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Abstract

We study a retail benchmarking approach to determine access prices for intercon-

nected networks. Instead of considering fixed access charges as in the existing literature,

we study access pricing rules that determine the access price that network i pays to

network j as a linear function of the marginal costs and the retail prices set by both

networks. In the case of competition in linear prices, we show that there is a unique lin-

ear rule that implements the Ramsey outcome as the unique equilibrium, independently

of the underlying demand conditions. In the case of competition in two-part tariffs, we

consider a class of access pricing rules, similar to the optimal one under linear prices

but based on average retail prices. We show that firms choose the variable price equal

to the marginal cost under this class of rules. Therefore, the regulator can choose one

among these rules to pursue additional objectives such as increasing consumer surplus,

extending network coverage or promoting investment: for instance, we show that both

static and dynamic efficiency can be achieved at the same time.
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1 Introduction

Access pricing constitutes the core of the policy issues regarding interconnected networks.

More precisely, studying how access prices affect competition between networks and de-

termining the optimal access prices form the central questions of the seminal papers on

two-way network interconnection in Telecommunication Industry (Armstrong 1998, Laffont-

Rey-Tirole (LRT, hereafter), 1998a,b) and the papers that followed.1 Although the papers

vary in terms of the retail prices they consider (linear versus non-linear prices, with or

without termination-based price discrimination), the degree of customer heterogeneity and

whether or not they explicitly consider receivers’ surplus, all the papers have a common trait

in that they consider a fixed (per minute) access price, which is either negotiated bilaterally

between two networks or is set by a regulatory agency. In this paper, we make a departure

from this standard approach and consider what we call a retail benchmarking approach. In

our approach, we study access pricing rules that determine the access price that network i

pays to network j as a (linear) function of the marginal costs and the retail prices set by

both networks. In a setting without termination-based price discrimination, we first consider

the case of competition in linear prices and derive the optimal access pricing rule within the

class of linear rules and then consider the case of competition in two-part tariffs and study

an adaptation of the optimal rule we discovered in the previous case. It turns out that both

rules have some remarkable properties that we explain below.

Although most of the literature on two-way access pricing has moved on from linear

prices to non-linear prices, in this paper we consider both competition in linear prices and

in two-part tariffs, as we think that both of them are relevant. In particular in mobile

telecommunication markets, it is not uncommon for firms to set linear prices by means of

prepaid cards. In 2005, almost half of 40 million mobile phone users in Spain had prepaid

cards. Moreover, all mobile operators in Spain offer consumers contracts with a linear

price and no subscription fee (but with a minimum amount of 9 euros charged monthly).

Such contracts are very much like linear prices. The most recent entrant in the Spanish

mobile telecommunication market, Yoigo, in fact only offers uniform linear prices without

subscription fees, without minimum consumption requirements and without termination-

based price discrimination.

In the case of competition in linear prices, we consider a set of linear access pricing

1See, for instances, Armstrong and Wright (2007), Calzada and Valletti (2008), Carter and Wright (1999,
2003), Dessein (2003), Gans and King (2000, 2001), Hahn (2004), Hermalin and Katz (2001, 2004), Jeon-
Laffont-Tirole (2004), Laffont-Marcus-Rey-Tirole (2003), Valletti and Cambini (2005) and Wright (2002).
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rules that includes any fixed access price and the well-known Efficient Component Pricing

Rule (ECPR) as particular rules. We show that within this set, there is a unique rule that

implements the Ramsey price outcome as an equilibrium, independently of the underlying

demand conditions, as long as there exists at least a mild degree of substitutability between

networks’ services. Moreover, the Ramsey price outcome is the unique equilibrium outcome

under this rule. This optimal rule is such that the mark-up of the access price that network

i pays to network j is equal to the mark-up of network i’s retail price multiplied by a

factor n/(n− 1) where n represents the number of competing networks. This rule promotes

competition in retail prices as network i can decrease its access payment by reducing its

retail price. Since access pricing rules are much more general than fixed access prices, it is

perhaps not that surprising that some rule is able to implement the Ramsey outcome. What

is a very remarkable feature of the optimal access pricing rule is that it does not depend on

the demand structure (provided the LRT assumption of full coverage is satisfied) so that the

regulator only needs to observe marginal costs and retail prices and does not need to know

anything about the demand side.2 Furthermore, our model and access pricing rules allow

for more than two competing networks.3

In the case of competition in two-part tariffs, we adapt the access pricing rule that is

optimal in the case of linear prices such that the mark-up of the access price above the

termination cost that network i pays to network j is equal to network i’s average retail price

mark-up multiplied by a factor κ.4 We show that under the adapted rules each network finds

it optimal to charge its variable price equal to the true marginal cost for any market share

and for any κ ≤ 1: in fact, when κ = 0, the access price is equal to the termination cost and

LRT (1998a) show that in this case, the variable price is equal to the marginal cost. When

κ = 0, network i’s profit is equal to its market share multiplied by profit per customer (net

2In contrast, under the standard approach of fixed access price (LRT, 1998a), (i) the Ramsey access price
must be lower than the termination cost; (ii) the Ramsey access price is informationally demanding since it
requires the regulator to possess precise information regarding both the cost and the demand structure; (iii)
if access prices are determined through private negotiations, networks can achieve the monopoly outcome
by coordinating on a certain level of access price.

3Stennek and Tanger̊as (2006) also consider a model that allows for more than two networks. Their
analysis accounts for the fact that the bilaterally agreed upon fixed access price between two networks
affects their competitiveness with respect to other rivals in a setting with linear retail prices. Since network
based price discrimination is not allowed for in the model, the equilibrium retail price set by one particular
network will be influenced by all negotiated access prices. It is shown that, in the absence of regulation,
this competition in access prices has no effect and networks will be able to sustain monopoly retail prices.
However, a light-handed form of regulation (setting a maximum access price) induces networks to set retail
prices close to marginal cost when networks are sufficiently close substitutes. Also Armstrong and Wright
(2007) and Calzada and Valletti (2008) use models that allow for more than two networks.

4It turns out that the rule that implements the Ramsey outcome in case of linear prices gives firms
incentives to set variable price below cost and high fixed fees, generating a high volume of (off-net) calls for
which negative access charges would have to be paid.
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of the fixed cost per customer). Therefore, maximizing network i’s profit with respect to its

variable price, while maintaining its market share constant, is equivalent to maximizing its

profit per customer, which leads to the marginal cost pricing. When κ 6= 0, under our access

rule, the access payment per customer that network i makes to its rival networks is equal to

a fraction (smaller than one) of its profit per customer (as long as κ ≤ 1). Therefore, our

rule generates the marginal cost pricing as long as κ = 0 does it. We show that this result

is robust: for instance, it holds when networks are asymmetric (either in terms of quality of

their networks or customer brand loyalty) and when networks face heterogeneous customers

and compete with a menu of non-linear tariffs.

Therefore, the regulator can properly choose κ to pursue another goal while achieving

the efficient pricing in terms of variable price. Within our framework the profit neutrality

result5 does not hold since a higher κ intensifies competition in fixed fees. Therefore, κ

can be chosen at a high level in order to increase consumer surplus at the expense of firms’

profits. This also suggests that κ can be chosen to promote penetration in markets where no

full coverage equilibrium exists with fixed access charges. Very interestingly, κ can also be

chosen at a low level in order to increase firms’ profits so as to create incentives for socially

optimal investment in network quality (i.e., to achieve static and dynamic efficiency at the

same time).

Making access prices depend on retail prices is an old idea in the case of one-way access.

The well-known ECPR6 achieves the efficient entry by equalizing the access price that an

entrant should pay to the incumbent with the sum of the cost of providing the access and the

latter’s opportunity cost (i.e., the incumbent’s retail price mark-up) when the incumbent’s

retail price is regulated. However, the ECPR is not good at promoting competition in retail

prices when the retail prices are not regulated since the access price that the incumbent

receives increases with its retail price.7 This motivated Sibley et al. (2004) to consider the

Generalized Efficient Component Pricing Rule (GECPR) in which the access price that an

entrant pays is, roughly speaking, equal to the sum of the cost of providing the access and

the entrant’s opportunity cost (i.e., the entrant’s retail price mark-up). They find that since

the entrant can reduce its access charge payment by lowering its retail price, the GECPR is

5The profit neutrality result refers to the finding of LRT (1998a) that the profit per firm is equal to the
Hotelling profit regardless of the level of access charge.

6See Baumol (1983), Baumol and Sidak (1994) and Willig (1979). For an introduction to the ECPR, see
Armstrong (2002) and Laffont and Tirole (2000).

7Moreover, as Economides and White (1995) point out, the ECPR avoids entry by less efficient entrants
and thus achieves productive efficiency, but this social gain may be more than outweighed by the loss in
consumer surplus by means of foregone competition and high retail prices.
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good at intensifying retail competition.

In the case of two-way access, LRT (1998a) examine various interpretations of the ECPR

in a duopoly framework and show that when networks can privately negotiate on a fixed

level of access price, the ECPR allows them to collude and achieve the monopoly outcome.

More importantly, Mialon (2007) studies the GECPR, considered by Sibley et al. (2004) in

one-way access, in LRT’s framework of duopoly with linear pricing.8 Under the GECPR, the

mark-up of the access price that network i pays to the rival network is equal to the former’s

retail price mark-up. We show that there exists a unique rule achieving the Ramsey outcome

in the set of linear access pricing rules which includes the GECPR as a special case. Since

the optimal rule is different from the GECPR, the GECPR does not achieve the Ramsey

outcome.9

In practice, there are cases in which access prices (or termination charges) are linked

to average retail prices. Some countries use a “retail-minus” approach to set access prices

on the basis of a fixed discount off the corresponding retail prices. (See OECD, 2004.)

Another example of pegging access price to retail tariffs can be found in the international

postal service. For instance, access prices (i.e., what they call “termination dues”) among

European countries should be set at 80% of domestic tariffs (Ghosal, 2002). In the context

of termination charges for mobile phone service, the Australian Competition and Consumer

Commission (2001) adopted what they call a “retail benchmarking approach”, which means

that “access prices for GSM termination will fall at the same rate as retail prices for mobile

services provided by a mobile carrier (p.89).” However, the ACCC retail benchmarking

approach is different from ours in several respects. The most important difference is that

the ACCC linked the access price charged by an operator to the average retail price of

the same operator, similar to what occurs in the ECPR. The ACCC recognized that this

could potentially give disincentives to lower retail prices (p. 75), as we explained above.

However, the ACCC relied on the competitive pressure in the retail market to continue retail

price reductions observed in previous years, which would then imply access price reductions,

which in turn could reinforce lower retail prices. In 2004 the ACCC abandoned their retail

benchmarking approach, mainly because retail prices had in fact not decreased in the period

8Doganoglu and Tauman (2002) also consider a linear access pricing rule which depends on retail price.
More precisely, in their paper, the access price that network i receives from network j is a (positive and)
constant fraction of the linear retail price that network i charges. This rule is included as a special case in
the set of the access pricing rules that we consider. As is explained in section 3, this kind of rule cannot be
optimal since network i has an incentive to increase (rather than reduce) its retail price in order to receive
a higher access payment.

9In fact, the equilibrium price under the GECPR is higher than the Ramsey price.
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2001-2004.10 Another difference between the ACCC approach and our proposal is that the

ACCC considered intertemporal linkages (access prices in the next six month period depend

on retail prices reductions in the last six month period) whereas we consider instantaneous

linkages. A final difference with our rule is that we propose to benchmark retail and access

price mark-ups, whereas the ACCC benchmarked absolute retail and access prices.

Our result in Section 5 that there is a class of access pricing rules which achieve ef-

ficiency when networks face heterogeneous consumers and compete in menus of two-part

tariffs is interesting in its own right. Previously, Dessein (2003) and Hahn (2004) find that

when the access price is equal to the termination cost (i.e., κ = 0), network competition

achieves efficiency. However, in this case, access price disappears from the profit function

and the profit function becomes the same as the one in a standard Hotelling model without

interconnection. This is why they rediscover the efficient two-part tariff result obtained by

Armstrong and Vickers (2001) and Rochet and Stole (2002) in the context of competitive

price discrimination without interconnection. In other words, in Dessein (2003) and Hahn

(2004), efficiency is achieved by making the case with interconnection identical to the case

without interconnection. What we show is that in the presence of interconnection, there is

a class of access pricing rules which achieve efficiency; interconnection provides additional

instruments to achieve efficiency with respect to no interconnection.

Section 2 presents the general model, defines the set of linear access pricing rules and

characterizes the Ramsey outcome. Section 3 considers competition in linear prices: it first

establishes the main result, compares different access pricing rules and discusses the robust-

ness of the result to relaxing the full coverage assumption. Section 4 considers how the rule

can be adapted in a context where firms compete in two-part tariffs by benchmarking the

access price to the average retail price. Section 4.1 shows that a whole class of benchmarking

rules lead to marginal cost pricing. Section 4.2 studies how the regulator can achieve addi-

tional goals such as optimal investment by adequately choosing among these rules and also

shows that the marginal cost pricing result of section 4.1 holds even for asymmetric networks.

Section 5 considers competition in menus of two-part tariffs when there are heterogeneous

consumers and shows that the marginal cost pricing result of section 4.1 continues to hold.

Section 6 concludes. The Appendix gathers omitted proofs.

10See, ACCC (2004).
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2 Framework

2.1 The model

We present a general model of n-network competition which includes the duopoly model of

LRT (1998a) as a special case. There is a mass one of consumers. We will make the standard

assumption of a balanced calling pattern of LRT (1998a), which means that the percentage

of calls originating from a given network and completed on another given (including the

same) network is equal to the fraction of consumers subscribing to the terminating network.

• Individual demand :

Let u(q) be the utility that a consumer derives from placing q volume of calls. The utility

function u(·) is twice continuously differentiable, with u′ > 0, u′′ < 0, which implies that

demand function is differentiable. Let q(·) denote the demand function, given by u′(q(p)) = p

where p is the variable retail price. When network charges pi, the volume of calls placed by

a customer of network i is given by q(pi). Let v(p) be the indirect utility function, i.e.,

v(p) = max
q
{u(q)− pq}.

Let R(p) ≡ (p− c)q(p). We assume that R(p) has a unique maximum at p = pm, is strictly

increasing when p < pm and strictly decreasing when p > pm. Therefore, pm denotes the

monopoly price. Let Rm = R(pm). We assume limp→∞ R(p) = 0.

• Firm’s demand (or market share):

The networks (i.e., firms) provide horizontally differentiated services and each network

can cover all the consumers. Consider first competition in two-part tariffs: firm i chooses

tariff Ti = Fi + piq. Given (pi, Fi), let wi ≡ v(pi) − Fi. Then the utility that a consumer x

derives from subscribing to network i is given by:

wi − T (x, i),

where T (x, i) denotes consumer x’s disutility from not being able to consume her preferred

service.11 Let w ≡ (w1, ...wn) and w−i ≡ (w1, .., wi−1, wi+1, ..., wn). Let αi(wi;w−i) denote

the measure of consumers subscribing to network i. We assume that αi(w) satisfies the

following properties:

11In the standard duopolistic Hotelling model one has T (x, 1) = tx and T (x, 2) = t(1 − x) where t is
interpreted as transportation cost.
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Property 1 (symmetry): For any vector w with wi = wj for some i and j, we have

αi(w) = αj(w).

Property 2 (monotonicity): For any i, j = 1, ..., n and i 6= j, αi(wi;w−i) is differen-

tiable with respect to wi and each wj and increases with wi and decreases with wj; it strictly

increases with wi and strictly decreases with wj for αi ∈ (0, 1).12

Property 3 (full coverage):
∑n

i=1 αi(wi;w−i) = 1 for all relevant w ∈ <n
+.

Properties 1, 2, and 3 are satisfied by the Hotelling model of LRT (1998a) and the

circular city model with n = 2 or 3 (Salop, 1979). For n > 3, our model is more natural

than the circular city model since in the latter, a (minor) price change of network i affects

only the demands of its direct neighbors (network i − 1 and network i + 1) but does not

affect the demands of other networks. In the context of telecommunication markets all

networks compete directly with each other for all customers, and not only with two artificial

”neighbors” for a specific subset of consumers. Symmetry and full coverage together imply

that αi = 1
n

for all i = 1, ..., n if wi = w for all i = 1, ..., n. Regarding the full coverage

property, LRT (1998a) assume that each consumer derives, in addition to u(q), a constant

utility v0 from subscribing to one of the networks, which is large enough to ensure that all

consumers always choose to join one of the networks. Since the total mass of consumers is

equal to one, under full coverage, the mass of consumers subscribing to network i (i.e., αi)

is equal to network i’s market share.

In the case of competition in linear prices, let p ≡ (p1, ..., pn) ∈ <n
+ represent the vector

of retail prices and let p−i ≡ (p1, .., pi−1, pi+1, ..., pn). Since wi strictly decreases with pi, it

is more convenient to work with αi(pi;p−i) than with αi(wi;w−i). Obviously, properties 1-3

imply that similar properties hold for αi(pi;p−i). Of course, αi(pi;p−i) decreases with pi

and increases with pj.

• Cost :

Concerning the cost side, we use the same technology that is used in LRT (1998a).

Serving a customer involves a fixed cost f > 0, say of connecting the customer’s home to

the network and of billing and serving her. We assume Rm > f . A network also incurs a

marginal cost c0 ≥ 0 per call at the originating and terminating ends of the call and marginal

12Property 2 can be more rigorously defined as follows. Given w−i, let wi be the minimum wi making
αi(wi;w−i) = 1 and let wi be the maximum wi ∈ <+ making αi(wi;w−i) = 0. Then, αi strictly increases
with wi for wi ∈ [wi, wi]. Similarly, given w−j with j 6= i, let wj be the minimum wj ∈ <+ making
αi(wi;w−i) = 0 and let wj be the maximum wj ∈ <+ making αi(wi;w−i) = 1. Then, αi strictly decreases
with wj for wj ∈

[
wj , wj

]
.
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cost c1 ≥ 0 in between. Therefore, the total marginal cost of a call is

c ≡ 2c0 + c1 > 0.

2.2 Access pricing rules

We consider simple access pricing rules which are not informationally demanding. More

precisely, the informational constraint that the regulator faces is defined as follows.

• The regulator’s informational constraint :

On the one hand, we assume that the regulator (or the competition authority) has limited

information about the market such that she is not informed about the individual demand

function q(p), each firm’s demand function and the value of the fixed cost f . On the other

hand, she knows the marginal cost c and the termination cost c0. Furthermore, she and con-

sumers observe retail prices (p1, ..., pn) or [(p1, F1), ..., (pn, Fn)]. Moreover, when we consider

competition in two-part tariffs, we need to assume that the regulator can observe average

retail prices,13 which means that she must be able to observe realized demand.

The firms are assumed to know all the relevant information regarding both the demand

and the cost sides.

• The linear access pricing rules :

Let aij with i 6= j denote the access charge that network i pays to network j. Consider

competition in linear prices. In order to consider simple rules, we limit our attention to the

following linear access pricing rules:

aij − c0 = h(pi, pj, c) = h1pi + h2pj + h3c + h4 for any i, j = 1, ..., n and i 6= j, (1)

where (h1, h2, h3, h4) ∈ <4 is a vector of constants. Note that we consider a reciprocal access

pricing rule since the coefficients (h1, h2, h3, h4) do not depend on firms’ identities. This is

without loss of generality given that we consider symmetric networks.14 Let ΛL
n be the set of

linear access pricing rules satisfying the above form (1). Some special cases of linear access

pricing rules are:

13For instance, the Spanish telecommunication agency (Comisión del Mercado de las Telecomunicaciones)
publishes data on each network’s average price.

14In the case of asymmetric networks, we need to consider non-reciprocal rules such that the coefficients
depend on the firms’ identities.
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• Cost based access pricing rule: aij = c0.

• Efficient component pricing rule (ECPR): aij − c0 = pj − c.

• Generalized efficient component pricing rule (GECPR): aij − c0 = pi − c.

• Bill and keep: aij = 0.

In the case of the ECPR, the access price that network i pays to network j is the sum

of the termination cost and network j’s retail price mark-up. In contrast, in the case of the

GECPR, the access price that network i pays to network j is the sum of the termination

cost and network i’s retail price mark-up (Sibley et al. 2004, Mialon 2007).

2.3 Ramsey benchmark

For future reference, we derive the social optimum in the ideal case in which the regulator

knows all the relevant information and can dictate the prices under the constraint that the

industry breaks even. Under linear pricing, consumer variable welfare is

W (p) =
n∑

i=1

αi(p)v(pi)− T [α1(p), ..., αn(p)] (2)

where T (α1, ..., αn) denotes the average consumer’s utility from not being able to consume

her preferred service. We assume that T (α) is minimized at equal market share αi = 1
n
.

The industry budget constraint is

n∑
i=1

αi(p)R(pi) = f. (3)

Maximizing (2) subject to (3) yields a symmetric solution, pi = pR for all i = 1, ..., n,

where the Ramsey price pR is the lowest price that satisfies the budget constraint:

R(pR) = f.

Since we assume Rm > f , we have pR < pm. Let q(pR) ≡ qR.

Clearly, in the case of competition in two-part tariffs, it is socially optimal to set a two-

part tariff with variable price c and fixed fee F ≥ f . T (α) is minimized at equal market

share αi = 1
n
.
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2.4 Timing

The timing of the game we consider is the following:

1. The regulator chooses a linear access pricing rule in ΛL
n .

2. All networks simultaneously choose retail prices.

3. Consumers make subscription and consumption decisions.

3 Linear Pricing

In this section, we consider competition in linear prices. We call R(pi) (respectively, R(pi)−f)

network i’s gross (respectively, net) retail profit per customer. We below introduce two more

properties. Property 4 is about the degree of substitutability among the networks. Because

of our assumptions on R(p), there exists a p > pm such that R(p) = f . We assume in this

section:

Property 4 (substitutability): αi(p) = 0 if pi ≥ p̄ and pj = pm for some j 6= i.

The property says that a firm charging a high price yielding a negative gross retail profit

per customer will have no market share if there is at least one competitor charging no more

than the monopoly price. Hence the property guarantees that there is at least some mild level

of substitutability. The assumption will be used to exclude the possibility of an equilibrium

in which some firm charges such a high price. The only reason such a firm could survive

is because of the revenue from access prices charged to its competitors. However, such a

situation seems unstable in practice as the competitors could drive this firm out of business

by lowering their prices.

Property 5 is a technical assumption to eliminate asymmetric equilibria for n ≥ 3:

Property 5 (proportional market share increases): Let i, j and k be three different

firms and consider price vectors p and p̂ with pk < p̂k and pm = p̂m for all m 6= k. If

αj(p) > 0, then αi(p̂)/αj(p̂) = αi(p)/αj(p).

Property 5 says that the ratio of market shares of any two firms is not affected by a

price increase by a third firm. It is automatically satisfied when n = 2 and is introduced

to exclude asymmetric equilibria when n ≥ 3. Together with the full coverage property this

property means that all clients lost by the third firm will go to the competitors and each

competitor’s market share will increase by the same percentage.

10



3.1 The main result

We can now state the main result for the case of competition in linear prices.

Proposition 1 For any demand structure satisfying Properties 1-5 and for n ≥ 2, there is

a unique linear access pricing rule in ΛL
n defined by aij − c0 = n

n−1
(pi − c) that implements,

independently of the underlying demand conditions, the Ramsey outcome (pi = pR for all

i = 1, ..., n) as a Nash equilibrium. Moreover, this equilibrium is symmetric and unique.

Note first the remarkable result that the optimal rule implementing the Ramsey outcome

does not depend on the demand structure as long as it satisfies Properties 1-5. In what

follows, we first prove that there is only one access pricing rule that can have the Ramsey

outcome as an equilibrium, independent of the demand conditions. We then show that under

this rule the Ramsey outcome is indeed a symmetric equilibrium and provide the intuition.

The proof that no other, symmetric or asymmetric, equilibrium exists is provided in the

Appendix. In section 3.2 we compare different access pricing rules in an intuitive way and

provide numerical examples. In section 3.3, we discuss the robustness of our rule when we

relax the full coverage assumption (property 3).

3.1.1 Uniqueness of the candidate rule to achieve the Ramsey outcome

Given a linear access pricing rule belonging to ΛL
n , the profit of network i is given by:

Πi(pi : p−i) = αi {(pi − c)q(pi)− f}+
∑

j 6=i

αiαj {h(pj, pi, c)q(pj)− h(pi, pj, c)q(pi)} , (4)

where the first term represents the retail profit and the second term represents the net access

revenue (or deficit).

We show that among all the access pricing rules belonging to ΛL
n , there is a unique

candidate rule that satisfies a necessary condition to implement the Ramsey outcome (pi =

pR for i = 1, ..., n). From (4), the first-order derivative of Πi with respect to pi is given by:

∂Πi

∂pi

=
∂αi

∂pi

{(pi − c)q(pi)− f}+ αi

{
q(pi) + (pi − c)

dq(pi)

dpi

}
(5)

+
∑

j 6=i

[
∂αi

∂pi

αj +
∂αj

∂pi

αi

]
{h(pj, pi, c)q(pj)− h(pi, pj, c)q(pi)}

+αi

∑

j 6=i

αj

{
h2q(pj)− h1q(pi)− h(pi, pj, c)

dq(pi)

dpi

}
.
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As Πi is a differentiable function of pi, a necessary condition to implement the Ramsey

outcome is that the first-order derivative is zero at pi = pR when all the other networks

charge pj = pR for j 6= i. We have R(pR) = f and h(pj, pi, c)q(pj) = h(pi, pj, c)q(pi) at

the symmetric equilibrium candidate with the Ramsey price, implying that the first and the

third terms are zero in the above first-order derivative. Since q(pi) = qR and αi = 1
n

for

i = 1, ..., n at the symmetric equilibrium candidate, the necessary condition holds only if the

following conditions are satisfied by h(pi, pj, c):

1 +
n− 1

n
(h2 − h1) = 0

pR − c− n− 1

n

[
(h1 + h2) pR + h3c + h4

]
= 0.

Given the regulator’s informational constraint introduced in section 2.2, we find from the

two conditions that h1 = n
n−1

, h2 = 0, h3c + h4 = − n
n−1

c. Therefore, we obtain the unique

candidate in the set of linear access pricing rules as follows:

aij − c0 =
n

n− 1
(pi − c). (6)

3.1.2 Ramsey prices constitute a symmetric equilibrium

We now show that under the access pricing rule aij − c0 = n
n−1

(pi− c), the Ramsey outcome

with pi = pR for i = 1, ..., n is indeed a symmetric equilibrium. Given the access pricing rule

(6), network i’s profit is given by:

Πi(pi : p−i) = αi [R(pi)− f ] +
n

n− 1
αi

∑

j 6=i

αj [R(pj)−R(pi)] (7)

Suppose that all the other networks except network 1 charge pR. Then, because of the

symmetry and the full coverage, we have α2 = ... = αn = 1−α1

n−1
and network 1’s profit is

given by;

Π1(p1 : pR, ..., pR) = α1 [R(p1)− f ] +
n

n− 1
α1(1− α1) [f −R(pi)]

=
nα1

n− 1

(
α1 − 1

n

)
[R(p1)− f ] .

Note first that Π1 = 0 when p1 = pR and Π1 = 0 for p1 ≥ p under Property 4. Consider any

p1 with p1 < pR. Then, we have α1 > 1
n

and R(p1) < f , implying Π1 < 0. Consider now

p1 ∈
(
pR, p

)
. Then, we have α1 < 1

n
and R(p1) > f , implying Π1 < 0 if α1 > 0. Therefore,

12



the symmetric equilibrium always exists.

To give the intuition, we consider the case of n = 2 and examine network 1’s price choice

given p2 = pR. Consider first p1 ∈
(
pR, p

)
. In this case, network 1’s retail profit per customer

is R(p1) − f > 0. Its access revenue per customer is 2(1 − α1)R(p2) = 2(1 − α1)f while its

access payment per customer is 2(1− α1)R(p1), implying that it has a net access deficit per

customer equal to 2(1 − α1) [f −R(p1)]. Since α1 < 1
2

for p1 ∈
(
pR, p

)
, the access deficit

is larger than the retail profit and therefore the firm makes a loss. In contrast, in the case

of p1 < pR, the firm has a retail deficit per customer equal to R(p1) − f < 0 while it has

a net access profit per customer equal to 2(1 − α1) [f −R(p1)]. Since α1 > 1
2
, the access

profit is not large enough to cover the retail deficit and the firm’s profit is still negative. In

other words, the coefficient in the optimal linear access pricing rule (2 when n = 2) is such

that (i) when p1 = pR, network 1’s profit is zero; (ii) when p1 ∈
(
pR, p

)
, its retail profit per

customer is smaller than its net access deficit per customer, implying that it makes a loss;

and (iii) when p1 < pR, its retail deficit per customer is larger than its net access revenue

per customer, still implying that it makes a loss.

Note that in LRT (1998a), the non-existence of equilibrium occurs since a network can

have an incentive to corner the market by deviating to a price lower than the price in the

equilibrium candidate. In our equilibrium achieving the Ramsey outcome, no cornering

strategy is profitable since it requires the deviating network to charge a price lower than pR,

implying that the firm makes a loss after cornering the market.

3.2 Comparison with other rules when n = 2

Suppose that the regulator should choose an access pricing rule without knowing the demand

structure while she only knows the marginal cost structure (c, c0). Consider duopolistic

competition15 and, for simplicity, let ai denote the access charge that network i pays to the

rival network. Then, from Proposition 1, we have the following corollary.

Corollary 1 Consider duopoly networks. Under Properties 1-4, the social welfare is strictly

higher under the access pricing rule ai−c0 = 2(pi−c) than under any other fixed access price

(including ai = c0), under the ECPR (ai − c0 = pj − c, for i 6= j) and under the GECPR

(ai − c0 = pi − c).

In order to give the intuition, we examine the first order derivative of network i’s profit

in each access pricing rule assuming that a symmetric equilibrium with p1 = p2 = p < pm

15The intuition obtained in this section applies to the case of n > 2 as well.
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exists under each rule.

First, under a fixed and reciprocal access price a1 = a2 = a, network i’s profit is given

by:

Πi(pi; pj) = αi [R(pi)− f ] + αi(1− αi)(a− c0) [q(pj)− q (pi)] .

Therefore, the first-order derivative with respect to pi at pi = pj = p is given by:

[R(p)− f ]
dαi

dpi

+
1

2

dRi

dpi

− (a− c0)

4

dq(pi)

dpi

. (8)

Consider first the case of the marginal cost pricing (a = c0). In this case, for any market

share, each network has zero net access profit. Since dαi

dpi
< 0 < dRi

dpi
, the first order condition

holds only for p > pR such that R(p) > f . Hence, the marginal cost pricing cannot achieve

the Ramsey outcome. From (8), it is clear that as the access price becomes larger than the

termination cost, network i has an extra incentive to raise pi since by reducing the demand

of its own customers, it can reduce its access payment. Since an increase in the reciprocal

access price results in an increase in the retail price, LRT (1998a) find that networks can

achieve the monopoly outcome if they can choose access price through private negotiation.

In contrast, as the access price becomes smaller than the termination cost, network i has an

extra incentive to reduce pi in order to increase its access revenue. This is why LRT (1998a)

find that the Ramsey access charge requires an access charge lower than the termination

cost. More precisely, they find that Ramsey access charge, denoted by aR, is given by:

aR − c0

2
= −(1− 1

η
)(pm − pR),

where η is the elasticity of demand and is assumed to be constant and larger than 1. Note

that in order to be able to compute the Ramsey access price, the regulator should have

precise knowledge about the demand structure and the fixed cost (f) such that she should

be able to compute η, pm and pR. Furthermore, LRT (1998a) show that the equilibrium

does not exist for a 6= c0 if the degree of substitutability of the two networks is high enough.

Second, in the case of the ECPR, network i’s profit is given by:

Πi(pi; pj) = αi [R(pi)− f ] + αi(1− αi) [q(pj)(pi − c)− q (pi) (pj − c)] .
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Therefore, the first-order derivative with respect to pi at pi = pj = p is given by:

[R(p)− f ]
dαi

dpi

+
1

2

dRi

dpi

+
1

4

[
q(p)− (p− c)

dq(pi)

dpi

]
. (9)

The first two terms in (9) are what we found in the first-order derivative under a = c0 and

have to do with the retail profit. The last term in (9) has to do with the access revenue

and since p > c and dq(pi)
dpi

< 0, it induces network i to increase its retail price. Since under

the ECPR a network can increase its access revenue by increasing its retail price, the ECPR

induces each network to choose a price higher than the one under a = c0.

Last, consider the following rule ai − c0 = κ(pi − c) where κ(≥ 0) is a constant. For

instance, if κ = 1, we have the GECPR and if κ = 0, we have the marginal cost access

pricing. Then, network i’s profit is given by:

Πi(pi : pj) = αi [R(pi)− f ] + καi(1− αi) [R(pj)−R(pi)] .

Therefore, the first-order derivative with respect to pi at pi = pj = p is given by:

[R(p)− f ]
dαi

dpi

+
1

2

dRi

dpi

− κ

4

dRi

dpi

. (10)

The first two terms in (10) are what we found in the first-order derivative under a = c0 and

have to do with the retail profit. The last term in (10) has to do with the access revenue

and, since dRi

dpi
> 0, an increase in κ induces network i to reduce its retail price. This implies

that the retail price under the marginal cost pricing (i.e., κ = 0) is higher than the retail

price under the GECPR (i.e., κ = 1), which in turn is higher than the retail price under

our retail benchmarking rule (i.e., κ = 2). Note that from (10), when κ = 2, the only price

satisfying the first-order condition is the Ramsey price.

Table 1 summarizes the quantitative effects of the different access pricing rules for a

numerical example employing the duopoly Hotelling model with consumers having demand

function with constant elasticity. For this table we used the following parameters: η = 1.5,

c0 = 0.05, c = 0.12, f = 0, σ = 0.001 and utility function u(q) = 300q1/3. In this case

monopoly price would equal pm = 0.36. Consumer surplus (CS) is defined as the indirect

utility v(p∗). Note that no equilibrium exists in this case under the ECPR rule.

Table 2 summarizes the quantitative effects of the different access pricing rules for a

numerical example employing the duopoly Hotelling model with consumers having linear
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retail price profit/firm CS TS
Bill and Keep 0.21 46.36 438.64 485.00
Cost-based 0.25 52.32 397.01 449.33
ECPR na na na na
GECPR 0.21 46.19 439.58 485.77
Ramsey 0.12 0.00 577.35 577.35

Table 1: Numerical results for different access pricing rules with constant elasticity demand.

demand. For this table we used the following parameters (also employed by Carter and

Wright (1999)): c0 = 0, c = 1, f = 0, σ = 0.01 and demand function q(p) = 10− p. In this

case monopoly price would equal pm = 5.5. Again, consumer surplus (CS) is defined as the

indirect utility v(p∗). Note that Bill and Keep and cost-based regulation in this case yield

the same results since a = c0 = 0.

More generally, LRT (1998a) have shown that as long as a symmetric equilibrium exists,

the equilibrium price is increasing in a. Moreover, the optimal fixed access fee aR that

induces the Ramsey outcome always satisfies aR < c0 and may even be negative. Hence, if

aR < 0 < c0, Bill and Keep will always outperform cost-based regulation. For example, for

the parameters used in Table 1, aR = −0.11 and Bill and Keep leads to a price closer to the

Ramsey price than cost-based regulation does. Since negative access prices are impossible to

implement in practice, Bill and Keep would seem to be the best option for the regulator. It

is of course outperformed by our rule which would lead to an endogenous access prices equal

to c0 + 2(pR − c) = 0.05. On the other hand, if 0 < aR < c0, Bill and Keep would lead to

prices below Ramsey which means that firms make losses. Hence, in such a case there exists

no symmetric equilibrium under Bill and Keep. This would be the case for the parameters

used in Table 1 but with f = 111. In this case pR ≈ 0.3421 and aR ≈ 0.0381. Our rule leads

to an endogenous access price equal to c0 + 2(pR − c) ≈ 0.494.

retail price profit/firm CS TS
Bill and Keep 4.44 9.56 15.48 25.03
Cost-based 4.44 9.56 15.48 25.03
ECPR 5.35 10.11 10.83 20.94
GECPR 3.41 7.94 21.73 29.67
Ramsey 1.00 0.00 40.50 40.50

Table 2: Numerical results for different access pricing rules with linear demand.
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3.3 Robustness: relaxing full coverage

In this part, we discuss the robustness of our results to relaxing the full coverage assumption

(property 3). Hence, we here assume that
∑n

i=1 αi(p : p, ..., p) strictly decreases with p. We

continue to normalize the mass of potential consumers at one. Since
∑n

i=1 αi(p : p, ..., p)

represents the total mass of consumers who subscribe to one of the networks, it cannot be

larger than one. In this setting, the Ramsey price is still characterized by R(pR) = f . Let

αi(p
R : pR, ..., pR) = αR > 0. Then, we have the following result:

Proposition 2 Suppose that
∑n

i=1 αi(p : p, ..., p) strictly decreases with p. For any demand

structure satisfying Properties 1, 2, 4,

(i) there is a unique linear access pricing rule in ΛL
n defined by aij− c0 = 1

αR(n−1)
(pi− c) that

satisfies a necessary condition to achieve the Ramsey outcome (pi = pR for i = 1, ..., n) as

an equilibrium

(ii) under the rule, pi = pR for i = 1, ..., n is an equilibrium.

Note that the access pricing rule in Proposition 2 generalizes the one in Proposition 1

since under the full coverage, αR = 1
n
.

Remark 1: Even though we relax the full coverage assumption, the rule presented in

Proposition 1 implements the Ramsey outcome if the market is mature in that the total mass

of consumers choosing to join one among the networks is equal to one at the Ramsey price.

Otherwise, the regulator needs to know αR and in this sense the optimal access pricing rule is

informationally demanding. However, even when it is difficult for the regulator to know αR,

this does not imply that she should adopt one of the alternative access pricing rules presented

in Section 2.2. As the comparison of different rules in Section 3.2 has shown, the intuition

that one can intensify the retail competition by making the access price that network i

pays to other networks increase with its retail price holds generally. More precisely, since

αR ≤ 1/n holds, we have 1
αR(n−1)

≥ n/(n− 1). Therefore, one can use the access pricing rule

presented in Proposition 1, aij − c0 = n
n−1

(pi − c): although the equilibrium price under the

rule is higher than the Ramsey price, it is lower than the equilibrium price under any fixed

access price (larger than the termination cost), or under the ECPR or under the GECPR.

Furthermore, the previous rule is not informationally demanding.
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4 Two-part tariffs

Although linear prices are used in practice, especially for pre-paid cards in the mobile

telecommunication market, non-linear prices are also heavily used. Moreover, the litera-

ture has embraced two-part tariff competition as the standard. In this section we study

competition in two-part tariffs when our rule is adapted to make access charges depend (lin-

early) on average retail prices. After showing in section 4.1 that the class of rules we consider

induces networks to choose the marginal cost pricing in a general setting, we investigate in

section 4.2 other properties of our rules in a duopoly model à la LRT (1998a).

It is clear that firms would prefer to use two-part tariffs rather than linear prices. Namely,

when firms are allowed to use a two-part tariff, they will in general find it optimal to set a

strictly positive fixed fee to extract consumer surplus. If one would naively use the access

pricing rule that is optimal in the case of linear prices (i.e., aij = c0 + n
n−1

(pi− c)) when firm

i uses tariff Ti = Fi + piq, no symmetric equilibrium would exist.16 Therefore, the rule needs

to be adapted to give sensible and satisfactory results. Inspired by the previous discussion,

we propose to make the access charge paid by firm i depend linearly on its average retail

price as follows:

ai = c0 + κ

(
Fi + piq(pi)

q(pi)
− c

)
, (11)

where ai represents the access charge that firm i pays to each rival firm. Since it only depends

on firm i’s retail prices, we use ai instead of aij for simplicity.

4.1 A main result: marginal cost pricing

Under the standard full coverage assumption, we find, as a main result, that firms always

will set variable price equal to marginal cost c, independently of κ and their market shares,

for all κ ≤ 1. In what follows, we first explain intuitively why the class of access pricing

rules we consider generates the marginal cost pricing.

Given (pi, Fi), the net surplus of a consumer of network i is given by:

wi = v(pi)− Fi.

16More precisely, firms would have incentives to reduce variable price below cost (for example, to zero if
negative prices are not allowed) so that access charge becomes negative. Each network would then receive
money from its rival for each off-net call made by its subscribers. This then leads the firms to compete for
market share by reducing fixed fees resulting in huge losses.
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Let w ≡ (w1, ..., wn). The market share of network i is given by αi(w). For instance, in the

Hotelling model of duopoly (LRT, 1998a,b), we have

αi =
1

2
+ σ(wi − wj),

where σ ≡ 1/(2t) and t is the transportation cost in the Hotelling model. We first consider

the case of κ = 0 which corresponds to ai = c0. Then, network i’s profit is given by:

Πi(pi, Fi) = αi [(pi − c)q(pi) + Fi − f ] = αiπi − αif.

where πi ≡ (pi − c)q(pi) + Fi represents network i’s retail profit per customer gross of the

fixed cost f . It is useful to think that network i chooses (pi, wi) instead of (pi, Fi). Then,

we have:

Πi(pi, wi) = αi [(pi − c)q(pi) + v(pi)− wi − f ]

= αi [u(q(pi))− cq(pi)− wi − f ] .

Given wi (hence, given αi), maximizing Πi with respect to pi is equivalent to maximizing

total surplus, which leads to the marginal cost pricing (i.e., pi = c) for any αi as LRT (1998a)

show.

Consider now κ 6= 0. Then, we have the following expression for network i’s profit:

Πi(pi, Fi) = αi {[(pi − c− (1− αi)(ai − c0)] q(pi) + Fi − f + Σj 6=iαj(aj − c0)q(pj)} .

In particular, from (11) the total access payment (net of the total termination cost) that

network i makes to network j is given by:

αi(1− αi)(ai − c0)q(pi) = αi(1− αi)κπi.

The above equation shows that network i’s access payment (net of the termination cost)

per customer is a fraction (1− αi)κ of its retail profit per customer πi. Inserting the above

expression into the profit function leads to

Πi(pi, Fi) = αi [(1− κ(1− αi))πi − f + κΣj 6=iαjπj] , (12)
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which is equivalent to

Πi(pi, wi) = αi [(1− κ(1− αi))(R(pi) + v(pi)− wi)]− αif + αiκΣj 6=iαjπj. (13)

Therefore, as long as (1 − κ(1 − αi)) ≥ 0 (which is satisfied when κ ≤ 1), the profit

maximization with respect to pi for given wi leads to the marginal cost pricing (i.e., pi = c)

for any αi and for any κ ≤ 1. The intuition is clear from (13). Given wi (hence, given αi),

when we maximize Πi with respect to pi, only the first term matters in (13) and therefore

maximizing Πi is equivalent to maximizing the profit per customer πi as is the case when

κ = 0. This is because, under our access pricing rule, network i’s access payment (net of the

termination cost) per customer is just a fraction of its retail profit per customer.

The above intuition suggests that our access pricing rule gives the marginal cost pricing

under various circumstances; as long as ai = c0 generates the marginal cost pricing, our

access pricing rule generates the marginal cost pricing as well. In fact, we show this later

on when firms can invest to improve quality of their networks or when firms are asymmetric

in terms of customer brand loyalty or when firms compete by providing menus of two-part

tariffs to heterogeneous customers .

The following proposition presents our main result:

Proposition 3 Assume Properties 1-3. (i) For any n ≥ 2 and κ ≤ 1, all networks choose

the same variable price p = c.

(ii) More specifically, in the case of the Hotelling duopoly model (LRT, 1998a,b), when

κ ≤ 1 and for small enough σ > 0, there exists a unique equilibrium, which is symmetric.

In the equilibrium, networks charge variable price p = c and fixed fee F = f + (2− κ)/(4σ).

Equilibrium profits per firm equal (2− κ)/(8σ).

Hence, for any κ ≤ 1 we obtain efficient pricing. By varying κ we can address and achieve

further objectives, without distorting the efficient marginal cost pricing result. Furthermore,

proposition 3(ii) shows that the profit is not neutral and decreases with κ. Given a reduction

in network i’s fixed fee, an increase in κ increases i’s benefit from the resulting reduction in

its access payment. Therefore, an increase in κ intensifies competition in terms of the fixed

fee and thereby decreases the profit. This implies that, by increasing κ, the regulator or

competition authority can improve consumer welfare at the expense of firms’ profits.

However, we cannot push firms’ profits all the way to zero. Namely, this would require

firms to set the competitive schedule T = f + cq, which in turn requires setting κ = 2. But
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this cannot be an equilibrium since the average price at this equilibrium is strictly above c,

so that access charge is above marginal cost. Then, a network could deviate by offering a

schedule T̃ = F̃ + p̃q, where 0 < p̃ < c and F̃ = −(p̃ − c)q(p̃), such that its average price

is exactly equal to marginal cost c and such that its market share α̃i is positive but less

than one half. The deviating firm then pays an access fee equal to termination cost c0 so

that both on-net and off-net calls are at marginal cost c, which in turn equals average price.

It thus would earn zero net profits from calls made by its own subscribers but would then

make strictly positive profits because the net access revenue exceeds the incurred fixed costs:

2(1− α̃i)α̃if > α̃if .

4.2 Extensions

In this subsection, we consider several extensions of the model. We show that the marginal

cost pricing result is robust and holds even when firms are asymmetric in terms of brand

loyalty, network quality and/or market share. We also show that the regulator can pursue

other objectives without compromising the efficient pricing result. In particular, he can

induce efficient investment or promote penetration. For ease of exposition, in this subsection

attention is restricted to the duopolistic Hotelling model à la LRT (1998a).

4.2.1 Investment

Valletti and Cambini (2005) analyze the effects of fixed access fees on firms’ incentives to

invest in the quality of their network. They find that even if access charge is fixed at marginal

cost of termination, quality decisions are strategic substitutes, and firms underinvest in

quality. Moreover, they show that the underinvestment is even more severe when access

charges are raised (slightly) above the marginal cost of termination, since the network with

the highest quality will have more calls going out to the other network than calls coming in

from the other network and will therefore run an access revenue deficit. Since investments

do not increase gross industry profits because of the profit neutrality result, Valletti and

Cambini (2005) find that if firms can freely negotiate reciprocal access charges they will

set it above marginal cost, which would imply even lower investment levels and inefficiently

high usage fees. To induce efficient investment levels one needs to set access charges below

marginal cost of termination. In order to calculate this optimal access fee the regulator needs

information about demand. Moreover, when access fee is set in this way, usage fee will be

inefficiently low (below marginal cost). That is, to induce dynamic efficiency one is forced
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to lose static efficiency.

In this subsection we adopt Valletti and Cambini’s (2005) framework of investment but

access charges are defined by our retail benchmarking rule (11). We show that for any κ ≤ 1

the rule induces firms to set usage fee equal to marginal cost. Moreover, by choosing κ

appropriately (below zero), one can induce socially efficient investment. In addition, setting

the appropriate κ does not require knowledge of the demand function. Finally, it is shown

that firms may obtain higher net profits under this socially optimal rule than with any fixed

access fee.

Following Valletti and Cambini (2005) we assume that firms in a first stage invest in

quality ρi ≥ ρ̄ > 0, and that they afterwards compete in two-part tariffs Ti = Fi + piq. The

cost of investment is given by the convex function I(ρi). Each subscriber subscribes to exactly

one of both networks and a subscriber to network i makes ρiq(pi) calls and receives indirect

utility ρiv(pi). We first find the socially optimal investment in a symmetric equilibrium

ρi = ρj = ρ. Assume pi = pj = c, which is required by static efficiency. Then, the socially

optimal ρ is determined by maximizing ρv(c)− 2I(ρ), which gives v(c) = 2I ′(ρ).

Now we turn to the competition between the two networks. Since we will need to know

which two-part tariffs firms set when they are of different quality, we will not be able to

restrict attention at the pricing stage to symmetric equilibria. Given ρ1 and ρ2, gross profit

of network i (not including investment costs) is given by

Πi(p, w) = αi

[
(1− κ(1− αi))(ρiR(pi) + ρiv(pi)− wi − f) + κ(1− αi)(ρjR(pj) + ρjv(pj)− wj − f)

]
.

Thus
∂Πi

∂pi

= αi(1− κ(1− αi))ρi(pi − c)q′(pi)

and we obtain again the marginal cost pricing result, independently of κ, ρi and ρj as long

as κ ≤ 1.

Fixed fees will turn out to depend on networks’ qualities. Namely, given p1 = p2 = c, we

have

∂Πi

∂wi

= σ[(1− κ(1− αi))(ρiv(c)− wi − f) + κ(1− αi)(ρjv(c)− wj − f)]

+αi[−1 + κ(1− αi) + κσ[(ρi − ρj)v(c)− wi + wj]].
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The first order conditions can be solved explicitly to yield

wi =
−6 + 3κ + 4σv(c)(2ρi + ρj) + 4κ(σv(c))2(ρi − ρj)

2

12σ
− f

and

αi =
3 + 2σv(c)(ρi − ρj)

6
. (14)

Net profits in the second stage are then given by

Πi(ρi, ρj) =
(3 + 2σv(c)(ρi − ρj))

2(6− κ(3 + 2σv(c)(ρi − ρj)))

216σ
− I(ρi).

Taking first order derivatives and looking for a symmetric equilibrium in qualities yields

ρi = ρ where the latter solves

I ′(ρ) = v(c)(4− 3κ)/12.

Since I(·) is convex and v(c) is positive, it follows immediately that equilibrium investment is

decreasing in κ. Letting κ = 0 corresponds exactly to Valletti and Cambini’s (2005) case of

cost based access price regulation where firms invest at the inefficiently low level determined

by I ′(ρ) = v(c)/3. By setting κ = −2/3 one obtains 2I ′(ρ) = v(c), which corresponds to

the efficient level of investment. The negative factor κ means that access charges are below

marginal cost. The intuition for the result that κ should be set below zero is similar to

the one underlying the result of Valletti and Cambini (2005) that a fixed access price should

optimally be set below the termination cost, but is even clearer. Namely, in our case variable

prices in the second stage are always equal to marginal cost. Since consumers at the higher

quality network make more calls, the higher quality network will have more outgoing than

incoming calls (independently of the market shares), so that when access charge is above

marginal cost (that is, κ > 0), it will suffer from an access revenue deficit. This reduces

firms’ incentives to invest in the quality of their network in comparison with the situation

where access charge is equal to marginal cost (κ = 0). When access charge is below marginal

cost (that is, κ < 0), the effect is opposite and this increases firms’ incentives to invest.

An important difference with respect to Valletti and Cambini (2005) is that here we can

induce efficient investment without distorting efficient pricing, since for any κ ≤ 1, variable

usage prices will be set to true marginal cost, independently of the qualities of the networks.

Under any fixed access charge a 6= c0, variable usage price will be set equal to perceived

23



marginal cost, which is not equal to true marginal cost, and is thus necessarily inefficient.

Moreover, it makes the computation of equilibria in the investment stage very cumbersome.

Indeed, Valletti and Cambini (2005)’s main results are about marginal deviations from cost

based access charges.

Summarizing, we have:

Proposition 4 In the Hotelling model of LRT (1998a), suppose that networks invest in

quality (ρ1, ρ2) (≥ (ρ̄, ρ̄)) after the access pricing rule is determined and before they engage

in competition in two-part tariffs.

(i) For any (ρ1, ρ2) ≥ (ρ̄, ρ̄) and for any κ ≤ 1, each network chooses the variable price

equal to the marginal cost.

(ii) When κ = −2/3, each network has a socially efficient incentive to invest. In other

words, κ = −2/3 achieves both the static efficiency and the dynamic efficiency.

It is worthwhile to compare the profits of firms in the symmetric equilibrium under

our optimal benchmarking rule with κ = −2/3 with those under cost based access charges

(κ = 0). In the first case they are equal to 1/(3σ) − I(ρ∗) (where ρ∗ denotes the socially

efficient level of investment determined by I ′(ρ∗) = v(c)/2), while in the second case they

are equal to 1/(4σ) − I(ρ) (where ρ is determined by I ′(ρ) = v(c)/3). Depending on the

parameters, profits in the first case may be higher, despite the higher investments made.

Consider, for example, the case in which I(ρ) = ρ2/2, v(p) = (10− p)2/2, σ = 0.001, c0 = 1,

c = 2, and a minimum level of investment is set at ρ̄ = 10. In this case the socially efficient

investment level equals ρ∗ = 16 and profit per firm equals 205.33. On the other hand, cost

based access charges (κ = 0) would lead to an investment level ρ = 10.67 and per firm profit

of 193.

Finally, in case of bilateral negotiations about a fixed and reciprocal access charge, firms

may be able to agree on such high access charges that investment will be set at the minimum

ρ̄ = 10, which would lead to profits equal to 200 in the above parameter specifications. This

illustrates that our socially optimal retail benchmarking approach may provide higher profits

for firms than any bilaterally agreed upon fixed access charge.

4.2.2 Expanding coverage

In this subsection we take the participation condition of consumers seriously. In the previous

section, and in most of the related literature, one typically assumes that σ is small enough,

which implies that transportation cost t is very large. This would lead consumers in the
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center of the Hotelling model to forego subscribing to a network. In order to maintain the

full coverage assumption one needs to assume that consumers have a high enough valuation

for being subscribed to the network, even if no one else subscribes or when hardly any calls

are made (typically, v0, introduced in section 2, is assumed to be large enough). A reason

for this could be that then one can call 911 in emergencies. In this subsection, we relax

this assumption and assume that v0 is not large and smaller than f . Hence, the number of

subscribers in equilibrium will depend on the net surplus consumers obtain, which in turn

depends on the degree of competition between two networks.

Assume that consumers’ valuation from subscribing to a network when in total ρ con-

sumers are subscribing to one of the networks is such that a consumer at distance x from

his network that charges T = F + pq, receives utility v0 + ρv(p)− F − xt.

Let us denote

λ =
v0 + v(c)− f

t
.

When total coverage by two networks charging T = f + cq equals 2α ≤ 1, social welfare

equals

W (α) = 2α(v0 + 2αv(c)− f − tα/2).

W ′(α) = 2(α(4v(c)− t) + v0 − f) and W ′′(α) = 2(4v(c)− t). If t ≥ 4v(c), W ′(α) < 0 for all

positive α and consumer welfare is maximized at α = 0. If t < 4v(c), W (α) is convex and

maximized at zero or 1/2. Since W (0) = 0 and W (1/2) = v0 + v(c)− f − t/4, we find that

the full coverage is optimal when λ > 1/4 and that no coverage is optimal when λ ≤ 1/4.

However, also note that when networks charge the very competitive schedule T = f + cq,

the consumer in the middle only receives positive net surplus if v0 + v(c) − f − t/2 > 0.

Hence, implementing the consumer surplus maximizing network prices when λ ∈ (1/4, 1/2)

is incompatible with voluntary participation. We will henceforth assume that λ > 1/2 so

that full coverage is both feasible and desirable.

We now consider the necessary condition for a full coverage equilibrium to exist. Recall

from Proposition 3 that equilibrium prices are T = f + t− κt/2 + cq. To have full coverage

and voluntary participation in such an equilibrium, one needs the consumer in the center of

the interval to be willing to subscribe when anticipating that everyone will subscribe to one

of the networks. This condition reads v0 + v(c)− t/2− (f + t− κt/2) > 0, or equivalently,

λ =
v0 + v(c)− f

t
>

3− κ

2
.
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In particular, for κ = 0 there is no equilibrium in which the market is fully covered when

(v0+v(c)−f)/t < 3/2. By increasing κ one relaxes the full coverage constraint. In particular,

as long as λ ∈ (1, 3/2), no full coverage equilibrium exists when subscription is voluntary

and cost based access price regulation (κ = 0) is applied. However, when using our rule with

κ = 1, existence of the full coverage equilibrium is restored when consumers anticipate that

the market will be covered. An increase in κ intensifies competition between the networks

and thereby makes them leave a larger surplus to consumers, which makes full coverage more

likely. Summarizing, we have:

Proposition 5 In the Hotelling model of LRT (1998a), assume v0 < f . Then, an increase

in κ makes full coverage more likely. For λ ∈ (1, 3/2) where λ ≡ [v0 + v(c)− f ] /t, no full

coverage equilibrium exists under the cost based access price regulation ( i.e., when κ = 0)

but existence of the full coverage equilibrium is restored when κ = 1.

4.2.3 Asymmetric brand loyalty

In this subsection we consider our access pricing rule when two networks compete in two

part tariffs but one of the networks has an ”incumbent” advantage in that it offers an extra

surplus to its customers. One can think of this as asymmetric brand loyalty. We follow the

modelling of Carter and Wright (1999, 2003). That is, we will employ the two firm Hotelling

model where consumers obtain extra surplus β/(2σ) ≥ 0 from subscribing to network 1.

Transportation cost equals t = 1/(2σ). We maintain the assumption of full coverage and do

not allow for termination based price discrimination.

We find that firms always will want to set variable price equal to marginal cost c, in-

dependent of κ and their market shares, for all κ ≤ 1. Moreover, the equilibrium market

shares will be independent of κ.

Given two part tariff (pi, Fi), the net surplus of a consumer of network i is given by:

wi = v(pi)− Fi.

Given the extra surplus from subscribing to network 1, the customer located at x is indifferent

between the two networks if and only if w1 + β/(2σ) − tx = w2 − t(1 − x). Hence, if both

networks have positive market shares, market share of network 1 equals

α1 =
β + 1

2
+ σ(w1 − w2), (15)
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and network 2 has market share α2 = 1− α1.

We have the following expression for network i’s profit:

Πi(pi, Fi) = αi {[pi − c− (1− αi)(ai − c0)] q(pi) + Fi − f + αj(aj − c0)q(pj)} .

In particular, from (11) the total access payment mark-up that network i makes to network

j is given by:

αi(1− αi)(ai − c0)q(pi) = αiκ(1− αi)πi,

where πi = (pi− c)q(pi) + Fi. Therefore, the arguments we made in section 4.1 apply to the

competition among asymmetric networks: as long as (1− κ(1− αi)) ≥ 0 (which is satisfied

when κ ≤ 1), the profit maximization with respect to pi for given wi leads to marginal cost

pricing (i.e., pi = c) for any αi and for any κ ≤ 1.

The following proposition characterizes the equilibrium of the competition among asym-

metric networks.

Proposition 6 When 0 ≤ κ ≤ 1, 0 < β < 3, βκ < 1 and σ(> 0) is small enough, there

exists a unique equilibrium in which networks charge variable price p = c and fixed fees

F1 = f +
6 + 2β − 3κ− β2κ

12σ

and

F2 = f +
6− 2β − 3κ− β2κ

12σ
.

Market share for firm 1 equals α1 = (3 + β)/6. Equilibrium profits are

Π1 = α1(F1 − f) + α1(1− α1)κ(F2 − F1) =
(3 + β)2

216σ
(6− κ(3 + β)),

and

Π2 = α2(F2 − f) + α2(1− α2)κ(F1 − F2) =
(3− β)2

216σ
(6− κ(3− β)).

Hence, for any 0 ≤ κ ≤ 1 we obtain efficient pricing. By varying κ we can address

and achieve further objectives, without distorting the efficient marginal cost pricing result.

An increase in κ promotes competition in terms of the fixed fee and thereby decreases the

profits of each network. Therefore, by increasing κ, the regulator or competition authority

can improve consumer welfare.

Access prices are not reciprocal, unless κ = 0. Both networks price at marginal cost
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but since the incumbent network sets a higher fixed fee, he has a higher average retail price

and thus he will pay higher per minute access charges than the rival network. Note that

equilibrium market shares are independent of κ. In particular, equilibrium market shares

are the same as in Carter and Wright (2003), which basically corresponds to the case of

κ = 0. Namely, Carter and Wright (2003) argue in favor of a rule that allows the incumbent

to choose the reciprocal access price, since it will choose access price equal to the marginal

cost of terminating a call.

More generally, we can consider non-reciprocal access pricing rules for asymmetric net-

works. For instance, in our rule, we can make κ depend on a firm’s identify (i.e. κi for firm

i). Hence, we have:

αi(1− αi)(ai − c0)q(pi) = αi(1− αi)κiπi;

Πi(pi, Fi) = αi {[1− κi(1− αi)] πi − f + κj(1− αi)πj}

where πi = (pi− c)q(pi)+Fi. Therefore, firm i chooses pi = c for any αi > 0 and κi ≤ 1. We

conjecture that by properly choosing (κ1, κ2) the regulator can achieve the socially efficient

distribution of market shares but analyzing this is beyond the scope of this paper.

5 Menus of Two-Part Tariffs

In this section, we consider the case of heterogeneous consumers as in Dessein (2003) and

Hahn (2004). Therefore, networks compete with menus of two-part tariffs. We show that

the class of access pricing rules that we considered in section 4 induces the marginal cost

pricing.

There is a fraction µ > 0 of light consumers and a fraction 1−µ > 0 of heavy consumers:

let θ denote the type of a consumer with θ = H, L.17 From consuming q, a θ-type consumer

obtains gross utility uθ(q) in which

u′H(q) > u′L(q) > 0 and u′′θ(q) < 0 for θ = H, L.

Given a price p, let qθ(p) denote the volume of calls chosen by a consumer of type θ; we

have qH(p) > qL(p) for any p > 0. Network i offers a menu of two-part tariffs
{
F θ

i , pθ
i

}
for

θ = H,L. For simplicity, qH
i = qH(pH

i ) and qL
i = qL(pL

i ). Let vθ(p) be the indirect utility

17We consider the case with two types merely for expositional simplicity. Our result can be easily extended
to m types with m > 2.
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function of type θ. We introduce the following notations:

wH
i ≡ vH(pH

i )− FH
i , wL

i ≡ vL(pL
i )− FL

i ;

αH
i =

1

2
+ σ

(
wH

i − wH
j

)
, αL

i =
1

2
+ σ

(
wL

i − wL
j

)
.

Let αi ≡ µαL
i + (1− µ)αH

i for i = 1, 2.

We consider again the access pricing rule in which the markup of the access price that

network i pays to the rival network is κ times its average price mark up:

ai − c0 = κ

(
µαL

i

[
FL

i + pL
i qL

i

]
+ (1− µ)αH

i

[
FH

i + pH
i qH

i

]

µαL
i qL

i + (1− µ)αH
i qH

i

− c

)

We will first consider the complete information case in which each consumer’s type is known

by both networks and networks can apply third degree price discrimination. We show that

in this case firms will offer exactly the same two-part tariffs to light and heavy users. This

then implies that the equilibrium under the complete information case is the equilibrium

under incomplete information.

Network i’s profit is given by:

Πi = µαL
i

[
(pL

i − c)qL
i + FL

i − f
]
+ (1− µ)αH

i

[
(pH

i − c)qH
i + FH

i − f
]

(16)

−(ai − c0)(µαL
i qL

i + (1− µ)αH
i qH

i )αj

+(aj − c0)
(
µαL

j qL
j + (1− µ)αH

j qH
j

)
αi.

We have

(aj − c0)
(
µαL

j qL
j + (1− µ)αH

j qH
j

)
=

κ
{
µαL

j

[
FL

j + (pL
j − c)qL

j

]
+ (1− µ)αH

j

[
FH

j + (pH
j − c)qH

j

]}
.

Therefore,

Πi = µαL
i (1− καj)

[
(pL

i − c)qL
i + FL

i

]
+ (1− µ)(1− καj)α

H
i

[
(pH

i − c)qH
i + FH

i

]

−αif + αiκ
{
µαL

j

[
FL

j + (pL
j − c)qL

j

]
+ (1− µ)αH

j

[
FH

j + (pH
j − c)qH

j

]}
.

It is convenient to express Πi as a function of (pθ
i , w

θ
i ) instead of (pθ

i , F
θ
i ). Then, we have:

29



Πi = µαL
i (1− καj)

[
(pL

i − c)qL
i + vL(pL

i )− wL
i

]

+(1− µ)(1− καj)α
H
i

[
(pH

i − c)qH
i + vH(pH

i )− wH
i

]− αif

+αiκµαL
j

[
vL(pL

j )− wL
j + (pL

j − c)qL
j

]

+αiκ(1− µ)αH
j

[
vH(pH

j )− wH
j + (pH

j − c)qH
j

]
.

Maximizing Πi with respect to pθ
i given wθ

i leads to the marginal cost pricing for all αθ
i as

long as κ ≤ 1. When pθ
i = pθ

j = c for θ = H, L, we have

Πi = µαL
i (1− καj)

[
vL(c)− wL

i

]
+ (1− µ)(1− καj)α

H
i

[
vH(c)− wH

i

]

−αif + αiκ
{
µαL

j

[
vL(c)− wL

j

]
+ (1− µ)αH

j

[
vH(c)− wH

j

]}
.

Taking derivatives and solving for a symmetric solution (i.e., wθ
i = wθ

j for θ = L, H) yields

wθ
i = vθ − f +

κ− 2

4σ
,

so that

F θ
i = f +

2− κ

4σ
.

Since the optimal fixed fee is identical for both consumer types when firms can discriminate

between types, it will be optimal in the case of incomplete information to offer only one

two-part tariff T = F + cq where

F = f +
2− κ

4σ
.

Note also that the equilibrium two-part tariff is identical to the one in the case of homoge-

neous consumers in section 4.1. Summarizing, we have:

Proposition 7 In the Hotelling model of LRT (1998a), suppose that consumers are het-

erogeneous (some are light consumers and others are heavy consumers) and that networks

compete in menus of two-part tariffs without knowing each consumer’s type.

(i) For any κ ≤ 1, each network chooses the variable price equal to the marginal cost for

all types of consumers.

(ii) Given κ ≤ 1, in symmetric equilibrium, both networks offer an identical two-part

tariff (p = c, F = f + 2−κ
4σ

) for all types of consumers.

Dessein (2003) and Hahn (2004) find that when a = c0 (i.e., κ = 0), both networks
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offer an identical two-part tariff (p = c, F = f + 1
2σ

) for all types of consumers. In fact, if

a = c0, as can be seen in (16), access price disappears from the profit function and the profit

function becomes the same as the one in a standard Hotelling model without interconnection.

This is why they rediscover the efficient two-part tariff result obtained by Armstrong and

Vickers (2001) and Rochet and Stole (2002) in the context of competitive price discrimination

without interconnection between firms. In other words, a = c0 achieves efficiency by making

the case with interconnection identical to the case without interconnection. What we show is

that in the presence of interconnection, there is a class of access pricing rules which achieve

efficiency. Hence, interconnection provides extra instruments to achieve efficiency as long as

we make access prices depend on retail prices.

6 Conclusion

We proposed a new approach, a retail benchmarking approach, to determine efficient access

prices for interconnected networks. Our approach is simple since we consider a set of linear

access pricing rules that link the mark-up of the access price that network i pays to its

rivals with network i’s retail price mark-up. We showed that the efficient access pricing rules

that we discovered with the benchmarking approach have some remarkable properties with

respect to what we can do with the standard approach of fixed (per-minute) access prices.

First, when networks compete in linear prices without termination-based price discrimi-

nation, under the standard approach (i.e., in LRT, 1998a), determining the Ramsey access

price is informationally demanding. Since the Ramsey access price depends on demand elas-

ticity, the level of the Ramsey retail price and the level of the monopoly retail price, the

regulator needs to know not only the marginal costs but also the fixed cost and the demand

structure. In contrast, under our approach, there is a simple access pricing rule that achieves

the Ramsey outcome as the unique equilibrium independently of the underlying demand con-

ditions. Our rule is not informationally demanding since the regulator only needs to know

the marginal costs. Furthermore, the equilibrium access price under our rule is always above

the termination cost while the Ramsey access price under the standard approach is always

below the termination cost and can be even negative.

Second, when networks compete in two-part tariffs in an otherwise similar framework, the

literature has obtained a static efficiency and a profit neutrality result. The static efficiency

result says that setting access price equal to the termination cost leads to marginal cost

pricing. The profit neutrality result says that firms’ equilibrium profits are equal to the
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Hotelling profits for any access price. These two results provide a rationale for letting firms

choose collectively the access price as they do not have strict incentives to set an access price

different from the termination cost. However, in the same setting, Valletti and Cambini

(2005) find that when firms can invest in the quality of their networks prior to setting prices,

firms have an incentive to choose an access charge larger than the termination cost in order

to reduce investment incentives. The reason is that their equilibrium profits gross of the

investment costs are equal to the Hotelling profits, because of the profit neutrality result.

Furthermore, they show that static efficiency is in conflict with dynamic efficiency since firms

under-invest in quality when access price is equal to the termination cost.

We considered a particular class of access pricing rules under which the mark-up of

the access price that network i pays to its rivals is a fraction of network i’s average retail

price mark-up. We first showed that all of the rules in the class lead to static efficiency (i.e.,

marginal cost pricing) while the profits vary depending on the degree with which the average

retail price mark-up influences the access price mark-up. Therefore, by properly choosing this

degree, the regulator can pursue additional objectives such as improving consumer surplus

or inducing full coverage: in particular, both static efficiency in terms of retail prices and

dynamic efficiency in terms of investment can be achieved at the same time.

A general lesson from our approach is that benchmarking access prices to retail prices

provides extra instruments to promote competition and efficiency. In particular, our optimal

access pricing rules intensify retail competition since a network can reduce its access payment

to rival firms by reducing its own retail tariff(s). In the future, we plan to study how our

approach can be adapted to the case of termination-based price discrimination.

Appendix

Proof of Proposition 1

We here complete the proof of Proposition 1 by proving first that, when firms compete

in linear prices, no symmetric pure strategy equilibrium with p 6= pR exists. After that, we

show that no asymmetric pure strategy equilibria exists either.

Claim: There exists no symmetric equilibrium with p 6= pR.

Proof: We show that under the access pricing rule aij − c0 = n
n−1

(pi − c), no other

symmetric equilibrium exists except pi = pR for i = 1, ..., n. Let p be a symmetric equilibrium

candidate. First, it is obvious that neither p < pR nor p > p can be an equilibrium since then
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each firm makes a negative profit. Therefore, we consider only p ∈ (
pR, p

]
. Consider first

p = p. Then, each firm gets zero profit. Suppose now that network 1 deviates to p1 = pm

while all the other networks continue to charge p. Then, network 1’s profit is given by:

Π1(p
m; p, ..., p) =

nα1

n− 1

(
α1 − 1

n

)
[Rm − f ] > 0,

where α1 = α1(p
m; p, ..., p) > 1

n
. Therefore, no symmetric equilibrium with p = p exists.

Let us consider now p ∈ (
pR, p

)
. Then, from (7), the first-order derivative of Πi with

respect to pi is given by:

∂Πi(pi : p−i)

∂pi

= [R(pi)− f ]
∂αi

∂pi

+ αi
dR(pi)

dpi

− n

n− 1
αi

∑

j 6=i

αj
dR(pi)

dpi

(17)

+
n

n− 1

∑

j 6=i

[
αj

∂αi

∂pi

+ αi
∂αj

∂pi

]
[R(pj)−R(pi)] .

At pi = p for i = 1, ..., n, since
∑

j 6=i αj = n−1
n

, the first-order derivative is given by:

∂Πi(p : p, ..., p)

∂pi

= [R(p)− f ]
∂αi

∂pi

< 0 for p ∈ (
pR, p

)
. (18)

Therefore, each firm has an incentive to undercut and no other symmetric equilibrium exists.

¥
We now continue to show that no asymmetric equilibria exist. We first establish the

following Lemma.

Lemma 1 Property 5 implies that for any firm i with positive market share αi > 0

∂Πi

∂pi

=
∂αi

∂pi

(
Πi

αi

)
+

αiR
′(pi)n

n− 1
(αi − 1/n)− ∂αi/∂pi

1− αi

(Πi − αi(R(pi)− f)). (19)

Proof. Let i, j, k represent three different firms. On the one hand, from property 5, we

have, for any αj > 0
∂αk

∂pi

=
αk

αj

∂αj

∂pi

. (20)

On the other hand, from αi +
∑

k 6=i αk = 1, we have

∂αi

∂pi

+
∑

k 6=i

∂αk

∂pi

= 0. (21)

33



By substituting (20) into (21), we get

∂αj

∂pi

= − αj

1− αi

∂αi

∂pi

. (22)

Result (19) is now easily obtained by using (22) when computing ∂Πi

∂pi
. ¥

Proposition A1 There is no asymmetric equilibrium (in pure strategies).

Proof. Suppose there is an asymmetric equilibrium p. Without loss of generality, we

can assume p1 ≤ p2 ≤ . . . ≤ pn with p1 < pn. Symmetry and monotonicity then imply that

α1 ≥ α2 ≥ . . . ≥ αn with α1 > 1/n > αn by the full coverage property.

Claim: There is no “cornered-market” equilibrium.

Proof of Claim: First, suppose that network 1 corners the market with Π1 > 0. Then,

network 2, for instance, can charge p2 = p1 and make a profit Π1/2 > 0 and therefore we get

a contradiction.

Next, suppose that network 1 corners the market with Π1 = 0. This implies that p1 = pR

or p1 = p. If p1 = p, it follows from Property 4 that network 2 can realize a strictly positive

profit by charging p2 = pm. Hence, we must have p1 = pR and p2 > pR. However, this

cannot be an equilibrium either since Lemma 1 then implies that network 1 can increase its

profit as Π′
1(p

R) = R′(pR) > 0. ¥
Claim: All firms have positive market share.

Proof of Claim: Suppose not. Then αn = 0.

Case A: There is a firm i with αi(R(pi)− f) > 0.

Clearly, firm i must make nonnegative profits in equilibrium and its market share is

strictly less than 1. Hence,

0 ≤ Πi

αi(1− αi)
=

R(pi)− f

1− αi

+
n

n− 1

∑

j 6=i

αj

1− αi

(R(pj)−R(pi)). (23)

If firm n deviates and sets price pi(< pn), firm n and firm i will have the same market

share and profits, by the symmetry property. We will show that these firms jointly will have

strictly positive profits, which then implies that the deviation by firm n is profitable. Let

p̂ denote the price vector after the deviation by firm n. Let α̂k = αk(p̂) and Π̂k = Πk(p̂).

Note that since the market share of any firm j(6= n, i) will decrease, the sum of the market

shares of firms i and n will be higher than the market share of firm i before the deviation:
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α̂i + α̂n > αi. We have

Π̂i + Π̂n = (α̂i + α̂n)

(
R(pi)− f +

n

n− 1

∑
j

α̂j(R(pj)−R(pi))

)
,

so that

2Π̂n

2α̂n(1− 2α̂n)
=

R(pi)− f

1− α̂i − α̂n

+
n

n− 1

∑

j 6=i,j 6=n

α̂j

1− α̂i − α̂n

(R(pj)−R(pi)).

Because of Property 5, the second term on the r.h.s. is equal to the second term on the r.h.s

of equation (23). Hence,

2Π̂n

2α̂n(1− 2α̂n)
= (R(pi)− f)

(
1

1− α̂i − α̂i

− 1

1− αi

)
+

Πi

αi(1− αi)
> 0.

The inequality follows since Πi ≥ 0 and both factors in the first term are strictly positive.

This shows that the firm without market share has an incentive to deviate and fix price

equal to the price of a firm that has a positive market share and a strictly positive net retail

profit per consumer.

Case B: There is no firm i with αi(R(pi)− f) > 0.

In this case all firms with positive market share have zero net retail profit and zero profit,

since the sum of firms’ profits equals the sum of net retail profits (
∑

Πj =
∑

αj(R(pj)−f)).

This implies that all firms with positive market share set either price pR or p̄. However, this

is impossible since a firm that sets pR has an incentive to increase its price when its market

share is strictly higher than 1/n. (Its market share is at least 1/(n− 1) as it sets the lowest

price and firm n is supposed to have zero market share.)

∂Π

∂pi

=
∂αi

∂pi

(
Π

αi

)
+ αi

n

n− 1
R′(pR)(αi − 1/n)− ∂αi/∂pi

1− αi

(Πi − αi(R(pR)− f) > 0,

since the first and third term are zero and the second is strictly positive. But if all firms

except firm n set p̄, firm n can deviate and set p slightly above pR and make positive profits.

Namely, if he deviates and sets price equal to pR he will make zero profit, but his marginal

profit at these prices will then be strictly positive by the same argument as before.¥
The above shows that all firms must have positive market share in equilibrium. Note

that no firm j can charge pm in equilibrium. For such a firm R′(pm) = 0 and R(pj) ≥ R(pi)

for all i with strict inequality for at least some i. This implies then that this firm has an
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incentive to lower its price as his marginal profit is strictly negative. (See equation (19)). We

now distinguish three possible cases: (I) all firms set prices below pm; (II) all firms set prices

above pm; and (III) some set prices below pm and the others set prices above pm. We will

derive a contradiction in all three cases, which then concludes the proof that no asymmetric

equilibrium exists.

Case I: pn < pm. In this case all firms set a price below the monopoly price and thus

R(pn) ≥ R(pj) for all j with strict inequality for some j (e.g. j = 1). Hence, Πn <

αn(R(pn)− f). Moreover, R′(pn) > 0. Equation (19) implies then that

∂Πn

∂pn

< 0.

Hence, firm n can improve his profits by lowering its price.

Case II: p1 > pm. In this case R(p1) ≥ R(pj) for all j with strict inequality for some j

(e.g. j = n). Hence, Π1 < α1(R(p1)− f). Moreover, R′(p1) < 0. Equation (19) implies then

that
∂Π1

∂p1

< 0.

Hence, firm 1 can improve his profits by lowering its price.

Case III: For some 1 ≤ i < n we have pi < pm < pi+1. If all firms have the same

net retail profit per consumer, the net balance of access prices equals zero for all firms, and

profits are equal to market share times net retail profit per consumer. If this profit is equal

to zero, firms j ≤ i have pj = pR and firms j > i have pj = p̄. However, then the marginal

profit for firm 1 (for example) is strictly positive as the first and third term in (19) are zero

and the second term is strictly positive. Hence, if all firms have the same net retail profit per

customer, the net retail profit per customer (and thus the profits) has to be strictly positive

for all firms.

Firms j ≤ i set some price p ∈ (pR, pm) and firms j > i set some price p′ ∈ (pm, p̄)

where R(p) = R(p′) > f . However, firm n (for example) could profitably deviate from p′ to

p. This would not affect the net balance of access prices (which remains equal to zero) and

would also not change his strictly positive net retail profit per consumer. However, it would

increase his market share, and therefore its profit. Therefore, we conclude that not all firms

make the same net retail profit per consumer. This of course implies that the firm with the

highest net retail profit per customer has a negative net balance of access prices.

The firm with the highest net retail profit per customer, R(pj)− f , must be either firm
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i or firm i + 1. As argued above, its net balance of access prices must be strictly negative.

Since its profit in equilibrium must be nonnegative, this means that it must make a strictly

positive net retail profit per consumer, so that its price is strictly between pR and p̄. We

now claim that it cannot be that firm i+1 has (weakly) higher net retail profit per customer

than any other firm. Namely, if that were the case, firm i + 1 could deviate to p′ where

p′ is defined as the unique price less than pm with R(p′) = R(pi+1). This would increase

its market share, and decrease the market share of any other firm by the same percentage

(by Property 5). This means that its profit per customer Πi+1/αi+1 increases, since its net

balance from access prices becomes less negative. But this then also implies that total profits

increase, as its market share increases as well.

Hence, firm i has the highest net retail profit per customer and R(pi) > R(pj) for any

j > i and R(pi) > f . Note that from (19) it follows immediately that αi > 1/n, since

otherwise the marginal profit would be strictly negative and firm i would have an incentive

to lower its price.

We now show that if j > i then pj > p̄. Suppose not. We will show that then firm j will

gain by deviating to setting price pi. Namely, for any firm k we have the following expression

for profits per on-net consumer and per off-net consumer

Πk

αk(1− αk)
= (R(pk)− f)(

1

1− αk

− n

n− 1
) +

n

n− 1

∑

j 6=k

αj

1− αk

(R(pj)− f).

Note that the last term does not change when pk is varied. Consider now k > i. If we lower pk

till p̃k = pi, retail profit per customer goes up from R(pk)−f ≥ 0 till R(pi)− f > R(pk)− f .

Moreover, market share of firm k will increase and thus the second factor in the first term

will increase. This implies that

Π̃k

α̃k(1− α̃k)
>

Πk

αk(1− αk)
,

where Π̃k and α̃k denote profit and market share of firm k after the deviation. Since, firm k

and firm i will have the same market share after the deviation, we must have 1/2 ≥ α̃k and

we know α̃k > αk. Therefore, we have 0 < αk(1− αk) < α̃k(1− α̃k). It follows that

Π̃k = α̃k(1− α̃k)
Π̃k

α̃k(1− α̃k)
> α̃k(1− α̃k)

Πk

αk(1− αk)
> Πk.

Hence, the deviation is profitable.
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However, Property 4 implies that αj(p) = 0 when pi < pm and pj > p̄.

This completes the proof of Proposition A1. ¥

Proof of Proposition 2

Proof. (i) The first-order derivative of Πi with respect to pi is given by (5). A necessary

condition to implement the Ramsey outcome is that the first-order derivative is zero at

pi = pR for i = 1, ..., n. Since R(pR) = f and h(pj, pi, c)q(pj) = h(pi, pj, c)q(pi) at the

symmetric equilibrium candidate, the first and the third terms are zero in (5) at pi = pR

for i = 1, ..., n. Since q(pi) = qR and αi = αR for i = 1, ..., n at the symmetric equilibrium

candidate, the necessary condition holds only if the following conditions are satisfied by

h(pi, pj, c):

1 + (n− 1)αR (h2 − h1) = 0

pR − c− (n− 1)αR
[
(h1 + h2) pR + h3c + h4

]
= 0.

From the two conditions, we find that h1 = 1
αR(n−1)

, h2 = 0, h3c + h4 = − c
αR(n−1)

. Therefore,

we obtain the unique candidate in the set of linear access pricing rules as follows:

aij − c0 =
1

αR(n− 1)
(pi − c).

(ii) Given the access pricing rule, network i’s profit is given by:

Πi(pi : pj) = αi [R(pi)− f ] +
1

αR(n− 1)
αi

∑

j 6=i

αj [R(pj)−R(pi)]

Suppose that all the other networks except network 1 charge pR. Then, because of the

symmetry, we have α2 = ... = αn and network 1’s profit is given by;

Π1(p1; p
R, ..., pR) = α1 [R(p1)− f ] +

1

αR
α1α2 [f −R(p1)]

= α1

[
αR − α2

]

αR
[R(p1)− f ] ,

where α2 = α2(p
R; p1, p

R, ..., pR). Note first that Π1 = 0 when p1 = pR and Π1 = 0 for

p1 ≥ p under Property 4. Consider any p1 with p1 < pR. Then, from the monotonicity, we

have αR > α2 and R(p1) < f , implying Π1 < 0. Consider now p1 ∈
(
pR, p

)
. Then, we have

αR < α2 and R(p1) > f , implying Π1 < 0 if α1 > 0.
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Proof of Proposition 3

Proof. Since (i) is proven in the text before the proposition, we only need to prove (ii).

We first derive the unique symmetric equilibrium candidate. We will then derive conditions

under which this candidate equilibrium is indeed an equilibrium.

Using v′(pi) = −q(pi) we obtain

∂Πi/∂pi = αiq
′(pi)(pi − c)(1− κ(1− αi)). (24)

When 1 − κ(1 − αi) > 0 and αi > 0, this derivative is negative (positive) when pi > c

(pi < c, respectively). Hence, the equilibrium price in a symmetric equilibrium must be

equal to marginal cost c.

We now focus on the derivative of profit with respect to wi.

∂Πi

∂wi

= σ

[
Πi

αi

]
+ αi(−1 + κ(1− αi) + κσ[Fi + R(pi)− Fj −R(pj)]). (25)

In a symmetric interior equilibrium (i.e. pi = p and Fi = F ), we have p = c and thus

Πi = (F − f)/2. Hence, the first order condition gives

0 = σ(F − f) +
1

2
(−1 + κ/2).

The symmetric equilibrium candidate has thus

F = f +
2− κ

4σ
.

Symmetric equilibrium profit per firm equals

Π∗ =
2− κ

8σ
.

We see that a necessary condition is κ ≤ 2. The second order derivative yields

∂2Πi

∂w2
i

= 2σ[−1 + κσ(R(pi) + v(pi)− 3wi −R(pj)− v(pj) + 3wj)].

At the symmetric equilibrium candidate this is equal to −2σ and thus strictly negative for

all κ.

We now derive sufficient and necessary conditions for the symmetric equilibrium candi-

date T = F + cq to be indeed an equilibrium.
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Hence, let p2 = c and F2 = F . That is, w2 = v(c)− F = v(c)− f + (κ− 2)/(4σ). First,

we know from (24) that, as long as 1− κ(1−α1) > 0, it is optimal to set p1 = c. This is the

case when κ ≤ 1 and αi > 0. The optimal w1 is then found by the first order condition at

w1 = w2, since the second order derivative (2σ(−1 + 3κσ(w2 − w1))) is strictly negative for

all w1 ≥ 0 as long as σ is small enough.

On the other hand, if κ > 1, network 1 can obtain unbounded profits by choosing w1

such that 1 − κ(1 − α1) < 0 by letting p1 ≈ 0. (Namely, if demand is as in LRT, then

limp1→0 v(p1) + R(p1) = −∞, and profit is unbounded from equation (13)).

It is not hard to see that there cannot be an asymmetric equilibrium. Namely, from (24)

we know that both firms will set pj = c. Substituting these prices and taking derivatives

with respect to wi yields

∂Πi

∂wi

= σ [v(c)− wi − f ] + σκ(1− 2αi)(wi − wj)− αi(1− κ(1− αi)).

Subtracting the first order derivative for firm j from that for firm i yields

0− 0 =
∂Πi

∂wi

− ∂Πj

∂wj

= −3σ(wi − wj),

so that wi = wj. This shows that there cannot be interior asymmetric equilibrium.

We now show that there is no cornered market equilibrium. Suppose, for instance, that

firm 1 corners the market. Then, we must have:

∂Π1

∂w1

∣∣∣∣
α1=1

= σ [v(c)− w1 − f ]− σκ(w1 − w2)− 1 ≥ 0;

and
∂Π2

∂w2

∣∣∣∣
α2=0

= σ [v(c)− w2 − f ]− σκ(w1 − w2) ≤ 0.

The two inequalities are equivalent to

v(c)− w2 − f ≤ κ(w1 − w2) ≤ v(c)− w1 − f − 1

σ
.

This implies

w1 − w2 ≤ − 1

σ
,

which contradicts α1 > α2 since one cannot have α1 > α2 without satisfying w1−w2 > 0.

Proof of Proposition 6
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Proof. We already explained why the equilibrium price in any equilibrium must be

equal to marginal cost c. We now focus on the derivative of profit with respect to wi, given

p1 = p2 = c.
∂Πi

∂wi

= σ

[
Πi

αi

]
+ αi(−1 + κ(1− αi) + κσ[wj − wi)]). (26)

Hence,

0 =
∂Π1

∂w1

= σ(v(c)− w1 − f) + σκ(w1 − w2)(1− 2α1)− α1 + κα1(1− α1) (27)

and

0 =
∂Π2

∂w2

= σ(v(c)− w2 − f) + σκ(w2 − w1)(1− 2α2)− α2 + κα2(1− α2) (28)

Subtracting (28) from (27) yields

0 = σ(w2 − w1)− 2α1 + 1. (29)

Combining (15) and (29) yields the result α1 = (3+β)/6. The expressions for fixed fees and

profits follow now immediately from (27) and (28).

The second order derivative (at p1 = p2 = c) yields

∂2Π1

∂w2
1

= −2σ[1 + βκ + 3κσ(w1 − w2)],

while
∂2Π2

∂w2
2

= −2σ[1− βκ + 3κσ(w2 − w1)].

At the equilibrium candidate both expressions are equal to −2σ < 0.

We now derive sufficient and necessary conditions for the equilibrium candidate to be

indeed an equilibrium.

Fix network 2’s prices p2 = c and F2 as stated in the proposition. We know from (24)

that, as long as 1 − κ(1 − α1) > 0, it is optimal for network 1 to set p1 = c. This is the

case when κ ≤ 1 and αi > 0. The optimal w1 is then found by the first order condition at

w1 = v(c)− F1, since the second order derivative (−2σ(1 + βκ + 3κσ(w1 − w2))) is strictly

negative for all w1 ≥ 0 as long as σ is small enough. Similar reasoning applies when one

fixes the prices of network 1 and optimizes for network 2, as long as βκ < 1. (Note that the

second order derivative for network 2 reads −2σ(1− βκ + 3κσ(w2 − w1)).)

It is not hard to see that there cannot be any other equilibrium. The only other possibility
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would be a cornered market equilibrium. If network 2 corners the market and obtains positive

profit, then network 1 could deviate and use the same tariff and obtain positive profits. If

network 2 corners the market but receives zero profit, then F2 = f and p2 = c. If β > 1,

network 1 can set p1 = c and F1 = f + (β − 1)/(2σ), capture the whole market and make

profits F1 − f > 0. If β ≤ 1, network 1 can set p1 = c and F1 = f + ε, obtain market share

α1 = (β + 1)/2− εσ ∈ (0, 1) and make profits per customer equal to ε(1− κ(1− α1)) > 0.

Suppose now that network 1 corners the market. Suppose, for instance, that firm 1

corners the market. Then, we must have:

∂Π1

∂w1

∣∣∣∣
α1=1

= σ [v(c)− w1 − f ]− σκ(w1 − w2)− 1 ≥ 0;

and
∂Π2

∂w2

∣∣∣∣
α2=0

= σ [v(c)− w2 − f ]− σκ(w1 − w2) ≤ 0.

The two inequalities are equivalent to

v(c)− w2 − f ≤ κ(w1 − w2) ≤ v(c)− w1 − f − 1

σ
.

This implies

w1 − w2 ≤ − 1

σ
,

which contradicts (α1 = 1, α2 = 0) for β < 3 since (α1 = 1, α2 = 0) requires w1 − w2 ≥
(1− β)/(2σ).
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