y_j - E(y_j))^2$ and $Pr_n(N) = Pr(S_n = N)$. Then:

If g.c.d. $(H^1, H^2, ..., H^l) = 1$, then
\[\operatorname{Sup}_N \left| \sqrt{B_n} Pr_n(N) - \frac{1}{\sqrt{2\pi}} e^{-\frac{(N-Mn)^2}{2B_n}} \right| \to 0 \]

7.2 Berk’s Theorem

For each $k = 1, 2, ..., n = n(k)$ and $m = m(k)$ be specified and suppose that $y^k_1, y^k_2, ..., y^k_n$ is an m–dependent sequence of random variables with zero means. Assume the following conditions hold. For some $\delta > 0$ and some constants M and K:

(i) For some $\delta > 0$, $E|y^k_i|^{2+\delta} \leq M$ for all i and all k.

(ii) $\operatorname{Var}(y^k_{i+1} + ... + y^k_j) \leq (j - i) K$ for all i, j, and k.

(iii) $\lim_{k \to \infty} \frac{\operatorname{Var}(y^k_1 + ... + y^k_n)}{n}$ exists and is nonzero. Denote v the limit.

(iv) $\lim_{k \to \infty} \frac{m^{2+\delta}}{n} = 0$

Then $\frac{y^k_1 + ... + y^k_n}{\sqrt{n}}$ is asymptotically normal with mean 0 and variance v.

7.3 Correlation

A simple and nice way to legitimate an arbitrary positive value of the correlation coefficient when we have a vector $x \equiv (x_1, x_2, ..., x_n)$ of Bernoulli random variables such that $\operatorname{Pr}(x_i = 1) = \frac{1}{2}$ for all $i = 1, 2, ..., n$ goes as follows. Let f be a continuous positive density

\[f(x_1, x_2, ..., x_n) \]

\[\frac{y^k_{i+1} + ... + y^k_j}{\sqrt{n}} \]

is asymptotically normal with mean 0 and variance v.

\[23 \text{Theorem 2 in Petrov (1975). In fact his result asserts a stronger claim namely that, under the stated conditions, the uniform convergence holds true even if we alter the distribution of a finite number of terms in the sequence. Other local versions of the Central Limit Theorem have been proved (Davis and Mc Donald (1995), Gamkrelidze (1964), Mc Donald (1979), Mukhin (1991)). To the best of our knowledge, no such result exists in the general dependent case.} \]

\[24 \text{The triangular array } (y^k_{n+i})_{k \geq 1} \text{ is } m-\text{dependent if } (y^k_1, y^k_2, ..., y^k_j) \text{ and } (y^k_{j+n}, y^k_{j+1+n}, ..., y^k_{j+n+i}) \text{ are independent whenever } n > m. \]
on $[0, 1]$ assumed to be symmetric around $\frac{1}{2}$. Consider the generalized IAC25 model where p is drawn in $[0, 1]$ according to f and $\Pr(x_i = 1 \mid p) = p$ for all $i = 1, \ldots, n$. Note that:

1. $\Pr(x_i = 1) = \int_0^1 p^2 f(p) dp = \int_0^{\frac{1}{2}} p^2 f(p) dp + \int_{\frac{1}{2}}^1 p^2 f(p) dp = \int_0^{\frac{1}{2}} p^2 f(p) dp + \int_0^{\frac{1}{2}} (1 - p) f(1 - p) dp = \frac{1}{2}$ since by assumption $f(p) = f(1 - p)$.
2. $\Pr(x_i = 1 \text{ et } x_j = 1) = \int_0^1 p^2 f(p) dp$.

Consider the case where f is a symmetric beta distribution, i.e., $f(p) = \Gamma(2\alpha) \Gamma(\alpha) p^\alpha (1 - p)^\alpha$ where α is a strictly positive parameter and Γ is the gamma function26. By assumption, it is symmetric. Further, it is well known that:

$$\int_0^1 p^2 f(p) dp = \frac{1}{4} + \frac{1}{4(2\alpha + 1)}$$

which means that $\text{Cov}(x_i, x_j) = \frac{1}{4(2\alpha + 1)}$ and therefore:

$$\rho = \frac{1}{2\alpha + 1}$$

When $\alpha \to 0$, we have $\rho \to 1$ (perfect positive correlation) and when $\alpha \to \infty$, we have $\rho \to 0$ (independence).

8 References

25As shown by Straffin (1977), the conventional IAC model corresponds to the specific case where f is uniform.

26The uniform case corresponds to $\alpha = 1$.

34

Petrov, V.V. (1975) Sums of Independent Random Variables, Springer-Verlag, Heidelberg.

Wilson, M.C. and G. Pritchard (2007) “Probability Calculations under the IAC Hypothesis”, Mathematical Social Sciences, 54, 244-256.