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We show that sellers may earn reputation for their “ability” to deliver high quality goods
on average by honestly announcing the realised quality of items for sale every period. As
the expected revenue stream from continuing with honest communication increases with
their ability, high ability sellers remain honest while low ability sellers find it too costly
and sometimes lie about quality for short-term gain. Thus, cheap-talk communication
facilitates the market’s learning of a seller’s ability and strengthens reputation effects.
We study this new reputation mechanism and the induced market dynamics, first when
sellers cannot restart with a new identity and then when they can. We extend the analysis
to various other situations such as voluntary refund and moral hazard. (JEL Codes: C73,
D82, D83, L14)
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1 Introduction

Consider a seller who supplies an experience good repeatedly, with varying quality. Suppose
that the seller can communicate about product quality and that potential buyers have
access to the experience of past buyers with this seller to evaluate his claim. How much
confidence should buyers have that the seller communicates the quality truthfully? As an
example, a prospective buyer of a used iPhone on an Internet platform such as Amazon
Marketplace may find two advertisements: one seller claims the phone to be in “Very
Good” condition while another seller claims the phone to be “Like New”, both asking for
similar prices. The buyer would then look at the “feedback scores” of the two sellers on
the platform that summarise the ratings by previous buyers, and also browse through the
comments left by some of them, in order to judge how credible their claims are and thereby,
which of the two phones to go for. Our objective is to understand the effects of such
interactions when no formal consumer protection is available such as contractual warranty.

Notice that in such situations, if the seller trades only once, no effective communication
on the product’s quality may take place because the seller will always claim the best quality
to get a higher price. Even if the seller trades repeatedly, the same is true if the average
quality of the seller’s product is commonly known, so long as the market pays for each
item a price equal to its expected quality. The reason for this is that the expected revenue
of the seller in each future period is equal to the known average quality, and is independent
of what happens in the current period.
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In this article, we show that effective communication on product quality arises and
facilitates trading if quality is random and there is uncertainty about the average quality
of a seller’s product, which we call the seller’s “ability”. In this environment, reputation
represents the ability of a seller, but a seller’s reputation is earned and maintained in the
market by communicating the sale item’s quality truthfully every time. As the expected
revenue stream from such trustworthy behaviour reflects the seller’s true ability, the reward
from maintaining reputation is higher for high ability sellers. In equilibrium, the value
differential is such that high ability sellers do not have any temptation to lie while low
ability sellers sometimes lie about quality. Thus, the market’s perception that ability
comes with honesty is self-confirming. As a result, communication on product quality
expedites buyers’ learning of a seller’s ability and the market lends more credibility to
more reputable sellers.

This reputation mechanism applies to experience good markets generally, provided that
the buyers can use the market’s past experience with a particular seller to better assess
that seller’s claims. Specific examples include markets for services, cultural goods or wine,
as well as Internet markets, where buyers share information about whether or not the
sellers lived up to their word, through consumer reviews or direct word of mouth.1 Many
internet markets (such as Amazon and eBay) have formal feedback systems in place for
such information sharing.2

Our base model depicts a stylised environment where the quality of each item (which
is freshly drawn every period) may be good or bad, and the seller may be of one of two
private types, high or low ability: a high ability seller draws a good quality item with a
higher probability. After a public cheap-talk announcement by the seller on the drawn
quality, each period’s item is traded at a price equal to the expected quality based on
the information available in the market. After purchase, the buyer learns and publicly
reports the true quality, revealing whether the seller was truthful or not. The market then
updates its belief regarding the seller’s ability, termed the seller’s “reputation ”, and the
next period proceeds in the same manner.

As the seller’s announcements are cheap talk, there always exists a “babbling” equilib-
rium in which the seller’s announcements play no role and only the buyers’ reports induce
learning on the seller’s ability through simple observation of past quality.

We focus on equilibria in which high ability sellers always announce truthfully, and we
establish that there is a unique equilibrium of this kind, which we refer to as the “honest
equilibrium”.3 In this equilibrium, low ability sellers falsely claim bad quality items to be
good with a positive probability and as a result, truthful announcements of bad quality
increase the seller’s reputation. The probability of a low ability seller lying is a continuous
but non-monotonic function of the prevailing reputation level, reaching one above a certain

1See Bar-Isaac and Tadelis (2008) for a survey of the literature on seller reputation, and Dellarocas
(2003, 2006) for a discussion of reputation issues on Internet markets.

2It is worth noting that accurate information from the seller is only one of the issues that feedback
systems try to address. For recent evidence on the effect of the “feedback score”, see Cabral and Hortascu
(2010), Jolivet, Jullien, and Postel-Vinay (2013) and references therein. Jin and Kato (2006) provide
evidence on eBay that communication is more reliable when the seller is reputable.

3We adopt this terminology from Sobel (1985).
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threshold reputation level.
Thus, communication facilitates information transmission along two dimensions in this

equilibrium. Firstly, buyers are better informed about each item’s quality. Secondly,
buyers learn a seller’s ability faster because announcements on quality transmit information
on the seller’s ability as well. A low ability seller lies less frequently as he becomes more
patient, which exerts diverging effects on the two dimensions of information transmission.
It enhances the credibility of the announcements on quality but it attenuates the speed at
which the market learns the seller’s ability.

We conduct the main analysis presuming that the seller observes the realised quality
perfectly and that trade is always efficient, which helps separate the core insights from
other effects but may raise issues of robustness and precludes welfare effects. To address
these issues, we show that our main results continue to hold when the seller’s observation
of quality is subject to a small error. In addition, we extend the analysis in two directions
that carry positive welfare implications: a moral hazard setting with differential costs of
exerting effort and a setting where trading of a bad quality item is inefficient.

While our main analysis focuses on pre-trade communication, we show that the key
insights are also applicable to situations where the sellers observe the realised quality only
after trade. There, reputation concerns induce high ability sellers to voluntarily issue
reimbursements for bad quality items sold, when this is observable by future consumers.4,5

Lastly, we study a situation in which sellers can start afresh at any time by obtaining
a new identity after “milking” their reputation, which is a well-known issue in Internet
markets.6 Allowing for a constant flow of entry and exit of sellers, we establish that
honest equilibrim continues to exist in this environment. Compared with the baseline
model, however, as restart options increase cheating incentives, low ability sellers lie more
frequently. The price for a good quality item is thus lower for sellers of all reputation but
high ability sellers build reputation faster. In addition, newcomers suffer from a depressed
initial reputation because they are indistinguishable from the restarting, low ability sellers.

Our paper contributes to two strands of the reputation literature7 initiated by Kreps
and Wilson (1982) and Milgrom and Roberts (1982), namely, the literature on sellers’
reputation and that on the credibility of communication. By bridging these two strands
of literature, we uncover a novel reputation mechanism with fresh insights.

In the former strand of literature, surveyed by Bar-Isaac and Tadelis (2008), reputation

4The idea that warranty may substitute for credible communication of quality dates back at least to
Grossman (1981). Recently, Inderst and Ottaviani (2013) have pointed to a complementarity between
warranty and pre-trade communication.

5There is some discretion in refund policy, in particular because sellers must evaluate good-faith and
avoid fraudulent behaviors (see “Don’t Even Think About Returning That Dress”, BloombergBusiness-
Week, September 26, 2013); and some sellers offer refunds entirely at their discretion, e.g., wine retailers
such as WineBid.com. Shulman, et al. (2011) report that 19% of all electronics are returned although
there is no defect, and return rates as high as 35% for catalog retailers.

6Potential ways to make restarting with a clean record more difficult and costly have been discussed
by some authors, such as Friedman and Resnick (2001), who term the issue as “cheap pseudonyms,” and
Dellarocas (2006). It has not been shown hitherto, however, how damaging cheap pseudonyms may be to
the functioning of feedback systems.

7Mailath and Samuelson (2006) provide an extensive treatment of this literature.
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concerns the seller’s ability to generate gains from trade (or cost of doing so), and learning
occurs through observation of the seller’s performance. We contribute to this literature by
considering the possibility of communication and showing that it facilitates the learning
process and enhances the reward from providing high quality. In this respect, our analysis
extends the moral hazard model of reputation by Mailath and Samuelson (2001) where
sellers exert high effort to separate from an inept type. In particular, we show that allowing
communication in their setting strengthens the reputation effect, expedites learning, and
thereby induces high effort even if there is no replacement of seller’s type (see Section 6.3).
Our work also contributes to the study of entry and exit of sellers (Tadelis, 1999; Mailath
and Samuelson, 2001; Atkeson, Hellwig and Ordonez, 2012) by considering the possibility
of re-entry under a new identity.

The existing literature on credibility is concerned with trustworthiness of communi-
cation. A main insight of the repeated cheap-talk literature (in particular, Sobel (1985)
and Benabou and Laroque (1992)) is that the possibility that a message sender may be
a “friend” with the same interests as the receiver can discipline other types of sender
who have conflicting interests with the receiver. Our contribution lies in showing that
effective communication may arise even when all types of sender (seller) have opposing
interests with the receiver (buyer), if the type concerns the expected gains from trade
with the sender. To our knowledge, Seidmann (1990) is the first to point out that effec-
tive communication may arise despite conflicting interests, if the receiver responds with a
multi-dimensional action or has private information. Our approach is distinct in that we
have a uni-dimensional response (the price) but in a repeated setting. Our work is also
complementary to Ottaviani and Sorensen (2001, 2006a,b) and Gentskow and Shapiro
(2006) who find that reputational concern may hinder communication if the uncertainty
is on the accuracy of sender’s information itself.8

Finally, our paper makes a methodological contribution to this literature in establishing
the existence and uniqueness of equilibrium when Blackwell’s condition for a contraction
mapping does not apply, but value functions can be shown to be monotonic.

The rest of the paper is organised as follows. The next section describes the model
and the core result. Section 3 illustrates some aspects of our reputation mechanism by
means of a reduced, two-period model. Section 4 analyses the reputation mechanism and
characterises the honest equilibrium, and its dynamic properties are discussed in Section
5. Section 6 presents the extensions to imperfect observation of quality and to voluntary
refunds, as well as extensions where honest communication enhances welfare. Section 7
analyses the model with restart options. Section 8 concludes. The Appendix contains the
key technical details and the Online Appendix contains additional proofs.

8Morris (2001) shows that when there is a possibility of conflict of interests, even a sender whose
interests are perfectly aligned with the receiver’s may distort reporting in order to enhance reputation.
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2 Model and Core Result

We study an infinite horizon model in which a long-lived seller sells one item to short-lived
buyers in each period t = 1, 2, · · · . The quality of the item for sale, denoted by qt, is
either good (i.e., qt = g) or bad (i.e., qt = b), and is an independent random draw from an
identical distribution every period. We denote by θ = Pr(qt = g) the probability that the
item’s quality is good, which we refer to as the seller’s ability or type. A seller is privately
informed of his ability θ, which is either high (h) or low (`) where 0 < ` < h < 1, and also
privately observes the realised quality qt in each period.

Buyers are risk-neutral and do not observe the realised quality of the item before
purchase. The item’s quality is measured by the buyers’ identical consumption value of
the item, which we normalise as 1 and 0 for a good and bad quality item, respectively,
i.e., g = 1 and b = 0. All buyers share the same initial common belief that the seller is
of high ability (i.e., θ = h) with probability µ1 ∈ (0, 1) and is of low ability (i.e., θ = `)
with probability 1 − µ1. At the beginning of each period, all buyers will have the same
information and therefore update their beliefs to the same posterior belief that the seller
is of high ability with probability µt ∈ [0, 1]. We refer to this common belief µt as the
seller’s reputation.

In each period, after observing qt, the seller publicly announces to all buyers a message
mt from a discrete set M of available messages, all of which are costless, non-binding and
unverifiable, i.e., cheap talk. Then, the item is sold to one of the buyers at a price, pt,
that is equal to its expected quality based on the information shared by the buyers.9 The
purchaser observes the item’s true quality, qt, and publicly reports it truthfully. We assume
that qt, albeit observable, is unverifiable ex-post, so no warranty contract is feasible on the
realised quality.

Modelling a seller as above is in line with, for instance, online markets for collectibles
and used goods, where the same seller repeatedly sells similar items of varying quality.
Websites such as Amazon.com and PriceMinister.com specifically require the sellers to
choose within a set of pre-codified levels (new, like new, good, fair, etc.) to describe
the state of their items. The buyer’s report is meant to capture feedback comments
widely observed in online market platforms. Since the buyers are short-lived, they are
indifferent between reporting truthfully and untruthfully. Nonetheless, we assume that
they report truthfully because we are interested in the extent to which feedback comments
may facilitate truthful communication.

A seller’s strategy specifies, for each possible history, a probability distribution over
the messages in M according to which the seller will announce in the subsequent period,
contingent on the seller’s type and the realised quality of the item. Given the myopic
nature of the buyers, payoff-relevant information contained in any history is fully captured
by the seller’s reputation level that it induces. Therefore, we focus on equilibria in Markov
strategies that depend only on the prevailing reputation level µt and not the index t of the
period. Hence, we suppress the subscript t unless necessary for clarity.

9This ensues if the buyers engage in Bertrand competition or the seller runs an efficient auction. It is
also in line with Tadelis (1999), Mailath and Samuelson (2001) and Bar-Isaac (2003).
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Thus, a Markov strategy of a seller, denoted by s∗, is a collection of functions indexed
by reputation level µ, that specify a probability distribution over M , s∗µ(θ, q), for each
pair of seller type θ ∈ {h, `} and item quality q ∈ {g, b}. A message is said to be used at
reputation µ if it is announced with a positive probability for this reputation level, given
s∗.

As said earlier, if a seller with reputation µ announces a message m, the item is traded
at a price that is equal to the expected quality, which we denote by p∗m(µ). It is determined
by Bayes’ rule from s∗ if m is used at reputation µ; otherwise, it is determined by the off-
equilibrium belief of the buyers. A price profile, denoted by p∗, is a collection of prices,
one for every possible pair (µ,m), i.e., p∗ = {p∗m(µ) ∈ R+|µ ∈ [0, 1],m ∈M}.

Depending on the message announced, say m, and the item’s quality, say q, the market
updates the seller’s reputation for the next period, which we denote by π∗mq(µ) ∈ [0, 1]: it is
a posterior belief that the seller with reputation µ is of high ability in the contingency that
he announced m and the buyer reported the item’s quality as q ∈ {g, b}. Again, given a
Markov strategy s∗, π∗mq(µ) is obtained by Bayes’ rule provided that m is used at this level
of reputation. A transition rule, denoted by π∗, is defined as a collection of posterior beliefs,
one for every possible tuple (µ,m, q), i.e., π∗ = {π∗mq(µ)∈ [0, 1] |µ∈ [0, 1],m∈M, q∈{g, b}}.

A price profile p∗ and a transition rule π∗ fully describe what the price will be in each
period and how the seller’s reputation will evolve in the next period, depending on the
message announced by the seller and the item’s quality in that period. Thus, starting from
any reputation µ, they allow us to calculate the payoff from any strategy s a seller may
employ, as the expected discounted sum of revenue stream:

E
( ∞∑
t=0

δtpt

∣∣∣θ, p∗, π∗, s, µ),
where δ ∈ (0, 1) is the discount factor.

We define a Markov equilibrium of the dynamic game described above, to consist of a
Markov strategy s∗, a price profile p∗, and a transition rule π∗ such that

(i) p∗ and π∗ are obtained via Bayes’ rule from s∗ whenever possible, and
(ii) for each θ ∈ {h, `} and µ ∈ [0, 1], presuming that p∗ and π∗ prevail, the seller’s payoff

from s∗ is larger than or equal to that from any other strategy of the seller.

As is well known with cheap-talk games, the game described above has a “babbling”
equilibrium in which messages play no role. This corresponds to the case that s∗µ(θ, q) is
a uniform distribution over M for all µ, θ, and q, so that announced messages carry no
informational content. Consequently, regardless of the announced message, the equilibrium
price is simply the expected quality of a seller’s item given the prevailing reputation µ,
i.e.,

E(q|µ) = µh+ (1− µ)`. (1)

Also, the seller’s reputation is revised from µ based solely on the observed quality for the
next period: depending on the observed quality q, it is

µh

µh+ (1− µ)`
if q = g, or

µ(1− h)

µ(1− h) + (1− µ)(1− `)
if q = b.
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Thus, both the price of the item and the seller’s reputation evolve as a martingale that
results from pure learning on the seller’s ability based only on the realised quality of the
seller’s item in each period. As the seller’s message affects neither the price of the current
period nor what will happen in the future, it is trivially optimal for the seller to “babble”
in every period. Note that even without communication, observation of quality gives rise
to a minimum amount of learning on the seller’s type.

More interestingly, there are non-babbling equilibria in which messages affect the price
and the seller’s reputation, and as a result, effective communication arises in equilibrium.
In this article, we are interested in the extent to which reputation motives induce trustwor-
thy announcements on the quality of the product, at least by high ability sellers. Hence,
in the following, we focus on equilibria with the property:

Condition H: At every µ > 0, an h-type seller uses disjoint sets of messages when quality
is good and when it is bad.

This condition means that the buyers would be able to accurately infer the item’s
quality from the announced message if they knew the seller is of high ability. So, we call
a Markov equilibrium that satisfies condition H an “honest equilibrium”.

In the next two sections we study properties of honest equilibrium, and eventually
establish the following core result of the paper.

Theorem 1 There exists an honest equilibrium if and only if δ ≥ δh := 1/ (h− `+ 1).
All honest equilibria coincide on the equilibrium path.

Thus, an honest equilibrium always exists when the seller is patient enough, and is
essentially unique. Moreover, the larger is the ability differential between the two types of
seller, the more likely is trustworthy communication to arise.

To understand the nature of the result, it may be worth emphasising that both re-
peated interactions and adverse selection on the seller’s ability need to be present in our
environment for there to be any communication by either type of seller. As the market
pays the expected quality of the item in any future period, in the absence of adverse se-
lection (i.e., if the seller’s type, θ, is commonly known) the seller’s expected revenue is the
same (equal to θ) in all future periods regardless of what happens in the current period.
Consequently, the seller chooses a message myopically to maximize the current period’s
payoff, in which case all used messages fetch the same price, θ, precluding any information
transmission. Likewise, in the absence of repeated interactions, again the seller optimises
the current period’s payoff and as a result, no information may be transmitted by either
type of seller, for the same reason (even if adverse selection is present). Note that this
is because, unlike Sobel (1985) and Morris (2001), both types of seller have completely
opposed interests to those of the buyers.

On the other hand, if both adverse selection and repeated interactions are present, the
seller has an interest in convincing the buyers that his ability is high because this will fetch
higher prices in the future on average. We show below that a seller may achieve this by
honest cheap-talk communication which functions as an endogenous, dynamic signalling
device that high ability sellers find less costly to adopt in the long-run.
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3 A Reduced-Form Illustration

Prior to a full-fledged analysis of the dynamic model described above, it is useful to examine
a “reduced,” two-period version of the game, that exhibits a number of key features that
carry on to the infinite-horizon model. In the reduced model, the second period simply
captures the feature that reputation is more valuable for a high ability seller, by a value
function

V ∗θ (µ2) = µ2 ·θ·v (2)

where v > 0 is a constant that satisfies `v < 1. So, the total payoff of a θ-type seller
is p1 + δV ∗θ (µ2) if the reputation level gets updated to µ2 after selling an item for a price
p1 in period 1.

A key property of the value function (2) for our result is that

V ∗h (µ2)− V ∗h (0) > V ∗` (µ2)− V ∗` (0) ∀µ2 > 0. (3)

This means that reputation premium is higher for an h-type seller than for an `-type seller,
and provides the basis for more trustworthy behaviour by an h-type seller. Condition (3),
which we refer to as the “sorting condition”, is assumed in an ad hoc manner here but
obtains endogenously in the main analysis of the next section.

We illustrate that an honest equilibrium exists in which an h-type seller always an-
nounces the quality truthfully in the first period of the reduced model. For expositional
ease, we assume that only two messages are used in such equilibrium, G and B, which are
the messages that an h-type seller uses to truthfully announce a good and bad quality,
respectively, in the first period.

First, note that the price is higher when G is announced than when B is announced in
an honest equilibrium: this is so because otherwise, even an `-type seller would truthfully
announce bad quality for both a higher price and a higher reputation update, in which
case price should be lower when B is announced. This further implies that an `-type seller
announces good quality truthfully in an honest equilibrium as he can get both a higher
price and a higher reputation next period.

If the quality is bad, however, he may lie by announcing G for a short-term gain,
say with probability y. Then, by Bayes’ rule, the price in period 1 is p∗B(µ) = 0 if B is
announced while it is

pG(µ, y) :=
µh+ (1− µ)`

µh+ (1− µ)(`+ (1− `)y)
≥ ` (4)

if G is announced where µ ∈ (0, 1) denotes the reputation level at the start of period 1;
and the reputation level is updated to

πBb(µ, y) :=
µ(1− h)

µ(1− h) + (1− µ)(1− `)(1− y)
(5)

after a truthful announcement of B and collapses to π∗Gb(µ) = 0 after lying.
Upon drawing a bad quality item, therefore, it is optimal for a seller to lie if the short-

term gain in current payoff, pG(µ, y)− p∗B(µ) = pG(µ, y), exceeds the long-term loss from
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spoiled reputation, δ[V ∗θ (πBb(µ, y))− V ∗θ (0)]; and to announce truthfully if the opposite is
true. Hence, the equilibrium value of y, denoted by y∗(µ), must satisfy:

y∗(µ)


= 1 =⇒ pG(µ, y∗(µ)) ≥ δ[V ∗` (πBb(µ, y

∗(µ)))− V ∗` (0)]

∈ (0, 1) =⇒ pG(µ, y∗(µ)) = δ[V ∗` (πBb(µ, y
∗(µ)))− V ∗` (0)]

= 0 =⇒ pG(µ, y∗(µ)) ≤ δ[V ∗` (πBb(µ, y
∗(µ)))− V ∗` (0)].

(6)

To pin down the value of y∗(µ), observe that as an `-type seller lies more, the current
price decreases while truth-telling becomes a stronger signal of h-type. Thus,

(i) the short-term gain, pG(µ, y), decreases in y, but
(ii) the long-term loss of an `-type seller, δ[V ∗` (πBb(µ, y))− V ∗` (0)], increases in y.

So, the net gain from lying falls in y and obtains a minimum level of pG(µ, 1)− δ[V ∗` (1)−
V ∗` (0)] when y = 1. If this level is positive, an `-type seller must lie for sure, i.e., y∗(µ) = 1.
As pG(µ, 1) increases in µ, denoting

∆ := V ∗` (1)− V ∗` (0), (7)

this is the case for all µ ≥ µ̄ where the threshold is given by

µ̄ := min {µ ∈ [0, 1] | pG(µ, 1) ≥ δ∆} < 1. (8)

As pG (1, 1) = 1 and ∆ = `v < 1 (by assumption in this section), we have µ̄ < 1. Moreover,
µ̄ = 0 if pG(0, 1) = ` ≥ δ∆.

Consider the case that ` < δ∆ so that µ̄ > 0. For every positive µ < µ̄, the net gain
from lying is negative when y = 1, but positive when y = 0 as pG(µ, 0) = 1 > δ∆. Hence,
it assumes 0 at a unique value of y that solves

pG(µ, y) = δ[V ∗` (πBb(µ, y))− V ∗` (0)], (9)

as illustrated in Figure 1 (a) below. This solution is the unique equilibrium value y∗(µ) ∈
(0, 1), at which lying and telling the truth are equivalent for an `-type seller.

Figure 1
(a) (b)

μμ

y*(μ)
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For every y < 1, we have pG(µ, y) ≥ ` and limµ→0 πBb(µ, y) = 0. Hence, the solution
y∗(µ) to (9) converges to 1 as µ → 0, so that pG(µ, y∗(µ)) converges to `. Thus, it is
further implied by (9) that πBb(µ, y

∗(µ)) converges to some positive value π∗Bb(0
+) > 0 as

µ→ 0, such that δ[V ∗` (π∗Bb(0
+))− V ∗` (0)] = `. Intuitively, to balance the short-term gain,

a substantial reputation gain should be warranted from truth-telling, which is feasible only
if an `-type seller lies almost surely at very low levels of reputation. As y∗ is continuous
and assumes unity for µ ≥ µ̄ as explained above, y∗(µ) is non-monotonic as illustrated in
Figure 1 (b) for the case that h = 0.5, ` = 0.3, δ = 0.95 and v = 3.

The unique optimal strategy y∗(µ) identified above is valid so long as V ∗` is continuous
and strictly increasing and δ∆ < 1, as stated below for use in the next section.

Lemma 1 Suppose that V ∗` : [0, 1]→ R is continuous and strictly increasing and δ∆ < 1.
There is a unique function y∗ : (0, 1)→ [0, 1] that satisfies (6), and the following holds.

(a) y∗(µ) is strictly positive and continuous at all µ ∈ (0, 1).
(b) y∗(µ) = 1 for µ ≥ µ̄, and if δ < `/∆ then y∗(µ) < 1 for µ ∈ (0, µ̄) with lim

µ→0
y∗(µ) = 1.

To establish that an honest equilibrium exists, it remains to verify that an h-type seller
prefers to announce quality truthfully in period 1 at all levels of µ ∈ (0, 1). Observe that
the sorting condition, (3), implies that an h-type seller has more incentive to be truthful
than an `-type seller for all µ. Because the short-term gain from lying when quality is
bad, p∗G(µ), is the same for both types, an h-type seller must find it optimal to truthfully
announce a bad quality whenever an `-type seller is indifferent between lying and not,
which is the case when µ ∈ (0, µ̄). By the same token, whenever an `-type seller prefers
to tell the truth, which is the case when quality is good, so does an h-type seller.

In the remaining case that µ ≥ µ̄ and quality is bad, telling the truth reveals high
ability and an h-type seller would find it optimal to do so if the long-term loss from lying,
δ
(
V ∗h (1)−V ∗h (0)

)
, exceeds the short-term gain, p∗G(µ). As p∗G(µ) reaches a maximum value

of 1 at µ = 1, this condition is satisfied for all µ ≥ µ̄ if and only if δ
(
V ∗h (1) − V ∗h (0)

)
≥

p∗G(1) = 1. In our two-period model where V ∗h (1) − V ∗h (0) = hv, therefore, we conclude
that an honest equilibrium exists for any initial positive reputation provided that δhv > 1.

We have illustrated in a reduced two-period model that, despite the conflicts of interest
between seller and buyer, effective communication may arise when the seller’s ability is
private information, provided that the future benefit from enhanced reputation is larger
for a high ability seller. In a nutshell, a high ability seller behaves honestly to signal ability
and raise reputation for future benefit, which works because his low ability counterpart,
who would derive smaller benefit from enhanced reputation, does not behave as honestly.

A key remaining question is how one may justify the disparity in the value of reputation
between the two types of seller. In the next section we show that in a fully dynamic model,
the very expectation that an honest equilibrium will prevail in the future is sufficient to
induce the sorting condition (3) endogenously, thus furnishing the right incentives for the
seller to behave as expected in the equilibrium.

10



4 Honest Equilibrium

We now turn to a full-fledged dynamic analysis and show that our core insights naturally
prevail in the infinite-horizon model described in Section 2. Moreover, mutual determi-
nation of equilibrium strategy and value functions pins down what happens on the equi-
librium path uniquely, generating a number of clear predictions on dynamics and testable
comparative statics results.

As a seller’s equilibrium strategy determines the value function and vice versa, equilib-
rium value functions are fixed points of a mapping suitably defined on a space of possible
value functions. To characterise such an equilibrium, we first establish a set of properties
equilibrium strategy and value functions should satisfy (Section 4.1); then based on these
findings, we devise an appropriate mapping from a space of possible value functions to
itself, in order to finally establish existence and uniqueness of a fixed point (Section 4.2).
As an h-type seller is always truthful by definition in an honest equilibrium, we focus on
the equilibrium strategy and the value function of an `-type seller first, and then discuss
the incentives of an h-type seller to disclose quality truthfully (Section 4.3). We present
the analysis heuristically here and provide full details in the Appendix.

4.1 Properties of `-type seller strategy and value function

We continue to present our analysis postulating a binary message spaceM = {G,B}, where
G and B are the messages that an h-type seller with reputation µ > 0 announces when the
realised quality of the item is good and bad, respectively, in an honest equilibrium. Thus,
we say that a seller of either type tells the truth if the seller announces G when q = g or
announces B when q = b, and that the seller lies otherwise. Then, Condition H means
that an h-type seller always tells the truth when µ > 0.

The restriction to a binary message space is innocuous because in any honest equilib-
rium, as we show in Appendix A.1, all messages that an h-type seller sends for a given
q ∈ {g, b} lead to the same price and posterior beliefs, and an `-type seller would never
reveal the type by sending a message not sent by an h-type seller. An implication of this
result is that in any honest equilibrium the seller is unable to signal ability separately from
the item’s quality.

Consider an honest equilibrium (supposing one exists) of the infinite-horizon model
of Section 2, represented by a Markov announcement strategy s∗, a price profile p∗ and
a transition rule π∗. This determines a value function, denoted by V ∗θ : [0, 1] → R, for
each type θ ∈ {h, `} such that V ∗θ (µ) is the expected discounted sum of the future income
stream starting from a period with reputation level µ ∈ [0, 1] in this equilibrium.

Once the reputation level falls to µ = 0, an `-type seller cannot lift it above 0 because
Bayes-updated reputation level is invariably 0 after any message that is announced with
a positive probability in equilibrium. Therefore, an `-type seller with reputation µ = 0
announces the message that gives the highest price regardless of q, which implies that the
seller gets the same price regardless of q in every period, equal to the expected quality of
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the item given µ = 0, i.e., `. Consequently,

V ∗` (0) =
∞∑
t=0

δt` =
`

1− δ
. (10)

For expositional ease, we adopt an innocuous convention that an `-type seller announces
G regardless of q when µ = 0.

Observe that an `-type seller with positive reputation µ > 0, upon drawing a good
quality item, should truthfully announce G by the same reasoning as that leading to the
same conclusion in the two-period model of the previous section. Therefore, we characterise
equilibrium strategy of an honest equilibrium by determining the probability with which an
`-type seller with reputation µ lies when the quality is bad, denoted by y∗(µ) ∈ [0, 1], and
an h-type seller’s announcement strategy in the off-equilibrium contingency that µ = 0.

Thus, a price profile, p∗, and a transition rule, π∗, are determined in the same manner
as explained in the previous section, which we recap here. Since even an `-type seller never
lies when q = g, the prices are

p∗B(µ) = 0 and p∗G(µ) = pG(µ, y∗(µ)) for all µ ∈ [0, 1] (11)

where pG(µ, y) is defined as in (4).10 The seller’s reputation level gets updated as

π∗Gg(µ) =
µh

µh+ (1− µ)`
, π∗Bb(µ) = πBb(µ, y

∗(µ)), π∗Gb(µ) = 0 ∀µ ∈ [0, 1] (12)

whenever well-defined by Bayes’ rule, where πBb(µ, y) is defined in (5). In all contingencies
where Bayes’ rule does not apply, we postulate that the reputation is updated to the lowest
level, that is, π∗Bg(µ) = 0 for all µ and π∗Gb(1) = π∗Bb(0) = 0.11 These specify payoffs for
irrelevant or zero probability events and are innocuous for our purpose because, as we
show in Appendix A.2, any honest equilibrium continues to be one when these posteriors
are imposed on the off-equilibrium contingencies.

We established the value at µ = 0 in equation (10) above. Now, consider an `-type seller
with the maximum reputation µ = 1. If it was optimal for this seller to announce even bad
quality honestly, his expected equilibrium payoff would be `/(1−δ) because then by telling
the truth in every period, he would get a price p∗G(1) = 1 with probability ` and p∗G(0) = 0
with probability 1 − `. But this is also this seller’s continuation value V ∗` (0) after lying
and revealing a low type. This implies that an `-type seller must lie for sure upon drawing
a bad quality, i.e., y∗(1) = 1. As π∗Gb(1) = 0, we have V ∗` (1) = 1+δ

(
`V ∗` (1)+(1−`)V ∗` (0)

)
so that

V ∗` (1) = V ∗` (0) +
1− `
1− δ`

⇐⇒ ∆ = V ∗` (1)− V ∗` (0) =
1− `
1− δ`

< 1. (13)

10Note that p∗B(0) is not defined by Bayes’ rule. We set it at 0 for expositional ease although any value
less than ` would do.

11The interpretation of π∗
Gb(1) = 0 is that buyers, having classified the seller as h-type with probability

1 based on some past records, would reconsider their interpretation of the records upon (hypothetical)
arrival of new evidence inconsistent with this classification. That π∗

Bb(0) = 0 implies that once the
reputation collapses to nil due to a lie, even an h-type seller would be trapped there forever. We will
relax the stipulation π∗

Bb(0) = 0 for the extended models analysed in the Online Appendix to allow for a
different value of V ∗

h (0).
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That the value of a maximum reputational gain for an `-type seller, ∆, is smaller
than the maximum price differential, g − b = 1, can be understood as follows: an `-type
seller has only one chance to lie and cash in reputation, and as the chance may not come
immediately, ∆ falls short of the maximum price differential which is 1.

In an honest equilibrium, the value function V ∗` is the optimised discounted sum of
expected income stream of an `-type seller when the buyers expect the probability of lying
to be y∗ and thus, the prices and posterior beliefs are given by (11) and (12). In addition
to the extreme values obtained above, it exhibits the following property:

Lemma 2 In any honest equilibrium, V ∗` (µ) is continuous and strictly increasing in µ ∈
[0, 1].

As a formal proof requires developing some analytic building blocks, we defer it to
the Appendix A.3. While the proof is involved, the result essentially reflects the straight-
forward intuition that as an h-type seller always tells the truth, announcement of good
quality gains credibility and raises the seller’s reputation. As a result, a seller of either
type is facing a better income prospect at a higher reputation level.

Recall from the previous section that an `-type seller with a bad quality item will
lie if the short-term gain, p∗G(µ), exceeds the long-term loss, δ[V ∗` (π∗Bb(µ)) − V ∗` (0)], and
consequently, the equilibrium lying probability y∗(µ) should satisfy the condition (6). As
δ∆ < 1 by (13) and V ∗` is continuous and strictly increasing by Lemma 2, Lemma 1
characterises the properties of y∗(µ) in an honest equilibrium of the infinite-horizon model
as well. Hence, y∗(µ) = 1 if µ is above the threshold µ̄ defined in (8) because for such values
of µ the short-term gain exceeds the maximum possible long-term loss, δ∆, regardless of
y. For µ ∈ (0, µ̄), y∗(µ) is strictly between 0 and 1 and changes continuously, converging
to 1 as µ tends to 0 and to µ̄.

Moreover, since the short-term gain pG(µ, y) approaches 1 as y tends to 0 while the
long-term loss is bounded above by δ∆ < 1, the condition that these two values must
be equal when y∗(µ) ∈ (0, 1) imposes a uniform lower bound on y∗(µ) as proved in the
Appendix (proof of Lemma 5):

y∗(µ) > ŷ :=
h− `
1− `

for all µ. (14)

In other words, there is a uniform upper bound on the extent of honesty by an `-type seller.
As will be discussed below, this has important consequences on equilibrium dynamics.

Summarising the properties of y∗ obtained above, we have established that

y∗ is continuous, y∗(µ) > ŷ for all µ, and y∗(µ) = 1 if and only if µ ∈ {0} ∪ [µ̄, 1]. (15)

Lastly, recall from (8) that µ̄ > 0 if and only if δ∆ > ` = pG(0, 1). This implies that
`-type sellers may announce a bad quality truthfully only if they are patient enough, i.e.,
if

δ > δ` :=
`

1− `+ `2
. (16)

In the opposite case (i.e., if δ ≤ δ`), an `-type seller always announces G regardless of
quality in any honest equilibrium.
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4.2 Existence and uniqueness of `-type seller strategy and value
function

We have shown y∗(µ) > 0 above, so that announcing G is an optimal strategy for an
`-type seller when q = b, as well as when q = g. Hence, an `-type seller’s equilibrium value
function V ∗` satisfies the recursive formula when he always announces G:

V ∗` (µ) = p∗G(µ) + δ
(
`V ∗` (π∗Gg(µ)) + (1− `)V ∗` (0)

)
. (17)

Equilibrium requires (17) and optimality of y∗(µ) in every period given the price profile
p∗, the transition rule π∗, and the next period’s value given by V ∗` (·). To identify an
honest equilibrium, therefore, we look for a pair of functions y∗ and V ∗` that satisfy these
conditions.

We start with the set, denoted by F , of all functions that satisfy the properties obtained
above for V ∗` : F is the set of all continuous and strictly increasing functions V on [0, 1]
with V (0) = `/(1−δ) and V (1) = V (0)+∆. Given an arbitrary “candidate” value function
V ∈ F , we define an `-type seller’s “optimal response” relative to V for each µ ∈ [0, 1],
denoted by yV (µ), as the lying probability of an `-type seller with a bad quality item that
is optimal when the price and reputation updating reflect it correctly:

yV (µ) ∈ arg max
0≤y≤1

y
(
pG(µ, yV (µ)) + δV (0)

)
+ (1− y)δV (πBb(µ, yV (µ))).

Note that determining yV (µ) in this manner is equivalent to the condition (6) that deter-
mines the first period equilibrium lying probability relative to the value function given as
(2) in the reduced, two-period model of Section 3. As discussed there, since V is continuous
and increasing in µ and δ∆ < 1, the value of yV (µ) is uniquely determined as

yV (µ) =

{
1 if pG(µ, 1) > δ[V (πBb(µ, 1))− V (0)] = δ∆

y s.t. pG(µ, y) = δ[V (πBb(µ, y))− V (0)], otherwise.
(18)

As yV (µ) > 0 for all µ, in conformity with the recursive formulation, we define an
operator, T , that revises the candidate value function using the optimal response as

T (V )(µ) := pG(µ, yV (µ)) + δ
(
`V (π∗Gg(µ)) + (1− `)V (0)

)
. (19)

Note that T (V )(0) = V (0) and also that T (V )(1) = V (1).12 In addition, we prove in the
Appendix A.4 that given that pG, πBb and V are continuous and strictly increasing in µ,
so is T (V ). Therefore, T is a well-defined operator from F to itself.

An honest equilibrium value function V ∗` is a fixed point of T , and the equilibrium
strategy y∗ is an optimal response relative to V ∗` as defined in (18). Thus, such y∗ and V ∗`
exist if the operator T has a fixed point. Indeed, we show that

Proposition 1 There exists a unique fixed point V ∗` of T in F .

12This is because πBb(0, y) = 0 for all y < 1 implies yV (0) = 1, and pG(0, 1) = ` while pG(1, yV (1)) = 1.
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In our model T is not non-decreasing in V because yV is non-monotonic in V, so
our result is unobtainable by applying Blackwell’s Theorem as is often done in related
studies.13 Instead, we show existence by a suitable application of Fan-Glicksberg Fixed
Point Theorem, and uniqueness by exploiting the properties of a fixed point of T , as
elaborated in a proof provided in the Appendix A.4.

4.3 Optimality of h-type seller strategy

We have established that there uniquely exist an announcement strategy y∗ and a value
function V ∗` that satisfy the equilibrium conditions for an `-type seller. Therefore, an
honest equilibrium exists if an h-type seller finds it optimal to tell the truth at all µ > 0,
presuming that the market reacts according to the price profile p∗ and the transition rule
π∗ induced by the strategy y∗. We verify that this is indeed the case if δ ≥ δh.

Let V ∗h (µ) denote the maximum expected discounted sum of the income stream that an
h-type seller with a reputation µ can obtain, presuming that the market reacts according
to p∗ and π∗. At the minimal reputation µ = 0, an h-type seller would announce G
regardless of quality because p∗G(0) = ` > p∗B(0) = 0 and he cannot escape from the
minimal reputation according to (12). Thus, V ∗h (0) = `/(1− δ).

As in the reduced-form illustration of Section 3, a key factor for the optimality of an
h-type seller’s strategy is the sorting condition which holds in the current case as well:

Proposition 2 V ∗h (µ)− V ∗h (0) > V ∗` (µ)− V ∗` (0) for all µ > 0.

This result, which we prove in the Appendix A.5, stems from the fact that by definition
V ∗h (µ) is no lower than the expected discounted sum of an h-type seller’s income stream
from playing the equilibrium strategy of an `-type seller. The value from this strategy is
higher for an h-type seller because an h-type seller will have more good draws on average
than an `-type seller before drawing a bad quality item after which the reputation collapses
to nil. As V ∗h (0) = V ∗` (0), Proposition 2 ensues.

As the value of maintaining reputation is higher for an h-type seller than for an `-
type seller due to the sorting condition, we can replicate the argument in Section 3 for
the optimality of h-type seller’s strategy. An h-type seller must find truth-telling optimal
whenever an `-type seller finds it no worse than lying, which is the case if q = g or if
g = b and µ ≤ µ̄. When g = b and µ > µ̄, as p∗(µ) ≤ 1 and π∗Bb(µ) = 1, truth-telling is
optimal for an h-type seller if δ

(
V ∗h (1) − V ∗h (0)

)
≥ 1. Given that V ∗h (1) = h/(1 − δ), this

last condition holds when δ ≥ δh, leading to the following conclusion:

Proposition 3 There is an honest equilibrium if and only if δ ≥ δh.

The proposition is proved in the Appendix A.6. As the equilibrium strategy of an
`-type seller, y∗, is unique due to Proposition 1 and (18), all honest equilibria coincide on
the equilibrium path. This establishes Theorem 1.

13E.g., Benabou and Laroque (1992), Morris (2001) and Bar-Isaac (2003) use Blackwell’s Theorem.
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5 Reputation and price dynamics

Recall that in the babbling equilibrium, both the price and reputation move as a martingale
depending only on the delivered quality. A seller’s reputation approaches that seller’s true
ability asymptotically, and the price does not reflect information about the current quality
beyond what is implied by the prevailing reputation. In contrast, in the honest equilibrium
seller’s announcements carry further information and affect price and reputation dynamics,
as we elaborate below.

Price dynamics. In the honest equilibrium, the prices reflect the realised quality in
each period, albeit less than perfectly until the reputation reaches 1. Because

hp∗G(µ) < E(q|µ) (20)

as is easily verified from (1), (4) and (14), communication on quality comes at a short-run
cost for high ability sellers. This stems from the fact that high ability sellers sacrifice in
the short-run to convince the market of their high ability for future benefits.

Enhanced reputation may have conflicting effects on the price p∗G because greater con-
fidence that the seller is of h-type may be undermined by an increase in y∗(µ). We show
however in the Appendix (Lemma 5) that

p∗G(µ) increases in µ.

So, increased reputation fosters trust in communication in our model, i.e., buyers put more
weight on the word of a seller who is perceived as more capable of delivering good quality.

Reputation dynamics. As is elaborated in the Appendix (Lemma 5), the lower
bound on y∗ specified in (14) is obtained from the following property of honest equilibrium:

π∗Bb(µ) > µ ∀µ > 0.

In conjunction with the fact that π∗Gg(µ) > µ, this means that honest behaviour always
enhances a seller’s reputation. That is, unlike in the babbling equilibrium where bad
quality always dents reputation, truthfully announced bad quality is interpreted as “good
news” in the honest equilibrium and enhances reputation.

Thus, a seller’s reputation increases until one of two events occurs: i) bad quality is
falsely claimed as good, in which case the seller’s low ability is revealed; or ii) bad quality
is truthfully announced when the reputation is above µ̄, in which case the seller’s ability is
revealed to be high. As such, a seller’s type is revealed within a finite time with probability
1, because the reputation level goes above µ̄ within a finite number of periods (unless it
collapses to zero due to a false announcement), after which the seller’s type gets revealed
at the first draw of bad quality.

The feature that a seller’s reputation increases until it vanishes with a single lie, albeit
simplified, is consistent with the observation that active sellers in online marketplaces tend
to be concentrated on the high end of the grade distribution.14 According to our analysis,

14See Cabral and Hortacsu (2010).
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a few bad grades suffice to undermine the viability of a seller (Cf. Section 6 on sellers who
are imperfectly informed and Section 7 on endogenous participation of sellers).

More honesty slows down learning. As pointed out earlier, a seller’s message in
each period cannot carry information on the item’s quality unless it also carries informa-
tion on the seller’s ability. The former information is reflected in price and the latter in
reputation. Hence, an intrinsic link exists between price and reputation dynamics in the
honest equilibrium.

In particular, our analysis uncovers a trade-off that a seller’s announcement strategy
induces between short-term transmission of information on quality and the speed of learn-
ing on the seller’s type: When an `-type seller behaves more honestly, the price reflects
the quality better as a direct consequence, but the inference on the seller’s type from that
seller’s announcement is weakened because the two types behave more similarly.

This trade-off has interesting implications on the effect of discount rate changes. As in-
tuition suggests and we show in the Appendix B, more patient sellers are more trustworthy
at all levels of reputation:

Proposition 4 Represent µ̄ and y∗(µ) as µ̄(δ) and y∗(µ|δ) to reflect their dependence on
δ. If δ` < δ < δ′ < 1, then µ̄(δ) < µ̄(δ′) and y∗(µ|δ′) < y∗(µ|δ) for every 0 < µ < µ̄(δ′).

A consequence of Proposition 4 is that prices reflect the true quality more accurately in
every period, but the true ability of the seller is revealed at a slower pace.

Who benefits from honesty? For expositional clarity we analysed a baseline model
in which trade is always efficient, so the total welfare is the same across equilibria. Below
we discuss who benefits from communication in this baseline model. In the next section,
on the other hand, we present possible extensions in which the total welfare increases and
consumers benefit from communication.

As the unconditional expected price reflects the expected quality of the item, a seller’s
ex-ante payoff in an honest equilibrium, µ1V

∗
h (µ1)+(1−µ1)V ∗` (µ1), is equal to E(q|µ1)/(1−

δ) which is also a seller’s ex-ante payoff in the babbling equilibrium. Which type of seller
is better-off in an honest equilibrium than in the babbling equilibrium? The answer is
not trivial. To see this point notice that an h-type seller induces posteriors π∗Gg(µ) and
π∗Bb(µ) > µ in an honest equilibrium depending on the realised quality, while he induces
posteriors π∗Gg(µ) and πBb(µ, 0) < µ in the babbling equilibrium. Hence, high ability
sellers benefit from uniformly better posteriors in an honest equilibrium. But, (20) means
that their expected short-run price is lower in an honest equilibrium at every reputation
level. Thus, the comparison depends on whether lower short-run prices are compensated
by faster appreciation of reputation.

However, we verify that h-type sellers are better off in an honest equilibrium at least
for the case that the reputation level is not too low, provided that they are patient enough.

Proposition 5 An h-type seller is better-off in an honest equilibrium than in the babbling
equilibrium if µ1 exceeds a threshold µ∗(h, `) < 1 and δ is large enough, where µ∗(h, `)→ 0
as ` tends either to 0 or to h, or h tends to 1.
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In the proof provided in Appendix B, we bound µ∗(h, `) from above by quite low levels
typically, for example, below 0.2 for `, h < 0.7. We conjecture that µ∗(h, `) is nil or very
small for all (h, `) based on various simulation results (available upon request).

6 Extensions and discussions

6.1 Imperfect observation of product quality

We assumed perfect observation of quality until now, so that the seller’s honesty is detected
without error ex post. This simplifies analysis and exposition but at a cost of reduced
realism. We show that our main results extend to more realistic cases, in particular, when
the seller’s observation of quality is subject to a small noise.

Such a noise in observation creates an issue in sustaining an h-type seller’s incentive
to be truthful at the upper end of reputation, because a false claim of bad quality as
good would be attributed to an observational error rather than to a deliberate lie when
the seller is believed almost surely to be of an h-type. The crumbling of incentives at the
upper end of reputation has knock-on effects on lower ranges, undermining trustworthy
behaviour across the board. This issue has been studied in the literature (Cripps, et al.,
2004) and several authors showed that it may be resolved if the uncertainty about the type
is continually renewed by stochastic and unobservable replacement of the player (Mailath
and Samuelson (2001) and Phelan (2006)), because then extremely high reputation levels
do not arise. We also adopt this approach.

Given that the source of the problem stems from the desire to exploit the possibility
of erroneous observation of bad quality as good, rather than the other way around, we
postulate that there is no observation error of good quality for expositional ease (our result
does not rely on this simplification). Specifically, we augment the model in Section 2 in
the following two respects:

a) In every period, the seller receives a signal q̂t ∈ {g, b} such that Pr (q̂t = g | qt = g) =
1 > Pr (q̂t = b | qt = b) = α.

b) In every period, the seller is replaced by another seller of the other type with a small,
exogenous probability 1− β, where β < 1 is close to 1.

Hence, announcing B after observing q̂t = g is detected as a lie for sure, but announcing
G after observing q̂t = b could be attributed to an erroneous signal. Compared to the
baseline model, the key difference in the augmented model is that, if an announcement of
G by a seller with reputation µ turns out to be false, Bayes’ rule prescribes a posterior
that is equal not to zero but to

π̂Gb(µ, y) := (2β − 1)
µ(1− h)(1− α)

µ(1− h)(1− α) + (1− µ)(1− `)(1− α + αy)
+ 1− β (21)

where y is the lying probability of an `-type seller with reputation µ. Other changes related
to the effect of β on prices and posteriors are detailed in the Online Appendix.
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The formula (21) shows that it is more difficult to penalise the seller for misreporting
when α < 1 or β < 1. Yet, it still shows that π̂Gb(µ, y) goes to zero when α and β tend to
one unless the probability of lying goes to zero. Exploiting this property, together with the
previous characterisation of an honest equilibrium for α = β = 1, we prove the existence
of an honest equilibrium for large enough β < 1 and α < 1, as stated below and proved
in the Online Appendix.15 (Here, an honest equilibrium is one in which an h-type seller
always announces his signal truthfully.)

Theorem 2 Given any ` ∈ (0, 1), if h and δ are sufficiently close to 1 then there exist
β < 1 and α(β) < 1 such that an honest equilibrium exists if β ∈ (β, 1) and α ∈ (α(β), 1).

The value functions V βα
θ satisfy limβ→1 limα→1 V

βα
θ = V ∗θ uniformly on (0, 1) for θ ∈ {h, `}.

The logic behind this result extends to other forms of imperfect monitoring. For in-
stance, if the seller observes the quality perfectly but the buyers mis-report good quality
as bad with probability 1− α, then an analogous result is obtained (see footnote 3 in the
Online Appendix).

6.2 Voluntary return policy

The main insights of our analysis also apply when buyers can ask for a refund but the
decision is left to the seller’s discretion. Specifically, consider the following modification
of the model: there is no pre-trade communication but the buyer observes quality ex-post
and may return the good at no cost; when the good is returned, the seller observes quality
and decides whether or not to reimburse the buyer; finally, the buyer publicly reports the
quality q and in case it is bad, whether the seller agreed to a refund (B) or not (G). In
an honest equilibrium of this model, the item is sold for a price pG(µ, y∗(µ)) ∈ (0, 1) when
reputation is µ, and an h-type seller always refunds bad quality items while an `-type seller
refuses with probability y∗(µ).

In this equilibrium it is clearly optimal for the buyer to return the good if quality
is bad and not if it is good. The buyer pays the price pG(µ, y∗(µ)) with probability
µh+(1−µ)

(
`+(1−`)y∗(µ)

)
only, and the expected utility from purchase is µh+(1− µ) `.

It thus follows that pG(µ, y∗(µ)) is indeed the equilibrium price.
Next, consider a seller’s decision whether to reimburse or not. By reimbursing, the

seller admits that the quality is bad and forgoes the short-term gain in exchange for future
benefits from enhanced reputation. By refusing, the seller falsely claims the quality to be
good for short-term gain but loses reputation afterward. As these choices are identical to
those in our baseline model with pre-trade communication, the same equilibrium prevails.

The link between return policy and pre-trade communication has recently been investi-
gated by Inderst and Ottaviani (2013) in a one-shot setting. In their model, commitment
to a costly refund policy helps effective communication as the seller may prefer to avoid
excessive returns. If the seller observes quality before trade in the model described above,

15The existence condition is more restrictive than the existence condition in Theorem 1 because we need
to consider a value function V ∗

h that is continuous at µ = 0 as shown in the Online Appendix, while the
equilibrium featured in Theorem 1 exhibits a value function discontinuous at µ = 0 for high ability seller.
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an honest equilibrium with pre-trade communication and one with refund policy are equiv-
alent. However, the former is more efficient if the buyer or the seller bears a small return
cost, which is in line with their analysis.

6.3 Moral hazard and adverse selection

To focus on the reputational incentives in pre-trade communication, we carried out our
analysis in a model of pure adverse selection on seller’s ability. However, the analysis
can easily be extended to situations that involve moral hazard. In particular, modify the
baseline model in such a way that in each period a seller draws an item of good quality
with a probability h if he exerted high effort at a cost of cθ > 0 that depends on the seller’s
type θ ∈ {h, `}; but he draws a good quality item with a probability ` if he exerted low
effort at zero cost. For appropriate parameter values, our honest equilibrium continues to
be an equilibrium in this modified model if ch is small enough for an h-type seller to find it
worthwhile to exert high effort, but c` is so large that an `-type seller finds it undesirable.

This is the case when the following holds for all µ ≥ µ1:

δ
(
V ∗h (πBb(µ, y

∗(µ))− ch
1− δ

− `

1− δ

)
≥ pG(µ, y∗(µ)),

(h− `)
(
pG(µ, y∗(µ)) + δV ∗h (π∗Gg(µ))− δV ∗h (πBb(µ, y

∗(µ)))
)
≥ ch,

and (h− `)δ
(
V ∗` (π∗Gg(µ))− `

1− δ

)
≤ c`,

where y∗, V ∗` and V ∗h are as derived in Section 4. The first inequality is the condition that
an h-type seller prefers to tell the truth upon drawing a bad quality, the second that an
h-type seller prefers to exert effort to not, and the third that an `-type seller prefers to
not exert effort. Values of ch and c` that satisfy these conditions exist for µ1 not too small
because pG(µ, y∗(µ)) > ` and V ∗h (π∗Gg(µ))− V ∗h (πBb(µ, y

∗(µ))) vanishes as µ tends to 1.
If pre-trade communication is not possible, this model is equivalent to the baseline

model of Mailath and Samuelson (2001) without replacement of types, for which they show
that high effort cannot be induced unless discontinuous strategies are allowed (Proposition
2, p. 424). Our result shows that pre-trade communication may motivate the more efficient
type to exert high effort by facilitating learning. It is then straightforward that welfare is
higher in the equilibrium with communication than in the equilibrium without.

6.4 Negative social value and no trading of bad quality

In our baseline model trade takes place efficiently in every period because myopic buyers
are assumed to value the good more than the seller for sure. This feature precludes a simple
solution of resorting to a trigger strategy to discipline a seller. If buyers value a bad quality
item less than the seller’s cost of providing it, on the other hand, low quality items would
not be traded in an honest equilibrium whereas they would still be traded in the babbling
equilibrium due to lack of information transmission. In this case, communication enhances
social welfare by preventing inefficient trade.
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To elaborate on this idea, suppose that a seller incurs a small distribution cost c <
` for each sale. Then, our equilibrium characterisation continues to be valid with the
modification that the seller’s income is pG(µ, y)− c when he announces G while no trade
occurs when he announces B. After a lie, a seller’s reputation collapses to nil and the
seller’s continuation value is (`−c)/(1−δ). The condition for an h-type seller to truthfully
announce a bad quality gets relaxed because it avoids paying the cost c, which is reflected in
a lower value of δh = (1− c)/(1 + h(1− c)− `). However, additional incentive constraints
need to be accounted for due to the following fact: as quality is not observed by the
market when B is announced, a seller with a good quality item has an option of raising
his reputation to π∗Bb(µ) by announcing B. It is easy to verify that an `-type seller has
no incentive to do this because he would opt for a short-term gain, p∗G(µ) − c, over even
a larger potential reputation gain in the case that a bad quality item is drawn. Yet, an
h-type seller may be tempted. We show in the Online Appendix that this is not the case
and that an honest equilibrium exists for δ > δh when the initial reputation is not too
small.

Note that in this extension, communication may arise even if the seller’s type is common
knowledge if we allow for non-Markov strategies. In a simple such equilibrium, the seller
sells only good quality items and the buyers believe the quality of items for sale to be good
as long as it has been in the past, and to be an average otherwise. The seller’s equilibrium
payoff is θ(1−c)/(1−δ) which is larger than the deviation payoff 1+δ(θ−c)/(1−δ) if the
seller is patient enough, and the equilibrium is efficient. Our baseline model abstracts from
this possibility to focus on incentives to announce quality in a more basic environment.

7 New-life

Up to now we have assumed that sellers stay in the marketplace forever and that memory
is infinite. One of the key issues surrounding the reputation mechanisms based on feedback
systems is that sellers may find ways to escape from the bad consequences of damaged
reputation. For instance, sellers may change to another marketplace, or they may change
their identities within the same marketplace and start again as a new seller.16 One may
then be concerned that such a possibility may destroy the fundamental reputation mecha-
nism delineated in Section 4. We show that this is not the case, although the effectiveness
of the mechanism in fostering honest communication by the seller is somewhat reduced.

To address this issue, we need to introduce inflow and outflow of sellers in each period.
Specifically, we consider a marketplace or website with a stationary mass 1 of sellers, where
a small fraction χ ∈ (0, 1) of randomly chosen sellers “die” at the end of each period and
a new cohort of “newborn” sellers of mass χ enters the marketplace. Each new born seller
is of h-type with an exogenously given probability γ ∈ (0, 1). Thus, there are many sellers
in the market but we assume that they do not compete either because their goods are

16The ability to do so depends on the technology used by the platforms. This is known to be an issue
with eBay for instance (Delarocas 2006), but would be less of an issue when the platform controls bank
coordinates or social status of companies, for then it would involve creating a new firm which is costly.
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non-rival or because there are more buyers than sellers.17

Note that in this setting, discounting must reflect the survival rate. We define δ as
the seller’s discount factor adjusted for survival, i.e., the discount factor multiplied by the
survival rate 1− χ.

We maintain the assumptions that there is no credible outside option for a seller and
that the past record of each seller is publicly known. But we now allow sellers to restart as
a new seller and buyers cannot distinguish a newborn seller from an old seller restarting
with a clean record. We then focus on stationary equilibria satisfying Condition H, such
that the proportion of `-type sellers restarting afresh is constant every period, while h-type
sellers never lie and consequently, never change their identities.

In a stationary equilibrium, a constant mass, denoted by χ1, of new sellers (newborns
and restarters) appear on the platform in each period and they start with an endogenously
determined “default reputation level,” denoted by µ1, which reflects the mix of genuine
newborn sellers (of which a proportion γ are of h-type) and equilibrium mass of sellers
who restart. Let v1 denote the equilibrium value of an `-type seller starting at the default
reputation level µ1. This must be larger than the minimum value when restarting is
not possible, i.e., v1 > `/(1 − δ). Notice that the levels of v1 and µ1 are determined
endogenously, together with the equilibrium announcement strategy and value functions.
We provide a sketch of how they are determined below, while deferring a formal analysis
to the Online Appendix.

In the honest equilibrium studied in Section 4, the analysis remains intact if the seller
is assumed to exit the market with an exit value of V ∗θ (0) = `/(1− δ) once his reputation
falls to 0 due to a false claim of good quality. As an intermediate step toward the current
model with restarting possibilities, we may consider an extension of the baseline model
without restarting but treating v1 > `/(1 − δ) as an exogenous exit value that sellers get
by exiting the market when their reputation falls to 0. One can establish that, for any
given v1, an analogous honest equilibrium exists by the same arguments as in Section 4.
The seller’s strategy in the equilibrium with restart possibilities must then coincide with
that in this equilibrium, except that a seller restarts when he would exit. Given that an
h-type seller’s value surely increases in every period in the honest equilibrium with exit,
this establishes in particular that an h-type seller never restarts even if it is allowed, as
postulated above. The price dynamics for an h-type seller is thus the same as in the base
model. But, an `-type seller restarts on the first date after he lied and revealed his type.18

Let y†v1(µ) and V †v1(µ) denote the equilibrium lying probability (when q = b) and value
function of an `-type seller in the honest equilibrium with exit, where the subscript v1

indicates their dependence on the exit value v1. In this equilibrium, one can obtain the
ex-ante probability that a new `-type seller will exit (but not die) at some future period,
denoted by Λ(v1, µ1), by adding up the ex-ante probabilities that he will lie for the first

17As a result, all sellers trade and a mechanism that would rely on exclusion and replacement of misbe-
having sellers, as in Inderst and Ottaviani (2012), would not be credible.

18Atkeson, Hellwig and Ordonez (2012) and Board and Meyer-Ter-Vehn (2013) show that the dynamics
depends on whether learning occurs through good news or through bad news. In our model, the dynamics
resembles the bad news case in that reputation increases until a false announcement of G reveals a low type.
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time in period k = 1, 2, · · · , according to y†v1 when the seller’s reputation evolves by Bayes’
rule (based on y†v1) from an initial reputation µ1. In an honest equilibrium with restart
possibilities, Λ(v1, µ1) would be the ex-ante probability that a new `-type seller will restart
at some future period, which will determine the equilibrium default reputation level and
thereby, the equilibrium value of a newly starting `-type seller. If these values coincide
respectively with the values of µ1 and v1 that we began with, we have identified an honest
equilibrium with restart possibilities. This process is elaborated below.

As the mass of newly starting `-type sellers is χ1(1 − µ1) in each period of such an
equilibrium, the mass of sellers who change their identities in a stationary equilibrium is
χ1(1 − µ1)Λ(v1, µ1) where v1 is the value of a newly starting `-type seller. Stationarity
then dictates the mass of new sellers to be

χ1 = χ+ χ1(1− µ1)Λ(v1, µ1). (22)

As only `-type sellers restart, Bayes’ rule dictates that in a stationary state

µ1 =
γχ

χ1

. (23)

Solving (22) and (23) simultaneously we set the initial reputation µ1 as the solution of

µ1 =
γ − γΛ(v1, µ1)

1− γΛ(v1, µ1)
< γ (24)

where the inequality follows from 0 < Λ(v1, µ1). This characterizes the default reputation
level of new sellers, that is consistent with a given value v1 of a newly starting `-type seller.
Finally, the equation v1 = V †v1(µ1) must hold in a stationary equilibrium. By solving the
system of equation for v1 and µ1, we establish (in the Online Appendix) that

Theorem 3 If sellers can change their identity costlessly in any period, there exists a
stationary honest equilibrium if h and δ are sufficienty large and γ is not too large. In
this equilibrium the probability with which an `-type seller lies when q = b exceeds y∗(µ)
obtained in Section 4 for all relevant reputation levels.

The main conclusion is thus that allowing sellers to change identity at no cost doesn’t
invalidate our result that equilibria exist in which sellers of high ability always commu-
nicate truthfully. Unsurprisingly, however, it impedes the power of incentives somewhat.
In particular, the benefit of keeping reputation is lower than when identities cannot be
changed. As a result, an `-type seller lies more.

Interestingly, this does not mean that untruthful announcements are more frequent
when restarts are possible than when they are not, because `-type sellers who have lied
once, rather than keep lying forever when q = b, would start afresh and announce according
to the equilibrium strategy. In fact, when δ is close to 1 there will be more truthful
announcements in the market when sellers are allowed to restart with a new identity.

The reduced reliability of `-type sellers results in lower prices for all reputation levels,
but the separation process takes place faster due to an enlarged gap in the honesty levels
of the two types. On the other hand, newborn sellers suffer from depressed reputation at
birth due to the restarters who are all `-type. Therefore, it is unclear whether it takes
longer or not for an h-type seller to be identified as such by the market.
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8 Concluding remarks

Our model highlights the role of reputation in establishing the market’s trust in a seller’s
communication. When the seller’s ability is common knowledge, the unique equilibrium
price is constant and equal to the expected quality. Hence, asymmetric information on
ability is essential for credible communication to take place. Our analysis emphasises the
critical role of both the information structure and the communication system for trading
platforms and marketplaces, and the benefits of monitoring the quality of information
provided by traders.

We show that in repeated environments the anticipation of future communication is
sufficient to generate separation of types and that truthful announcement of quality by high
ability sellers is self-supporting. As a result, pre-trade communication helps mitigate the
asymmetric information problem along two interrelated dimensions: i) it enables credible
communication of the item’s quality, and ii) it facilitates consumers’ learning of the seller’s
ability.

As explained in the Introduction, these effects are possible because a seller’s history
(the feedback comments) is utilized to infer the accuracy of pre-trade communication as
well as the quality delivered. Imperfection of the signal or the ability to restart with a new
identity reduce, but do not undermine effective transmission of information, provided that
sellers are patient enough. Various extensions are also discussed where our results imply
that communication has a positive welfare effect.

We anticipate that our analysis can be extended in other directions as well: for in-
stance, in the context of Internet markets, examining the effect of competition between
trading websites appears to be an interesting task from the market design perspective,
particularly because rival websites would influence each other by providing exit values as
our results suggest. Analysis of such competition may also carry implications for the mar-
ket segmentation between trading websites and their pricing strategies. At the same time,
it also seems fruitful to explore other routes to enhance the value of online reputation: for
instance, via creating a market for trading online identities a la Tadelis (1999).

A Appendix to Section 4

A.1 Justification of a binary message space M = {G,B}
Lemma 3 Consider an arbitrary honest equilibrium represented by s∗, p∗ and π∗. In a
period with any given reputation µ ∈ (0, 1], let Mg and Mb denote the sets of messages
sent by an h-type seller with a positive probability when q = g and q = b, respectively.
(a) If s∗µ(`, g)(m) > 0, then m ∈Mg;
(b) If s∗µ(`, b)(m) > 0, then m ∈Mg ∪Mb;
(c) If m,m′ ∈Mq for some q ∈ {g, b}, then i) p∗m(µ) = p∗m′(µ) and π∗mq(µ) = π∗m′q(µ) and

ii) π∗mb(µ) = π∗m′b(µ) = 0 if q = g and µ < 1.

A proof is provided below. By (a) and (b) of Lemma 3, in any honest equilibrium it is
innocuous to restrict the message space to only those used by an h-type seller. By (c), for
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any µ ∈ (0, 1), any two messages that an h-type seller sends with positive probabilities for
a given quality induce the same price and the same posterior beliefs in the next period,
except possibly in some off-equilibrium contingencies. Hence, the equilibrium conditions
continue to hold when the off-equilibrium specifications of one of the two messages are
replaced by those of the other message. This means that it is innocuous to identify all
messages that an h-type seller sends when q = g as a single message G, and all messages
that he sends when q = b as a single message B. When µ = 1, part (c) holds except that
π∗mb(µ) and π∗m′b(µ) are not defined by Bayes’ rule when q = g. But, setting π∗m′b(µ) equal
to π∗mb(µ) in this case does not affect equilibrium conditions, so the same conclusion holds.
This justifies postulating M = {G,B} in any honest equilibrium.

Proof of Lemma 3. The argument in Section 4.1 leading to V ∗` (0) = `/(1− δ) is valid for
an arbitrary message space and hence, it holds for the honest equilibrium considered here.

For any µ > 0, there is a message m with p∗m(µ) > ` because the expected value of the
prices over all messages is equal to the expected quality given µ, E(q|µ) > `. This means
that the seller can get a price strictly greater than ` in any period with reputation µ > 0
and a price no lower than ` in any future period. Therefore,

V ∗` (0) =
`

1− δ
< V ∗` (µ) ∀µ > 0. (25)

For any given µ > 0, consider an `-type seller with a good quality item. If he were to
announce a message m 6∈ Mg with a positive probability, then p∗m(µ) must be the highest
among all messages and strictly higher than p∗G(µ) for any G ∈ Mg because π∗mg(µ) = 0.
Then, an `-seller does not announce G when q = b with a positive probability (because
announcing m is better), either, which implies that p∗G(µ) = 1, contradicting the earlier
assertion that p∗m(µ) > p∗G(µ). Thus, an `-type seller with a good quality item must not
announce any m 6∈Mg. This proves part (a).

Given this, if an `-type seller with a low quality item were to announce a message
m 6∈ Mg ∪Mb, then it would follow that p∗m(µ) = 0 and π∗mB(µ) = 0, contradicting the
presumed optimality of announcing m because announcing any message in Mg is better.
This proves part (b).

By (a) and (b), we have p∗G(µ) > p∗B(µ) = 0 for all µ > 0 if G ∈Mg and B ∈Mb.
Suppose that B,B′ ∈ Mb. Then, p∗B(µ) = p∗B′(µ) = 0 as shown above. In addition, to

show that π∗Bb(µ) = π∗B′b(µ) > 0 by contradiction, suppose otherwise, say 0 < π∗Bb(µ) <
π∗B′b(µ). Note that V ∗h (π∗Bb(µ)) = V ∗h (π∗B′b(µ)) should hold for an h-seller to send both B

and B′. Since it is also optimal for an `-seller to send B when q = b (because 0 < π∗Bb(µ) <
1), V ∗` (π∗Bb(µ)) ≥ V ∗` (π∗B′b(µ)) should hold. At the same time,

π∗Bb(µ)V ∗h (π∗Bb(µ)) + (1− π∗Bb(µ))V ∗` (π∗Bb(µ)) = E(q|π∗Bb(µ))/(1− δ) and

π∗B′b(µ)V ∗h (π∗B′b(µ)) + (1− π∗B′b(µ))V ∗` (π∗B′b(µ)) = E(q|π∗B′b(µ))/(1− δ)

must hold. Replacing V ∗θ (π∗B′b(µ)) with V ∗θ (π∗Bb(µ)) for θ = h, ` on the left hand side of
the second equation, then subtracting the two equations side by side and rearranging, we
get V ∗h (π∗Bb(µ)) − V ∗` (π∗Bb(µ)) ≥ (h − `)/(1 − δ), which is impossible due to (25) because
p∗B(µ) = 0 and p∗G(µ) ≤ 1. This proves π∗Bb(µ) = π∗B′b(µ) and thereby, part (c) when q = b.
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Next, suppose that G,G′ ∈ Mg. If p∗G(µ) = p∗G′(µ), then π∗Gg(µ) = π∗G′g(µ) must
also hold by an argument analogous to the above. Consider the alternative case, say
0 < p∗G(µ) < p∗G′(µ). Then, V ∗h (π∗Gg(µ)) − V ∗h (π∗G′g(µ)) = p∗G′(µ) − p∗G(µ) ≤ V ∗` (π∗Gg(µ)) −
V ∗` (π∗G′g(µ)) where the equality follows because G and G′ are equivalent for an h-seller
when q = g and the inequality because G is optimal for an `-seller to send when q = g.
Then, applying analogous calculations to

π∗Gg(µ)V ∗h (π∗Gg(µ)) + (1− π∗Gg(µ))V ∗` (π∗Gg(µ)) = E(q|π∗Gg(µ))/(1− δ) and

π∗G′g(µ)V ∗h (π∗G′g(µ)) + (1− π∗G′g(µ))V ∗` (π∗G′g(µ)) = E(q|π∗G′g(µ))/(1− δ),

we deduce V ∗h (π∗Gg(µ))−V ∗` (π∗Gg(µ)) ≥ (h− `)/(1− δ), which is impossible as above. Note
that π∗Gb(µ) = π∗G′b(µ) = 0 for µ < 1 by Bayes’ rule. This proves part (c) when q = g.

A.2 Justification of the off-equilibrium beliefs in (12)

From now on, we take it for granted that M = {G,B} where G and B are the messages
sent by an h-type seller when q = g and q = b, respectively, as stipulated due to Lemma 3.

We show that our specification of off-equilibrium beliefs as in (12) is innocuous as it
does not affect optimal strategy on the equilibrium path. As a seller always tells the truth
when q = g in an honest equilibrium due to Condition H and Lemma 3 (a), π∗Bg(µ) ≡ 0
maximises such incentives and does not affect any other equilibrium conditions.

Setting π∗Gb(1) = 0 is innocuous for an h-type seller by the same reason. But, verifying
it for an `-type seller needs to be done more carefully as he is supposed to announce G
when µ = 1 and q = b. First, observe that if y∗(1) < 1 then telling the truth would be
optimal when µ = 1 and q = b, so we would have

V ∗` (1) = `
(
1 + δV ∗` (1)

)
+ (1− `)δV ∗` (1) = `+ δV ∗` (1) ⇒ V ∗` (1) ≤ `/(1− δ) = V ∗` (0),

contradicting (25). Hence, we deduce that y∗(1) = 1 and therefore, V ∗` (1) = 1+δV ∗` (π∗Gb(1)).
Next, suppose that π∗Gb(1) > 0 in an honest equilibrium. If we reset π∗Gb(1) = 0 without

changing y∗(·), the value V ∗` (1) is lower (weakly) and equal to 1 + δV ∗` (0), while V ∗` (µ) is
unchanged for µ < 1 (because V ∗` (1) does not affect V ∗` (µ) for µ < 1). Hence, the incentive
compatibility for an `-type seller is preserved for µ < 1. It is preserved for µ = 1 as well
because 1+δV ∗` (0) > δ(1+δV ∗` (0)) = δV ∗` (1). This establishes that we may set π∗Gb(1) = 0
without affecting optimal strategy on the equilibrium path.

Lastly, as an `-type seller’s reputation will remain at 0 forever once it reaches 0, setting
π∗Bb(0) = 0 does not affect `-type seller’s incentives. For an h-type seller, π∗Bb(0) = 0
minimises his equilibrium value at µ = 0, V ∗h (0), by keeping him trapped at µ = 0 once he
reaches there. As this maximises his incentive to tell the truth when µ > 0 by minimising
his value after spoiling reputation by lying, it does not affect his equilibrium behaviour of
truth-telling when µ > 0. When µ = 0, he lies when q = b but this does not affect the
equilibrium path because µ = 0 is an off-equilibrium contingency for an h-type seller.
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A.3 Proof of Lemma 2 and some intermediate results

Recall that we deduced y∗(1) = 1 and ∆ = V ∗` (1)−V ∗` (0) < 1 in (13). We start by showing

V ∗` (µ) ≤ V ∗` (1) ∀µ < 1. (26)

First, note that V ∗` (1) =
1+δ(1−`)V ∗` (0)

1−δ` . To reach a contradiction, suppose V ∗` (µ) > V ∗` (1)
for some µ < 1 in an honest equilibrium. Then, one can find arbitrary small ε > 0 and
µε < 1 such that

V ∗` (µε) > sup
µ<1

V ∗` (µ)− ε > V ∗` (1) +
δ

1− δ`
ε > V ∗` (0) +

δ

1− δ
ε. (27)

If y∗(µε) > 0, then V ∗` (µε) = p∗G(µε) + δ(`V ∗` (π∗Gg(µε)) + (1− `)V ∗` (0)) < 1 + δ(`(V ∗` (µε) +

ε) + (1 − `)V ∗` (0)) ⇒ V ∗` (µε) <
1+δ(1−`)V ∗` (0)

1−δ` + δ
1−δ`ε = V ∗` (1) + δ

1−δ`ε, violating (27).
If y∗(µε) = 0, then V ∗` (µε) = `p∗G(µε) + δ(`V ∗` (π∗Gg(µε)) + (1 − `)V ∗` (π∗Bb(µε))) ≤ ` +
δ supµ<1 V

∗
` (µ) < `+ δ(V ∗` (µε) + ε) ⇒ V ∗` (µε) < V ∗` (0) + δ

1−δ ε, contradicting (27). Hence,
(26) is proved.

Next, we show that
y∗(µ) > 0 ∀µ ∈ [0, 1]. (28)

This is trivial for µ = 0 by our convention that y∗(0) = 1. For µ ∈ (0, 1), y∗(µ) = 0 would
imply that the short-term gain from lying when q = b, which is p∗G(µ)− p∗B(µ) = 1, would
exceed the long-term loss, δ

(
V ∗` (π∗Bb(µ))− V ∗` (π∗Gb(µ))

)
< δ∆ where the inequality follows

from (26) and (25). This contradicts the optimality of y∗(µ) = 0, establishing (28).
Hence, any equilibrium value function V ∗` should satisfy

V ∗` (µ) = pG(µ, y∗(µ)) + δ
(
`V ∗` (π∗Gg(µ)) + (1− `)V ∗` (0)

)
∀µ ∈ [0, 1]. (29)

Let π1
Gg(µ) = π∗Gg(µ) and πtGg(µ) = π∗Gg

(
πt−1
Gg (µ)

)
recursively for t ≥ 2 so that

πtGg(µ) =
µht

µht + (1− µ)`t
> µ. (30)

Then, expanding (29) by applying an analogous equation to V ∗` (π∗Gg(µ)) repeatedly,

V ∗` (µ) =

[
∞∑
t=0

`tδtpG
(
πtGg(µ), y∗(πtGg(µ))

)]
+ δV ∗` (0)(1− `)

∞∑
t=0

`tδt (31)

=
∞∑
t=0

δt`t
(
pG(πtGg(µ), y∗(πtGg(µ)))− `

)
+ V ∗` (0). (32)

Now we derive three intermediate results that will be combined to prove Lemma 2.

Lemma 4 For any honest equilibrium, there exists µ̄ < 1 (defined in (8)) such that
y∗(µ) = 1 if µ > µ̄. Furthermore, V ∗` (µ) is continuous and strictly increasing on (µ̄, 1].
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Proof. As the short-term gain from lying when q = b, pG(µ, y), is decreasing in y while the
long-term loss is bounded above by δ∆, we deduce that y∗(µ) = 1 so long as pG(µ, 1) ≥ δ∆,
i.e., for all µ ≥ µ̄ where µ̄ is defined in (8). Then, since y∗(πtGg(µ))) = 1 for all t for any
µ ≥ µ̄ by (30), (31) uniquely determines V ∗` (µ) for µ ≥ µ̄ as

V ∗` (µ) =

[
∞∑
t=0

`tδtpG
(
πtGg(µ), 1

)]
+ δV ∗` (0)(1− `)

∞∑
t=0

`tδt,

which is continuous and strictly increasing in µ > µ̄ because both pG(µ, 1) and π∗Gg(µ)
are continuous and strictly increasing in µ. Moreover, limµ→1 V

∗
` (µ) = V ∗` (1), verifying

continuity at µ = 1.

Lemma 5 In any honest equilibrium, if y∗(µ) is continuous on an interval (µ0, 1] then
πBb(µ, y

∗(µ)) > µ for all µ ∈ (µ0, 1), and p∗G(µ) and V ∗` (µ) are continuous and strictly
increasing in µ ∈ (µ0, 1].

Proof. The proof is immediate if µ0 ≥ µ̄ by Lemma 4. Hence, we consider the case that
µ0 < µ̄ below. Let µ′ ∈ (µ0, µ̄] be such that V ∗` (µ) is continuous and strictly increasing in
µ ∈ (µ′, 1]. It exists by Lemma 4. We proceed by showing that the properties in Lemma
5 hold on (µ′ − ε, 1] for small enough ε > 0, hence on (µ0, 1], in three steps as below.

Step 1: First, we verify that

πBb(µ, y
∗(µ)) > µ ∀µ ∈ [µ′, 1). (33)

To reach a contradiction, suppose to the contrary that there is some µ ∈ [µ′, 1) such that
πBb(µ, y

∗(µ)) ≤ µ. Then, by continuity of πBb(µ, y) and y∗(µ) on (µ0, 1], we can define

µ̃ = max{µ < 1 | πBb(µ, y∗(µ)) ≤ µ} ∈ [µ′, µ̄). (34)

Here, µ̃ ∈ [µ′, µ̄) follows because for µ ∈ [µ̄, 1), by Lemma 4, y∗(µ) = 1 and thus,
πBb(µ, y

∗(µ)) = 1 > µ. By continuity, we also have πBb(µ̃, y
∗(µ̃)) = µ̃.

It is easily verified from (5) that

πBb(µ, y) ≥ µ ⇐⇒ y ≥ ŷ =
h− `
1− `

, (35)

which implies that y∗(µ̃) = ŷ and thus

pG(µ̃, ŷ) = δ(V ∗` (µ̃)− V ∗` (0)). (36)

Note from (30) that πtGg(µ̃) > µ̃ for t ≥ 1 and thus, πBb(π
t
Gg(µ̃), y∗(πtGg(µ̃))) > πtGg(µ̃) by

(34). Consequently, y∗(πtGg(µ̃)) > ŷ by (35). Therefore, since pG(µ, y) ≤ 1 and pG(µ, y)
decreases in y, (32) implies that

V ∗` (µ̃)− V ∗` (0) <
∞∑
t=0

(
pG(πtGg(µ̃), ŷ)− `

)
δt`t. (37)
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Since pG(µ, ŷ) =
(
µ(h− `) + `

)
/h from (4) and (35), we further deduce from (37) that

V ∗` (µ̃)− V ∗` (0) < pG(µ̃, ŷ)− `+
∞∑
t=1

(πtGg(µ̃)(h− `) + `(1− h)

h

)
δt`t (38)

< pG(µ̃, ŷ)− `+
∞∑
t=1

((h− `) + `(1− h)

h

)
δt`t

= pG(µ̃, ŷ)− `+ (1− `) δ`

1− δ`

= pG(µ̃, ŷ)− (1− δ)`
1− δ`

< pG(µ̃, ŷ)

where the second inequality follows from πtGg(µ̃) < 1. Thus, we have reached a contradic-
tory conclusion that (36) cannot hold at µ̃. This completes the proof of (33).

Step 2: We now show that

[A] p∗G(µ) and V ∗` (µ) are continuous and strictly increasing in µ ∈ (µ′−ε, 1] for sufficiently
small ε > 0.

For µ > µ′− ε, let yµ denote the unique solution to πBb(µ, yµ) = µ′ if a solution exists,
and let yµ = 0 otherwise. For sufficiently small ε > 0, (33) and continuity of y∗(µ) imply
that y∗(µ) > yµ for all µ > µ′ − ε.

Consider the graph of δ(V ∗` (πBb(µ, ·))−V ∗` (0)) as a function of y, called the “loss graph.”
Note that V ∗` (µ) is continuous and strictly increases in µ ∈ (µ′, 1] and πBb(µ, y) > µ′ for
all µ > µ′ − ε and y > yµ by definition of yµ. Thus, for µ > µ′ − ε and y > yµ, the loss
graph

i) is continuous and strictly increases in y with terminal value δ(V ∗` (1)− V ∗` (0)) = δ∆;
ii) continuously “shifts downward” as µ decreases.

On the other hand, the graph of pG(µ, ·) as a function of y ∈ [0, 1], which we call the “gain
graph,”

iii) is continuous and strictly decreases in y for y < 1, and
iv) continuously shifts downward as µ decreases.

In addition, when µ = µ̄ the two graphs touch at y = y∗(µ̄) = 1.
Consider µ ∈ (µ′ − ε, µ̄). Given that y∗(µ) > yµ for µ ∈ (µ′ − ε, µ̄], which is implied

by (33) and continuity of y∗ at µ′ for sufficiently small ε > 0, the loss graph and the gain
graph cross at a unique point in (yµ, 1], which must be equal to y∗(µ) because y∗(µ) > yµ.

Since, in the domain y > yµ, the two graphs shift continuously as µ changes in (µ′ −
ε, µ̄], both this unique intersection point, y∗(µ), and the value of the gain graph at the
intersection point, p∗G(µ), change continuously in (µ′ − ε, µ̄]. Furthermore, since the two
graphs strictly shift upward as µ increases in (µ′ − ε, µ̄], it follows that p∗G(µ) strictly
increases in µ ∈ (µ′ − ε, µ̄]. Consequently, in conjunction with y∗(µ) = 1 for µ ≥ µ̄, we
have verified that p∗G(µ) is continuous and strictly increasing in µ ∈ (µ′ − ε, 1]. Equation
(32) ensures that the same property holds for V ∗` (µ) and thereby, [A] above holds.

Step 3: As the last step of the proof, let µ′ ≥ µ0 be the infimum of µ′ ∈ (µ0, µ̄] such
that V ∗` (µ) is continuous and strictly increasing in µ ∈ (µ′, 1]. If µ′ > µ0, (33) and [A]
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would lead to a contradiction to the fact that µ′ is the infimum of such points, completing
the proof of the Lemma.

Lemma 6 y∗ is continuous at all µ ∈ (0, 1].

Proof. We already showed that it is continuous on [µ0, 1] for some µ0 < µ̄ in the preceding
proof. To reach a contradiction, suppose y∗ is discontinuous at some points and let µd ∈
(0, µ0] be the supremum of these points. Then y∗ is continuous at all µ > µd. By Lemma
5, πBb(µ, y

∗(µ)) > µ for all µ ∈ (µd, 1), and p∗G(µ) and V ∗` (µ) are continuous and strictly
increasing in µ ∈ (µd, 1]. This means that for µ ∈ (µd, µ̄), the values y∗(µ) and p∗G(µ) are
determined by the unique intersection point of the gain graph and the loss graph on the
range of y such that πBb(µ, y) ≥ µd.

Moreover, the same argument as in equation (38) shows that for µ (>µd) close to µd :

V ∗` (πBb(µ, y
∗(µ)))− V ∗` (0) < pG(πBb(µ, y

∗(µ)), ŷ)− (1− δ)`
1− δ`

and pG(µ, y∗(µ)) = δ(V ∗` (πBb(µ, y
∗(µ)))− V ∗` (0)),

which yield

pG(µd, lim
µ↓µd

y∗(µ)) ≤ δ
(
pG(πBb(µ

d, lim
µ↓µd

y∗(µ)), ŷ)− (1− δ)`
1− δ`

)
< pG(πBb(µ

d, lim
µ↓µd

y∗(µ)), ŷ).

These inequalities cannot hold if limµ↓µd y
∗(µ) = ŷ, because πBb(µ

d, ŷ) = µd. Hence,
limµ↓µd y

∗(µ) > ŷ.
If y∗(µ) ≥ ŷ+ ε in a neighborhood of µd for some ε > 0, then since πBb(µ, y

∗(µ)) > µd,
the same logic used to prove [A] would verify that y∗(·) is continuous in a neighborhood of
µd, contradicting the definition of µd. Hence, there exists a sequence µn (< µd) converging
to µd such that limn→+∞ y

∗(µn) ≤ ŷ < limµ↓µd y
∗(µ).

In particular, limn→+∞ pG(µn, y
∗(µn)) > limµ↓µd p

∗
G(µ). Since y∗(µ) < 1 for µ = µn and

µ ∈ (µd, µ̄),
pG(µ, y∗(µ)) = δ(V ∗` (πBb(µ, y

∗(µ)))− V ∗` (0))

holds for µ = µn and µ ∈ (µd, µ̄). Thus, limn→+∞ V
∗
` (πBb(µn, y

∗(µn))) > limµ↓µd V
∗
` (πBb(µ, y

∗(µ))).
Given limn→+∞ πBb(µn, y

∗(µn)) = πBb(µ
d, limn→+∞ y

∗(µn)) ≤ µd = πBb(µ
d, ŷ), we find that

lim
µ↓µd

V ∗` (πBb(µ, y
∗(µ))) < sup

µ≤µd
V ∗` (µ). (39)

Take µ′′ < µd such that V ∗` (µ′′) is arbitrarily close to supµ≤µd V
∗
` (µ) < V ∗` (1).19 As

(39) implies that limµ↓µd V
∗
` (µ) < supµ≤µd V

∗
` (µ), there is a unique µ+ > µd such that

V ∗` (µ+) = supµ≤µd V
∗
` (µ). Then, πBb(µ

+, y∗(µ+)) > µ+ by Lemma 5 and, since y∗(µ+) > 0,

p∗G(µ+) ≥ δ(V ∗` (πBb(µ
+, y∗(µ+)))− V ∗` (0)). (40)

19The last inequality is verified as follows: For V ∗
` (µ) to be arbitrarily close to V ∗

` (1) for some µ ≤ µd,
we need p∗G(µ) arbitrarily close to 1 by (29), but then y∗(µ) = 1 would be optimal due to δ∆ < 1,
contradicting p∗G(µ) being arbitrarily close to 1.
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We then verify that p∗G(µ+) ≥ p∗G(µ′′). This is immediate if πBb(µ
+, y∗(µ+)) = 1 since

p∗G(µ′′) < δ(V ∗` (1) − V ∗` (0)). If πBb(µ
+, y∗(µ+)) < 1, the gain and loss graphs for µ′′

cannot cross at any y such that V ∗` (πBb(µ
′′, y)) > V ∗` (πBb(µ

+, y∗(µ+)). To see this, note
that the two graphs crossing at such y would require that πBb(µ

′′, y) > πBb(µ
+, y∗(µ+))

and thus y > y∗(µ+), but this would imply that (40) holds with equality and, therefore,
pG(µ′′, y) < p∗G(µ+) < δ(V ∗` (πBb(µ

′′, y))− V ∗` (0)), contradicting the two graphs crossing at
y. Then, y∗(µ′′) < 1 and thus, p∗G(µ′′) = δ(V ∗` (πBb(µ

′′, y∗(µ′′))) − V ∗` (0)) ≤ p∗G(µ+) from
(40), verifying the claim.

Furthermore, V ∗` (π∗Gg(µ
+)) > V ∗` (π∗Gg(µ

′′)) because π∗Gg(µ
+) > max{µ+, π∗Gg(µ

′′)} and
V ∗` is strictly increasing in µ > µ+ and V ∗` (µ+) = supµ≤µd V

∗
` (µ). In light of (29), these

observations dictate V ∗` (µ′′) < V ∗` (µ+), contradicting to V ∗` (µ′′) being arbitrarily close to
supµ≤µd V

∗
` (µ) = V ∗` (µ+). This establishes that y∗ is continuous at all µ ∈ (0, µ0].

Lemmas 5 and 6 imply that V ∗` is continuous and strictly increasing on (0, 1].
To complete the proof of Lemma 2, consider the possibility that V ∗` is discontinuous

at µ = 0, i.e., V ∗` (0) < V ∗` (0+) = limµ↓0 V
∗
` (µ). If δ(V ∗` (0+)− V ∗` (0)) ≤ ` = pG(0, 1), then

y∗(µ)→ 1 as µ→ 0 and thus, we would have V ∗` (0+) = `+ δ(`V ∗` (0+) + (1− `)V ∗` (0))⇒
V ∗` (0+) = V ∗` (0), a contradiction. If δ(V ∗` (0+)−V ∗` (0)) > `, then limµ↓0 p

∗
G(µ) = δ(V ∗` (0+)−

V ∗` (0)) and thus, we would have V ∗` (0+) = δ(V ∗` (0+)−V ∗` (0))+δ(`V ∗` (0+)+(1−`)V ∗` (0))⇒
V ∗` (0+) = −δ`V ∗` (0)/(1−δ−δ`)⇒ V ∗` (0+)−V ∗` (0) = `

δ+δ`−1
> `

δ`
> 1 > ∆, a contradiction

to (26). This completes the proof of Lemma 2.

A.4 Proof of Proposition 1

A.4.1 Proof of existence of a fixed point of T in F

Recall that the equilibrium value function V ∗` is a fixed point of an operator defined on
F , the set of all continuous and strictly increasing functions on [0, 1] with an initial value
of `/(1 − δ) and an end value of `/(1 − δ) + ∆. However, we cannot apply a fixed point
theorem to T because F is not a compact space under a suitable topology. Nor can we
extend T to the set of all continuous and bounded functions on [0, 1] and apply Blackwell
Theorem because T is not non-decreasing.

To solve this problem, we extend T to the set F̄ of all right-continuous and non-
decreasing functions V on [0, 1] with V (0) = `/(1−δ) and V (1) = V (0)+∆. To characterize
V ∗` as a fixed point of the operator defined on F̄ , we extend the definition of the “optimal
response” function yV to all function V ∈ F̄ . Note that since µ̄ is independent of V , (18)
determines yV (0) = yV (µ) = 1 for all µ ≥ µ̄. For 0 < µ < µ̄, we extend the definition of
yV (µ) to be the unique y ∈ (0, 1) that satisfies

δ lim
y′↑y

(V (πBb(µ, y
′))− V (0)) ≤ pG(µ, y) ≤ δ (V (πBb(µ, y))− V (0)) . (41)

This uniquely determines the optimal response function yV as

yV (µ) =

{
1 if µ = 0 or µ > µ̄
the unique y that satisfies (41) if 0 < µ ≤ µ̄

(42)
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Lemma 7 For any V ∈ F̄ , yV (µ) is continuous and strictly positive on [0, 1] and pG(µ, yV (µ))
is nondecreasing in µ.

Proof. For each µ ∈ (0, µ̄], yV (µ) is the value of y at which the gain graph of pG(µ, y)
intersects with the “connected” loss graph of δ(V (πBb(µ, y))−V (0)), i.e., the latter graph is
connected vertically at every discontinuity points by the shortest distance. Since pG(µ, 0) =
1 > δ∆, the intersection takes place at some y > 0, establishing that yV (µ) > 0 for
µ ∈ (0, µ̄] as well as when µ = 0 and µ > µ̄ as per (42).

Let us now prove continuity of yV . For each µ ∈ (0, µ̄], denoting V −(πBb(µ, y)) =
limx↑y V (πBb(µ, x)), from (41) we have

δ(V −(πBb(µ, yV (µ)))− V (0)) ≤ pG(µ, yV (µ)) ≤ δ(V (πBb(µ, yV (µ)))− V (0)). (43)

Now let µn → µ and suppose that yV (µn) → y′ < yV (µ). Then, as πBb increases in y,
πBb(µn, yV (µn))→ πBb(µ, y

′) < πBb(µ, yV (µ)) so that for n large enough we would have

δ(V (πBb(µn, yV (µn)))− V (0)) ≤ δ(V −(πBb(µ, yV (µ)))− V (0))

because V is non-decreasing. But this and the second inequality of (43) imply

δ(V −(πBb(µ, yV (µ)))− V (0)) ≥ lim
n→+∞

pG(µn, yV (µn)) = pG(µ, y′) > pG(µ, yV (µ)),

which contradicts the first inequality of (43). As a symmetric reasoning applies for y′ >
yV (µ), we deduce that yV (µn)→ yV (µ).

Furthermore, note that yV (µ)→ 1 as µ→ 0 because, for every y < 1, πBb(µ, y)→ 0 as
µ → 0 and thus, δ(V (πBb(µ, y)) − V (0)) < ` ≤ pG(µ, y) for all µ sufficiently small. Since
yV (µ̄) = 1 by construction (using yV (0) = 1 if µ̄ = 0), it follows that yV (µ) is continuous
on [0, 1].

For µ ≥ µ̄, we have pG(µ, yV (µ)) = pG(µ, 1) which increases in µ. For µ ∈ (0, µ̄), the
two aforementioned, gain and connected loss graphs move upward as µ increases because
both pG(µ, y) and πBb(µ, y) increases in µ by (4) and (5), respectively. Hence, the height
of the intersection point also increases, i.e., pG(µ, yV (µ)) weakly increases in µ.

Since π∗Gg(µ) increases in µ, T (V ) as defined in (19) is non-decreasing and right-
continuous in µ by Lemma 7. In addition, T (V )(0) = pG(0, 1) + δ(`V (0) + (1 − `)V (0))
which yields T (V )(0) = `/(1− δ); and T (V )(1) = 1 + δ(`V (1) + (1− `)V (0)) which yields
T (V )(1) = `/(1 − δ) + ∆. Hence, the operator T is well-defined on F̄ by (19). We now
show that T has a fixed point in F̄ , then show that it has to be in F .

A fixed point exists in F̄ . Endowed with the topology of the weak convergence, the
set F̄ is convex and compact (Theorem 5.1, Billingsley, 1999). By Fan-Glicksberg Fixed
Point Theorem,20 therefore, T has a fixed point in F̄ if T is continuous on F̄ , which we
show below.

20This theorem (Fan, 1952; Glicksberg, 1952) states that an upper hemi-continuous convex valued
correspondence from a nonempty compact convex subset of a convex Hausdorff topological vector space
has a fixed point.
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Consider a sequence Vn, n = 1, 2, · · · , in F̄ that weakly converges to V . To prove
continuity of T , we show below that T (Vn) weakly converges to T (V ), i.e., T (Vn)(µ)
converges to T (V )(µ) at all continuity points of T (V ) (Theorem 2.1, Billingsley, 1999).

Let Ω be the set of all points where V (π∗Gg(µ)) is continuous. As π∗Gg(µ) is increasing,
[0, 1]\Ω is countable. As V is continuous at π∗Gg(µ) if µ ∈ Ω, weak convergence of Vn
implies that Vn(π∗Gg(µ)) converges to V (π∗Gg(µ)) on Ω.

Next, let yV (µ) be as defined in (42) for V and yVn(µ) for Vn. We now show that
yVn(µ)→ yV (µ) for all µ.

That yVn(µ)→ yV (µ) is trivial from (42) if µ = 0 or µ > µ̄. Hence, suppose 0 < µ ≤ µ̄
so that, denoting V −n (πBb(µ, y)) = limx↑y Vn(πBb(µ, x)), we have

δ
(
V −n (πBb(µ, yVn(µ)))− V (0)

)
≤ pG(µ, yVn(µ)) ≤ δ (Vn(πBb(µ, yVn(µ)))− V (0)) . (44)

By taking a subsequence if necessary, we may assume that yVn(µ) converges to a limit y′.
To reach a contradiction, suppose y′ 6= yV (µ). Consider the case that y′ < yV (µ). Then,
since pG(µ, y) decreases with y there exists ε > 0 such that

pG(µ, yVn(µ)) > pG(µ, yV (µ)) + ε ≥ δ
(
V −(πBb(µ, yV (µ)))− V (0)

)
+ ε (45)

for sufficiently large n where the second inequality follows from (43).
Because V is non-decreasing in µ and πBb(µ, y) is increasing in y, there exists some y′′,

with y′ < y′′ < yV (µ), such that V (µ) is continuous at µ = πBb(µ, y
′′). Then, weak con-

vergence implies that Vn(πBb(µ, y
′′)) converge to V (πBb(µ, y

′′)). Thus, for n large enough,

δVn(πBb(µ, yVn(µ))) ≤ δVn(πBb(µ, y
′′)) < δV (πBb(µ, y

′′))+ε/2 ≤ δV −(πBb(µ, yV (µ)))+ε/2
(46)

where the first inequality follows because Vn(πBb(µ, y)) is non-decreasing in y and the sec-
ond from convergence of Vn(πBb(µ, y

′′)). But then the conditions (45) and (46) imply that

pG(µ, yVn(µ)) > δ(Vn(πBb(µ, yVn(µ)))− V (0)) + ε/2

for sufficiently large n, which contradicts (44).
For the case that y′ > yV (µ), we can apply the same reasoning using V −n (πBb(µ, yVn(µ))) >

Vn(πBb(µ, yV (µ))) for n large to reach an analogous contradiction:

pG(µ, yVn(µ)) < δ
(
V −n (πBb(µ, yVn(µ)))− V (0)

)
− ε/2.

Hence, we conclude that yVn(µ)→ yV (µ) for all µ.
Together with the earlier result that Vn(π∗Gg(µ)) → V (π∗Gg(µ)) for all µ ∈ Ω, this

establishes for all µ ∈ Ω that

T (Vn)(µ) = pG(µ, yVn(µ)) + δ
(
`Vn(π∗Gg(µ)) + (1− `)V (0)

)
→ pG(µ, yV (µ)) + δ

(
`V (π∗Gg(µ)) + (1− `)V (0)

)
= T (V )(µ)

as n→∞. Finally, to verify this convergence at every continuity point of T (V )(µ), observe
first that this convergence is trivial from (42) at µ = 0, 1. For any other µ /∈ Ω at which
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T (V ) is continuous, one can find µ1 ∈ Ω ∩ (0, µ) arbitrarily close to µ and µ2 ∈ Ω ∩ (µ, 1)
arbitrarily close to µ because Ω is dense in [0, 1]. Since T (Vn)(µ1) ≤ T (Vn)(µ) ≤ T (Vn)(µ2)
and T (V )(µ1) ≤ T (V )(µ) ≤ T (V )(µ2), taking the limits we get

T (V )(µ1) ≤ lim inf T (Vn)(µ) ≤ lim supT (Vn)(µ) ≤ T (V )(µ2), and

sup
µ1∈Ω
µ1<µ

T (V )(µ1) = T (V )(µ) = inf
µ2∈Ω
µ2>µ

T (V )(µ2),

which imply, as desired, that T (Vn)(µ) converges to T (V )(µ) at every continuity point of
T (V )(µ). This proves that T is continuous and thus, completes the proof of existence of a
fixed point V ∗` in F̄ .

A fixed point exists in F . It remains to verify that a fixed point of T in F̄ is indeed
in F . For this, just note that the proof of Lemma 2 relies only on equation (29) and the
optimality condition (6) applied to the equilibrium value function. Both are verified by
any fixed point of T defined on F̄ . By Lemma 2, therefore, it has to be in F .

A.4.2 Proof of uniqueness of a fixed point of T in F

To reach a contradiction, suppose there are two fixed points V 1 and V 2 in F . Notice that

V i(µ) = pG(µ, 1) + δ (`V (1) + (1− `)V (0)) ∀µ ≥ µ̄, i = 1, 2, (47)

in particular, V 1(µ) = V 2(µ) for all µ ≥ µ̄. Thus, the following is well-defined:

µ̂ := min{µ |V 1(µ′) = V 2(µ′) ∀µ′ ≥ µ} ∈ (0, µ̄]. (48)

A “segment” for i = 1, 2, is a nonempty interval Ii = [x, z] ⊂ [0, µ̄] such that V i(µ) > V j(µ)
for all µ ∈ (x, z) and V i(µ) = V j(µ) for µ = x, z, where j 6= i. A “region” for i = 1, 2, is
a nonempty interval Ri = [x, z] ⊂ [0, µ̄] such that V i(µ) ≥ V j(µ) for all µ ∈ Ii and there
are x′, z′ ∈ Ri such that [x, x′] and [z′, z] are segments for i. Let

piG(µ) := pG(µ, yV i(µ)) and πiBb(µ) := πBb(µ, yV i(µ)) for i = 1, 2. (49)

Recall that in the proof of Lemma 7, we have shown that both piG(µ) and πiBb(µ) weakly
increase in µ. Since V i strictly increases in µ by Lemma 2, the same reasoning used in the
proof of Lemma 7 establishes that

[B] piG(µ) and πiBb(µ) strictly increase in µ.

Next, we establish the following:

[C] If V 1(πiBb(µ)) = V 2(πiBb(µ)) for some µ > 0 and some i = 1, 2, then yV 1(µ) = yV 2(µ)
and consequently, p1

G(µ) = p2
G(µ) and π1

Bb(µ) = π2
Bb(µ). If, in addition, V 1(π∗Gg(µ)) =

V 2(π∗Gg(µ)) holds, then V 1(µ) = V 2(µ).
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Note that this observation is trivial for µ ≥ µ̄. Since

piG(µ) = δ
(
V i(πiBb(µ))− V i(0)

)
∀µ ∈ (0, µ̄], (50)

V 1(πiBb(µ)) = V 2(πiBb(µ)) implies p1
G(µ) = p2

G(µ), which in turn implies yV 1(µ) = yV 2(µ),
from which the remaining claims of [C] follow.

Finally, since πiBb(µ̂) > µ̂ by Lemma 5 and π∗Gg(µ̂) > µ̂ by (12), due to continuity, there
is µ′ < µ̂ such that V 1(µ′) 6= V 2(µ′), πiBb(µ

′) > µ̂ and π∗Gg(µ
′) > µ̂. Then, V 1(πiBb(µ

′)) =
V 2(πiBb(µ

′)) by (48) and thus, V 1(µ′) = V 2(µ′) by [C], a contradiction to the earlier
assertion that V 1(µ′) 6= V 2(µ′). This completes the proof of uniqueness, hence the proof
of Proposition 1.

A.5 Proof of Proposition 2

Let Vh(µ) be the value function from the following strategy of an h-type seller: always
report q = g truthfully and upon drawing q = b for the first time report m = G and get
V ∗h (0) in the continuation subgame. Then,

Vh(µ) =
[ ∞∑
t=0

htδtpG(πtGg(µ), y∗(πtGg(µ)))
]

+ δV ∗h (0)(1− h)
∞∑
t=1

htδt (51)

where πtGg(µ) is as defined in (30). Since V ∗h (µ) ≥ Vh(µ) is clear from definition of V ∗h , it
suffices to show Vh(µ)− V ∗` (µ) > 0. Subtracting (31) from (51),

Vh(µ)− V ∗` (µ) =
[ ∞∑
t=0

(ht − `t)δtpG
(
πtGg(µ), y∗(πtGg(µ))

)]
+ δ
( 1− h

1− δh
− 1− `

1− δ`

)
V ∗` (0).

Since pG
(
πtGg(µ), y∗(πtGg(µ))

)
> ` for µ > 0, it follows that

Vh(µ)− V ∗` (µ) >
δ(h− `)`

(1− δh)(1− δ`)
− δ(1− δ)(h− `)

(1− δh)(1− δ`)
V ∗` (0) = 0.

As V ∗h (µ) ≥ Vh (µ) and V ∗h (0) = V ∗` (0), this completes the proof.

A.6 Proof of Proposition 3

As asserted earlier, an honest equilibrium exists if and only if truth-telling is optimal for
an h-type seller when µ > 0, under the presumption that the market reacts according to
p∗ and π∗ specified in (11) and (12).

By the sorting condition verified by Proposition 2, an h-type seller has more incentive
to be truthful than an `-type seller for all µ. Because the short-term gain from lying when
quality is bad, p∗G(µ), is the same for both types, an h-type seller must find it optimal to
truthfully announce a bad quality whenever an `-type seller is indifferent between lying
and not, which is the case when µ ∈ (0, µ̄). By the same token, whenever an `-type seller
prefers to tell the truth, which is the case when quality is good, so does an h-type seller.
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It remains to consider the case that µ ≥ µ̄ and quality is bad. Then, telling the truth
reveals high ability and an h-type seller would find it optimal to do so if the long-term loss
from lying, δ

(
V ∗h (1)− V ∗h (0)

)
= δ(h− `)/(1− δ), exceeds the short-term gain, p∗G(µ). As

p∗G(µ) reaches a maximum value of 1 at µ = 1, the condition δ(h − `)/(1 − δ) ≥ p∗G(1) =
1 ⇔ δ ≥ 1/(h− `+ 1) = δh ensures that telling the truth is optimal for an h-type seller
when quality is bad for all µ ≥ µ̄. Thus we have verified that truth-telling is optimal for
an h-type seller for all µ > 0 if and only if δ ≥ δh, as desired.

B Appendix to Section 5

Proof of Proposition 4. As δ∆ increases in δ and pG(µ, 1) increases in µ, (8) implies
that µ̄(δ) strictly increases in δ > δ`. Consider δ` < δ < δ′ < 1 and let y∗(·|δ) and
y∗(·|δ′) denote y∗(·) for different δ and similarly for other equilibrium variables. To reach
a contradiction, suppose that y∗(µ|δ) ≤ y∗(µ|δ′) for some µ ∈ (0, µ̄) where µ̄ = µ̄(δ). As
y∗(µ̄|δ) = 1 > y∗(µ̄|δ′), µ′ = max{µ < µ̄ | y∗(µ|δ) ≤ y∗(µ|δ′)} is well-defined. Note that
y′ = y∗(µ′|δ) = y∗(µ′|δ′) < 1 and thus from optimality condition

pG(µ′, y′) = δ(V ∗` (πBb(µ
′, y′)|δ)− V ∗` (0|δ)) = δ′(V ∗` (πBb(µ

′, y′)|δ′)− V ∗` (0|δ′)). (52)

However, since y∗(µ|δ) ≥ y∗(µ|δ′) for all µ ≥ µ′, from (32) we have

δ(V ∗` (πBb(µ
′, y′)|δ)− V ∗` (0|δ)) =

∞∑
t=0

δt+1`t(pG(πtGg(µ
′), y∗(πtGg(µ

′)|δ))− `)

<
∞∑
t=0

(δ′t+1`t(pG(πtGg(µ
′), y∗(πtGg(µ

′)|δ′))− `) = δ′(V ∗` (πBb(µ
′, y′)|δ′)− V ∗` (0|δ′)),

which contradicts (52). Thus, we conclude that y∗(µ|δ) > y∗(µ|δ′) for all µ ∈ (0, µ̄(δ)).
That y∗(µ|δ) = 1 > y∗(µ|δ′) for all µ ∈ [µ̄(δ), µ̄(δ′)) is trivial from the definition of µ̄(·).
Proof of Proposition 5. Note that an h-type seller is better off in an honest equilibrium
than in the babbling equilibrium if and only if the opposite is true for an `-type seller.
Hence, we examine an `-type seller in this proof. From (32) and the fact that y∗(µ) > ŷ we
have :

V ∗` (µ)− `

1− δ
< Y (µ) :=

∞∑
t=0

δt`t
(
pG(πtGg(µ), ŷ)− `

)
. (53)

As ∂
∂µ
pG(µ, ŷ) = (h− `)/h, we have

Y ′(µ) =
∞∑
t=0

δt`t
h− `
h

∂πtGg(µ)

∂µ
=
∞∑
t=0

δt`t
h− `
h

[
µ
(h
`

)t/2
+ (1− µ)

( `
h

)t/2]−2

>
∞∑
t=0

δt`t
h− `
h

[
µ
(h
`

)t/2
+ (1− µ)

( `
h

)t/2]−2

∣∣∣∣∣
µ=1

=
∞∑
t=0

δt`t
h− `
h

( `
h

)t
=

h− `
h− δ`2
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where the inequality follows because µ
(
h
`

)t/2
+ (1 − µ)

(
`
h

)t/2
increases in µ for all t ≥ 0.

Hence,

Y (µ) < Y (1)− h− `
h− δ`2

(1− µ) =
1− `
1− δ`

− h− `
h− δ`2

(1− µ). (54)

Letting µ̃t denote the period-t posterior (random variable) in the babbling equilibrium
starting from an initial reputation µ, the value function of an `-type seller in the babbling
equilibrium is

W`(µ) = E

[
∞∑
t=0

δt (µ̃th+ (1− µ̃t)`)
∣∣∣ θ = `

]
=

`

1− δ
+ (h− `)E

[
∞∑
t=0

δtµ̃t

∣∣∣ θ = `

]
. (55)

As

E(µt+1|µt, θ = `) = `πG(µt)+(1−`)πB(µt) ≥ f ·µt where f := inf
0<µ<1

`πG(µ) + (1− `)πB(µ)

µ
,

from (55) we have

W`(µ)− `

1− δ
= (h− `) · E

(
∞∑
t=0

δtµ̃t | θ = `

)
> X(µ) := (h− `)µ

∞∑
t=0

δtf t =
(h− `)µ
1− δf

.

(56)
As `πG(µ)+(1−`)πB(µ)

µ
is quasi-convex in µ ∈ (0, 1), the value of f is routinely calculated as

f =
(√

h`+
√

(1− h)(1− `)
)2

= 1−
(√

h (1− `)−
√
` (1− h)

)2

. (57)

From this21 we further derive that

0 < 1− f < h− `. (58)

In conjunction with (56), therefore, W`(µ) > V ∗` (µ) as δ → 1 if µ > µ∗ where µ∗

satisfies

(h− `)µ∗

1− f
= 1− h− `

h− `2
(1− µ∗)⇐⇒ µ∗ =

`(1− `)(1− f)

(h− `)(h− `2 + f − 1)
∈ (0, 1).

That µ∗ ∈ (0, 1) follows because (h−`)µ
1−f is a linear function of µ with a slope greater than

1 and 1− h−`
h−`2 (1− µ) is an affine function with a positive slope less than 1.

As 1 − f → h as ` → 0, to verify that µ∗ → 0 as ` → 0, we need to show that
`

h−`2+f−1
→ 0, or equivalently, that h+f−1

`
→∞ as `→ 0. After some routine calculation,

we have
h+ f − 1

`
= 1− 2h+ 2

√
h(1− h) (1− `)

`

which explodes as `→ 0.

21In particular, 1−f = h− `+2
(
`(1−h)−

√
h(1− h)

√
`(1− `)

)
and ` (1− h) <

√
h(1− h)

√
`(1− `).
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To verify that µ∗ → 0 as `→ h, note that the derivative of
(√

h (1− `)−
√
` (1− h)

)2

with respect to ` is

−

(√
h

1− `
+

√
1− h
`

)(√
h (1− `)−

√
` (1− h)

)
which vanishes when ` = h. So, (1− f)/(h− `)→ 0 as `→ h and thus, µ∗ → 0 as `→ h.

Regarding the values of µ∗, according to the calculations using Mathematica, for given
h, µ∗ is concave in ` ∈ (0, h); and the maximum value of µ∗ increases in h from around
0.12 at h = .1, to 0.16 at h = .5, 0.25 at h = .8, 0.4 at h = .95, .6 at h = .99. When the
lower bound X(µ) is improved by calculating the actual values of µ̃2 and µ̃3 and then add
(h− `)E(µ̃3)

∑∞
t=3 f

t, the maximum value of µ∗ is reduced, for example, to around 0.45 at
h = 0.99.

For large h, we may refine the bound as follows. We use (56) to obtain

W`(µ)− `

1− δ
> (h− `)

∞∑
t=0

δt`tπtGg(µ)

+ (h− `)
∞∑
t=1

δtt (1− `) `t−1 µ (1− h)ht−1

µ (1− h)ht−1 + (1− µ) (1− `) `t−1

where the RHS is the payoffs from the events with at most one bad quality draw.
On the other hand, we have :

Y (µ) =
∞∑
t=0

δt`t
(
πtGg(µ)

h− `
h

+ `
1− h
h

)

= (h− `)
∞∑
t=0

δt`tπtGg(µ) + (h− `) (1− h)

[
∞∑
t=0

δt`t
(

µht−1

µht + (1− µ) `t
+

`

h (h− `)

)]

where we use πtGg(µ) = µht

µht+(1−µ)`t
.

So we have for any µ > 0, limδ→1W`(µ) > limδ→1 V
∗
` (µ) when

∞∑
t=1

t (1− `) `t−1 µht−1

µ (1− h)ht−1 + (1− µ) (1− `) `t−1
>
∞∑
t=0

`t
(

µht−1

µht + (1− µ) `t
+

`

h (h− `)

)
which holds for large h because the LHS goes to infinity when h tends to 1 while the RHS
is bounded by 1

(1−`)(h−`) . Notice that if the LHS exceeds this bound for some µ, so it does

for all higher µ. Hence, W`(µ) > V ∗` (µ) for all µ above a threshold that vanishes as h→ 1
and δ → 1.
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