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Introduction 

 

Many books have described how civilisations rise, flower and then fall.  Underlying this 

observed dynamic are a myriad of individual and collective investment decisions affecting the 

accumulation of capital, the level of education, the preservation of the environment, 

infrastructure quality, legal systems, and the protection of property rights. This vast literature 

from Adam Smith’s Wealth of Nations through Gregory Clark’s Farewell to Alms to Jared 

Diamond’s Collapse is retrospective and positive, examining the link between past actions 

and the actual collective destiny. In contrast, this book takes a prospective and normative 

view, analysing the problem of investment project selection. Which projects should be 

implemented to maximize intergenerational welfare? The solution to this problem heavily 

relies on our understanding and beliefs about the dynamics of civilizations.  

 

 

Future generations in the public debate 

 

Life is full of investment decisions, trading off current sacrifices for a better future. In this 

book, I examine the economic tools which are used to evaluate actions that entail costs and 

benefits that are scattered through time. These tools are useful to optimize the impacts of our 

investments both at the individual and collective levels.  

 

The publication in 1972 of “The Limits to Growth” by the Club of Rome marked the emergence of 

public awareness about collective perils associated with unsustainable development. Since then, 

citizens and politicians have been confronted by a growing list of environmental problems including 

the disposal of nuclear waste, exhaustion of natural resources, loss of biodiversity, and polluted land, 

air and water.  For example, there is particular concern regarding one form of air pollution. The 

increased concentration of greenhouse gases in the atmosphere owing to deforestation and the 

combustion of fossil fuels is likely to affect our environment for many centuries. Experts from the 

Intergovernmental Panel on Climate Change tell us that this will cause rising sea levels, increase the 

frequency of extreme climatic events such as droughts and cyclones, as well as an increase of  5°C or 

more in the average temperature of the earth if the remaining stocks of coal, petrol and natural gas are 

burned (IPCC, 2007). All these environmental problems raise the crucial challenge of determining 
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what we should and should not do for future generations. The challenge has wider relevance beyond 

the environment.  It is also central to other policy debates, including, for example, pension reforms, 

the appropriate level of public debt, investment in public infrastructure, investment in education, and 

the level of funding for research and development.  

 
 

Public decision makers are not the only ones facing complex choices in the face of long-term 

environmental risks. Some firms and altruistic citizens want to contribute to a more 

sustainable development.  Financial markets are often criticized for being short-termist.   

However, financial markets offer specific “socially responsible” investments (SRI),   which 

claim that they will restore a desirable level of long-term thinking in their rules for evaluating 

assets and their portfolio strategy.  New institutions have been created to supply extra-

financial analyses to measure companies’ performance in the field of sustainable 

development. To say the least, these institutions together with managers of SRI funds face 

difficulties agreeing upon a definition of sustainable development, and creating a 

methodology to translate these concepts into operational rules for asset pricing. The absence 

of methodological transparency clearly limits the development of these products. Social 

scientists, in particular economists, should contribute to a coherent development of these 

markets and instruments.  

 

Today, the judge, the citizen, the politician and the entrepreneur are concerned by the 

sustainability of our development, but they don’t have a strong scientific basis for the 

evaluation of their actions and their decision-making. The objective of this book is to provide 

a simple framework to organize the debate on what should we do for the future? 

 

 

What do we already do for the future? 

 

For many thousands of years, since homo-sapiens emerged as the dominant species on earth, 

almost all of their consumption was determined by what they collected or produced over the 

seasonal cycle.  Pressured by Malthus’ Law, humanity remained at a subsistence level for 

generations. The absence of the notion of private property, or the inadequacy of a legal system 
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to guarantee that what an individual saves belongs to them, was a strong incentive to consume 

everything that was produced year after year.  

 

It is clear that human beings, contrary to most other species, are conscious of their own future. 

At the individual level, a trade-off is made between immediate needs and aspirations for a 

better future. Individual investments can take many forms.  When young, individuals invest in 

their human capital. Later on, they save for their retirement. They invest in their health by 

doing sport, brushing their teeth, eating healthy food.  They plan their own future and those of 

their offspring to whom they can bequest the capital they have accumulated.  In short, 

individuals sacrifice some of their immediate pleasures for future benefits.  Once individual 

property rights on assets were guaranteed by strong enough governments, the potential of 

individual investments was unlocked.  At the collective level they have generated the 

enormous accumulation of physical and intellectual capital that the western world has 

experienced over the last three centuries. New institutions, like corporations, banks, and 

financial markets, have been created for the governance of these investments. Taken together, 

this has been a powerful engine for economic growth and prosperity. With a real growth rate 

of GDP per capita around 2% per year, we now consume 50 times more goods and services 

than we did 200 years ago.  

 

States and governments also intervened in this process. They invested in public infrastructures 

like roads, schools, or hospitals. They heavily invested in public research whose scientific 

discoveries quickly diffused in the economy. At the collective level, these public investments 

diverted some of the wealth produced in the economy away from the immediate consumption 

of non-durable goods.  

 

In this book, I want to address the difficult question of whether the allocation and the intensity 

of these sacrifices in favour of the future are socially efficient or not. There are indeed many 

ways to improve the future. It could be achieved through investments in the productive capital 

of the economy, which in itself contains a multitude of options.  However future prosperity is 

not determined solely by the level of productive capital that has been accumulated.  For 

example, the future can also be improved by limiting the extraction of exhaustible resources, 
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by preserving the environment, by limiting emissions of greenhouse gases, or by improving 

the educational system. It is crucial that we allocate our present sacrifices for the future in the 

way that maximizes the increase in welfare of future generations. In other words, it is crucial 

to be able to prioritise across the set of investment opportunities. This looks like ‘mission 

impossible”.   

 

 

Cost-benefit analysis 

 

Economists have developed a relatively simple and transparent toolkit to address this 

challenge. Cost-benefit analysis (CBA) is a set of valuation techniques that enables priorities 

to be put on the set of investment opportunities in such a way to be compatible with 

maximizing intertemporal welfare. Acting in favour of the future generally entails multiple 

effects. For example, investment in climate change mitigation will probably cause, amongst 

many other effects, reduced flooding, an improvement in agricultural productivity, an increase 

in life expectancy and a better protection of biodiversity. When evaluating the effectiveness of 

climate change mitigation for improving intertemporal welfare, CBA experts evaluate all 

these costs and benefits by valuing non-monetary impacts. There are techniques for putting 

values on non-monetary impacts, like biodiversity or life-years saved, but it is a complex and 

controversial matter that will not be discussed in this book.  The focus is instead on how to 

compare temporally distributed valuations of different projects’ impacts, once these 

valuations have been made.  

 

One key ingredient in the CBA toolkit is the discount rate, which can be interpreted as the 

minimum rate of return required from a safe investment project to make it socially desirable 

to implement. This discount rate may be a function of the duration of the project, but it is 

absolutely crucial that the same discount rate is used to evaluate safe projects with the same 

duration. By a simple arbitrage argument, this discount rate must be equal to the interest rate 

observed on financial markets. Indeed, rather than investing in the safe project under scrutiny, 

one can alternatively invest in a risk free bond with the same maturity. If one is interested in 

maximizing the benefit of our actions for the future, the bond should be invested in if the 
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interest rate it generates is greater than the internal rate of return of the project. This justifies 

using the market interest rate as the required minimum rate of return for safe investment 

projects.  Said differently, an investor should always compare the return of their investment 

project to the opportunity cost of capital, which is the return on the alternative strategy of 

investing in the productive capital in the economy. 

 

It is often suggested that a zero discount rate is more appropriate if one is really interested in 

improving the welfare of future generations. This is a classic mistake. Consider for example 

investing some of our collective wealth in a long-term safe project that yields a rate of return 

of 1% when the rate of return of productive capital is 4%. This goes against the interest of 

future generations, since it diverts capital from higher to lower return investments.  

Implementing such a project, with a rate of return smaller than the market interest rate, 

destroys – rather than creates – social value. 

 

The discount rate gives a price to time. With a discount rate of 4%, one kilogram of rice 

delivered next year has a value of only 1000/1.04=962 grams of rice delivered today. This is 

the present (or discounted) value of one kilogram of wheat next year. The decision rule 

comparing the internal rate of return and the discount rate can be restated equivalently as the 

one based on the comparison of the present value of the benefits and the present value of the 

cost. If the difference, which is called the net present value (NPV), is positive, then the 

investment project is socially desirable. For example, a project that reduces my consumption 

of rice this year by 950 grams, but increases my consumption of rice next year by 1 kilogram 

has a NPV of 962-950=12 grams of rice. Because the NPV is positive, this action should be 

implemented. The NPV jargon is an alternative way to state the principle of requiring an 

investment project to have an internal rate of return larger than the discount rate.  

 

 

The level of the discount rate 

 

This book specifically addresses the question of the value of time as expressed by the level of 

the discount rate. A high discount rate implies that few investment projects will successfully 
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pass the test of a positive NPV. At the collective level, the outcome will be a low level of 

investments and savings. Natural resources will be quickly extracted because of the low NPV 

of the strategy of extracting them later. Emissions of CO2 will not be abated because of the 

low present value of the climate change damages that they will generate in the distant future. 

On the contrary, a reduction of the discount rate enlarges the set of NPV positive investment 

opportunities.  This means that a larger share of the wealth of nations will be invested rather 

than consumed. The level of the discount rate therefore plays the key role of determining the 

best allocation of resources between the present and the future.  

 

This point can be illustrated by considering the case of climate change once more. Nordhaus 

(2008) claims that a discount rate of 5% is socially efficient. Using an integrated assessment 

model, he estimated that the net present value of the future damages generated by one more 

tonne of CO2 emitted today is 8 dollars. This means that none of the big technical projects to 

curb our emissions, such as carbon sequestration, wind generation, solar power, or biofuel 

technologies are currently socially desirable, because they all reduce emissions at a cost 

which is much larger than 8 dollars per tonne of CO2. The NPV of these abatement 

investments is negative because the present value of the costs is greater than the present value 

of the benefits (avoided damages from climate change).  Nordhaus concludes that the efficient 

response to climate change would, in the near term, be dominated by investment in green 

research and development with a slow ramp up in abatement effort over time as technology 

costs fall and damages rise.  On the other hand, Stern (2006) implicitly used a smaller 

discount rate of 1.4%.  He ended up with a NPV of future damages around 85 dollars per 

tonne of CO2. With this value of carbon, it is efficient to invest in significant levels of 

abatement now.  We should immediately implement at least some of the green technologies 

which are already available, such as wind turbines.  This means a massive reallocation of 

capital in the economy: old technologies – in particular in the energy sector – will become 

obsolete faster; consumers should replace their old cars and appliances as soon as possible, 

and they should spend money on insulating their house rather than on vacations. The higher 

estimate of the present value of damages from emissions drives greener growth but requires 

greater sacrifice from current generations. 
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In 2004, a Danish statistician named Bjorn Lomborg, asked a prestigious group of 

economists, including some Nobel laureates, to evaluate a set of big international projects for 

the benefit of humanity. The “Copenhagen Consensus” (Lomborg (2004)) that came out of 

this process put as its top priority public programs yielding immediate benefits (fighting 

malaria and AIDS, improving water supply,...), and recommended that environmental projects 

(climate change mitigation) should be implemented only after all these other projects are fully 

funded. Driving this conclusion were the use of a relatively large discount rate, together with 

the recognition that for many living in the early twenty-first century some of the most basic 

needs for a decent life are still not satisfied. 

 

 

The case of the distant future 

 

Suppose that the rate of return r of safe productive capital in the economy is constant. The 

continuously reinvested value of 1 dollar over t years in the productive capital of the economy 

is exp( )rt . The exponential nature of compounded interest comes from the fact that the 

interest obtained in the short run will itself generate interest in the future.  Reversing the 

argument, this means that the present value of 1 dollar in t years must be equal to exp(-rt). As 

was said above, if the interest rate is 4%, the present value of 100 dollars next year is 

approximately 96.2 dollars. However, the net present value of 100 dollars in 200 years is an 

extremely small 4 cents. This means that one should not be ready to invest more than 4 cents 

today for an investment project that yields 100 dollars in 200 years. This example illustrates 

the origin of a long standing disagreement between economists and ecologists. Standard CBA 

tools generate an almost uniform policy recommendation: Ignore the very long-term impacts 

of one’s actions! Only the short-term costs and benefits influence the social desirability of an 

investment. In other words, CBA, and more generally economic theory, drives short-term 

thinking in our society, and goes against the sustainability of our development. 

 

Economists have recently been working on two questions related to this disagreement. First, a 

discount rate of 4% may be too high. To evaluate this point, it is necessary to think about the 

determinants of the discount rate, which is the main objective of this book. The weight placed 
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on impacts in the distant future is highly sensitive to the discount rate used.  For instance, 

using a 2% discount rate the value of 100 dollars in 200 years time is $1.91 – approximately 

50 times higher than the 4 cents valuation obtained when using a 4% discount rate.  Second, it 

could be socially efficient to use a rate of 4% to discount cash flows occurring in the short 

run, and only 2% to discount cash flows occurring in the distant future. In other words, there 

is no a priori reason to use the same discount rate for different time horizons. This book also 

addresses the question of the term structure of the discount rate.  

 

 

Recent changes in the discount rate around the world 

 

The level of the discount rate to be used to evaluate public investment projects was hotly 

debated in the 1960s and 1970s in most developed countries. In the United States, the debate 

originated in the water resources sector during the 1950s (Krutilla and Eckstein (1958)), but it 

quickly spread to other public policy debates, most notably energy, transportation, and 

environmental protection. During the Nixon Administration, the Office of Management and 

Budget tried to standardize the widely-varying discounting assumptions made by different 

agencies and issued a directive requiring the use of a 10% rate (U.S. Office of Management 

and Budget, OMB (1972)). In 1992, this rate was revised downward to 7%. It was argued at 

that occasion that the “7% is an estimate of the average before-tax rate of return to private 

capital in the U.S. economy” (OMB (2003)). In 2003, the OMB also recommended the use of 

a discount rate of 3%, in addition to the 7% mentioned above as a sensitivity. This new rate of 

3% was justified by the “social rate of time preference. This simply means the rate at which 

society discounts future consumption flows to their present value. If we take the rate that the 

average saver uses to discount future consumption as our measure of the social rate of time 

preference, then the real rate of return on long-term government debt may provide a fair 

approximation” (OMB, (2003)). The 3% corresponds to the average real rate of return of 10-

year Treasury notes between 1973 and 2003.  

 

In the United Kingdom, the HM Treasury (2003) issued general guidance rules to evaluate 

public policies in the Green Book. It recommends the use of a discount rate of 3.5%, a rate 
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that is justified by the Ramsey rule that we will examine in chapter 2. This discount rate is 

reduced to 3% for cash flows accruing more than 30 years into the future, 2% for cash flows 

accruing more than 125 years into the future, and even to 1% for more than 200 years.  This 

reduction of the discount rate for the distant future is justified by the high degree of 

uncertainty surrounding the distant future.  This justification is examined in chapters 4 to 8 of 

this book.  

 

From 1985 to 2005, France used a discount rate of 8% to evaluate public investments, which 

implied that most public investments had a negative net present value. As a consequence, 

lobbyists put pressure on those evaluating public policy to not rely too heavily on the use of 

CBA and had a tendency to inflate the future social benefits of investment projects.  In fact, 

the choice of the 8% was itself in part justified by this intrinsic optimism bias. In 2004, the 

French government commissioned Daniel Lebègue, then a high-level civil servant, to produce 

a report on the discount rate. The outcome was the Lebègue Report (2005) written by Luc 

Baumstark. This report recommended the use of a real discount rate of 4%. Moreover, on the 

basis of recent developments in the scientific literature, it also recommended that the discount 

rate should reduce to only 2% for cash flows occurring after more than 30 years.   

 

International institutions have also addressed the question of the discount rate. For example, 

the World Bank traditionally uses a discount rate in the range of 10-12%. It is justified “as a 

notional figure for evaluating Bank-financed projects. This notional figure is not necessarily 

the opportunity cost of capital in borrower countries, but is more properly viewed as a 

rationing device for World Bank funds" (Operational Core Services Network Learning and 

Leadership Center, 1998).   

 

 

Relevant literature 

 

For most of the XXth century, a single reference existed to drive the economic theory of the 

discount rate. Ramsey (1928) discovered a formula that links the growth of the economy and 

some psychological traits of consumers to the socially efficient discount rate. This “Ramsey 
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rule”, which is quite simple and intuitive, played a crucial role in the shaping of the rules used 

to evaluate public investments. Alternatively, the simple arbitrage argument, evoked above, 

suggests the use of the observed interest rate on financial markets as the socially efficient 

discount rate. Combining the two approaches yielded the well-known neoclassical theory of 

economic growth first explored by Solow (1956).  

 

The modern theory of finance has also investigated the level of the equilibrium interest rate 

and the shape of its term structure. Hundreds of articles have been published on this term 

structure.  Despite using sophisticated mathematical tools, these theories rely on simple 

arbitrage arguments based on exogenous stochastic dynamics of short term interest rate. 

Given the limited economic ingredients contained in those financial theories, not much space 

is devoted to presenting them in this book. Note however that the theory of finance contains 

many puzzles. One of them is the “risk free rate puzzle”; theory predicts an equilibrium 

interest rate which is much larger than the one that has been observed on markets during the 

last century (Weil, 1989).  

 

An intense debate emerged at the end of the nineties about whether it is socially efficient to 

use a discount rate for the distant future that is different from the one used to discount cash 

flows occurring within the next few years. The root of this literature, which has generated 

much controversy, is Weitzman (1998a) which argued for a declining term structure. I believe 

that much of this controversy is now resolved, which in part justifies the writing of this book.  
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Figure 0.1 : Histogram of individual estimates of the discount rate among  
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2160 Ph.D.-level economists. Source: Weitzman (1998) 

 

Weitzman (1998b) sent a simple questionnaire to around 2800 Ph.D.-level economists in 

which he asked the following question:  

 

“Taking all relevant considerations into account, what real interest rate do you think 

should be used to discount over time the (expected) benefits and the (expected) costs of 

projects being proposed to mitigate the possible effects of global climate change?” 

 

The number of responses was 2160. The frequency of responses is depicted as a histogram in 

Figure 0.1. The sample mean is 3.96%, with a standard deviation 2.94%. A striking feature of 

this exercise is the large diversity of answers.  This clearly shows that, at least in 1998, there 

was no consensus on the level of the discount rate to use to evaluate investments for a better 

future. This was confirmed by a second survey collected by Weitzman (1998b), who focused 

on 50 distinguished economists from Ken Arrow to Robert Merton and Jean-Jacques Laffont. 

This “balanced blue-ribbon panel” of expert opinion exhibited the same diversity, with a 

mean 4.09% and standard deviation 3.07%. The significant disagreement about the efficient 

discount rate in the economic profession is another motivation for this book. 

 

 

Structure of the book 

 

The book has four parts.  Part I is devoted to the basic theory of the discount rate, yielding the 

extended Ramsey rule. In Part II, various arguments are explored in favour of using a smaller 

discount rate for more distant cash flows. Extensions are discussed in Part III, including 

wealth inequalities, non-monetary cash-flows, and alternative decision criteria. Finally, the 

problem of how to evaluate risky projects is examined in Part IV. 
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The simple economics of discounting
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Three ways to determine the discount rate 

 
 

Description of the economy 

 

Let us consider a simple economy composed of several identical individuals who live for two 

periods, “today” and “the future”. These periods are indexed respectively by 0 and t. At the 

beginning of the first period, each agent is endowed with a quantity w of the single 

consumption good. Let us call this good “rice”. Rice can be consumed immediately, or it can 

be planted to produce a crop in the future. This means that rice is also an asset, a form of 

capital yielding a benefit for the future. Let us assume that planting k units of rice today yields 

f(k) units of grain in the future. We assume that function f is increasing and concave, and that 

f(0)=0. The derivative of f is the marginal productivity of capital, which is thus assumed to be 

positive and decreasing.  

 

How should these individuals allocate their initial endowment of rice between immediate 

consumption and saving/investment for the future? In order to answer this question, it is 

necessary to first determine the consumers’ lifetime objective. At this stage, the general view 

is taken that they evaluate their lifetime utility as U(c0,ct), where 0c  and ct are the level of 

consumption of rice today and in the future respectively. The bivariate utility function U is 

assumed to be increasing in its two arguments. Increasing consumption increases welfare. It is 

also assumed to be concave. This implies in particular that the marginal utility of rice in 

periods 0 and t is decreasing. The effect on welfare of one more grain of rice is larger when 

the consumption level is low than when it is high. The concavity of U also implies that there 

is a preference for consumption smoothing over time. If the two consumption plans (1, 3) and 

(3,1) are equally preferred, then the consumption plan (2,2) is certainly preferred to either of 

them.  
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Optimal consumption plan 

 

It is possible to use the standard graphical representation of this problem. In Figure 1.1, the set 

of feasible consumption plans has been drawn. It is represented by the grey area whose upper 

frontier is represented the locus of consumption plans (w-k,f(k)): When k is saved from the 

initial endowment w of rice, one can consume c0=w-k in the first period, and ct=f(k) in the 

second period.  Because of decreasing marginal productivity of capital, this feasibility frontier 

is concave. Also represented is the indifference curve defined by equation U(c0,ct)=UA that is 

tangent to this feasibility frontier. Because U is concave, indifference curves are convex. All 

plans represented by points above this curve yield an intertemporal welfare that is larger than 

UA. It clearly appears that the preferred consumption plan in the feasible set is plan A, which 

yields an intertemporal welfare UA. There is no feasible consumption plan that generates a 

level of intertemporal welfare larger than that.  

 

 
Figure 1.1: The optimal consumption plan 

 

 

ct 

A 
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The optimal consumption plan A is characterized by the tangency of the feasibility frontier 

and the indifference curve.  Technically, it is written as 

 0 0

0

( , )'( ) ,
( , )

t

t t

U c cf k
U c c

=  (1.1) 

where Ui is the partial derivative of U with respect to ci. Condition (1.1) is the first order 

condition of the problem of maximizing U(w-k,f(k)) with respect to k. The left-hand side of 

equation (1.1) is the marginal productivity of capital or the increase in future consumption 

when one more unit of rice is invested in the productive capital of the economy. It measures 

the (absolute value of the) slope of the feasibility frontier, evaluated at A. The right-hand side 

of this equality is the marginal rate of substitution between current and future consumption. It 

tells us by how much future consumption must be increased to compensate for the sacrifice of 

one unit of current consumption.  It measures the (absolute value of the) slope of the 

indifference curve at A.  

 

Condition (1.1) has a simple economic intuition. It states that at the optimum, one additional 

grain of rice planted today yields an increase f’(k) in the future consumption of rice which is 

just sufficient to compensate for the marginal sacrifice (or foregone consumption today of that 

additional grain of rice). If another plan on the frontier to the southeast of A were selected, 

where k is smaller, the same sacrifice today yields a future benefit that more than compensates 

for the initial sacrifice. This is because the smaller k implies at the same time a larger 

marginal productivity of capital and a smaller marginal rate of substitution. The latter arises 

from the fact that to the southeast of A, consumption is very unequal over time which implies 

that one is ready to sacrifice more for the future. Symmetrically, in the northeast section of the 

feasibility frontier where k is larger than at A, the marginal productivity is small, and the 

marginal rate of substitution is large. It implies that a reduction of k yields an increase in 

intertemporal welfare.  

 

It is useful to convert equality (1.1) between the marginal productivity and the marginal rate 

of substitution into an equality between rates of return. To do this, let us define 

 1 1 0 0

0

( , )ln '( )  and  ln .
( , )

t
k u

t t

U c ct f k t
U c c

ρ ρ− −= =  (1.2) 
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kρ  characterizes the rate of return of capital, since investing 1 at rate kρ  during t years yields 

exactly exp( ) '( )kt f kρ =  in the future. Similarly, if the minimum future benefit required to 

accept a reduction of current consumption by 1 unit is 0 / tU U , uρ characterizes the minimum 

rate of return on an investment of duration t to at least maintain intertemporal welfare. We 

refer to uρ  as the welfare-preserving rate of return of marginal saving. Optimality condition 

(1.1) can be restated as requiring that k uρ ρ= . The optimal consumption plan is such that the 

rate of return of capital equals the welfare-preserving rate of return of capital. 

 

 

The interest rate 

 

Because all individuals are assumed to have the same initial endowment and the same 

intertemporal preferences, they will all select consumption plan A in autarky. Suppose that a 

frictionless credit market opens, in which agents can exchange one unit of rice today against a 

gross return exp( )R tρ=  expressed in units of rice delivered in the future, where t is the 

number of years between the present and the future. In the absence of any solvency problem, 

one can interpret ρ as the risk free interest rate in the economy. Because agents have the 

possibility to transfer wealth by investing in their own rice technology, a simple arbitrage 

argument leads to the conclusion that  

 '( ).te f kρ =  (1.3) 

To show this, suppose that this equality did not hold and that exp( )R tρ= was larger than the 

marginal productivity of capital. This would imply that all agents would be willing to reduce 

their investment in their own rice technology to invest on the credit market that yields a larger 

return. This would induce an excess supply of credit on financial markets. This cannot be an 

equilibrium.  The interest rate would go down. Symmetrically, if exp( )R tρ=  was smaller 

than the marginal productivity of capital, all agents would like to get a loan to invest in rice 

production. This cannot be an equilibrium either. Thus, condition (1.3) characterizes the 

unique equilibrium on credit market. 
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The existence of a credit market transforms the individual feasibility condition represented by 

the grey area in Figure 1.1 by a budget constraint corresponding to the straight line in the 

same figure. Its slope equals –R. By construction, this transformation of the constraint faced 

by each consumer in the economy does not change their optimal consumption plan. 

 

We conclude that the competitive equilibrium on financial markets is such that the interest 

rate equals the rate of return of productive capital in the economy: kρ ρ= .   

 

 

The discount rate 

 

Let us now consider the crucial question addressed by this book. Suppose that an 

entrepreneur, the government or a consumer is contemplating a new collective investment 

project. This project has an initial cost ε  unit of rice per capita, and it will yield a sure benefit 

εert unit of rice per capita in the future.   r can be recognised as the internal rate of return of 

the project.  In our framework in which the single consumption good is rice, this investment 

project could be using a fraction of the initial endowment in rice to manipulate some of the 

rice’s genes, yielding an improved rice production technology.  However, this section can be 

applied more generally to investment projects in a more complex economy.  How should 

projects such as new transportation infrastructure, investments in education, or fighting 

climate change be valued? 

 

What is the minimum rate of return of the project under scrutiny that would make it desirable 

from the collective point of view? The answer to this question is usually referred to as the 

efficient discount rate. Is it necessary to know how the initial cost of an investment will be 

financed to characterize it?  Does it matter whether the initial cost of the project will be 

financed by a corresponding reduction in the level of current consumption or by a 

corresponding reduction in everyone’s investment in their own rice production technology?  
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Suppose first that the initial cost is financed by a reduction in the level of initial consumption. 

How does this collective investment modify the people’s intertemporal welfare? Because we 

assume that ε  is small, one can use standard differential calculus to get 

 0 0 0( , ) ( , ).rt
t t tU U c c e U c cε εΔ = − +  (1.4) 

To get the minimum rate of return that makes the project socially desirable, one should 

equalize UΔ  to zero. This implies that the socially efficient discount rate r is such that 

 1 1

2 1

( , )
( , )

rt t

t

U c ce
U c c

=  (1.5) 

This means that the efficient discount rate is equal to the welfare-preserving rate of return: 

ur ρ= . 

 

Suppose alternatively that the collective investment project is financed by a corresponding 

reduction in the productive capital in the economy. Trivially, the project is socially desirable 

only if its internal rate of return is larger than the marginal return of productive capital in the 

economy. This seemingly innocuous observation is important and is deep-rooted in the brain 

of most economists: evaluations must also be made by comparisons, and one should take into 

account of the opportunity cost of funds. This means that the discount rate must equal the rate 

of return of capital: kr ρ= . This condition guarantees that the marginal investment project is 

socially at least as good as investing in the productive capital in the economy. Requiring that 

the Net Present Value (NPV) of a project is positive is equivalent to checking that this project 

does better for the future than all other unfunded projects available in the economy.   

 

Because consumption plans are optimized, we know that k uρ ρ= .  When calculating the 

socially efficient discount rate it is in fact irrelevant whether the initial cost is financed by a 

reduction in consumption or in other productive investments. To sum up, it has been shown 

that 

 .k ur ρ ρ ρ= = =  (1.6) 

 

Notice that we could have gone straight to the point that the efficient discount rate must be 

equal to the interest rate by observing that any agent can finance the initial cost by borrowing 
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it today on the credit market. This will yield a reimbursement at date t equalling exp( )tε ρ , 

where ρ is the interest rate. Obviously, the project is efficient if its benefit at date t net of this 

reimbursement – which is referred to as the Net Future Value (NFV) -- is non negative. The 

critical internal rate of return is thus defined as yielding a zero NFV: 

 0.t rtNFV e eρε ε= − + =  (1.7) 

This rule is better known as the NPV rule by multiplying the above equality by exp( )tρ− : 

 0,rt tNPV e e ρε ε −= − + =  (1.8) 

which holds if and only if .r ρ=  This is a very natural approach for any specific economic 

agent. When assessing a project, she does not need to know whether the investment will 

crowd out other investments, or whether it will reduce aggregate consumption in the 

economy. 

 
 

Summary  

 

In this chapter, it has been shown that the socially efficient discount rate can be estimated in 

three different ways: 

 

• The discount rate r is the interest rate ρ observed on financial markets. This interest 

rate reveals important information about society’s willingness to transfer wealth to the 

future. 

 

• The discount rate r is the marginal rate of return on productive capital in the economy. 

Indeed, one should invest in a new project only if its rate of return is larger than 

alternative strategies to invest in productive capital. 

 

• The discount rate is the welfare-preserving rate of return on savings. Investment 

reduces current consumption and therefore welfare in the current period.  However the 

investment will increase consumption and welfare in later periods.  One should invest 

in a new project only if the reduction in current welfare is more than compensated for 

by the increased future welfare. 
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It has also been shown that these three definitions of the discount rate are fully compatible 

with each other when consumption plans are optimized and credit markets are frictionless.   
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The Ramsey rule 
 

 

Why do we need a model? 

 

The most obvious way to determine the efficient discount rate is to make it equal to the rate of 

return on risk free capital. This is referred to as the interest rate, which measures the 

opportunity cost of funds in the economy. This is certainly a good reference when the cash 

flows to be discounted occur in the next few months or years. However, to use financial 

markets to estimate the discount rate, it is necessary to observe the real rate of return for truly 

risk free assets. 

 

Most corporations and public institutions use as their discount rate, the rate at which they can 

borrow on financial markets, or their Weighted Average Cost of Capital (WACC). Normally 

this rate contains a risk premium because their investment projects are risky with cash flows 

that are correlated with systematic risk in the economy. It is often suggested that corporations 

use a rate of around 15% to evaluate their investment projects.  This rate contains a risk 

premium.  Therefore it is not what is referred to in this book as the discount rate, which is 

instead the rate at which a sure future benefit must be discounted to measure its present value.  

 

The safest assets on the planet are bonds issued by governments in the western world.  Those 

issued by the United States are the safest.  Their probability of default is very small, in 

particular in the short term because of their extensive ability to tax their citizens’ incomes.  

The nominal cost of borrowing is revealed by the rate of return on the bonds they issue.  

Combined with an almost deterministic short-term inflation rate it is straightforward to 

calculate the real rate of return.  This provides a clever basis to fix the short-term discount 

rate. 

 

In the longer term, the rate of return on government bonds with longer maturities provides a 

noisier signal about the cost of borrowing for a risk free agent.  There are increasing 

uncertainties surrounding inflation and the probability of default. These uncertainties imply 
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that empirical data from financial markets are tainted with frictions, inefficiencies, and 

bubbles. In turn this implies a role for economic models which can be used to construct a 

scientific basis for the discount rate.  

 

There is a further limitation to using rates of return on government bonds in the longer term.  

There does not exist, in any significant quantity, bonds with maturities longer than 30 or 50 

years. Moreover, as is well-known from the overlapping-generation models of the theory of 

growth, future generations cannot trade on present credit markets, which make them 

intrinsically inefficient (Diamond (1977)). Therefore, there isn’t any clear benchmark from 

financial markets to help determine the rate at which distant cash flows should be discounted. 

As a consequence, two of the three ways proposed in Chapter 1 to estimate the discount rate 

are invalid for long time horizons. 

 

In the following, an approach based on the welfare-preserving rate of return is used, which 

will produce the famous Ramsey rule. This approach can also be interpreted as an attempt to 

predict what the equilibrium interest rate should be in an economy with perfect financial 

markets and paternalistic investors. In other words, our aim is to price risk free assets 

according to a welfare-compatible interpretation of the notion of sustainable development.  

 

When different generations bear the costs and the benefits of the investment under scrutiny, 

the utility function U considered in the previous section should be reinterpreted as the social 

welfare function. In this framework, U characterizes the collective preferences towards the 

allocation of consumption across generations.  

 

 

Additive time preferences 

 

The previous chapter examined a simple sure investment project yielding only two cash 

flows; a cost today and a benefit at some specific date t. It was seen that the minimum rate of 

return that makes this project socially desirable is: 
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=  (2.1) 

In the absence of financial market failures, this socially efficient discount rate is also the 

equilibrium rate of return of a zero-coupon bond with maturity t. In this chapter, this simple 

equation is calibrated. Two ingredients are required; the shape of the intertemporal utility 

function U, and the economic growth from 0c  to 0tc c> . 

 

An important simplifying assumption is that U is additive with respect to time. Namely, it is 

assumed that there exist two functions, u and vt from \  to \  such that 

 0 0( , ) ( ) ( ).t t tU c c u c v c= +  (2.2) 

 

 Equation (2.2) can be interpreted as follows: the agent evaluates their intertemporal welfare 

by adding their immediate utility 0( )u c  , generated by consuming 0c  , to the anticipated utility 

( )t tv c  generated by consuming tc  in the future. This means in particular that the level of 

initial consumption 0c  has no effect on the utility of consumption at date t. This precludes the 

formation of consumption habits, any anticipatory feelings or any emotional hysteresis. This 

assumption is important because it allows the two dates 0 and t to be isolated in the evaluation 

of the welfare-preserving discount rate. If there were some hysteresis, the entire consumption 

plan between 0 and t would have an effect on the marginal value of consumption at date t.   

 

 

Exponential psychological discounting 

 

Since Ramsey (1928), economists have made the assumption that agents are impatient. They 

value their future utility less than current utility. An immediate pleasure is preferred to an 

identical one that is experienced in the future. This impatience is modelled by assuming that 

there is a single function u that links the level of current consumption to the level of current 

utility, and that lifetime utility is a discounted flow of current and future utilities. In other 

words, the additive specification (2.2) is considered in the special case with 

( ) exp( ) ( )tv c t u cδ= −  for all c.  More generally, the intertemporal welfare function is assumed 
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to be a weighted sum of the flow of future felicities, the weight associated to any maturity t 

being ( ) exp( )f t tδ= − .  

 

Parameter δ  is the rate of pure time preference, or the rate of impatience. Some economists 

refer to it as the “discount rate”. Indeed, it is a discount rate, since it is used to discount the 

flow of future utility.  However, it is not the discount rate in the usual sense, which is the rate 

used by economists to discount future cash flows. Of course, as is shown below, there is a link 

between the rate of impatience δ and the discount rate that is denoted by r in this book.  

 

The choice of the exponentially decreasing function, ( ) exp( )f t tδ= −  , for the utility discount 

factor relies on a simple argument of time consistency. Consider the same investment problem 

as in the previous chapter, with an initial cost to be incurred at date 0 and a benefit at date t. 

However, rather than examining the value of the project at date 0, it is examined at some date 

-τ<0, before its implementation. Suppose that no new information about the quality of the 

project and about the environment of the investor is expected between τ−  and 0. Time 

consistency requires that if it is optimal at date –τ to plan to invest at date 0, it is indeed 

optimal to invest when date 0 comes.  Planning is rational. From the initial date τ− , the 

duration of time before enjoying utility 0( )u c is τ  years, so that a discount factor exp( )δτ−  

must be attached to utility occurring at date 0. Similarly, the duration of time before enjoying 

utility at date t is tτ +  years, so that a discount factor exp( ( ))tδ τ− + should be used to 

discount utility from consumption at date t, ( )tu c . It can be concluded that the intertemporal 

welfare function at date τ−  can be written as 

 ( )( )
0 0 0( ) ( ) ( ) ( ) ( , ).t t

t t te u c e u c e u c e u c e U c cδτ δ τ δτ δ δτ− − + − − −+ = + =  (2.3) 

 

It can be observed that the objective function at date τ−  is the product of a constant and the 

objective function at date 0. Therefore, any project that raises the welfare 0( , )tU c c  as 

evaluated at date 0 also raises welfare when evaluated at date τ− .  This guarantees time 

consistency. The exponential nature of the discount factor in the intertemporal welfare 

function guarantees that the relative “exchange rate” of utility for any pair of dates is 
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insensitive to the passing of time. Other specifications for the utility discount factor, such as 

the hyperbolic one with 1( ) (1 )f t at −= +  , induce time inconsistent behaviours. 

 

 

Rate of impatience 

 

There is a simple way to estimate the rate of impatience δ. Suppose that you believe that your 

income in the future will be the same as this year, and that you currently have no savings. 

What is the minimum interest rate that would induce you to save some of your current 

income? The answer to this question is called your welfare-preserving rate of return, which is 

defined by equation (2.1). Under the above assumptions with 0 tc c= , we obtain that 

0 / exp( )tU U tδ= − , so that r δ= . The rate of impatience is equal to the minimum interest rate 

that induces people to save when their income profile is flat. 

 

There is no convergence among experts toward an agreed, or unique, rate of impatience. 

Frederick, Loewenstein and O'Donoghue (2002) conducted a meta-analysis of the literature 

on the estimation of the rate of impatience. Rates differ dramatically across studies and within 

studies across individuals. For example, Warner and Pleeter (2001), who examined actual 

households’ decisions between an immediate down-payment and a rental payment, found that 

individual discount rates vary between 0% and 70% per year!  Thus the calibration of δ is 

problematic if the objective is positive, i.e., if one wants to explain real behaviours.  

 

As long as consumption at date 0 and t concerns a given person, impatience is a psychological 

trait that economists should take as given. However, many experts in the field have 

questioned, from a normative perspective, the appropriateness of impatience for the 

evaluation of social welfare. Arrow (1999) cites various classical authors on this matter. The 

most well-known citation is from Ramsey (1928) himself: “It is assumed that we do not 

discount later enjoyments in comparison with earlier ones, a practice which is ethically 

indefensible and arises merely from the weakness of the imagination.” Many other 

distinguished economists can also be cited: Sidgwick (1890): “It seems ... clear that the time 
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at which a man exists cannot affect the value of his happiness from a universal point of view; 

and that the interests of posterity must concern a Utilitarian as much as those of his 

contemporaries…”, Or Harrod: “Pure time preference [is] a polite expression for rapacity and 

the conquest of reason by passion.” Koopmans: “[I have] an ethical preference for neutrality 

as between the welfare of different generations.” Solow: “In solemn conclave assembled, so 

to speak, we ought to act as if the social rate of pure time preference were zero.”  

 

The general view is that a small or zero discount rate should be used when the flow of utility 

over time is related to different generations. The fact that I discount my own felicity next year 

by 2% does not mean that I should discount my children’s felicity next year by 2%. In fact, 

there is no moral reason to value the utility of future generations less than the utility of the 

current ones. As explained by Broome (1991), good at one time should not be treated 

differently from good at another, and the impartiality about time is a universal point of view. 

The normative doctrine is that the rate of time preference is zero. In later sections, this book 

takes a normative stand to set δ at zero.  This is justified because the dominant role of the 

discount rate over the longer term is to allocate utility across different generations rather than 

within an individual’s lifetime. If one treats different generations equally, the only argument 

in favour of a positive rate of pure preference for the present is the possibility of extinction. 

For example, Stern (2006) uses a δ of 0.1% per year that is justified by the quite arbitrary 

assumption that there is a 0.1% probability per annum that humanity will disappear within the 

next 12 months.   

 

Aversion to intertemporal inequality of consumption 

 

It was shown in the previous section that the concavity of the intertemporal welfare function 

U characterizes a preference for the smoothing of consumption over time. In the additive case 

examined here, this is translated into the concavity of the utility function u. The local measure 

of the degree of concavity of the utility function u is defined: 

 
''( )( ) .
'( )

cu cR c
u c

= −  (2.4) 



 - 31 - 

This index is hereafter referred to as the relative aversion to intertemporal inequality. To 

illustrate why, suppose that an individual’s consumption plan, 0( , )tc c , is unequally 

distributed over time. Suppose more particularly that future consumption is larger than current 

consumption: 0tc c> . How much would the individual be ready to pay today to increase 

consumption by one unit in the future? This should be less than one unit for two reasons: 

impatience and aversion to consumption inequality. In the absence of both of these effects, the 

individual would be prepared to exchange one for one. Let k be the maximum reduction in 

current consumption that is compatible with the unit increase in future consumption. It must 

satisfy the following indifference condition: 

 0'( ) '( ).t
tku c e u cδ−=  (2.5) 

Assume that t=1, and that tδ  and 1 0c c−  are small. Using a first-degree Taylor approximation 

of 1'( )u c  around 0c  and using the approximation exp( ) 1t tδ δ− −� implies that: 

 1 0
0 0 0 0

0
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This can in turn be approximated as: 

 1 0
0

0

1 ( )c ck R c
c

δ −
− −�  (2.7) 

This equation can be used to estimate your relative aversion to intertemporal inequality R(c0). 

Suppose that your rate of impatience is δ=0, and that you anticipate an increase in future 

consumption of 10%. In spite of this increase, you are considering a sure investment which 

will transfer consumption to the future. What is the maximum reduction k of current 

consumption that you are ready to sacrifice, or invest, to increase future consumption by 1 

dollar? The answer to this question gives us an estimation of your relative aversion to 

intertemporal inequality, since by (2.7), R(c0)=10-10k. For example, answering 90 cents to 

the question yields a relative aversion R=1, whereas an answer of 80 cents yields a relative 

aversion R=2.  

 

There is no consensus on the intensity of relative aversion to intertemporal inequality. Using 

estimates of demand systems, Stern (1977) found a concentration of estimates of R around 2 
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with a range of roughly 0-10. Hall (1988) found an R around 10, whereas Epstein and Zin 

(1991) found a value ranging from 1.25 to 5. Pearce and Ulph (1995) estimate a range from 

0.7 to 1.5. Following Stern (1977) and the author’s own introspection, we will hereafter 

consider R=2 as a reasonable value. 

 

When different generations are concerned by the investment project to be evaluated, the 

choice of the discount rate entails interpersonal comparisons of utility. In that case, function U 

is interpreted as a social welfare function, and the concavity of u characterizes aversion to 

interpersonal inequality. Is the level of R affected by this shift in analysis?  In this literature, it 

is generally assumed that our normative attitude towards consumption inequalities should not 

depend upon the nature of the comparisons of consumption levels. Under the common 

paternalistic view, one should evaluate the impact on social welfare of an intertemporal 

inequality of consumption exactly as if it would be an interpersonal inequality.  The social 

evaluation should be impartial. It is claimed that the two problems are equivalent by nature.  

From a normative point of view, if one is ready to pay up to 80 cents to increase consumption 

by one dollar next year, in spite of an anticipated 10% increase in consumption, one should 

also be ready to give up 80 cents in order to offer one dollar to another person that is 10% 

wealthier than us. Thus, it is maintained that R=2 is a sensible level of relative aversion to 

intertemporal inequality even in the intergenerational context.  

 

 

The power utility 

 

Economists and econometricians often limit their analysis by using a specific utility function 

in their model.  They usually favour exponential, quadratic, logarithmic or power utility 

functions. In this book, as in the modern theory of finance, the special case of the power 

utility function will be used most frequently: 

 
1

( ) .
1
cu c

γ

γ

−

=
−

 (2.8) 

Parameter γ is positive and different from 1. When γ=1, we take ( ) ln( )u c c= , since it can be 

verified that the limit of (2.8) when γ tends to 1  is the logarithmic utility function.  These 
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utility functions are increasing and concave because '( )u c c γ−= . Moreover, the index R of 

relative aversion to intertemporal inequality is constant, and is equal to γ. 

 

The use of a power utility function is not an innocuous assumption. The constancy of the 

relative aversion means in particular that the answer k to the above question depends not on 

the initial absolute level of consumption, but only upon its growth rate. This implication can 

be challenged, in particular given the fact that there must be some positive minimum level of 

subsistence. If current income is at or below this minimum subsistence level an individual 

would be entirely unwilling to transfer consumption to a future period. This is not the case 

with function (2.8). In addition, this power utility function implies that the marginal utility 

tends to infinity when consumption tends to zero. Consider a future state of nature where 

consumption tends to zero. Specification (2.8) implies that one would be ready to sacrifice 

almost 100% of one’s current wealth in order to increase wealth in this future state by one 

dollar.   This is not realistic.  It is therefore necessary to be quite cautious in the use of the 

classical power utility model when there is the possibility of Armageddon scenarios. 

 

 

The Ramsey rule 

 

It is time to bring together the different elements discussed so far in this chapter. Rewriting 

equation (2.1), the efficient discount rate must be equal to 

 0

0

'( ) '( )1 1ln ln .
'( ) '( )

t
t

t

u c u cr
t e u c t u cδ δ−= = −  (2.9) 

 

A Taylor expansion of '( )tu c  around 0c  yields 

 0
0

0

( ).tc cr R c
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δ −
+�  (2.10) 

Equations (2.9) and (2.10) show that the socially efficient discount rate has two components. 

It is the sum of the rate of impatience and a wealth effect.  The wealth effect is positive when 

people expect a positive growth in their consumption. It is approximately equal to the product 

of the annualized growth rate of consumption and of the relative aversion to intertemporal 
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inequality. This approximation is exact in the special case of the power utility function. 

Indeed, plugging 0 exp( )tc c gt=  and '( )u c c γ−=  in equation (2.9) yields 

 ,r gδ γ= +  (2.11) 

where g  is the yearly growth rate of consumption between dates 0 and t. This is the well-

known Ramsey rule, which links the efficient discount rate to two “taste” parameters (the rate 

of impatience,δ  , and the relative aversion to intertemporal inequality, γ ) and the growth rate 

of the economy. This equation is the cornerstone of this book. 

 

When people expect that the economy will grow fast in the future, their aversion to 

intertemporal inequality makes them reluctant to sacrifice present income to further improve 

the already better future. They will be willing to do so only if the rate of return on their 

investment is large enough to compensate for the induced increase in intertemporal inequality 

and their pure preference for the present. This behaviour can be observed on financial 

markets. When households have better expectations about their future income, they reduce 

their savings, which implies in turn an increase in the equilibrium interest rate. In contrast,  

the expectation of a recession induces them to save more, which implies a reduction in the 

equilibrium interest rate. In short, the interest rate varies pro-cyclically.  

 

 

What are the implications of this approach? 

 

Several experts have used the Ramsey rule (2.11) to make recommendations on the choice of 

the discount rate to evaluate public policies, in particular towards climate change. The easiest 

proposal to memorize is from Weitzman (2007), who recommended the use of a trio of twos:  

 =2%, g=2% and =2.δ γ  (2.12) 

We share the view of Weitzman that “these numbers at least pass the laugh test”. They yield a 

discount rate of 6%.  Nordhaus (2008) uses 5%, the lower rate arising from a choice of a rate 

of impatience δ=1%.  

 



 - 35 - 

Stern (2006) has often been criticized for using a much smaller discount rate of approximately 

r=1.4%. In fact, because the impacts of global warming cannot be considered as marginal, the 

standard evaluation technique based on the net present value cannot be used. This is why 

Stern (2006) did not actually use any specific discount rate. Rather, he measured the monetary 

equivalent of the impact of climate change on the intertemporal welfare function. However, 

this intertemporal welfare function used the following trio of parameter values: 

  =0.1%, g=1.3% and =1.δ γ  (2.13) 

The choice of the rate of time preference at 0.1% comes from the moral stand of time 

impartiality – each to count for one, and none for more than one --, and from the possibility of 

extinction (for which, as mentioned above, Stern set the probability of occurrence at 0.1% per 

year). Observe also that Stern assumes a logarithmic utility function, whose relative risk 

aversion ( 1γ = ) is at the lower bound of estimates for R in the wider literature. Trio (2.13) 

plugged in the Ramsey rule (2.11) yields a discount rate r=1.4%, which is considered as a 

radical position by a majority of economists. It drives the conclusion of the Stern Review 

urging governments around the world to act immediately and strongly to reduce emissions of 

greenhouse gases. 

 

Following the publication of the Green Book (2003), the UK recommends a discount rate of 

3.5% for cash flows with a maturity of less than 30 years based on the following calibration of 

the Ramsey rule: 

  =1.5%, g=2.0% and =1.δ γ  (2.14) 

For periods longer than thirty years, a declining forward discount rate is recommended.  For 

cash flows maturing between 31 and 75 years, 3% is used.  This declines to 2.5% for 

maturities of 76 to 125 years, 2% for 126 to 200 years, 1.5% for 201 to 300 years and finally 

the discount rate reaches its minimum value of 1% for maturity beyond 301 years.  This 

declining rate is justified by uncertainty over future economic growth – a justification that 

will be explored further in this book.   

 

In France, the « Rapport Lebègue » (2005) has been endorsed by the French government, 

resulting in the adoption of a 4% discount rate for all cash flows with a maturity less than 30 

years. This recommendation is based on the following calibration of the Ramsey rule: 
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 =0%, g=2% and =2.δ γ  (2.15) 
For time horizons longer than 30 years, a forward discount rate of 2% is used2.  

 

 

Conclusion 

 

The Ramsey rule (2.11) gives us the efficient discount rate based on the estimation of the 

welfare-preserving rate of return of saving. It relies on three parameters: the rate of 

impatience, the relative aversion to intertemporal inequality, and the growth rate of the 

economy. A justification was presented for a normative view that intertemporal preferences, 

when they concern different people, should be impartial with respect to time. The collective 

rate of impatience should be zero. A relative aversion to intertemporal inequality of R=2 has 

also been advocated.  Under these assumptions, the socially efficient discount rate should be 

twice the growth rate of consumption per capita. Because the mean growth rate of 

consumption per capita has been approximately 2% per year in the western world over the last 

two centuries, the extrapolation of this fact would justify using a real discount rate of 4%. 

However, the calibration of the growth rate g in the Ramsey rule is problematic.  There is 

significant uncertainty surrounding the evolution of economies in the years, decades and 

centuries to come. The next chapter explains how to overcome this difficulty. 
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Extending the Ramsey rule to risk 
 

 
 

A decision criterion under risk 

 

Uncertainty is a feature of everyday life. We don’t know with certainty today what tomorrow 

will look like, and for many of us, the more distant future is extremely uncertain. This 

complicates the dynamic optimization problem of maximizing our lifetime welfare.  In 

particular, determining the optimal level of savings requires an estimate of the future utility 

gain of this transfer of wealth in a context in which little is known about future income. This 

problem is at the core of the question of what should be done for the future.   

 

When the growth rate of consumption is unknown, the intensity of the wealth effect described 

in the previous chapter cannot be estimated, and the Ramsey rule (2.11) is unable to produce a 

precise prescription for the choice of the discount rate. Estimating the growth rate of 

consumption for the coming year is already a difficult task. Any estimate of growth for the 

next century is subject to potentially very large errors. Over a millennium estimation errors 

could be enormous.   

 

The history of the western world before the industrial revolution is full of significant 

economic slumps, such as those which occurred following the collapse of the Roman Empire 

in the Vth century, or the Black Death epidemic in the mid XIVth century. The recent debate 

on the concept of sustainable growth is itself an illustration of the degree of uncertainty faced 

when thinking about the future of Society. Some argue that the effects of improvements in 

information technology have yet to be realized and that the world is entering a period of more 

rapid growth. By contrast, those who emphasize the effects of natural resource scarcity, or the 

inability of financial markets to allocate capital efficiently, predict lower growth rates in the 

future. Some even suggest a negative growth of GDP per head, owing to a deterioration of the 

environment, population growth and decreasing returns to scale. The implication of this last 

position is that the wealth effect on the discount rate is negative rather than positive as 



 - 40 - 

supposed in the previous chapter.  The future is poorer than the present so we should make 

more sacrifices today to improve the future. Uncertainty over how wealthy the future will be 

at least casts some doubt on the relevance of the wealth effect to justify the use of a large 

discount rate.  

 

In order to address the question of the role of uncertainty on the selection of the discount rate, 

it is necessary to characterize its impact on welfare. From now on the classical approach is 

followed, relying on the Bernoulli-von Neumann-Morgenstern expected utility theory. More 

specifically, it is assumed that when the consumption level tc  at date t is uncertain, the ex 

ante welfare at that date is measured by the expected utility of this uncertain consumption. 

Thus, seen from date 0, the social welfare in the economy is written as 

 

 0( ) ( ),t
tV u c e Eu cδ−= +  (3.1) 

where the expectation operator E is related to the probability distribution of the random 

variable tc . The expected utility criterion relies on an intuitive “independence axiom”. 

Consider three different actions, A, B and C. A could be to go to see a movie; B could be to 

go to a restaurant, and C to stay home. Under this axiom, if one prefers A with certainty rather 

than B with certainty, one will also prefer the lottery which yields A with probability p to the 

lottery which yields B with the same probability, where for both lotteries the alternative is to 

get C with probability 1-p. In other words, if you prefer to go to the movie rather than the 

restaurant today, this choice will not be altered if you learn that there is a risk that you will 

have to stay home. In spite of its intuitive appeal, the Allais’ paradox shows that there are 

circumstances under which some agents violate this axiom. However, the aim of this book is 

mostly normative.  An answer is sought to the question of which discount rate should be used 

for rational evaluation of public policies.  For this purpose, it is reasonable to rely on the 

independence axiom.  

 

Risk aversion 
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An agent is risk-averse if he always prefers the expected payoff of a lottery to the lottery 

itself. In the expected utility model, it is well-known that the concavity of the von Neumann-

Morgenstern utility function characterizes the aversion to risk of the decision maker.  Indeed, 

by Jensen’s inequality, the concavity of u implies that ( )tEu c  is smaller than ( )tu Ec . A 

mean-preserving reduction in risk increases expected utility because marginal utility is 

decreasing. For example, if future consumption is 80 or 120 with equal probabilities, 

decreasing marginal utility implies that increasing consumption by 20 in the bad state 

increases utility more than the reduction of utility from reducing consumption by 20 in the 

good state. Therefore, eliminating the risk and receiving 100 with certainty is ex ante welfare-

improving. 

 

Let tz Ec=  and ( ) /t tc z zε = −  denote respectively the expected consumption and the relative 

risk at date t. In addition, let π  denote the risk premium, which is defined as the maximum 

price that one is ready to pay for the elimination of tε , expressed as a fraction of expected 

consumption: 

 ( (1 )) ( (1 )).tu z Eu zπ ε− = +  (3.2) 

The level of π  measures the degree of risk aversion.  0π =  corresponds to risk neutrality, in 

the sense that risk does not affect welfare in that case. The well-known Arrow-Pratt 

approximation allows us to link π  to the variance 2
tσ  of tε  and to the index of the concavity 

of u, which is ( ) ''( ) / '( )R c cu c u c= − : 

 20.5 ( )t R zπ σ�  (3.3) 

  

The relative risk premium is approximately equal to half the product of the variance of the 

relative risk and of the index of relative risk aversion R. This is obtained through Taylor 

approximations of the two sides of equation (3.2) around z .  

 

Equation (3.3) gives us a new opportunity to estimate the degree of concavity of u. Suppose 

that your consumption is subject to an equal chance of an increase or a decrease of 10%. What 

fraction of consumption are you prepared to pay to eliminate this risk? Since 2
tσ  equals 1% in 
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this case, the answer to this question should approximately be equal to 0.5% of R. For 

example, when relative risk aversion equals 2, this fifty-fifty chance of a gain or a loss of 10% 

of consumption is equivalent to a sure loss of 1%π � . This test provides further reassurance 

that R=2 is a reasonable level of concavity of the utility function. 

 

How good is the Arrow-Pratt approximation (3.3)? In general, because it is derived from 

Taylor approximations, its quality decreases as the size of risk tε  increases. There is however 

one special case in which approximation (3.3) is exact, whatever the size of the risk. This 

special case is used almost universally in the theory of finance, and extensively later on in this 

book.  For these reasons it is good to write it as a formal Lemma. 

 

Lemma: Suppose that x is normally distributed with finite mean μ  and variance 2σ . 

Consider any scalar A∈\ . Then: 

 
2( 0.5 ).Ax A AEe e μ σ− − −=  (3.4) 

In other words, the Arrow-Pratt approximation (3.3) is exact when the risk is normally 

distributed and the utility function is exponential. 

 

A proof of this lemma is provided in the appendix of this chapter.  

 

It is notable that in the additive model, which is also referred to as the ‘Discounted Expected 

Utility’ model, the concavity of u plays two different roles: aversion to intertemporal 

inequality and aversion to risk. This has often been criticized in the literature because the 

attitudes towards risk and time are often considered to have different natures.  This limits the 

positive power of the model, to describe how people behave in relation to risk and time. 

However, from a normative point of view, the use of decreasing marginal utility to explain the 

two types of aversion is quite appealing. It makes sense to link the resistance to transfer 

wealth to either a wealthier future or to a wealthier state of nature to the property that 

marginal utility is decreasing. 

 

 

Prudence and precautionary saving 
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The previous section examined the impact of risk on welfare. However, the main question 

here is quite different. We are interested in determining the impact of uncertainty on 

willingness to improve the future. Before examining this question at a global level, it is useful 

to return to the individual level.  The most obvious action that we do in favour of our own 

future is to save. So, it is useful to explore the effect on saving behaviour of uncertainty over 

future income. This provides a helpful insight into how we should collectively behave in the 

face of an uncertain collective destiny. After all, any collective risk will percolate down into 

risks that must be borne by individuals. Intuition suggests that uncertainty surrounding the 

future should raise our willingness to save. This is the concept of precautionary saving 

introduced by Keynes, which has been revisited since then by Leland (1968), Drèze and 

Modigliani (1972) and Kimball (1990), among others. 

 

Consider an individual who has a flow of income 0y  at date 0, and ty  at date t. Their optimal 

level of saving, s, solves the following maximization program: 

 0max ( ) ( ) ( ),t rt
s tV s u y s e Eu y e sδ−= − + +  (3.5) 

where  r  is the interest rate. Under the concavity of u, the objective function V is concave in s, 

and the following first-order condition is necessary and sufficient: 

 ( )
0'( ) '( ) '( ) 0r t rt

tV s u y s e Eu y e sδ−= − − + + =  (3.6) 

 

Compare two cases. In the ‘certain’ case, ty  equals a constant z with certainty. Without loss 

of generality, suppose that the optimal saving level is zero in that case. In the ‘uncertain’ case, 

(1 )t ty z ε= + , where tε  is a zero-mean relative risk on future income. Compared to the 

certain case, the future risk raises the optimal saving if and only if it raises V’(0). This 

requires that:  

 '( (1 )) '( ).tEu z u zε+ ≥  (3.7) 

This is the case if and only if u’ is convex because risk tzε  has a zero mean. Marginal utility 

must be decreasing at a decreasing rate. Using the terminology introduced by Kimball (1990), 

an agent is called prudent if his marginal utility is convex. Prudence is the necessary and 
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sufficient condition to guarantee that individuals want to save more when the future becomes 

more uncertain. 

 

Let us define the precautionary premium ψ  as the sure relative reduction in future income 

that has the same effect on saving as the future risk on income: 

 '( (1 )) '( (1 )).tu z Eu zψ ε− = +  (3.8) 

(1 )z ψ− is the precautionary equivalent of (1 )tz ε+ . Comparing equations (3.8) and (3.2), 

observe that the precautionary premium ψ  of u is the risk premium of –u’, which is 

increasing and concave under prudence. By analogy, equation (3.3) can be rewritten as:  

 

 20.5 ( ),t P zψ σ�  (3.9) 

where ( ) '''( ) / ''( )P z zu z u z= −  is the index of relative prudence (Kimball (1990)). Thus, adding 

a zero-mean relative risk to future consumption has an effect on current saving that is 

approximately equal to half the product of the variance of this risk and of the index of relative 

prudence. 

 

There has not been much attempt to estimate individuals’ degree of prudence. Usually, 

researchers use one of a family of utility functions that require the choice of a single 

parameter which determines both the degree of risk aversion of the decision maker and their 

degree of relative prudence.  In practice, the choice of this parameter is calibrated to the 

assumed degree of risk aversion. For example, consider the case of the power utility function, 

with '( )u c c γ−= , which implies that 1''( ) 0u c c γγ − −= − <  and 2'''( ) ( 1) 0u c c γγ γ − −= + > . It 

yields ( )R c γ=  and ( ) 1P c γ= + . For power functions, relative prudence equals relative risk 

aversion plus one. If we take R=2, we obtain P=3. Facing an equal chance of gaining or 

losing 10% of future income has an effect on current saving that is approximately equivalent 

to the effect of a sure reduction of future income by 1.5%.   

 

Is the convexity of marginal utility a natural assumption to make? It has already been assumed 

that marginal utility is positive and decreasing. This implies that it must be convex, at least 

locally, for large consumption levels. Observe also, though this is not a very convincing 
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argument, that all classical utility functions used in economics exhibit a convex marginal 

utility. This is the case for exponential, power and logarithmic utility functions. The quadratic 

utility function has a linear marginal utility.   

 

Two positive arguments are in favour of prudence. The first is that there is empirical evidence 

that people increase their saving when their future becomes more uncertain. See for example 

the econometric analysis by Guiso, Jappelli and Terlizzese (1996). Second, people are 

downside risk-averse, which is another term for prudence. The meaning of downside risk 

aversion can be illustrated by the definition proposed by Eeckhoudt and Schlesinger (2006). 

Suppose that your future consumption is either a low lz  or a high hz , with equal probabilities. 

Suppose that you are forced to bear a zero mean risk in one of these two states. Do you prefer 

to allocate this risk to the low or high -consumption state? If you answer that it is better to 

face the risk in the high-consumption state then you are downside risk-averse.   Indeed, it 

means that: 

 
1 1 1 1( ) ( ) ( ) ( ),
2 2 2 2h l h lEu z u z u z Eu zε ε+ + ≥ + +  (3.10) 

or equivalently : 

 ( ) ( ) ( ) ( ).h l h lEu z Eu z u z u zε ε+ − + ≥ −  (3.11) 

Rewriting this inequality : 

 [ ]'( ) '( ) 0,h

l

z

z
Eu z u z dzε+ − ≥∫  (3.12) 

It follows that the preference for putting risk in the higher income state requires that marginal 

utility is convex. You are prudent. 

 

 

The extended Ramsey rule as an approximation 

 

Uncertainty surrounding the growth of consumption affects the welfare-preserving rate of 

return on savings.  Let us consider a marginal investment that has a unit cost today and that 

yields a sure benefit exp( )rt  at date t. It preserves the intertemporal welfare V defined by 

(3.1) if and only if: 
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 0'( ) '( ) 0.t rt
tu c e e Eu cδ−− + =  (3.13) 

This can be rewritten : 

 
0

'( )1 ln .
'( )

tEu cr
t u c

δ= −  (3.14) 

Now, remember that the existence of the relative risk ( ) /t t t tc Ec Ecε = −  on future 

consumption has an effect on expected marginal utility that is equivalent to a sure relative 

reduction of consumption by the precautionary premium. Technically, using (3.8), the above 

equation can be rewritten as: 

 
0

'((1 ) )1 ln .
'( )

tu Ecr
t u c

ψδ −
= −  (3.15) 

This is a return to the certainty case that was examined in the previous chapter. For example, 

approximation (2.10) can be rewritten as follows: 

 0
0

0

(1 ) ( ).tEc cr R c
tc

ψδ − −
+�  (3.16) 

This is reminiscent of the Ramsey rule with an impatience effect and the wealth effect, but the 

latter is reduced by risk. This reduction ψ  can be approximated by using equation (3.9). 

Alternatively, a second-degree Taylor approximation of '( )tu c  around 0c  can be used in 

equation (3.14) to get: 

 1 10 0
0 0 0

0 0

1( ) ( ) ( ).
2

t tc c c cr t E R c t Var R c P c
c c

δ − −⎛ ⎞ ⎛ ⎞− −
+ −⎜ ⎟ ⎜ ⎟

⎝ ⎠ ⎝ ⎠
�  (3.17) 

This is the extended Ramsey rule. As in the standard Ramsey rule (2.10), there is an 

impatience effect and a wealth effect. The third term in the right-hand side of the above 

equation is what is called the precautionary effect. It tends to reduce the discount rate. Its 

intensity is proportional to the product of relative prudence, relative risk aversion, and the 

annualized variance of the growth rate of consumption between 0 and t.  

 

This confirms the intuition that uncertainty affecting the future tends to raise our willingness 

to invest for that future. Uncertainty over the future translates into a lower discount rate, 

lowering the threshold rate of return that a sure investment must achieve to be considered 

welfare enhancing.   
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The extended Ramsey rule in the lognormal case 

 

The extended Ramsey rule described by (3.17) can be obtained as an exact solution in an 

important special case. Let us consider a one year horizon (t=1). Suppose that  

 1 0 ,xc c e=  (3.18) 

where x is the continuously compounded growth rate of consumption, or the increase in the 

logarithm of consumption. Let us assume that x is normally distributed with mean μ  and 

variance 2σ . Notice that, using the lemma described by equation (3.4) with A=-1, implies that 

the growth rate of expected consumption (or the change in log consumption) between dates 0 

and 1 is 2
1 0ln( / ) 0.5g Ec c μ σ= = + .  

 

Suppose also that the representative agent in the economy has a power utility function, with 

'( )u c c γ−= . This implies that 

 01

0 0

'( ) .
'( )

x
xEc eEu c Ee

u c c

γ γ
γ

γ

− −
−

−= =  (3.19) 

Now, lemma  (3.4) can be used again to rewrite the right-hand side of the above equation as 
2exp( ( 0.5 ))γ μ γσ− − . Plugging this into the pricing formula (3.14) yields 

 2 20.5 .r δ γμ γ σ= + −  (3.20) 

It is preferable to rewrite this formula using the growth rate g of expected consumption: 

 20.5 ( 1) .r gδ γ γ γ σ= + − +  (3.21) 

 

This exact extended Ramsey rule combines the three components of the efficient discount 

rate: impatience, the wealth effect, and the precautionary effect. The wealth effect is positive 

and is the product of the expected growth rate of consumption and by the relative aversion to 

intertemporal inequality. The precautionary effect is negative, and is equal to half the product 

of three factors: relative risk aversion γ , relative prudence 1γ + , and the variance of the 

growth rate of consumption.  
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Calibration of the extended Ramsey rule 

 

In the previous chapter in which risk was ignored, a justification was provided for the use of 

0δ = , 2γ =  and g=2%.  In turn, this justified using a discount rate of 4% per year. How 

much smaller than 4% should the discount rate be to take account of future risk? To answer 

this question for a one-year horizon, the volatility of the annual growth rate of consumption 

must be estimated. 

 

Kocherlakota (1996), using United States annual data over the period 1889-1978, estimated 

the standard deviation σ  of the growth of consumption per capita to be 3.6% per year. 

Assuming normality and an expected growth rate of 2%, this means that there is a 95% 

probability that the actual growth rate of consumption next year will be between -5% and 

+9%. Using 2 2(0.036)σ =  and 2γ =  yields a precautionary term in the extended Ramsey 

rule (3.21) equalling -0.4%.  The precautionary effect reduces the efficient rate at which one 

should discount cash flows occurring next year from 4% to 3.6%.  

 

 
μ  σ  δ  γ  

2% 3.6% 0% 2 

Table 3.1: Benchmark calibration of the extended Ramsey rule 

 

 

 

Conclusion 

 

It is commonly accepted that individuals are ready to sacrifice more in the present for the 

future when this future becomes more uncertain. Keynes was the first to mention this idea by 

pointing out the precautionary motive for saving. What is desirable at the individual level is 

also desirable at the collective one. A Society which wants to reinforce the incentive to invest 
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for the future should select a smaller discount rate to evaluate the set of all possible 

investment projects.  

 

The uncertainty affecting the short-term macroeconomic growth on U.S. data over the last 

century can be used to calibrate the model for socially efficient discount rates.  It justifies 

reducing the short-term discount rate by 0.4%. In short, taking into account of short-term risk, 

the efficient short-term discount rate should be reduced from 4% to 3.6%. This can be 

considered as a marginal reduction, though the valuation a cash flow in 100 years time would 

be 47% higher with a 3.6% discount rate as opposed to a 4% discount rate. In the next few 

chapters, the question of uncertainty is explored further, by considering risk in the longer-term 

and its implications for discount rates. 

 

 

 

 

 

APPENDIX 

 

Lemma: Suppose that x is normally distributed with finite mean μ  and variance 2σ . Consider 

any scalar A∈\ . Then, we have that 

 
2( 0.5 ).Ax A AEe e μ σ− − −=  (3.22) 

  

Proof :  Suppose that ( ) exp( )u c Ac= − − . If c is normally distributed with mean μ  and 

variance 2σ , we have that: 

 ( )
2

2

1 ( )( ) exp exp .
22

cEu c Ac dcμ
σσ π

⎛ ⎞− −
= − −⎜ ⎟

⎝ ⎠
∫  

Rearranging the integrant, we obtain: 

( )2 22

2

( )1( ) exp exp .
2 22

c AAEu c A dc
μ σσμ

σσ π

⎛ ⎞− −⎛ ⎞⎛ ⎞ ⎜ ⎟= − − − −⎜ ⎟⎜ ⎟⎜ ⎟ ⎜ ⎟⎝ ⎠⎝ ⎠ ⎝ ⎠
∫  

Observe that:  
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( )2 2

2

( )1( ) exp
22

c A
f c

μ σ

σσ π

⎛ ⎞− −
⎜ ⎟= −
⎜ ⎟
⎝ ⎠

 

is the density function of a normally distributed random variable c with mean 2Aμ σ−  and 
variance 2σ . Because the integral of a density function equals 1, this implies that: 

2 2

( ) exp .
2 2

A AEu c A uσ σμ μ
⎛ ⎞⎛ ⎞ ⎛ ⎞

= − − − = −⎜ ⎟⎜ ⎟ ⎜ ⎟⎜ ⎟⎝ ⎠ ⎝ ⎠⎝ ⎠
 

This concludes the proof of the lemma. ,  
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The term structure of discount rates 
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Random walk and mean-reversion 

 

 

 

The term structure of the discount rate 

 

 The first part of this book concluded that there is a solid scientific basis to recommend 

the use of a 3.6% discount rate for cash flows occurring in the next few years. Does this 

imply that the same rate should be used to discount all cash flows, irrespective of when 

they occur?  The theoretical answer to this question is, in general, ‘no’.  Factors 

influencing the term structure of the discount rate are the subject of the next few chapters.  

 

Up to this point, for the sake of simple notation, we have referred to r as ‘the’ discount 

rate. However, if r is time varying it should be indexed by the maturity of the cost or 

benefit to be discounted. For example, the general pricing formula (3.14) can now be 

rewritten: 

 
0

'( )1 ln .
'( )

t
t

Eu cr
t u c

δ= −  (4.1) 

The right-hand side of the equality depends in general upon t, therefore the left-hand side 

does so too. In fact, the pricing formula (4.1) provides the entire term structure of the 

discount rate.  

 

Before going into further detail, it is helpful to develop an intuition of the determinants of 

this term structure. As has been seen before, the discount rate is determined by two 

competing effects: the wealth effect and the precautionary effect. Over two different time 

intervals, looking forward from the present to two different points in time, t and t’>t, the 

intensity of each of these two effects may differ.  This implies differing discount rates 

should be applied to cash flows occurring in period t to those occurring in period t’.  

Changes in the intensity of the wealth effect and the precautionary effect therefore form 

the shape of the term structure.  
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A flat term structure 

 

The simplest case arises when the growth rate is a constant g, now and forever. Assuming 

constant relative risk aversionγ , the pricing formula (4.1) implies that tr gδ γ= + .  The 

term structure is completely flat. Consumption increases exponentially with time, which 

implies that the intertemporal marginal rate of substitution, which is the discount factor 

exp( )tr t− , must decrease exponentially. This requires that the discount rate tr  is constant. 

 

 

The case of diminishing expectations 

Suppose that, as in the simplest case above, there is certainty over the future growth rate 

of the economy. However, the growth rate decreases at a constant rate from 1x−  last year 

towards 1xμ −<  in the long run.  More specifically, suppose that there exists a constant 

[ ]0,1φ ∈  such that  

 1

1( ).

tx
t t

t t

c c e
x xμ φ μ

+

−

⎧ =⎪
⎨

= + −⎪⎩
 (4.2) 

There are two ideas that this simple dynamic of diminishing expectations illustrates.   

One is that we have been particularly lucky in the recent past with a high rate of growth, 

but expect the future to revert to the normal historical growth rate μ . Alternatively, we 

may believe that the current level of growth is unsustainable, and that the economy will 

have to adapt to a lower, sustainable, growth rate μ . Whatever the interpretation is, we 

obtain that 

 0 1
1ln ln ( ) .
1

t

tc c t x φμ μ φ
φ−

−
− = + −

−
 (4.3) 

 

In this certainty case with diminishing expectations, and assuming a power utility 

function, the pricing formula (4.1) can be rewritten as: 
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1

ln ln 1( ) .
(1 )

t
t

t
c cr x

t t
φδ γ δ γ μ μ φ
φ−

⎡ ⎤− −
= + = + + −⎢ ⎥−⎣ ⎦

 (4.4) 

The first equality in (4.4) tells us that the wealth effect is proportional to the annualized 

growth of log consumption. This yields the following discount rates in the short and long 

terms: 

 1 0r x
r

δ γ
δ γμ∞

= +⎧
⎨ = +⎩

 (4.5) 

In between, the efficient discount rate decreases smoothly at a constant rate. When 

expectations are diminishing, the term structure is downward sloping. This is because the 

wealth effect is strong for the short term, but reduces for longer time horizons. 

 

Remember, the socially efficient discount rate is also the equilibrium interest rate that one 

would observe on frictionless capital markets. The above analysis tells us that the shape 

of the yield curve, the term structure of the market real interest rate, is a crucial source of 

information about what economic agents believe about the future dynamics of economic 

growth. A downward yield curve suggests people believe that the economy will 

experience a downturn in the future.  On the contrary, an upward sloping yield curve is 

typical of an economy where growth is expected to accelerate. 

 

The same ideas apply for longer time horizons. If one believes that the growth rate 

experienced by developed economies during the last two centuries is just unsustainable, 

this should be taken into account in the evaluation of long term investment projects. The 

term structure of the discount rates should be decreasing. This will favour investment 

projects that have large positive benefits in the distant future in comparison to projects 

with more immediate benefits. In short, a decreasing term structure of discount rates 

supports sustainable development.  

 

If the current growth rate of the economy is 2%, but its sustainable growth rate is 

believed to be only 0.5%, then the above pricing formula with 0δ =  and 2γ =  yields 

discount rates of 4% and 1% respectively for the short and long terms. 
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Economic growth is subject to business cycles.  This should be accounted for when 

shaping the term structure of discount rates.  In particular, discount rates should be 

revised periodically to take into account any changes in expectations about future growth 

in the short and medium term.  However, from my point of view, there is no argument 

which convinces me to believe that growth in the future will necessarily be smaller or 

larger than it is today.   I do not side with catastrophists who believe that because of finite 

natural resources our economic growth is unsustainable.  Just as there is a chance that 

future growth will be smaller than it is today, there is an equal chance that our society 

will experience a larger rate of growth; even larger than has been experienced since the 

beginning of the industrial revolution.  This growth could be sustained by technological 

progress and the increasing de-materialisation of economic activity.  However, this does 

not mean that we should be unconcerned with the dynamics of growth into the distant 

future, quite to the contrary, as the next few chapters show. 

 

 

Decreasing term structure and time consistency 

 

It is often suggested in the literature that economic agents are time inconsistent if the 

term structure of the discount rate is decreasing. This is not the case.  What is crucial for 

time consistency is the constancy of the rate of impatience,δ , which is a cornerstone of 

the classic analysis presented in this book. We have seen above that this assumption is 

compatible with a declining monetary discount rate. Other illustrations of this fact will be 

presented later on in this book. Let us re-examine this question under the simple 

framework of diminishing expectations as modelled by the deterministic dynamic process 

(4.2). 

 

An agent is time consistent if the plan that is optimal at time t remains optimal for all 

future date t’>t.  To illustrate, consider an investment that costs one monetary unit at date 

T and that generates a single benefit k at time T τ+ . Evaluating this project from date 0, 

investing is optimal if and only if its net present value is positive, i.e., if: 

 ( ) 0.TT r Tr Te ke τ τ+− +−− + ≥  (4.6) 
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This is equivalent to :  

 ( )1 0.T Tr T r Tke τ τ+− +− + ≥  (4.7) 

 

Assume that the agent’s consumption dynamics are represented by (4.2).  The term 

structure tr  given by (4.4) should be used at date 0 to discount the cash flows in equation 

(4.7). Suppose that this condition is satisfied, so that, seen from today, it is optimal to 

implement the project at date T.  

 

Consider now the decision problem at date T, when the time to invest in the project 

arrives. To solve this problem, we need to determine the discount rate that should be used 

at date T to discount the cash flow k occurring τ periods later. Let T Tr τ→ +  denote this 

discount rate. Seen from date T, it is optimal to invest in the project if and only if: 

 1 0.T Trke ττ→ +−− + ≥  (4.8) 

The problem of time consistency is about whether conditions (4.7) and (4.8) are 

equivalent, independent of k. Obviously, this requires that ( )T T T Tr r T r Tτ ττ τ→ + +− = − + . At 

date T, the level of Tx  equals: 

 0( ).T
Tx xμ φ μ= + −  (4.9) 

Duplicating the analysis presented in the previous section to the context of date τ implies 

that: 

 
( )

0

11( ) ( ) .
(1 ) (1 )

T

T T Tr x x
ττ

τ

φ φφτ δτ γ μτ μ δτ γ μτ μ
φ φ→ +

⎡ ⎤−⎡ ⎤− ⎢ ⎥= + + − = + + −⎢ ⎥− −⎢ ⎥⎣ ⎦ ⎣ ⎦
 (4.10) 

It is straightforward to check that this is equal to ( )T Tr T r Tτ τ+− + , which implies that the 

decision criterion to be used at date T is consistent with the one to be used at date 0. The 

decision process is thus perfectly time consistent, even though the term structure of 

discount rates is not flat. 

 

 

Random walk 
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From now on, this book will be neutral about the expected growth rate of the economy. 

More specifically, it is assumed that the expected growth rate in the distant future is the 

same as the short term one. This neutralizes the role of the wealth effect on the term 

structure. What remains is the term structure of the precautionary effect. 

 

For uncertain future growth rates, the simplest assumption that can be made is that they 

follow a random walk. This means that the growth rate observed this year does not 

provide any information about the growth rate that will be experienced in the future. 

More specifically, suppose that the growth rate of the economy follows an independent 

and identically distributed (iid) process over time: 

 1

0 1, ,... .

tx
t tc c e

x x iid
+⎧ =⎪

⎨
⎪⎩

 (4.11) 

This implies that the pricing formula (4.1) can be rewritten as: 

 
( )1

0 0

0

'1 ln .
'( )

t x

t
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r

t u c

τ

τδ

−

=
= −

∏
 (4.12) 

To keep things simple at this stage, consider the case of a power utility function with 

relative aversion γ . The above equation can then be rewritten as: 

 ( )
1

0

1 ln .
t

x
tr Ee

t
τγ

τ

δ
−

−

=

= − ∑  (4.13) 

Because the process is iid, this can be rewritten as: 

 ( )1ln .x
tr Ee γδ −= −  (4.14) 

Thus, in the case of power utility functions and an iid process for the growth rate of the 

economy, the term structure of the efficient discount rate is completely flat. In the special 

case of a normal distribution for x, the extended Ramsey rule (3.21) gives us the level of 

this constant discount rate. To my knowledge, Hansen and Singleton (1983) were the first 

to obtain this result. 

 

This case, which is the discrete version of a Brownian motion for the growth of the 

economy, serves as a benchmark for the analysis of the term structure of discount rates. It 

is therefore important to understand its nature. When the growth rate of the economy 
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follows a random walk with a constant positive trend, the wealth effect goes up 

exponentially with the time horizon. If g=2%, one expects to be 2% wealthier next year, 

and 5000% wealthier in 200 years. This exponentially increasing wealth effect justifies 

taking an exponentially decreasing discount factor.  This requires a constant discount 

rate. Similarly, the random walk in the growth rate entails an exponentially increasing 

level of uncertainty about future consumption. This is equivalent to a linearly increasing 

variance for ln tc . Indeed, it follows that: 

 
1

2
0

0
(ln ln ) .

t

tVar c c Var x tτ
τ

σ
−

=

⎛ ⎞
− = =⎜ ⎟

⎝ ⎠
∑  (4.15) 

The exponentially increasing precautionary effect that this implies should impact the 

discount factor exponentially. In other words, it should affect the discount rate uniformly 

with respect to the time horizon. Combining these two elements implies that the term 

structure of discount rates is flat.  

 

 

A simple extension: Mean-reverting growth process 

 

Following Bansal and Yaron (2004) for example, the two growth processes that have 

been considered in this chapter can be combined in the following simple model: 

 
1

1 ,

,

tx
t t

t t xt

t t yt

c c e
x y
y y

μ ε
φ ε

+

−

⎧ =
⎪

= + +⎨
⎪ = +⎩

 (4.16) 

For some initial state characterized by 1y− , where and xt ytε ε are independent and serially 

independent with mean zero and variance 2
xσ  and 2 ,yσ respectively. The state variable ty  

exhibits some persistence. Parameter φ , which is between 0 and 1, represents the degree 

of persistence in the expected growth rate process. When xε  and yε  are uniformly zero, 

this model is equivalent to the story of deterministic “diminishing expectations”. When φ  

is zero, then the model returns to a pure random walk.  
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This autoregressive model of degree 1 – an AR(1) –  illustrates the notion of mean-

reversion. Suppose that the expected growth rate equals its historical level μ  ( 1 0y− = ), 

and that a positive shock 0yε  affects the expected growth rate between dates 0 and 1, so 

that 0y  is larger than 0. Contrary to a random walk, this shock will have some 

persistence. For example, the expected growth rate between dates t and t+1 will be 

0 0
t

t y yEx ε μ φ ε= + . However, in the long run, the expected growth rate will revert to the 

mean. But at each date, a new persistent shock may affect the growth rate of the 

economy, in addition to the pure noise xtε . 

 

The efficient term structure is determined in this case by characterizing the distribution of 

tc . By forward induction of  (4.16), it follows that: 

 
1 1

0 1
0 0

1 1ln ln .
1 1

t tt t

t y xc c t y
τ

τ τ
τ τ

φ φμ φ ε ε
φ φ

−− −

−
= =

− −
− = + + +

− −∑ ∑  (4.17) 

The ε  terms are assumed to be normally distributed, therefore so too is 0ln lntc c− . Its 

mean is the sum of the first two terms in the right-hand side of the above equality. Its 

annualized variance equals: 

 
2 2

1 2 2
2 2

1 1(ln ) 1 2 .
(1 ) ( 1) ( 1)

t t
y

t xt Var c
t t

σ φ φφ φ σ
φ φ φ

− ⎡ ⎤− −
= − + +⎢ ⎥− − −⎣ ⎦

 (4.18) 

Observe that the annualized variance of log consumption tends to 2 2 2( /(1 ) )y xσ φ σ− + , 

which is larger than the short run uncertainty measured by 2 2
0 y xVar x σ σ= + . The long-

run risk is increasing in the degree of persistence of shocks on the expected growth rate 

of consumption. This is because of the positive serial correlation in growth rates. More 

generally, the analysis of the right-hand side of (4.18) shows that the annualized variance 

of future log consumption goes up smoothly from 2 2
y xσ σ+  to 2 2 2( /(1 ) )y xσ φ σ− +  when t 

goes from 1 to infinity.  

 

Suppose that u is a power function with relative aversion γ . The pricing formula (4.1) 

can therefore be rewritten as: 
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 0(ln ln )1 ln .tc c
tr E e

t
γδ − −⎡ ⎤= − ⎣ ⎦  (4.19) 

The normality of  0ln lntc c−  means that Lemma 1 can be used to obtain that: 

 [ ]1 2 1
0ln ln 0.5 (ln ).t t tr t E c c t Var cδ γ γ− −= + − −  (4.20) 

Finally, using the properties of the mean and variance of log consumption, the term 

structure of the discount rate can be characterized as follows : 
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 (4.21) 

This equation can be rewritten as: 
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 (4.22) 

Observe that the last bracketed term of this equation is the only one that depends upon t 

and that it vanishes when t tends to infinity. It is this transitory term which shapes the 

term structure. The first three terms in (4.22) determine the long term discount rate. 

Indeed, equation (4.22) yields: 

 
2

2 2
20.5

(1 )
y

xr
σ

δ γμ γ σ
φ∞

⎡ ⎤
= + − +⎢ ⎥

−⎢ ⎥⎣ ⎦
 (4.23) 

The long term wealth effect is still measured by γμ . The long-term precautionary effect is 

increasing in φ , therefore this effect is magnified by mean-reversion. It can be concluded that if 

shocks on the growth rate of the economy are persistent, the rate at which very distant cash-flows 

should be discounted is reduced. This is because of the increased long term risk that the positive 

correlation of growth rate generates. The effect is increasing in the degree of persistency, φ  ,of 

shocks.  To make this more precise, consider an expert who believes that the growth rate of our 

economy follows a random walk. In order to estimate the efficient discount rate, they would use 

observations of past growth rates to estimate μ  and σ . In particular, they would use the 

observed volatility of the growth rate to estimate σ . With a large data set, they would obtain 
2 2
y xσ σ+  for the variance of changes in log consumption. Therefore, using the extended Ramsey 

rule, the recommendation would be a flat discount rate given by:  
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 ( )2 2 2
1 0.5 ,y xr δ γμ γ σ σ= + − +  (4.24) 

which is obviously larger than r∞ . In fact, by proceeding in this way, the expert would 

provide the correct answer, but only for the short-term discount rate, and only when the 

past growth rate of the economy was equal to its historical mean ( 1 0y− = ).  

 

The term structure is given by the last term in equation (4.22). The part of that term 

including 1y−  corresponds to the “diminishing expectations” story that was explained 

earlier in the chapter. It yields a decreasing shape for the term structure if the economy is 

currently experiencing a growth rate above its historical mean. This effect is switched off 

by assuming that 1 0y− = . The second term inside the brackets in (4.22) tells us how the 

discount rate goes down from the short-term rate 1r  given by (4.24) to 1r r∞ < . The 

annualized variance of log consumption is increasing with the time horizon when there is 

persistence. This gives a decreasing term structure.   

 

Let 1t tr → +  denote the rate that should be used at date t to discount cash flows occurring at 

date t+1. This is the short-term interest rate. Notice that the short-term interest rate in this 

model also follows an AR(1) process since, using the pricing formula (4.20) for t=1 

yields 
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 (4.25) 

Vasicek (1977) was interested in determining the shape of the yield curve by using the 

standard arbitrage method in finance under the assumption of an AR(1) for the short term 

interest rate. He got equilibrium interest rates for different maturities that are equivalent 

to formula (4.21). The degree of persistence φ  is the same for economic growth and for 

the short term interest rate. This is interesting because the degree of persistence of the 

latter has been well documented in the literature on the term structure of the interest rate.  

One important critique that has been made regarding Vasicek’s model is that the short-

term interest rate expressed by (4.25) can become negative. This is a problem if a 

predictive model for the equilibrium interest rate is wanted; since the (real) interest rate 
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must be nonnegative (otherwise consumers will prefer to hold cash). This critique does 

not hold for our normative analysis. It may indeed be efficient to use a negative discount 

rate, in particular when a significant economic depression is predicted for the future. 

 

Bansal and Yaron (2004) consider the following calibration of the model, using annual 

growth data for the United States over the period 1929-1998. Taking a month as the unit 

period, they obtained, 0.0015μ = , 0.0078xσ = , 0.00034yσ = , and 0.979φ = . Using this 

φ  yields a half-life for shocks of 32 months. This implies that the model is useful to 

justify differences in discount rates for maturities expressed in years, but not really for 

maturities expressed in decades or centuries. In other words, Vasicek’s model and mean-

reversion in the growth rate is useful to explain the term structure of interest rates for 

maturities that are treated by financial markets, up to 2 or 3 decades.  

 

The following figure describes how the term structure of interest/discount rates evolves 

along the business cycle. In addition to the above Bansal-Yaron’s parameter values, it is 

assumed that the rate of impatience is 0δ =  and relative aversion is 2γ = . Three term 

structures are represented in this figure. When the recent growth rate is exactly at its 

historical mean ( 0 0y = , which corresponds to an annual growth rate of 1.8%), the yield 

curve is decreasing. This slope describes the precautionary effect of the increasing 

annualized variance of future log consumption due to the persistence of shocks. During a 

downturn, (illustrated by a low growth rate 0 0.1% /y month= − , which corresponds to an 

annual growth rate of 0.6%), the yield curve is upwards sloping. This shape is mostly 

expressing an accelerating wealth effect generated by rising growth expectations, which 

are rising because of mean reversion. On the contrary, when the economy is booming 

with 0 0.1% /y month=  (corresponding to an annual growth rate of 3%), the yield curve 

is decreasing because of diminishing expectations. The long term interest rate is not 

affected by the business cycle because the long term growth rate in this model is 

deterministic and long-term uncertainty remains constant.  
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Figure 4.1: The efficient discount rate (in %) as a function of the maturity t (in years). 

Using the month as the unit period, the parameter values are 0δ = , 0.0015μ = , 

0.0078xσ = , 0.00034yσ = ,  0.979φ = and 2γ = . 

 

 

Conclusion 

 

The shape of the term structure of discount rates is determined by the way the wealth 

effect and the precautionary effects evolve with the time horizon. When the growth rate 

of consumption is constant, then consumption increases exponentially, and the 

intertemporal rate of substitution, which is the discount factor, decreases exponentially.  

This requires that the discount rate is constant. The simplest extension of this to 

uncertainty is to assume that the growth rate of the economy follows a random walk. In 

that case, the variance of log consumption increases linearly, which yields an 

exponentially increasing precautionary effect for the discount factor. This justifies a 

constant precautionary effect on the discount rate, yielding a crucial result for the theory 

of efficient discount rates: When the growth rate of the economy follows a random walk 
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and when relative aversion is constant, the discount rate should be independent of the 

maturity of the project to be evaluated.  

 

A simple extension of the random walk for the growth rate of the economy is when the 

growth rate follows an autoregressive process of degree 1.  Mean-reversion has two 

consequences for the above result. First, the term structure becomes sensitive to the 

business cycle. When the economy is booming, the short term interest rate is large 

because of the wealth effect. However, the wealth effect becomes relatively less powerful 

in the longer term because the economy is expected to revert to a smaller growth rate. 

The result is a downward sloping term structure. The opposite effect arises in a downturn. 

The second effect of mean-reversion is to introduce some positive serial correlation in the 

growth rate. Compared to the case of a random walk, with correlation the long term risk 

of the economy is magnified. This reinforces the precautionary effect over time, which 

acts to make the term structure downward sloping. This would be the case when the 

current growth rate of the economy is at its historical mean. 
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Markov switches and extreme events 

 

 
The economic history of the world has one obvious feature: for thousands of years, per capita 

consumption remained close to subsistence level. Society followed Malthus’ Law, any 

technical progress led to an increase in population rather than an improvement in welfare. For 

example, Clark (2007) estimates that the daily wage in Babylon (1880-1600 B.C.) was around 

15 pounds of wheat. In the golden age of Pericles in Athens, it was around 26 pounds. In 

England around 1780, it was only 13 pounds.  

 

Thanks to the industrial revolution, the western world escaped this miserable economic trap 

towards the end of the eighteenth century.   The trend rate of growth of per capita 

consumption rose from 0% to 2%. The origin of this radical transformation lies beyond the 

scope of this book.  However, the possibility of such a dramatic switch in the dynamics of 

economic growth has important implications for the term structure of the discount rate over 

the longer term. For issues such as climate change or nuclear waste, or more generally 

sustainable development, the time horizon under consideration is of the order of several 

centuries. To form our attitude towards generations who will live in the distant future, we 

need to form beliefs about their level of prosperity. It is rather myopic to use historical data 

from only the most recent century to form our beliefs about the growth of the economy over 

the next several centuries.  

 

Economies undergo radical transformations.  One such radical transformation was called the 

“industrial revolution” which has had a long lasting effect on economic growth. Who knows 

whether there will be a reversion to the pre-industrial age, at least in terms of an absence of 

growth, in the distant future? Other less persistent –   but more frequent – transformations 

observed in the past were wars or great economic depressions.   It is important to include the 

possibility of such changes in the dynamics of growth in the analysis of the term structure of 

the discount rate.   
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The role of extreme events on the level of discount rates 

 

The easiest way to examine the effect of extreme events on the discount rate is to assume a 

random walk, which implies that the term structure is flat. Observe that this result does not 

depend on the distribution of the annual growth rate.  Normality was assumed in the previous 

two chapters just to get an analytical expression for expectations. Suppose instead that the 

increase in log consumption follows an iid process characterized by a non-normal random 

variable x. More precisely, suppose that with a small probability p, there is a catastrophe that 

causes a percentage reduction in consumption of λ , which is large. This is an extreme event. 

Otherwise, there is business as usual growth, with an increase in log consumption that is 

drawn from random variable baux . In short we assume that 

 1ln ln ( , ln(1 );1 , )t t bauc c p p xλ+ − − −∼  (5.1) 

Under the assumption of constant relative aversion, the efficient discount rate equals 

 1 ln (1 ) (1 ) bauxr p p Ee γγδ λ −−⎡ ⎤= − − + −⎣ ⎦  (5.2) 

Assuming that baux  is normally distributed with mean bauμ  and variance 2
bauσ  allows us to 

rewrite this equation as follows: 

 
2 20.5

1 ln (1 ) (1 ) .bau baur p p e γμ γ σγδ λ − +−⎡ ⎤= − − + −⎣ ⎦  (5.3) 

If λ  is large enough, the possibility of a catastrophe reduces the intensity of the wealth effect, 

and raises the intensity of the precautionary effect, thereby reducing the efficient discount 

rate. 

 

Barro (2006) collected data on extreme macroeconomic events across different countries 

during the last century. His analysis of these events “suggests a disaster probability of 1.5-2% 

per year with a distribution of declines in per capita GDP ranging between 15% and 64%”. 

Figure 5.1 was generated with a disaster probability of 2%, and examines the level of the 

(flat) discount rate for different magnitudes of decline in GDP following a disaster. The 

standard values are retained for the trend and volatility in BAU growth and for the preference 

parameters.   
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Figure 5.1: The efficient discount rate for different size λ  of the catastrophe.  

Parameter values: 0δ = , 2%bauμ = , 3.6%bauσ = , 2γ = , 2%p = . 

 

For small disaster losses, a discount rate of 3.6% is obtained as before. However, when the 

size of the potential loss exceeds 40%, the efficient discount rate becomes negative.  Further 

increases in the size of the loss, beyond 40% cause the discount rate to rapidly become deeply 

negative. When λ  tends to 100%, the efficient discount rate tends to -100%. In spite of the 

small probability of a catastrophe, society should sacrifice virtually all of current wealth to 

avoid the risk of experiencing zero consumption in the future. This is because marginal utility 

of consumption tends to infinity when consumption tends to zero -  a specific property of 

power utility functions.  Weitzman (2007) commented that people “dread the thickened-left-

tail heightened probability of a negative-growth disaster that they find scary, disruptive, and 

without precedent”. 

 

 

Two-state Markov process 

 

In the previous section, we assumed that the economic growth rate follows a random walk. 

Catastrophes have a permanent effect on the level of consumption, but not on its growth rate. 

In this section, we consider an alternative stochastic process in which the growth rate of 

consumption is subject to persistent shocks. In the long run, if persistent, even small shocks 
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on the growth rate will have dramatic consequences on the level of consumption. China, 

which was by far the wealthiest nation at the end of the XVth century, experienced a 

persistent reduction in its growth rate until the early 1990s. As a result,  it became one of the 

poorest nations in the world by the late 1950s, facing a dramatic famine during the Great Leap 

Forward, killing more than 30 million people. However, over the last 20 years or so, China’s 

growth rate has switched to a much higher rate of around 10% per year.  

 

To model this type of dynamic process, a two-state Markov chain for the trend of the 

economic growth is considered. There are two states of the world, s=g and s=b, yielding 

different expected changes in log consumption gμ  and bμ , with g bμ μ> . In each period, 

there is a constant state-dependent probability, sπ , that the state will switch to the other one.  

This probability is less than ½. We can thus describe this stochastic process as follows: 
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 (5.4) 

where tε  is iid normal with mean zero and variance 2σ .  

 

Suppose that relative risk aversion is a constant,γ , and let us denote –g=b and –b=g. We 

have that 

 
2 2

0 01 ( ) ( ) 0.5

0

'( )
(1 ) (1 ) .

'( )
s s s ss s s sE u c s

Ee Ee e e e
u c

γ μ ε γ μ ε γ σ γμ γμπ π π π
− −− + − + − −

⎡ ⎤⎣ ⎦ ⎡ ⎤= − + = − +⎣ ⎦  (5.5) 

Equation (4.1) can then be rewritten as 

 2 2
1 1 0.5 ,s sr mδ γ γ σ= + −  (5.6) 

where the exponential of 1
sm  is the precautionary equivalent of (exp ,1 ;exp , )s s s sμ π μ π−− : 

 1 (1 ) .
s s sm s se e eγ γμ γμπ π

−− − −= − +  (5.7) 

1
sr  is the discount rate for a one-period horizon when the current state is s. Notice that term 

1
smγ  in (5.6) contains a wealth effect and a precautionary effect, since m is the volatility-free 

component of the precautionary equivalent growth rate of consumption. It takes into account 
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the risk of a Markov switch during the period. Because gμ is larger than bμ and sπ is smaller 

than ½, we have that 1
gm  is larger than 1

bm . This implies that the short-term discount rate is 

larger in the good state than in the bad state.  

 

When we explore the possible dynamic evolution of the economy two periods ahead, things 

become more complex since the economic regime can switch twice. However, we can 

proceed as above by using a recursive method. Without going into details, we obtain that 

 2 20.5 ,
s

s t
t

mr
t

δ γ γ σ= + −  (5.8) 

where s
tm is defined recursively from 1

sm as follows: 

 1 ( ) ( )(1 ) .
s s s s s
t t tm m ms se e eγ γ μ γ μπ π

− −
+− − + − += − +  (5.9) 

We thus obtain two state dependent term structures, g
tr  and b

tr  , for the efficient discount rate. 

If the current economic state is the good one, the short-term discount rate is high because the 

probability to stay in that high-growth state is larger than ½. However, in the longer run, the 

probability of a switch to the low-growth state increases, which implies a reduction of the 

wealth effect in a way similar to the “diminishing expectation” presented in the previous 

chapter. The term structure of the efficient discount rates is thus downward sloping in the 

good regime. In contrast, the term structure is upward sloping in the bad state. In the distant 

future, the probability distribution of the two states becomes independent of the initial state. 

When t tends to infinity, the probability to be in the good regime tends to its unconditional 

value /( )b b gπ π π+ . 

 

 

Numerical illustrations 

 

We hereafter examine two numerical illustrations of this model. The first one is based on an 

estimation of a two-state regime-switching process for the US economy using the annual per 

capita consumption data covering the period 1890-1994. The following table reproduces the 

estimates from Cecchetti, Lam and Mark (2000). 
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gμ  bμ  gπ  bπ  σ  

2.25% −6.78% 2.2% 48.4% 3.13% 

Table 5.1: Estimates of the regime-switching consumption process 

Source: Cecchetti et al. (2000, Table 2) 

 

The estimates in the table reveal that the low-growth state is moderately persistent but very 

bad, with consumption growth of bμ =−6.78%. On the contrary, the high-growth state, with 

consumption growth of 2.25%, is highly persistent. The unconditional probability of being in 

the good state is 96%. The unconditional expected growth rate is 1.89%.  

 

Figures 5.2 illustrate the two state dependent term structures using the estimates in Table 5.1 

for the values of the parameters of the Markov process, together with δ =0 and γ =2. The two 

curves have an asymptote at r∞ =3.26%.  The short-term rate in the good regime equals 

1
gr =4.3%, whereas in the bad regime it equals 1

br = -13.8%. The main driver of this result is 

the difference between the wealth effects in the two states. In the bad state, the recession is 

expected to be deep in the short term.  Much should be done to transfer consumption forwards 

to the next few years when consumption is expected to be lower. Also, the uncertainty about 

the time at which the economy will switch back to the good state implies a large 

precautionary effect. This is a situation in which the wealth effect and the precautionary effect 

reinforce each other. The discount rate is negative for time horizons up to 11 years.  

        
 

Figure 5.2 : The term structures of discount rates in the two regimes  

under the two-state regime-switching regime estimated by Cecchetti et al. (2000) 
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As pointed out in the introduction of this chapter, the above calibration, based on data 

covering the period 1890-1994, fails to recognize a crucial feature of economic history. Over 

at least 6 millenia, the trend of economic growth has been around 0%, until the end of the 

XVIIth century, when the western world switched to a trend of around 2%. To model this 

switching of economic regime, the two-state Markov process presented in this chapter is used, 

with two possible growth trends. It is assumed that there is a uniform probability of 1% per 

year to switch from the current state to the other state. In Figure 5.3, the two state dependent 

term structures are represented, taking standard values for the other parameters (δ =0%, 

γ =2, and σ =3.6%). In the good state, the discount rate goes down from 3.74% to 0.77% 

from 1 to 500 years. In the bad state, it goes from -0.26% to 0.48% over the same range of 

time horizons. They both converge to 0.6% in the very long run. 

 

 
gμ  bμ  gπ  bπ  σ  

2% 0% 1% 1% 3.6% 

Table 5.2: An alternative two-state Markov process based  

on the multi-millennium history of humanity  
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Figure 5.3: The term structures of discount rates in the two regimes  

under the alternative two-state Markov process of Table 5.2 

 

This alternative example illustrates the long lasting effects of uncertainty on the term structure 

of the discount rate. In the short run, the risk of switching state adds little to uncertainty over 

future consumption. However, because the shock on the growth rate is persistent, the risk 

accumulates over time at a faster pace than when there is no serial correlation. The 

precautionary effect is magnified by the state switching dynamics. In the high-growth regime, 

this first explanation of the long downward-sloping term structure reinforces a declining 

wealth effect arising because of diminishing expectations. In the short run, the expected 

growth rate is close to 2%, thereby yielding a wealth effect on the discount rate equalling 

γ × 2%=4%. In the longer run, the probability of being in the good state is 50%, so that the 

expected trend is only 1%. So the wealth effect in the distant future amounts to γ × 1%=2%.  

In the low-growth regime, the improving outlook acts to produce an upward sloping term 

structure, although this is partially countered by the precautionary effect. 

 

 

Conclusion 

 

In the literature, all calibration exercises of the term structure of interest rates rely on 

macroeconomic data covering a fraction of the last two centuries, during which time the 

western world experienced a growth trend around 2%. This approach makes sense when one 

wants to discount cash flows maturing in the next few years.  However, it is flawed if cash 

flows occurring in the more distant future are being discounted. A smaller rate should be used 

for these cash flows because of the possibility of switching abruptly and persistently to a 

lower growth regime. The change in magnitude over time of both the wealth effect and the 

precautionary effect support this result.   

 

Of course, a more realistic model would entail more than two regimes. In particular, one 

should recognize the possibility of a regime with a growth rate of consumption larger than the 

one that we experienced over the two centuries in the western world. Let us imagine a world 
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with dematerialized consumptions, free sources of renewable energy, or efficient markets for 

the allocation of capital or employment…  
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Parametric uncertainty and fat tails 
 

 
This book started the analysis of discount rates by considering a sure rate of growth of 

consumption. The analysis was extended by recognizing that economic growth is uncertain. In 

the previous chapter, it was noted that the parameters governing this uncertainty may be 

unstable. In this chapter, we go one step further by recognizing that the probability 

distribution for economic growth is itself subject to some parametric uncertainty.  

 

Estimation of the parameters governing a stochastic process, such as the mean or the 

volatility, can be performed using a data set of past realizations of this process.  However, this 

sample may not contain all possible scenarios that could occur in the future.  For example, 

until the early 1970’s, the Mexican currency was pegged to the dollar, so that the estimation 

of trend and volatility of the exchange rate of the peso were close to zero. Thus, the 

econometric analysis suggested a very small exchange risk. Based on this data it was therefore 

quite hard to explain the large premium which was observed between Mexican and U.S. 

interest rates. This was called the “peso problem”.  The sharp devaluation of the peso in 1976 

provided the solution to the puzzle: the data did not contain this small probability event, 

although most investors had it in mind.   

 

In a similar way to the peso problem, there is a limited data set for the dynamics of economic 

growth.  The absence of a sufficiently large data set to estimate the long-term growth process 

of the economy implies that its parameters are uncertain and subject to learning in the future. 

This problem is particularly crucial when its parameters are unstable, or when the dynamic 

process entails low-probability extreme events. The rarer the event, the less precise is our 

estimate of its likelihood. This builds a bridge between the problem of parametric uncertainty, 

and the one of extreme events.  

 

 

Uncertain growth 
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Suppose that the dynamic process 0 1 2, , ,...c c c  is a function of a parameter θ . The true value 

of θ  is unknown. For the sake of simplicity, suppose that θ  can take n possible values 

θ =1,…,n. Our prior beliefs about θ  at date 0 are characterized by a probability 

distribution 1( ,..., )nq q , 0, 1q qθ θ> =∑ , where qθ  is the probability that the true value of the 

parameter be θ . By the law of iterated expectations, we have that 

 
1

'( ) '( ) .
n

t tEu c q E u cθ
θ

θ
=

⎡ ⎤= ⎣ ⎦∑  (6.1) 

It implies that the pricing formula (4.1) can be rewritten as 

 
1 0

'( )1 ln .
'( )

n
t

t

E u c
r q

t u cθ
θ

θ
δ

=

⎡ ⎤⎣ ⎦= − ∑  (6.2) 

Let trθ  denote the discount rate that would be efficient for horizon t if we knew for sure that 

the true value of the parameter was θ . This means that trθ  is defined as 

 
0

'( )1 ln .
'( )

t
t

E u c
r

t u cθ

θ
δ

⎡ ⎤⎣ ⎦= −  (6.3) 

Combining equations (6.2) and (6.3) yields that 

 
1

.t t

n
r t r te q e θ

θ
θ

− −

=

= ∑  (6.4) 

In other words, the socially efficient discount factor under parametric uncertainty equals the 

expectation of the conditionally efficient discount factors (the discount factors that would be 

efficient for each value of the parameter if it was known with certainty).  

 

Notice that the expectation concerns the discount factors, not the discount rates. In fact, the 

socially efficient discount rate defined by (6.4) can be interpreted as the certainty equivalent 

rate of the uncertain rates trθ , 1,...,nθ = , under the implicit utility function ( ) exp( )h r rt= − − . 

This function is increasing and concave, with an index of concavity measured by t. It implies 

that the certainty equivalent tr  is smaller than the mean of  the uncertain trθ . However, at the 

limit, we obtain  
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Moreover, as long as the support of trθ  remains bounded, tr  tends to the lower bound of this 

support when t tends to infinity. Indeed, using L’Hopital’s rule, we have that 
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 (6.6) 

Let minr∞  denote the smallest possible discount rate when t tends to infinity: min limt tr rθ∞ →∞= . 

that the previous equation then implies that 
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 (6.7) 

The rate at which cash flows occurring in the short term should be discounted is equal to the 

expectation of the conditionally efficient discount rate. Moreover, as long as the support of trθ  

remains bounded, tr  tends to the lower bound of this support when t tends to infinity.  In 

order to get an intuition for these results, let us examine the simplest case when the stochastic 

process governing ln tc  is a random walk conditional on θ .  

 

 

Conditional on θ, the growth process is a random walk 

 
A special case of the above model is as follows: 

 1

0 1, ,... . . . ( , ) .

tx
t tc c e

x x i i d N θ θθ μ σ θ
+⎧ =⎪

⎨
∀⎪⎩ ∼

 (6.8) 

 

This is a discrete version of an arithmetic Brownian motion with an unknown trend and/or volatility. 

Although this process is a random walk conditional on θ , tx  exhibits some serial correlation. suppose 
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for example that only the trend θμ  is subject to parametric uncertainty. Then, using Bayes’s rule, the 

observation of a large 0x  yields an upwards revision to beliefs about the trend of economic growth.  

 

Conditional on θ , the dynamic process of tx  is a normal random walk. As seen before, equation (6.3) 

as an analytical solution in that case: 

 2 20.5 .trθ θ θδ γμ γ σ= + −  (6.9) 

In particular, trθ  is independent of t. Under the hidden structure characterized by ( , )θ θμ σ , 

1,..., nθ = , the term structure of the socially efficient discount rate is obtained by rewriting 

equation (6.4) as follows: 

 
2 2( 0.5 )

1

1 ln .
n

t
tr q e

t
θ θγμ γ σ

θ
θ

δ − +

=

= − ∑  (6.10) 

The socially efficient discount rate under this parametric uncertainty is equal to the expected 

value of 2 20.5rθ θ θδ γμ γ σ= + −  for short maturities, is decreasing with t, and tends to the 

smallest possible value of rθ  when t tends to infinity. 

 

Following Gollier (2008), the intuition for these results is based on the observation that the 

parametric uncertainty plays a crucial role in shaping the uncertainty surrounding 

consumption in the distant future. To illustrate this, let us assume that the volatility of the 

growth of log consumption is known and equal to 3.6%σ = , but the trend μ  is unknown. It 

can be either 1% or 3% with equal probability. In Figure 6.1, we draw the distribution of 

0ln /tc c  for t=1, 10 and 100. Ex ante, the distribution of 1 0ln /c c  is a mixture of two normal 

densities. However, the uncertainty affecting the trend is a second-order source of uncertainty 

compared to the volatility of the growth rate. So, in the short-run, assuming a trend of 

(1%+3%)/2 to determine the efficient discount rate is a good approximation. In contrast, the 

uncertainty affecting consumption in one century’s time is mostly a result of the uncertainty 

over the growth trend. Conditional on the growth trend, 1%μ =  or 3%μ = , the expectation of 

100 0/c c  is 2exp(100( 0.5 0.036 ))μ + × , which equals 3.5 or 26. The magnitude of the 

uncertainty from this source can be compared to that from the intrinsic volatility of growth. 

Assuming 2%μ =  and 3.6%σ = , the 95% confidence interval for 100 0ln /c c  is [ ]5.7,9.6 .  
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Figure 6.1: Density function of 0ln /tc c  for t=1, 10, 100 and 200, under the assumption that 

(1%,1/ 2;3%,1/ 2)μ ∼  and 3.6%σ = . The dashed curve is the density function without 

parametric uncertainty and 2%μ = . 

 

The bottom line is that parametric uncertainty entails fatter tails for the distribution of future 

consumption. The thickness of the tails increases with the time horizon. Integrating out 

parameter uncertainty by Bayes’ rule spreads apart probabilities and thickens the tails of the 

posterior distribution for predicting the future growth rate of consumption. This explains why 

the term structure of discount rates is decreasing. Indeed, the growing gap of uncertainty, 

compared to the random walk hypothesis with the mean trend, magnifies the precautionary 

effect in the distant future.  We get a decreasing term structure because the precautionary 

effect tends to reduce the discount rate. In the long run, the fear of a low economic growth 

rate of 1% dominates all other considerations about how to value the future. Under the 

assumption that 0%δ =  and 2γ = , the discount rate converges to 
2 22 1% 0.5 2 0.036 1.7%r∞ = × − × × = , as shown in Figure 6.2. 
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Figure 6.2 : Efficient term structure with (1%,1/ 2;3%,1/ 2)μ ∼ , 3.6%σ = , 0%δ =  and 

2γ = . 

 

 

The case of an unknown trend of economic growth 

 

When the growth of log consumption conditional on θ  is normally distributed, the term 

structure of efficient discount rates is characterized by equation (6.10), which is rewritten as 

follows: 

 
2 2( 0.5 )1 ln .t

tr Ee
t

θ θγμ γ σδ − += −  (6.11) 

 

Hereafter θ  is allowed to have a continuous distribution. In this section, it is supposed that 

the volatility of the growth rate of consumption is known, so that θσ σ=  for all θ .  However, 

more sophisticated prior distributions for θμ  are considered than the two-state case from the 

previous section. Suppose that θμ  is normally distributed with mean 0μ  and variance 2
0σ .  0σ  

can be interpreted as a measure of the degree of uncertainty about the true growth of log 

consumption.  Observe from (6.11) that once again this is a situation requiring the expectation 

of the exponential of a normally distributed random variable to be computed. Using Lemma 1, 

it is obtained that: 
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2 2 2 2

0 0( 0.5 0.5 ) 2 2 2
0 0

1 ln 0.5 ( ).t t
tr e t

t
γμ γ σ γ σδ δ γμ γ σ σ− + += − = + − +  (6.12) 

This expression can alternatively be derived from the well-known property that if the 

conditional distribution 0ln /tc c  given ( , )μ σ  is normal with mean tμ  and variance 2tσ  and 

if tμ  is itself normally distributed with mean 0tμ  and variance 2 2
0 tσ , then the unconditional 

distribution of  0ln /tc c  is also normal with mean 0tμ  and variance 2 2 2
0t tσ σ+ . Define 

2 2
0 00.5( )tg tμ σ σ= + +  as the expected growth rate of consumption in the time interval [ ]0, t . 

This allows the above equation to be rewritten as 

 2 2
00.5 ( 1)( ).t tr g tδ γ γ γ σ σ= + − + +  (6.13) 

 
The term structure of efficient discount rates (6.13) is linearly decreasing in maturity, t. It 

tends to min rθ = −∞  when t tends to infinity. The support of rθ  is unbounded below because 

the expected growth of log consumption is normally distributed. The possibility that the true 

growth trend for the economy is a large negative number, is central to the valuation of distant 

cash flows. Although the probability of such an event may be very small, the scenario of a 

vanishing GDP per capita is greatly feared by the representative agent. When combined with 

the property that 0lim '( )c u c→  is infinite for power utility functions, it implies that there is a 

very high social value for transfers of wealth to distant dates where there is the possibility of 

close to zero per capita consumption. 

 

One can question the normality of the prior beliefs on the trend of log consumption, or more 

generally the nature and origin of these prior beliefs. It is possible to approach these questions 

by using Bayesian inference. Suppose that our current beliefs about the future growth of the 

economy combines primitive beliefs about it – which may be uninformative – and the 

observation of a sample of T past realizations of growth of log consumption 1( ,..., )Tx x− − . 

Suppose that the primitive beliefs take the form of three assumptions. First, changes in log 

consumption are independent and normally distributed. Second, the variance of the change in 

log consumption is a known constant 2σ . Third, the mean μ  of the change in log 
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consumption is normally distributed with mean *μ  and variance *2σ .  The observation of the 

recent changes 1( ,..., )Tx x− −  affects these beliefs. Using Bayes’ rule, it follows that 
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It is well-known that this process of revising beliefs yields a posterior distribution for the 

change in ln c which is normally distributed with mean: 
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where 11

T
m T xττ

−−
=−

= ∑  is the sample mean for changes in ln c . See for example Leamer 

(1978, Theorem 2.3). The new expected growth, 0μ  , is a weighted average of the prior 

expectation and of the sample mean. A large sample mean pushes beliefs upwards. The 

sensitiveness of posterior beliefs is an increasing function of the relative precision 2 1( / )Tσ −  

of the sample information relative to the precision 2*σ −  of prior beliefs. The posterior 

variance of  μ  is equal to 

 ( )( ) 12* * 2 * 2 1
1 0, , , ,..., ( / ) .TVar x x Tμ μ σ σ σ σ σ

−− −
− −

⎡ ⎤ = = +⎣ ⎦  (6.16) 

 
The posterior 0 0( , )μ σ  can then be considered as the updated mean and standard deviation for 

the change in log consumption. It can be plugged into equation (6.12) to determine the socially 

efficient discount rates. A special case arises when the prior beliefs are uninformative. This 

can be approximated by assuming that *σ  is very large. Equations (6.15) and (6.16) then 

become 

 
2

2
0 0and .m

T
σμ σ= =  (6.17) 

In this case, the beliefs at date 0 are entirely determined by the observation of economic growth. They 

are normal, with mean and variance given by (6.17). This is the standard way of justifying a normal 

distribution for the prior beliefs. Notice that this yields a linearly decreasing term structure. 
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The case of an unknown volatility of economic growth 

 

In a sequence of two recent papers, Weitzman (2007, 2009) considers an alternative model in 

which the unknown parameter for the distribution of 1ln /t tc c+  is its volatility rather than its 

mean.  Suppose that θμ μ=  for all θ . The plausible distribution for the volatility must of 

course have its support in +\ , which excludes the normal distribution. As has already been 

observed, it is often more convenient to work with the precision, 2pθ θσ −=  ,rather than the 

variance. When the precision is unknown, it is standard in the literature to assume that it has a 

gamma distribution: ( , )p a bθ Γ∼ . The gamma distribution has two parameters, a shape 

parameter a>0, and a scale parameter b>0. Its density function is 

 
/

1( ; , )    for all 0.
( )

p b
a

a

ef p a b p p
b a

−
−= >

Γ
 (6.18) 

The Gamma function extends the factorial one to non-integer numbers, with ( ) ( 1)!a aΓ = −  

when a is a natural integer. 

 

The mean and variance of pθ  are respectively equal to ab  and 2ab .  , Remember that the 

observed volatility of yearly changes in log consumption is around 3.6%, which gives a 

precision around 2(0.036) 800− ≈ .  In the following figure, four different gamma densities are 

drawn, all with the same mean 800ab = .  
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Figure: Gamma densities for different parameters ( , )a b  with the same 800Ep ab= = . 

 

The remaining challenge is to determine the shape of the term structure of discount rates 

under this specification. It is characterized by equation (6.11) which is rewritten as follows: 

 
2 20.5 / 0.5 /

0

1 1ln ln ( ; , ) .t p t p
tr Ee e f p a b dp

t t
θγ γδ γμ δ γμ

∞

= + − = + − ∫  (6.19) 

The integral in this equation is unbounded.  It is the moment-generating function evaluated at 
20.5 tγ  for the random variable1/ p , which has an inverted-gamma distribution. The 

precautionary effect is infinite, independent of the degree of parametric uncertainty! 

 

An alternative way to view this problem is achieved by characterizing the unconditional 

distribution of tx . Conditional on θσ , it is normal.  Combining a normal distribution of mean 

μ  with a gamma distribution ( , )a bΓ  for its uncertain precision yields an unconditional 

distribution that is a Student’s t-distribution.  This distribution has 2v a=  degrees of freedom, 

with mean μ and variance 1/( 1)a b− : 
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 (6.20) 

 
The Student’s t-distribution has fatter tails than the corresponding normal distribution with the 

same mean and variance. In the following figure, we draw different unconditional 

distributions for the annual change in log consumption by using the same parameters of the 

gamma distribution as in the previous figure: (a,b)=(1,800), (2,400), (10,80), and (20,40). We 

assume that x has a mean of μ = 2%, so that ( 0.02) 800x −  is a Student’s t-distribution with 

2a degrees of freedom. When a  tends to infinity, the Student’s t distribution tends to normal. 

However, a Finite parameter a has the effect of thickening the tails of the distribution 

compared to the normal one. Just as for other sources of parametric uncertainty, the 

parametric uncertainty about the volatility of the growth process makes the distribution of the 

growth rate riskier. 

 

 
Figure: Density functions for the change in log consumption. We assume that 

( 0.02) 800x −  is a Student’s t-distribution with 2a  degrees of freedom, 1,2,10 and 20.a =  

The dashed curve is the density of (0.02,1/ 800)N . 
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The differences between the normal distribution and the Student’s t-distribution may look 

quite marginal in the figure above. However, the tails of the distributions are significantly 

different. There is relatively much more probability mass in the Student’s t distribution than in 

the normal one. Let us define function ( ; )g t ν  as the ratio of probabilities that ( )Sx ν and Nx  

are smaller than t, where ( )Sx ν and Nx  are respectively the Student’s t-distribution with ν  

degrees of freedom, and the standardized normal distribution: 

 
[ ( ) ]( ; ) .

[ ]
S

N

P x tg t
P x t

νν ≤
=

≤
 (6.21) 

 
The table below shows how big g can be in the left tail. 

 

 t=-2 t=-4 t=-6 t=-8 

1ν =  6.49 2462.14 5.33×10 6.48×101

10ν =  1.61 39.76 66952.4 9.64×10

Table: Ratio ( ; )g t ν  of probabilities in the left tail. 

 

What is special with this specific parametric uncertainty is that the tails of the unconditional 

distribution of x are particularly thick. They are so thick that the precautionary effect becomes 

infinite. This can be checked in the following way. We have that 

 0
1 ln ln ( ),x

xr Ee Mγδ δ γ−= − = − −  (6.22) 

where  ( ) xk
xM k Ee=  is the moment-generating function of random variable x. For 

( , )x N μ σ∼ , we know that 2 2( ) exp( 0.5 ).xM k k kμ σ= +  However, the Student’s t-

distribution has an unbounded moment-generating function. Therefore, 1r = −∞ . 

 

It can be argued that this result is driven by the fact that “too much” parametric uncertainty is 

contained in the gamma distribution for the precision p. This point raises again the question of 

the status of our beliefs about the distribution of the uncertain parameter. Suppose that the 

only source of information is the observation of the past volatility of economic growth. 

Suppose that the true distribution of tx  is normal. Using Bayes’ rule, it can be proved that 

updating the normal-gamma prior beliefs using the observation of 1( ,..., )Tx x− − yields a 
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normal-gamma posterior belief (see Leamer (1978, Theorem 2.4)). In particular, if μ  is 

known and if the prior on σ  is uninformative, the posterior distribution of 21/p σ=  must be 

a gamma distribution. Thus, the use of an inverse-gamma distribution for the precision is a 

natural way to model the uncertainty affecting the variance of a Brownian process.  

 

The unboundedness of the efficient discount rate in this case is a consequence of the Inada 

property '(0)u = +∞  of the utility function, and from the standard marginalist approach to 

economic valuation. The representative agent places enormous value on any investment that 

yields a sure consumption, ε >0, in the future. Once these investments are implemented, the 

probability that future consumption will fall below 0ε >  will be zero, and the discount rate 

will be bounded. 

 

 

Conclusion 

 

In this chapter, it was recognized that the growth process of the economy is not only risky, but 

there are various parametric uncertainties. After all, who can be sure about the trend and 

volatility of economic growth over the next two centuries?  We have shown that these 

parametric uncertainties play a crucial role in shaping the term structure of discount rates. 

Parametric uncertainty about the trend is of limited importance in the short run, but in the long 

run is of huge significance.  The precautionary effect that it generates provides an intuition for 

why the term structure should be decreasing. The parametric uncertainty about the volatility 

of growth causes its unconditional distribution to have fatter tails.  Fear about a future that is 

the result of the negative extremes of the distribution induces the representative agent to use a 

much smaller discount rate for all time horizons. 
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The Weitzman’s argument 
 
In the first chapter, it was shown that there are essentially two methods to determine the 

socially efficient discount rate. The first method is based on the marginal rate of intertemporal 

substitution. It leads to the Ramsey rule and to a variety of extensions that have been analyzed 

in detail in the previous chapters. The other method is based on the rate of return of capital. At 

equilibrium, the two methods should lead to the same result, which is the equilibrium interest 

rate. 

 

Let us re-examine the reason why the discount rate should be equalized to the rate of return of 

risk-free capital in the economy. It is a simple arbitrage argument. Let r denote the rate of 

return of capital, which is also the equilibrium interest rate if financial markets are efficient. 

Consider an investment project that yields, after t years, a single sure cash flow F per dollar 

invested today.  This dollar can alternatively be safely invested in the capital market to yield 

exp( )rt  dollars in t years.  The investment project therefore should only be implemented if its 

future payoff, F, exceeds exp( )rt .  An alternative way to express this decision rule is to 

implement the project if the net future value exp( )NFV F rt= −  is positive.  

 

The NFV is the net future benefit of the investment when compared to an alternative 

investment in the productive capital of the economy. Behind this positive NFV rule, there is 

the important notion of the opportunity cost of capital, which tells us that what is invested in 

one project cannot be invested in other projects. For example, our efforts in favour of fighting 

global warming will reduce the resources available to fight malaria or poverty in developing 

countries.  

 

The net future value of the project is what the stakeholders get at date t from their investment 

when financing its initial unit cost by a loan at the interest rate r. An alternative strategy for 

impatient investors would be to anticipate the future benefit of their investment by borrowing 

today exp( )F rt−  at rate r, in such a way that the reimbursement F of the loan at date t 

perfectly offsets the cash flow of the project. When doing so, stakeholders get only one 

immediate benefit from the investment project equal to its net present value 
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1 exp( )NPV F rt= − + − . It is thus optimal to invest in the project if its NPV is positive. 

Obviously, because for any particular project the NPV and the NFV exp( )NPV rt= ×  are 

proportional to each other, they must have the same sign, so that the two decision rules always 

yield the same decision.   

 

An important practical limitation of this approach is that there is no market for risk free assets 

with very long maturities. Typically, government bonds have maturities not exceeding 30 

years. Market interest rates do not reveal the rate of return on capital for longer time horizons. 

Therefore, to apply the arbitrage argument presented above, it is necessary to compare the 

sure investment project with a “roll-over” strategy in which the transfer of cash-flows is made 

via a sequence of credit contracts scattered through time. For the latter, there is a 

“reinvestment risk”;  it cannot be known what the credit market conditions will be in the 

future.  To avoid this difficulty, an alternative approach to using market interest rates would 

be to try to guess what the rate of return on capital will be in the future. However, there are 

difficulties with this too.  Although economists have tried for decades to build realistic models 

of economic growth, it must be recognized that the predictive power of these models is not 

impressive.   

 

Neither neoclassical growth models nor endogenous growth models provide reliable 

predictions for the expected return on capital over long time horizons.  The driver of growth 

identified in neoclassical growth theory is capital accumulation.  However, the build up of 

capital stock provides only a partial explanation for economic growth.  . The predominant 

driver of growth in the long run is exogenous.  It is contained in the famous “Solow residual” 

which has been interpreted as representing technological and scientific progress.  The model 

provides no insight into what can be expected for the future rate of progress in these fields, or 

the level of innovation.  Longer term growth rates are therefore largely determined by 

exogenous assumptions.  The more recent endogenous growth theory tries to model the 

production of new knowledge, but at this stage, it is not able to help very much with 

characterizing the rate of return of capital over the next 200 years.  In summary, more 

sophistication is required to apply the arbitrage arguments mentioned above in the context of 

sustainable development. 



 - 90 - 

 

Following Weitzman (1998, 2001) and Gollier and Weitzman (2010), let us accept that there 

is unavoidable uncertainty over the rate of return of capital r when the investment decision 

must be made.  It is assumed that r will be constant in the future, is uncertain this morning but 

will be known with certainty at the end of the day. To keep it simple, let us consider a 

numerical example in which r will be either 5% or 1% with equal probabilities. Thus, the 

opportunity cost of capital cannot be evaluated without error today. One dollar invested today 

in the productive capital of the economy will yield either exp(0.05 )t  or exp(0.01 )t  dollars at 

date t. So, it is hard to compare this benefit to the sure benefit F of the investment project.  

The NFV of this project is uncertain. One possible decision rule under uncertainty is to 

require that the sure cash flow of the project is larger than the expected cash flow of the 

investment in the productive capital of the economy, or alternatively that the expected NFV is 

positive. This is referred to as the expected NFV rule. It is equivalent to a rule which requires 

that the investment has an internal rate of return larger than a critical rate F
tR  which is defined 

as follows: 

 
F
tR t rte Ee=  (7.1) 

 
Weitzman (1998) provides an alternative decision rule under uncertainty  which yields 

opposite results: A sure investment project should be implemented if its expected NPV is 

positive. In spite of the fact that this rule is equivalent to the expected NFV rule when there is 

no uncertainty (as was explained above), the decision rules are not equivalent when there is 

uncertainty. If the future benefit is offset by borrowing exp( )F rt−  once the rate r will be 

known, the net present benefit of the investment is equal to [ ]1 exp( )E F rt− + − , which is 

equivalent to discounting F at a rate P
tR  defined as 

 
P
tR t rte Ee− −=  (7.2) 

 

As observed by Gollier (2004), using the positive expected NFV rule or the positive expected 

NPV rule leads to opposite results concerning the choice of the discount rate. In particular, it 

is obtained that 

 : min max .P F
t tt r R Er R r∀ ≤ ≤ ≤ ≤  (7.3) 
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Moreover, the minimum and maximum bounds correspond to the asymptotic values of P
tR  

and F
tR  respectively, when t tends to infinity. The NPV approach is more favourable to the 

evaluation of sure investment projects than the NFV approach, and this difference increases 

with the time horizon.  

 

The analysis has also shown that the two rules differ by the date at which the risk associated 

with the alternative investment in the economy is allocated. Under the NFV approach, cash 

flows and risk are all transferred to the terminal date of the project, whereas they are all 

transferred to today under the NPV approach. This is a paradox, because of the huge 

difference in the practical consequences of the two approaches. In the spirit of the Modigliani-

Miller’s Theorem, the evaluation of an investment project should not depend on the way that 

it is financed. In the absence of a clear description of the stakeholders’ preferences towards 

risk and time, it is not possible to determine which rule should be preferred, and which 

discount rate should be selected. 

 

 

The case of the logarithmic utility function 

 

A surprising result of the expected NFV approach is that uncertainty affecting an investment 

project in the productive capital of the economy, biases us to prefer this risky project against 

the sure one. This suggests that introducing risk aversion into the picture should make us 

favour the expected NPV rule which acts in the opposite direction.  

 

Consistently, throughout this book, what matters for stakeholders is not the payoff of the 

project itself, but rather the utility that it generates. Before extending the analysis to a more 

general case, this section supposes that the utility function is logarithmic, ( ) lnu c c= . An 

important property of this function is that a change in the interest rate does not affect saving. 

The wealth effect perfectly compensates the substitution effect. This implies that at the end of 

the day, when r is observed, the level of consumption c0 is insensitive to this information (this 

will be shown later in the chapter). However, consumption in the distant future will be highly 

sensitive to r. It can be shown that the optimal consumption at date t is proportional 
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to exp( )rt . Thus, at the beginning of the day, there is absolutely no uncertainty about the 

optimal consumption at the end of the day, but there is a huge uncertainty about consumption 

in the distant future.  

 

Let us consider the expected NPV approach in this context. Remember that the NPV rule is 

based on the assumption that all cash flows from the sure marginal investment project are 

transformed into additional consumption at the end of the day, and only at that time. This 

additional consumption is uncertain (it depends upon the unknown r), but it is marginal. 

Because consumption c0 at date 0 is risk free, adding this marginal risk to initial wealth 

increases welfare if and only if the expected NPV is positive.  Risk aversion is irrelevant. This 

is because (independent) risk is a second-order effect in the expected utility model (Segal and 

Spivak (1990)). When introducing a small lottery into an initially risk free situation, the first-

order expectation effect always dominates.  This can be seen from observing that, by the 

Arrow-Pratt approximation (3.3), the risk premium for small risk is proportional to the 

variance of the payoff, that is to the square of the size of the risk.  This means that the NPV 

formula (7.2) is perfectly valid when the representative agent has a logarithmic utility 

function. 

 

 What of the alternative expected NFV approach?  This approach relies on the assumption that 

all the costs and benefits of the sure investment project are transferred to the terminal date t. 

Observe that the NFV is negatively related to the interest rate r, since the loan used to finance 

the initial cost of the project will yield a larger repayment at the terminal date when the 

interest rate is large. This means that the NFV of the sure project is negatively correlated with 

ct. In other words, implementing the sure project by this financing strategy provides some 

hedging against the macroeconomic risk at date t. This is positively valued by consumers; 

something that the equation (7.1) of the expected NFV approach fails to take into account. 

Therefore, this equation misprices the future. 

 

To sum up, given a logarithmic utility function, when the sure investment project is 

implemented and cash flows are transferred to the present (the NPV approach), one can 

assume that the representative agent is risk neutral.  This is because current consumption is 
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risk free.  In contrast, taking the NFV approach, when the sure project is implemented and 

cash flows are transferred to the terminal date, this strategy serves as an insurance against 

wider macroeconomic risk.  The risk neutrality assumption, implicit in equation (7.1) , 

therefore cannot be sustained. Thus, when the representative agent has a logarithmic utility 

function, Weitzman’s formula (7.2) is right. 

 

When the utility function of the representative agent is not logarithmic, the problem is more 

complex, because the optimal level of today’s consumption 0c  will react to changes in the rate 

of return of capital. Therefore, neither of the two rules (7.1) and (7.2) are valid. The next 

section is devoted to the analysis of this more general case. 

 

 

Taking account of preferences towards risk and time 

 

When considering the expected NFV rule with risk aversion, the marginal additional 

consumption exp( )F rt−  occurring at date t has a different marginal effect on utility in 

different future states of the world.  This is because of the differing levels of GDP per capita, 

ct, that will be realized in these different states. The underlying strategy of financing the initial 

cost by a loan at rate r increases the expected utility at date t if  

 ( )'( ) 0.r t
tE u c F e⎡ ⎤− ≥⎣ ⎦  (7.4) 

This is equivalent to using a discount rate F
tR  implicitly defined as follows: 

 
'( )1 ln .
'( )

r t
tF

t
t

E u c e
R

t Eu c

⎡ ⎤⎣ ⎦=  (7.5) 

 

This formula generalizes equation (7.1) to the case of risk aversion. Because ct and r are likely 

to be correlated, the two equations are not equivalent. In fact, because GDP per capita is 

expected to be larger when the return on capital is larger,  a negative correlation between 

'( )tu c and r is expected.  This implies that the numerator in equation (7.5) should be smaller 

than the product of '( )tEu c  and exp( )E rt . In turn, this implies that the right-hand side of this 
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equation should be smaller than the one in equation (7.1). Risk aversion should have a 

negative impact on the discount rate recommended under the expected NFV approach, and 

this effect is increasing with maturity. The intuition for this result is that investing in the 

productive capital of the economy yields a high risk that has a perfect correlation with wider 

macroeconomic risk which cannot be diversified. The associated risk premium of this strategy 

is increasing with the time horizon, favouring investment in the risk free project. 

 

The same method should also be used under the expected NPV approach. Remember that this 

approach is based on the assumption that the future cash flow of the risk free project is offset 

by a loan of  exp( )F rt−  at the end of the day. This strategy raises the expected utility of 

current consumption if  

 ( )0'( ) 1 0rtE u c Fe−⎡ ⎤− ≥⎣ ⎦  (7.6) 

This is equivalent to using a discount rate P
tR  defined as 

 0

0

'( )1 ln .
'( )

rt
P
t

E u c e
R

t Eu c

−⎡ ⎤⎣ ⎦= −  (7.7) 

Under risk neutrality (u’ constant), this equation is equivalent to (7.2). The choice of 

consumption c0 will in general depend upon the observation of the rate of return of capital at 

the end of the day. If the substitution effect dominates the wealth effect, c0 and r are 

negatively correlated. This means that investing in the productive capital of the economy 

rather than in the safe investment project plays the role of insurance against low consumption 

in the short run. This reduces the relative attractiveness of the sure project under the expected 

NPV approach. This tends to raise the discount rate P
tR .  

 

 

Taking account of the optimality of consumption growth 

 

The introduction of risk aversion acts to reduce the gap between the two discount rates 

described by the inequalities in equation (7.3), by raising the lower rate and reducing the 

higher one. It is possible to go one step further by showing that the two approaches are in fact 

equivalent if it is assumed that consumers optimize their consumption plan contingent on their 
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information about the future rate of return of capital. Suppose that r is realized, so that 

consumers can save and borrow at that interest rate. Consider a marginal increase in saving at 

date 0 by 1 to increase consumption at date t by exp( )rt . This marginal change in the 

consumption plan has no effect on welfare if 

 0'( ) '( ).t rt
tu c e e u cδ−=  (7.8) 

This is an optimality condition, which must hold for all possible realizations of r. If this 

condition is plugged into equation (7.7), it follows that: 

 0

0

'( ) '( )1 1ln ln .
'( ) '( )

rt rt
tP F

t t
t

E u c e E u c e
R R

t Eu c t Eu c

−⎡ ⎤ ⎡ ⎤⎣ ⎦ ⎣ ⎦= − = =  (7.9) 

This implies that P F
t tR R=  for all t! It can be concluded that once risk and risk aversion are 

properly combined with intertemporal optimization, the NPV and NFV approaches are 

equivalent. Moreover, these approaches are equivalent to the one on which the Ramsey rule 

and the  previous chapters are based. Indeed, it also follows that: 

 0

0 0

'( ) '( )1 1ln ln
'( ) '( )

rt
P t
t

E u c e Eu cR
t Eu c t Eu c

δ
−⎡ ⎤⎣ ⎦= − = −  (7.10) 

The only difference with respect to what has been presented earlier in this book comes from 

the possibility that 0c  is random. 

 

 

The term structure of discount rates 

 

In this model, in which shocks on capital productivity are permanent, risks affecting 

consumption growth are also permanent (as seen from equation (7.8)). This implies that risk 

increases with time.  This yields a decreasing term structure of discount rates.  The property 

that the term structure must be decreasing can be proved by rewriting equation (7.9) as  

 0 *

0

'( )1 1ln ln ,
'( )

rt
F P rt

t t t

E u c e
r R R E e

t Eu c t

−
−

⎡ ⎤⎣ ⎦ ⎡ ⎤= = = − = − ⎣ ⎦  (7.11) 

where *E is the standard risk-neutral expectation operator in which for any function F of r, we 

have [ ] [ ] [ ]*
0 0( ) '( ( )) ( ) / '( ( ))E F r E u c r F r E u c r= . It can be seen that the efficient term 
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structure under this specification is equivalent to the Weitzman’s NPV formula (7.2) up to the 

risk-neutral transformation of the probability distribution. This implies that we get the same 

qualitative properties for the term structure than those generated by equation (7.2): it is 

decreasing and tends to the smallest possible rate of return of capital. 

 

Let us examine this point in more details by characterizing the optimal allocation of risk and 

consumption through time. Suppose, as before, that relative risk aversion is a positive 

constant γ, so that '( )u c c γ−= . One can solve equation (7.8) together with the intertemporal 

budget constraint  

 00
,rt

te c dt k
∞ − =∫  (7.12) 

where k0 is the initial level of capital in the economy. A solution exists if (1 )r γ δ− < , which 

is true in particular when γ  is greater than unity. The solution is written as 

 0 .
r t

t
rc k r e

δ
γδ

γ

−⎛ ⎞−
= −⎜ ⎟

⎝ ⎠
 (7.13) 

Observe first that the initial consumption 0c  is independent of the random variable r when γ  

equals unity. This confirms the property that initial consumption is not sensitive to the interest 

rate when the utility function is logarithmic. Observe also that, conditional on r, tc  has a 

constant growth rate ( ) ( ) /g r r δ γ= − . It is notable that this implies that the ex post 

equilibrium interest rate is r gδ γ= + , which is the Ramsey rule. The problem is to determine 

the socially efficient discount rate before r is revealed. The fact is that ex post consumption 

will grow at a constant rate that is unknown ex ante. This simple model is thus equivalent to 

the following stochastic process for the growth of log consumption: 

 
( )

( )
1

0 0 ( )

g
t tc c e

c k g

θ

θ θ
+⎧ =⎪

⎨ = −⎪⎩
 (7.14) 

This is a very special case of the general problem of parametric uncertainty that we examined 

in the previous chapter, but with an uncertain discrete jump in initial consumption. The 

arithmetic Brownian motion for log consumption is degenerate, with zero volatility, so that 

uncertainty is fully resolved at date 0. The riskiness of consumption increases exponentially 
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through time, rather than linearly as in the case of log consumption following a Brownian 

motion. 

 

Following Weitzman (2009), let us calibrate this model by assuming that the uncertainty 

about the future rate of return of capital is governed by a gamma distribution: 

 
/

1( ; , )    for all r 0,
( )

r b
a

a

ef r a b r
b a

−
−= >

Γ
 (7.15) 

where a and b are two positive constant. This implies that the mean rate of return is 

Er abμ= =  and its variance is 2 2( ) .Var r abσ= =  Suppose that 0δ = , which implies that 

( ) ( 1) /g r rγ γ= − . The Ramsey pricing formula (7.10) can then be written as follows: 

 

1

1

1 ( )

0

1

0

1 1ln ln .
a r t brt

t a rb

r e drEr er
t Er t r e dr

γγ

γ γ

−

−

∞ − + − − +− −

∞− − + − −
= − = − ∫

∫
 (7.16) 

The two integrals in this expression have an analytical solution. Indeed, because the integral 

of the density ( ; , )f r k h  must be equal to 1, we must have that 

 1 /

0
( ).h r k hr e dr k h

∞ − − = Γ∫  (7.17) 

We apply this property twice in (7.16) for 0h a γ= − >  and respectively 1 1( )k t b− −= +  and 

k b= . It yields 

 
11 ( ) ( )ln ln(1 ).

( )

a

t a

t b a ar tb
t b a t

γ

γ

γ γ
γ

− −

−

+ Γ − −
= − = +

Γ −
 (7.18) 

It is easier to rewrite this equation with parameters ( , )μ σ  rather than ( , )a b . This substitution 

yields the risk-adjusted Weitzman’s formula 

 
2 2( / ) ln 1 .t

tr
t

μ σ γ σ
μ

⎛ ⎞−
= +⎜ ⎟

⎝ ⎠
 (7.19) 

As long as γ  is smaller than 2( / )μ σ  , this term structure is decreasing, and tends to zero 

when t tends to infinity. Notice that this is equivalent to a hyperbolic discounting rule, since 

we have that 

 1

2

.
1

tr t ae
a t

− =
+

 (7.20) 
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This is the functional form suggested by Loewenstein and Prelec (1992), to describe observed 

discounting behaviours. In Table 8.1, the discount rates are computed for a gamma 

distribution of the rate of return of capital with mean 4%μ =  and standard deviation 2%σ = , 

together with 2γ = . Compared to the expected rate of return of capital of 4%, we see that the 

ex ante short term efficient discount rate is only 2%.  This illustrates the effect of risk 

aversion. The further reduction in the discount rate for longer maturities illustrates the 

growing precautionary effect. 

0t →  t=50 t=200 t=500 t=1000 

0 2%r =  50 1.62%r = 200 1.10%r = 500 0.72%r = 1000 0.48%r =

Table 8.1: Discount rate with 2γ =  and with a gamma distribution for the shock on the future 
return of capital. The mean future rate has a mean of 4% and a standard deviation of 2%. 

 

 

Conclusion 

 

We have shown in this chapter that the evaluation of a sure (marginal) investment project is 

independent of how cash flows are allocated through time, as soon as it is recognized that 

economic agents are risk-averse and that they optimize their consumption plans. This Fisher 

equivalence property is particularly relevant when the rate of return of capital in the economy 

is uncertain. This reconciles the two approaches for discounting that have been proposed in 

the literature. In the expected net present value rule proposed by Weitzman (1998), it is 

assumed that the risk-neutral investor transfers the uncertain net benefit of the safe investment 

project to the present. In the expected net future value rule examined by Gollier (2004), it is 

assumed that the uncertain net benefit is transferred to the terminal date of the project.  The 

two approaches yield different decision rules. Following Gollier and Weitzman (2010), we 

have shown that the two rules can be reconciled by adding risk aversion into the picture.  

 

Finally, it has been shown that when shocks on the interest rate have a permanent component, 

the term structure of discount rates should be decreasing. Newell and Pizer (2003), and 

Groom, Koundouri, Panopoulou and Pantelidis (2007) have estimated the degree of 
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permanency of shocks on interest rates, and have shown that it has a crucial role in the shape 

of the term structure of efficient discount rates. 
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A theory of the decreasing term structure of discount rates 
 
This chapter completes Part II of the book.  It aims to provide a unified theoretical foundation 

to the term structure of discount rates. To do this it develops a benchmark model based on two 

assumptions: individual preferences towards risk, and the nature of the uncertainty over 

economic growth. We have shown that constant relative risk aversion, combined with a 

random walk for the growth of log consumption, yields a flat term structure for efficient 

discount rates. In this chapter, these two assumptions are relaxed by using a stochastic 

dominance approach.  

 

The first step is to explore the link between the current long term discount rate and 

expectations about what the future short term discount rate will be.  

 

 

 The current long discount rate and future short discount rates 

 

We limit the analysis to three equally distant dates, t=0, 1, and 2.  We assume that 0c  is 

known. At date t=0, the short and long discount rates are respectively 

 1
1

0

'( )ln
'( )

Eu cr
u c

δ= −  (8.1) 

and 

 2
2

0

'( )1 ln .
2 '( )

Eu cr
u c

δ= −  (8.2) 

Suppose now that we are at date t=1, with a realized level of consumption 1c . At that date 

under that state of nature, one should use a short rate denoted 1 2 1( )r c→  to discount a sure cash 

flow occurring one period later at date t=2. To keep the notation simple, we write 1 2 12r r→ = . 

This future short rate is as usual characterized by the following equation: 

 2 1
12 1

1

'( )
( ) ln .

'( )
E u c c

r c
u c

δ
⎡ ⎤⎣ ⎦= −  (8.3) 

We want to link these three rates 1r , 2r and 12r . This can be done by rewriting equation (8.2) 

as follows: 
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1 12 1

2
2

0

2 1 1 1

1 1 0

( ) 1

1

'( )1 ln
2 '( )

'( ) '( ) '( )1 ln
2 '( ) '( ) '( )

'( )1 ln ,
2 '( )

r r c

Eu cr
u c

E u c c u c Eu cE
u c Eu c u c

u ce E e
Eu c

δ

δ

− −

= −

⎡ ⎤⎡ ⎤⎣ ⎦= − ⎢ ⎥
⎢ ⎥⎣ ⎦

⎛ ⎞⎡ ⎤
= − ⎜ ⎟⎢ ⎥⎜ ⎟⎣ ⎦⎝ ⎠

 (8.4) 

This implies that 

 ( )2 1 120.5r r R= +  (8.5) 

where 12R  is defined as follows: 

 
12 1

12

( )
1

1

'( )
'( )

r c
R Eu c ee

Eu c

−
− =  (8.6) 

Equation (8.5) tells us that the long rate today is the average of the short rate 1r  today and 12R . 

Observe that the discount factor 12exp( )R−  is the risk-neutral expectation of the future 

discount factor 12 1exp( ( ))r c− , using the risk-neutral probabilities for the distribution of the 

states of nature at date t=1.  Rate 12R , measured at date t=0, depends upon the uncertainty 

about the immediate growth rate and upon the correlation of this growth rate with the interest 

rate that will prevail in the future. 12R  can also be interpreted as the certainty equivalent of the 

future short rate 12r . To keep terminology simple, let us refer to 12R  as the forward interest 

rate. It lies somewhere between the smallest and the largest possible future short rates. Using 

equations (8.3) and (8.6), 12R  can be rewritten as 

 2
12

1

'( )ln .
'( )

Eu cR
Eu c

δ= −  (8.7) 

It should not be a surprise that the discount factor to be used at date 0, to evaluate a transfer of 

consumption from date 1 to date 2, is equal to 2 1exp( ) '( ) / '( )Eu c Eu cδ− . Evaluated today, this 

is indeed the marginal rate of substitution between 1c  and 2c . Remember that, by the first 

theorem of welfare economics, the efficient discount rate is also the equilibrium interest rate 

in a frictionless economy. In the same spirit, 12R  is the equilibrium forward interest rate, that 

is, the rate of return for a credit contract at date 0 offering a loan at date 1 with maturity at 

date 2.  
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Equations (8.5) and (8.6) also describe the links between current long rates and expectations 

about future shorter rates. It states that the following two investment strategies have the same 

effect on the expected utility at date 1. Under both strategies, consumption is reduced by ε  at 

date 2 to fund an investment to increase consumption at date 1.   

 

The first investment strategy is safe. It consists of borrowing long to invest short. More 

specifically, 2exp( 2 )rε −  is borrowed at date 0 which requires a reimbursement of ε  at date 2. 

This loan is used at date zero to invest in a short bond that yields a sure payoff 

2 1exp( 2 )exp( )r rε −  at date 1. The increase in utility at date 1 is thus equal to that marginal 

sure increase in consumption multiplied by 1'( )Eu c . The second investment strategy is risky. 

It consists of borrowing 12exp( )rε − at date 1 that requires the same reimbursement ε  at date 

2. Seen from date 0, this is a risky strategy because the increased consumption at date 1 will 

depend upon the prevailing short term rate 12 1( )r c  at date 1. The increase in expected utility at 

date 1 is given by 12 1exp( ) '( )E r u cε − . At equilibrium, the two strategies must have the same 

effect on welfare. The following condition must therefore be satisfied: 

 2 1 122
1 1'( ) '( ),r r re e Eu c Ee u cε ε− −=  (8.8) 

which is equivalent to equation (8.4), which in turn yields property (8.5). This simple 

arbitrage argument explains why the long rate today must increase when investors expect the 

future interest rate to go up. It also explains the role of risk aversion in this relationship. 

 

A vast literature on the term structure of interest rates has examined these interactions. Until 

seminal works by Vasicek (1977) and Cox, Ingersoll and Ross (1985), economists based their 

analysis on the “Pure Expectations Hypothesis”, which states that the long rate today is the 

mean of the sequence of current and future short rates. This is similar to equations (8.5) and 

(8.6), but with a linear utility function u in (8.6). In spite of its inappropriate assumption of 

risk neutrality, this theory is compatible with the crucial idea that the current long rate tells us 

something about the investors’ expectation about the future rates.  
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Decreasing term structure 

 

There are two ways to write the condition that the long rate is smaller than the short one: 

2 1r r≤ . First, from property (8.5), it is the case if the current short interest rate, 1r  , is larger 

than the forward rate 12R : 

 1 12r R≥  (8.9) 
 
Second, conditions (8.1) and (8.2) can be used more directly to get that 2r  is smaller than 1r  

if: 

 2 1

0 0

'( ) '( )1 ln ln ,
2 '( ) '( )

Eu c Eu c
u c u c

δ δ− ≤ −  (8.10) 

which requires that : 

 ( )2
0 2 1'( ) '( ) '( )u c Eu c Eu c≥  (8.11) 

Of course, given equations (8.1) and (8.7), these two approaches yield exactly the same 

condition for a decreasing term structure. 

 

 

The case of an i.i.d. dynamic growth process 

 

In this section, the case in which the log of consumption exhibits no serial correlation is 

examined. What is sought is the condition on u that yields a decreasing term structure. Let 

1log logt t tx c c+= −  denote the change in log consumption between dates t and t+1. We 

assume that 0 1( , )x x  are i.i.d. It is easier to use variable 1exp( ) /t t t ty x c c+= =  which is the 

relative change in consumption between dates t and t+1. Condition (8.11) for a decreasing 

term structure, can therefore be re-written as follows:  

 ( )2
0 00 0 0 1 '( )'( ) '( ) .Eu c yu c Eu c y y ≥  (8.12) 

 

Let us first consider the special case of power utility functions with '( )u c c γ−= . The above 

condition is then equivalent to 
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 ( )2

0 1 0 .Ey y Eyγ γ γ− − −≥  (8.13) 

 
Because 0y  and 1y  are independent, the left-hand side of this inequality equals 0 1Ey Eyγ γ− − , 

which in turn is equal to the right-hand side of (8.13) since 0y  and 1y  are identically 

distributed. We conclude that condition (8.13) holds as an equality, which implies that the 

term structure of discount rates is flat.  

 

Under constant relative risk aversion, the short term rate 12r  is independent of 1c . Indeed, 

from (8.3), we have that 

 
( )2 1 1 1

12 1 1
1 1

'( )
( ) ln ln ln .

'( )
E u c c E c y

r c Ey
u c c

γ
γ

γδ δ δ
−

−
−

⎡ ⎤⎣ ⎦= − = − = −  (8.14) 

 
It is a crucial property of the power utility function that the equilibrium interest rate is 

independent of the level of economic development. There is empirical support for this 

independence.  During the XXth century, GDP per capita has been multiplied by a factor 

around 7 in the developed world, but no clear trend for the short term interest rate has been 

observed. This is illustrated in Figure 8.1, in which the series of short term real interest rates 

between 1900 and 2006 in the United States is drawn.  This argues in favour of constant 

relative risk aversion. If, in addition, expectations remain stable over time, implying that 0y  

and 1y  are identically distributed, then comparing (8.14) and (8.1) implies that 1 12 12r R r= = .  

In turn, this implies that the term structure is flat.  
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Figure 8.1:  Real Bill rates in the United States in the XXth century.  

Source: Morningstar France. 

 

Let us relax the assumption that relative risk aversion is constant. Instead the case where 12r  is 

decreasing with  1c  is examined. From (8.3), this is the case if f(c1) is increasing in c1 where:  

 1 1
1

1

'( )( )
'( )

Eu c yf c
u c

=  (8.15) 

Derivating with respect to consumption: 

 1 1 1
2

'( ) ''( ) ''( ) '( )'( )
'( )

u c Ey u cy u c Eu cyf c
u c

−
=  (8.16) 

which is positive if : 

 1 1

1

''( ) ''( ) .
'( ) '( )

Ey u cy u c
Eu cy u c

− ≤ −  (8.17) 

This is equivalent to : 

 1
1

1

'( ) ( ) ( ),
'( )

u cyE R cy R c
Eu cy

⎡ ⎤
≤⎢ ⎥

⎣ ⎦
 (8.18) 

where ( ) ''( ) / '( )R c cu c u c= −  is relative risk aversion. Suppose that consumption never falls 

( 1y  is almost surely larger than unity). If relative risk aversion is decreasing, this implies that 

1( )R cy  is smaller than ( )R c  almost surely. This implies that condition (8.18) always holds. 

Therefore, under the assumption that consumption never falls, decreasing relative risk 

aversion implies that the future short-term rate 12r  is decreasing in 1c . This implies that 12 1( )r c  
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is almost surely less than 12 0( )r c . Under the assumption that 0y  and 1y are i.i.d., this also 

means that 12 1( )r c  is almost surely less than 1r . So is its certainty equivalent 12R . By equation 

(8.5), this implies that 2r  is less than 1r . Thus, when consumption never falls and growth 

exhibits no serial correlation, decreasing relative risk aversion is sufficient for a decreasing 

term structure. This condition is also necessary if we do not specify the distribution of 1y  with 

support in [ [1, +∞ . This result is in Gollier (2002a, 2002b). 

 

In Figure 8.2, we draw the term structure of discount rates in the special case of a modified 

power function with a minimum level of subsistence k: 

 
1( )( ) ,

1
c ku c

γ

γ

−−
=

−
 (8.19) 

This function is increasing and concave in its domain ] , [.k +∞  Parameter k is interpreted as a 

minimum level of subsistence since when consumption goes to the level k, utility goes to −∞ . 

It is easily checked that ( ) /( )R c c c kγ= −  under this specification. The function is decreasing 

in its relevant domain. It tends to infinity when consumption approaches the minimum level 

of subsistence, and it converges to γ  for large consumption levels.  

 

Let us normalize k to unity and consider 0 2c =  as a benchmark. It is also assumed that the 

growth rate of the economy is a sure 2% per year, and that 1γ = , so that, as assumed 

elsewhere in this book, the relative risk aversion today is (2) 2R = . Using the Ramsey rule 

that states that the interest rate net of the rate of impatience – which is assumed to be 0% -- 

must be equal to the product of relative risk aversion and the growth rate of consumption. A 

short discount rate of 2 2% 4%× = is obtained. For very long maturities, the relevant R to be 

used in the Ramsey rule is ( ) 1R +∞ = , which yields a long discount rate equalling 

1 2% 2%× = . 

 

In Figure 8.2, current consumption 0c  is taken to be 20%, 50% or 100% larger than the 

minimum level of subsistence.  Figure 8.2 therefore also depicts the situation for less 

developed countries whose GDP per capita is closer to the minimum level of subsistence. For 



 - 107 - 

the case where 0 1.2c = , the marginal utility of consumption is considerably larger today than 

in the benchmark case, which implies that reducing today’s consumption to invest for the 

future is a lower priority. This takes the form of a large discount rate (1.2) 2% 12%r R= × =  

in the short run. This may explain why poorer countries are observed to be more short-termist 

in relation to various public investments such as education or infrastructure. 

 

 
Figure 8.2: The term structure of discount rates with 

1
00%, 2%, '( ) ( 1) , 1.2,  1.5 and 2.tx u c c cδ −= = = − =  

 

Under the assumption of never decreasing consumption, the term structure is decreasing with 

maturity if and only if relative risk aversion is decreasing with wealth. The intuition for this 

result is simple. The intensity of the wealth effect is proportional to R, which measures the 

aversion to intertemporal inequality. In a growing economy, this effect decreases over time 

when R is decreasing with wealth. This implies that interest rates will tend to go down in the 

future, which implies a decreasing term structure of interest rates today. However, this 

approach is at odds with the empirical observations that the short term interest rate is 

independent of the degree of economic development. In the next section, an alternative 



 - 108 - 

approach is considered to justify the type of downward sloping term structure which would be 

consistent with the analysis presented in the second part of the book.  

  

 

A concept of concordance: “large values of 1x go with large values of 2x ”   

 

This section is devoted to the analysis of the impact on the forward interest rate of serial 

correlation in the growth rate of the economy. Up to now in this chapter, we examined the 

case of random walk for the change in log consumption, and we relaxed the assumption that 

relative risk aversion is constant. In the remainder of this chapter, we examine the role of 

serial correlation in the change of log consumption. 

  

The forward rate is characterized by the following equality: 

 
0 1

0

0
12

0

'( )ln .
'( )

x x

x

Eu c eR
Eu c e

δ
+

= −  (8.20) 

 
This equation makes explicit that serial correlation in the growth of log consumption matters, 

as illustrated in the previous chapters. In the special case without serial correlation and 

constant relative risk aversion, we know that 12 12 1R r r= = , so that, according to condition 

(8.5), the term structure is flat. From now on, the assumption of serial independence is relaxed 

in a framework in which there is no a priori specification of the utility function u.  

 

In the general expected utility model, the coefficient of correlation between two random 

variables as 1x  and 2x  is usually insufficient to characterize the role of the statistical 

relationship on an expectation as 0 1
0'( )x xEu c e + , i.e., on the term structure of discount rates. 

The full joint distribution function is generally required to determine the forward discount 

rate. Following Tchen (1980) and Epstein and Tanny (1980), the idea that “greater values of 

1x  go with greater values of 2x ” is now formalized. To do this, consider an initial distribution 

function F for the pair of random variables 1 2( , )x x , with 1 2 1 1 2 2( , ) P[ ]F t t x t x t= ≤ ∩ ≤ . 

Consider another pair of random variables 1 2ˆ ˆ( , )x x with cumulative distribution function (cdf) 
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F̂ . A “marginal-preserving increase in concordance” (MPIC) is defined as any 

transformation of distribution F into distribution F̂  that takes the following form: Consider 

two pairs 1 2( , )t t  and ' '
1 2( , )t t  such that '

1 1t t>  and '
2 2t t> . F̂  is obtained from F by adding 

probability mass ε in a small neighbourhood of 1 2( , )t t  and ' '
1 2( , )t t , while subtracting 

probability mass ε in a small neighbourhood of '
1 2( , )t t  and '

1 2( , )t t .  This is depicted in Figure 

8.3. 

 

 

Figure 8.3: Transfer of probability mass in a marginal-preserving increase in concordance 

 

This MPIC clearly increases the correlation between the two random variables, without 

affecting the marginal distributions of the two random variables. Observe also that the new 

cdf, F̂ , obtained through a MPIC raises the cdf: for all 1 2( , )t t , 1 2 1 2
ˆ ( , ) ( , )F t t F t t≥ . Following 

Tchen (1980), this inequality defines the notion of “more concordance” for any two cdfs F 

and F̂  with the same marginals 1 1 1
ˆ ( , ) ( , ) ,F t F t t+∞ = +∞ ∀ ∈\  and 2 2

ˆ ( , ) ( , )F t F t+∞ = +∞  

2t∀ ∈\ :  

 2
1 2 1 2 1 2

ˆ ˆ( , ) , ( , ) ( , ).cF F t t F t t F t t⇔ ∀ ∈ ≥; \  (8.21) 
 

A more concordant cdf concentrates more probability mass in any South-East quadrangle of 
2\ . Tchen (1980, Theorem 1) and Epstein and Tanny (1980) show that two cdfs with the 

same marginals can be ranked by this notion of increase in concordance, the more concordant 

cdf can be obtained from the less concordant one through a sequence of MPICs. It is 

interesting to observe that, by dividing both sides of the inequality in (8.21) by 

1 1
ˆ ( , ) ( , )F t F t+∞ = +∞ , this definition is equivalent to 

 2
1 2 2 2 1 1 2 2 1 1

ˆ ˆ ˆ( , ) , [ ] [ ].cF F t t P x t x t P x t x t⇔ ∀ ∈ ≤ ≤ ≥ ≤ ≤; \  (8.22) 

This is in turn equivalent to the following definition of an increase in concordance, which 

relies on the notion of First-order Stochastic Dominance (FSD): 

 1 2 1 1 2 1 1
ˆ ˆ ˆ,  is FSD-dominated by .cF F t x x t x x t⇔ ∀ ∈ ≤ ≤; \  (8.23) 



 - 110 - 

  
This can be seen clearly in Figure 8.3. Suppose that the MPIC represented in this figure is 

undertaken, and that the information is received that 1x  is smaller than some '
1 1] , [t t t∈ . What 

remains visible to the left of t is the downward transfer of probability mass that happens in the 

neighbourhood of 1t , which is a FSD deterioration in the conditional distribution of 2x .  

Conditional on the fact that 1x  is smaller than any threshold 1t , the probability distribution of 

2x̂  is a deterioration of 2x  in the sense of FSD. This means that some probability mass of this 

conditional distribution is transferred from the high values of 2x  to the lower ones. Under the 

new distribution, there is always more probability mass in the left-tail of the distribution of 

2 1 1x x t≤ .  

 

In words, this means that the present and the future changes in consumption are more strongly 

correlated after a sequence of MPICs. Bad news in the first period is bad news for the second 

period’s distribution of consumption. In the statistical literature, this notion is referred to as 

the "stochastic increasing positive dependence", because 2x  is more likely to take on a larger 

value when 1x  increases (see for example Joe (1997)). It is closely related to the notion of 

“positive quadrant dependence” proposed by Lehmann (1966).  

 

Suppose that we are interested in the effect of an increase in concordance on the expectation 

of some function 2:h →\ \ . Let us first consider the effect of an elementary MPIC defined 

by pairs 1 2( , )t t  and ' '
1 2( , )t t  such that '

1 1t t>  and '
2 2t t> , as in Figure 8.3. Obviously, this MPIC 

increases the expectation of h if and only if 

 ' ' ' '
1 2 1 2 1 2 1 2( , ) ( , ) ( , ) ( , ).h t t h t t h t t h t t+ ≥ +  (8.24) 

Because the two pairs 1 2( , )t t  and ' '
1 2( , )t t are arbitrary, this condition must hold for all such 

pairs such that '
1 1t t>  and '

2 2t t> . This condition is necessary and sufficient for an increase in 

concordance to raise the expectation of h because any increase in concordance can be 

expressed as a sequence of MPICs.  It happens that this condition is well-known in 

mathematical economics. It is referred to as the ‘supermodularity of h’. 
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If h represents a von Neumann-Morgenstern utility function in 2\ , taking condition (8.24) 

and dividing both sides of the inequality by 2, implies that one would prefer a lottery yielding 

payoff 1 2( , )t t  or ' '
1 2( , )t t  with equal probabilities to another lottery yielding payoff '

1 2( , )t t  and 

'
1 2( , )t t  with equal probabilities. This would be the case, for example, for complement goods 

where 1x  and 2x  are respectively the number of left and right shoes in the consumption 

bundle. Condition (8.24) thus defines a notion of complementarity between 1x  and 2x . Two 

goods are complements if the marginal utility of the first is increasing in the consumption of 

the second, that is if the cross derivative of the utility function is positive.  

 

Observe that if h is twice differentiable, replacing ' '
1 2( , )t t  by 1 2( , )t dx t dy+ + , inequality (8.24) 

is equivalent to 

 12 1 2( , ) 0h t t dxdy ≥  (8.25) 

for all 0dx >  and 0dy > .  A simple integration argument implies that when h is twice 

differentiable, the supermodularity of h is equivalent to its having a positive cross derivative.   

 

The following Lemma summarises the findings so far.  The formal proof of the lemma is in 

Tchen (1980), or Epstein and Tanny (1980). 

 

Lemma 2: Consider a bivariate function h. The following conditions are equivalent: 

• For any two pairs of random variables 1 2( , )x x  and 1 2ˆ ˆ( , )x x such that 1 2ˆ ˆ( , )x x  is more 

concordant than 1 2( , )x x , 1 2 1 2ˆ ˆ( , ) ( , )Eh x x Eh x x≥ . 

• h is supermodular. 

 

Moreover, assuming that h is twice differentiable, Tchen (1980, Theorem 2) shows that 

 1 2 1 2 12 1 2 1 2 1 2 1 2
ˆˆ ˆ( , ) ( , ) ( , ) ( , ) ( , ) .Eh x x Eh x x h t t F t t F t t dt dt⎡ ⎤− = −⎣ ⎦∫ ∫  (8.26) 

This can be obtained by a double integration by parts. By the definition (8.21) of an increase 

in concordance, we see that equation (8.26) provides a simple proof for the above Lemma. 
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An immediate application of the Lemma is to apply it to function 1 2 1 2( , )h x x x x= , which is 

supermodular. Lemma 2 tells us that an increase in concordance raises the expectation of h. 

Since the marginal distributions are preserved   because ˆi iEx Ex= , this shows that an increase 

in concordance necessarily raises the covariance between the two random variables. 

  

 

The effect of an increase in concordance of economic growth on the forward discount rate  

 

There is a clear link between the notions of supermodularity and of an increase in 

concordance. Consider two dynamic processes for the growth of consumption: 

 

The perfect positive concordant pair of random variables in (a) is obtained from the perfect 

negative concordant pair in (b) through a MPIC transferring all the probability mass from the 

upward diagonal of the rectangle to the downward one. In the two cases, the marginal 

distributions of 1x  and 2x  are the same: (1%,1/ 2;3%,1/ 2)tx ∼ , but they are perfectly 

positively correlated in case (a), whereas they are perfectly negatively correlated in case (b).  

 

Define 

 0 1
1 2 0( , ) '( )x xh x x u c e +=  (8.27) 

Equation (8.20) tells us that the forward discount rate 12R  is negatively affected by an increase 

in concordance if Eh is positively affected by it. Using Lemma 2, this requires that h is 

supermodular. It follows that 

 [ ]12 1 2 2 2 2( , ) ''( ) 1 ( ) ,h x x c u c P c= −  (8.28) 

where 2 0 1 2exp( )c c x x= + is consumption at date t=2 and ( ) '''( ) / ''( )P c cu c u c= −  is the index 

of relative prudence. This proves the following proposition: 

 

Proposition: Any increase in correspondence in the growth of log consumption reduces the 

forward discount rate if and only if relative prudence is uniformly larger than unity. 
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By equation (8.5),  1P ≥  is also necessary and sufficient to reduce the long discount rate. 

Now, remember that combining the assumption of i.i.d. 1 2( , )x x with constant relative risk 

aversion implies a flat term structure. Remember also that constant relative risk aversion 

implies that relative prudence is also constant and is equal to relative risk aversion plus one. 

Thus, when relative risk aversion is constant, it must be that relative prudence is larger than 

unity. Thus, under this assumption, the term structure of discount rates is decreasing if, for the 

same marginal cdf, the growth process exhibits more concordance than in the case of serial 

independence. 

 

The intuition for this result is based on the observation that the second moment of 2c  is 

supermodular in 1 2( , )x x . Indeed, function 

 ( )1 2
2

1 2 0( , ) x xh x x c e +=  (8.29) 

is supermodular. It implies that an increase in concordance for the change in log consumption 

tends to raise the variance of 2c . This reduces the forward discount rate under prudence. 

However, observe also that the expectation of 2c  is increased by the concordance in 1 2( , )x x , 

since 1 2 0 1 2( , ) exp( )h x x c x x= +  is supermodular. This wealth effect goes against the 

precautionary effect. This explains why positive prudence is not sufficient to determine the 

sign of the effect of an increase in concordance of log consumption. Using the above Lemma, 

it is easy to check that positive prudence is necessary and sufficient when the dynamic process 

of consumption exhibits more concordance than in the case of independence. 

 

 

Unified explanation for a decreasing term structure of discount rates 

 

The stochastic processes that we examined in chapters 4 (mean-reversion), 5 (Markov 

switches) and 6 (parametric uncertainty) exhibited some forms of stochastic dependence in 

serial changes of log consumption. Their common feature is the increased concordance of 

successive changes in log consumption compared to the case of a random walk.  This 

provides a common underlying explanation for the decreasing term structure derived for each 
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of these models.  The simplest illustration of this is obtained in the case of Markov switches. 

Suppose that there are two regimes, one with a sure growth rate of 2%, and one with no 

growth. There is a 1% probability to switch from one regime to the other every year. Figure 

8.4 on the left describes the probability distribution for the growth rate in the first two years, 

assuming that one experienced a good state in the previous year. Figure 8.4 on the right 

describes the probability distribution with no serial correlation, but with the same marginal 

probabilities as in the original distribution on the left. We see that the Markov-switch process 

is more concordant than in the case of independence, since it is obtained from the latter 

through a MPIC of a probability mass of 0.97%.  

 
Figure 8.4: A two-state Markov process (left) that is more concordant than 

in the case of independence (right). The switching probability in each period is 1%. 

 

Alternatively, consider the mean-reverting process 1 (1 )t t tx xφ φ μ ε+ = + − + , with [ ]0,1φ ∈  and 

where tε  is normally distributed with mean 0 and volatility σ.  We have seen in chapter 4 that 

this yields a decreasing term structure under CRRA when 0x μ= , which guarantees 

that 1 2Ex Ex= . In Figure 8.5, the iso-density curves of  1 2( , )x x  are depicted, together with the 

curves for the pair of independent random variables with the same marginal distributions 

( 2
1 ( , )x N μ σ∼  and 2 2

2 ( , (1 ) )x N μ φ σ+∼ ). We clearly see that the pair exhibiting mean-

reversion exhibits more concordance than the corresponding independent pair. A similar 

observation can be made for the case of parametric uncertainty. 
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0.01%       

0.99%       
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1.96%       

0.98%       

0.02%       

x1 0%                        2%     
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Figure 8.5 : Iso-density curves in the case of mean-reversion with μ=2%, σ=3.6% and φ=0.3. 

The dashed curves correpond to the iso-density curves of the pair of random variables with 

the same marginal distributions. 

 

 

Conclusion 

 

This chapter has focussed on a more technical analyses of the term structure of discount rates. 

It has developed a theory of this term structure based on concepts of stochastic dominance. In 

the benchmark case of a random walk for changes in log consumption, the growth in the first 

period yields no information about the growth in subsequent periods. Under constant relative 

risk aversion, this typically yields a flat term structure. An alternative case was also 

considered, in which a larger growth rate in the first period improves the distribution of the 

growth rate in the second period in the sense of first-degree stochastic dominance. It was 

shown that most stochastic processes that have been examined in the second part of this book 

exhibit this property. It was also shown that this positive statistical dependence in the growth 

process increases uncertainty about consumption in the distant future, thereby reducing the 

long discount rate under prudence. Formally there will only be a declining term structure if 

relative prudence is larger than unity (rather than zero) because the positive statistical 

dependence also increases expected future consumption. 
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The possibility that relative risk aversion is not constant was also explored. When relative risk 

aversion is decreasing, the wealth effect tends to fade away in a growing economy, thereby 

reducing the forward discount rate. This tends to favour a downward-sloping term structure. 

This may explain a greater degree of short-termism in public investments observed in 

developing countries whose citizens are close to their subsistence level of consumption. 
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PART III 

 

 

 

Extensions 
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Inequalities 

 

 

In the canonical models of the term structure presented earlier in this book, a single agent 

was assumed to benefit from the cash flow that a project generates. Another way to 

interpret this model is that there is more than one person, perhaps many people, who all 

have an equal share of both the GDP of the economy and the project’s cash flow. Of 

course, the real world is quite different.  In particular, our societies are unequal, and 

people are unequally affected by macroeconomic shocks. Moreover, the costs and 

benefits of most public policies are not spread equally across citizens. This can be 

illustrated by considering global efforts to curb emissions of greenhouse gases. It is 

plausible that most of the cost of these efforts will be borne by the western world, 

whereas the biggest beneficiaries will be the populations of the countries which are most 

vulnerable to climate change, many of them in the developing world.  Climate change 

mitigation therefore has some additional value by virtue of helping to reduce global 

wealth inequality.  Even abstracting from the heterogeneous allocation of costs and 

benefits, the existence of huge wealth inequalities between and within countries 

necessitates an adaptation of the canonical model. 

 

The aim of this chapter is to make adaptations to the model developed so far, to recognize 

inequalities as crucial features of our world.  Two models are considered. In the first 

model, it is recognized that there is inequality in society.  However it is assumed that 

individuals in this unequal society are able to share risk efficiently, and that they can 

implement mutually beneficial long term credit contracts. In the second model, these 

assumptions are relaxed. 

 

 

Description of the economy 
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Suppose that the economy is composed of N agents, all with infinite life expectancy. 

These agents can be interpreted as family dynasties, or countries. They are indexed by 

i=1, 2,…,N. To keep the model simple, it is assumed that all the agents have identical 

preferences, which are classically represented by the rate of pure time preference, δ ,3 

and an increasing and concave utility function u.  The analysis focuses first on the 

discount rate to be used at date 0 for a sure cash flow at date t. 

 

At date 0, there is some inequality in the endowment for each agent, 10 0( ,..., )Nz z , where 

0iz  is agent i’s endowment of the single consumption good at that date.  At date 0, the 

distribution of the endowment occurring at date t is not known. This uncertainty is 

characterized by S possible states of nature, s=1, 2,…, S, and by the associated state 

probabilities 1( ,..., )Sp p , with 1s spΣ = . Let isz denote the endowment of agent i at date t 

in state s. Observe that s=0 designates date 0 rather than a possible state to occur at date t. 

The income per capita in state s (or in date 0) is defined as: 

 
1

1 .
N

s is
i

z z
N =

= ∑  (9.1) 

 

It is assumed that there exists at date 0 a complete market of insurance and credit 

contracts. In other words, from now on it is assumed that for each s=1,…,S, there exists a 

contract for the delivery of one unit of the consumption good at date t if and only if state 

s is realized. Moreover, there exists a competitive market for each of these “Arrow-

Debreu securities”. An Arrow-Debreu security can be interpreted as an insurance 

contract, in which an indemnity is paid by the counterpart of the contract if a specific 

event occurs. Any risky asset can be interpreted as a bundle of Arrow-Debreu securities. 

A special case is the risk free asset, which is characterized as a bundle containing exactly 

one unit of each of the Arrow-Debreu securities. Let sΠ denote the equilibrium price of 

the Arrow-Debreu security associated with state s. It is useful at this stage to also define 

the state price per unit of probability /s s spπ = Π , s=1,…,S, and 0 0π = Π .  

 

                                                 
3 Gollier and Zeckhauser (2005) examine the effect of heterogeneous rates of impatience. 
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A competitive equilibrium is characterized by the vector 0( ,..., )SΠ Π of Arrow-Debreu 

securities at date 0, and by a matrix ( )isc , i=1,…,N, s=0,1,…,S, of actual consumption 

levels in the economy. Observe that is isc z− is the demand for the Arrow-Debreu security 

s by agent i. The equilibrium must satisfy two sets of conditions: 

 

• Each agent maximizes his welfare under the intertemporal budget constraint: 

1,..., :i N∀ =  

 ( ) ( )0 0 0 0
1 1

max ( ) ( ) . . 0.
is

S S
t

c i s is i i s is is
s s

u c e p u c s t c z c zδ−

= =

+ Π − + Π − =∑ ∑  (9.2) 

 
• Markets clear: 0,1,..., :s S∀ =  

 ( )
1

0.
N

is is
i

c z
=

− =∑  (9.3) 

 
Observe that condition (9.3) can be rewritten as a feasibility condition: 

 
1

1 ,
N

is s
i

c z
N =

=∑  (9.4) 

 
Of course, if agents have all the same preferences and the same endowments ( is sz z= for 

all s=0,1,…,S), there is no trade at equilibrium. The canonical model described earlier in 

this book applies. However, if the endowment is unequally allocated at date 0 or in some 

states at date t, some additional work is required to define a “representative agent” in this 

economy.  

 

 

Existence of a representative agent 

 

The first-order condition associated to program (9.2) can be written as: 

 0 0'( )
'( ) ,   1,..., ,

i i
t

is i s

u c
u c e s Sδ

λ π
λ π−

=⎧
⎨ = =⎩

 (9.5) 

where iλ  is the lagrangian multiplier associated to agent i’s budget constraint.  The 

competitive equilibrium is the solution of this set of N(S+1) first-order conditions (9.5) 
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combined with the S+1 market-clearing conditions (9.4). Standard theorems from 

General Equilibrium Theory can be used to prove the existence and the unicity (up to a 

normalization of the vector of prices) of the competitive equilibrium, and to prove that it 

is Pareto-efficient. 

 

An important property of the competitive equilibrium is the mutuality principle.  This 

principle requires that if there are two states at date t, say s=a and s=b, such that the 

wealth per capita are the same, i.e. a bz z= , then all agents will enjoy the same 

consumption level in the two states, i.e. ia ibc c=  for all i=1,…,N. It also implies that the 

two states’ price per unit of probability must be the same, i.e. a bπ π= . The simplest way 

to prove this is to check that the set of equations corresponding to the two states are 

equivalent. More intuitively, the mutuality principle implies that all diversifiable risks are 

diversified at equilibrium. Suppose for example that there are only two states, and that the 

wealth levels per capita are the same in the two states. This means that there is no 

aggregate risk in the economy. Applied in this context, the mutuality principle states that 

all agents are fully insured at equilibrium. Departing from this rule would force people to 

face zero-mean risks, which because of risk aversion is a Pareto-inferior allocation. 

 

The mutuality principle means that state-dependent variables isc and sπ  depend upon the 

state only through the level of wealth per capita sz : there exist functions Ci and v’ such 

that ( )is i sc C z=  and '( )s sv zπ =  for all s=1,…,S. Equation (9.5) can thus be rewritten as: 

 { } { }2

' '

'( ) '( )( , ') 1,..., , 1,..., : ,
'( ) '( )

is s

is s

u c v zs s S i N
u c v z

∀ ∈ ∀ ∈ =  (9.6) 

As is well-known, the equilibrium is characterized by the equalization across all agents of 

their marginal rate of substitution of consumption for any pair of states. Equation (9.6) 

tells us that the equilibrium marginal rate of substitution is the same as in an economy in 

which all agents consume the income per capita, sz , but where the utility function  u is 

replaced by function v when computing the ratio of marginal utility.   
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Suppose without loss of generality that there exists a state s’ such that 0 'sz z= . Equation 

(9.5) implies that 0 ' 0( )i is ic c C z= =  for all i, and 0 ' 0'( )t t
se e v zδ δπ π− −= = . Therefore it also 

follows that: 

 { } { }
0 0

'( ) '( )1,..., , 1,..., : ,
'( ) '( )

tis s

i

u c v zs S i N e
u c v z

δ∀ ∈ ∀ ∈ =  (9.7) 

At equilibrium, the marginal rates of substitution between consumption at date 0 and in 

any specific state at date t are equalized across agents. They are equal to the marginal rate 

of substitution of an agent whose consumption is equal to the income per capita at date 0 

and in any state at date t, but where the original utility function u is replaced by function 

v. From now on, this function is referred to as “the utility function of the representative 

agent”.  This agent consumes the income per capita in all states and at all dates. An 

egalitarian economy composed by N identical agents with this utility function v would 

price all assets in this economy in exactly the same way as in the unequal economy 

described in the previous section. This section has shown that the existence of a complete 

set of competitive markets for Arrow-Debreu securities implies the existence of such a 

representative agent, as initially shown by Wilson (1968). In the next section, the 

preferences of the representative agent are characterized. 

 

 

Characterization of the representative agent 

 

We have seen in the previous section that the utility function v of the representative agent 

can be derived from the original utility function by solving the following set of equalities: 

for all z: 

 

1

'( ( )) '( ) 1,..., ,
1 ( )

i i
N

i
i

u C z v z i N

C z z
N

λ

=

= =

=∑
 (9.8) 

Notice that this set of equations characterizes the solution of the following ‘cake-sharing’ 

problem: 

 
1

1
( ,..., )

1 1

1 1( ) max ( )   s.t.   .
N

N N

C C i i i
i i

v z u C C z
N N

λ −

= =

= =∑ ∑  (9.9) 
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The competitive allocation of risk maximizes the social welfare in each state of nature, 

where the social welfare function is the sum of individual utilities weighted by 1
iλ − . 

 

The unequal distribution of wealth in the economy is entirely concentrated in the vector 

of lagrange multipliers 1( ,..., )Nλ λ . If, for all agents, their endowment has the same 

market value, the iλ  would all be the same, thereby trivially yielding the solution: v u≡  

and ( )iC z z=  for all z. Suppose alternatively that the market values of the individual 

endowment are unequal, so that the lagrange multipliers are heterogeneous. Fully 

differentiating the above equations with respect to z yields: 

 

1

''( ( )) ''( ) 1,..., ,

1 1

i
i i

N
i

i

dCu C z v z i N
dz

dC
N dz

λ

=

= =

=∑
 (9.10) 

 
Let ( ) '( ) / ''( )T c u c u c= −  and ( ) '( ) / ''( )vT z v z v z= −  denote the degree of absolute risk 

tolerance for the utility function of the original agent and of the representative agent 

respectively. Observe that absolute risk tolerance is just the inverse of absolute risk 

aversion. Using(9.8), the first equality in (9.10) can be rewritten as: 

 
( ( )) 1,..., .

( )
i i

v

dC T C z i N
dz T z

= =  (9.11) 

 
This formula is intuitive. It states that the share of the aggregate risk borne by agent i -- 

which is measured by the sensitiveness of their own consumption to income per capita -- 

is proportional to their degree of absolute risk tolerance. More risk tolerant agents bear a 

larger share of the aggregate risk. Using the second equality in (9.10) implies that it must 

be the case that:  

 
1

1( ) ( ( )).
N

v i
i

T z T C z
N =

= ∑  (9.12) 

 
This equation, which was first derived by Wilson (1968), tells us that the degree of risk 

tolerance of the representative agent is the mean of the absolute risk tolerance of the 

original agents evaluated at their actual level of consumption. This equation fully 
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characterizes the utility function v of the representative agent in this unequal economy. 

Once v is obtained, it is possible to determine the socially efficient discount rate by using 

the standard pricing formula in the canonical model: 

 
0

'( )1 ln ,
'( )

t
t

Ev zr
t v z

δ= −  (9.13) 

Where tz is the random variable which is distributed as 1 1( , ;...; , )S Sz p z p . It is obtained, 

as usual, by considering a marginal investment project in which the income per capita at 

date 0 is reduced by ε  to increase the income per capita in all states at date t 

by exp( )tr tε . The tr  defined in (9.13) is the one for which, at the margin, this investment 

project has no effect on the intertemporal social welfare ( 0( ) ( )t
tv z e Ev zδ−+ ). It is 

assumed that benefits and costs are added and subtracted to aggregate wealth, and are 

then reallocated in the population according to the cake-sharing rule derived from 

program (9.9) and described by rule (9.11). In other words, this means that markets for 

Arrow-Debreu securities remain active after the investment decision is made. 

 

 

The impact of wealth inequality on the efficient discount rate 

 

In order to explore the effect of wealth inequality on the efficient discount rate, let us first 

examine the special case of an economy in which agents have the same classical power 

utility function with '( )u c c γ−= . This implies that ( ) /T c c γ= , which implies in turn that: 

 
1 1

( )1 1: ( ) ( ( )) .
N N

i
v i

i i

C z zz T z T C z
N N γ γ= =

∀ = = =∑ ∑  (9.14) 

The implication is that the utility function of the representative agent is also a power 

function, with the same constant relative risk aversion as u. This proves that, under this 

specification, wealth inequality has absolutely no effect on the shape of the utility 

function of the representative agent, and therefore on the efficient discount rate. The 

power utility function is widely used by economists, therefore it can be concluded that 

the presence of (large) wealth inequalities around the world is not enough, in itself, to 

justify a departure from the extended Ramsey rule which also relies on a power utility 

function. 
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More generally, if the utility function u exhibits linear risk tolerance, the representative 

agent will have the same utility function u, whatever the degree of wealth inequality in 

the economy. By contrast, if the utility function u exhibits a convex risk tolerance T, 

Jensen’s inequality implies that: 

 
1 1

1 1: ( ) ( ( )) ( ) ( )
N N

v i i
i i

z T z T C z T C z T z
N N= =

⎛ ⎞
∀ = ≥ =⎜ ⎟

⎝ ⎠
∑ ∑  (9.15) 

The opposite result holds if risk tolerance is concave. A simple result is obtained in the 

special case of a certain growth rate between dates 0 and t. Suppose that T is convex, so 

that ( )vT z  is larger than ( )T z  for all z. This means that v is less concave than u in the 

Arrow-Pratt sense, or that there exists an increasing and convex function ψ such that 

( ) ( ( ))v z u zψ=  for all z. This implies in turn that if 0 ,tz z≥  and because 

0'( ( )) '( ( ))tu z u zψ ψ≥ : 
0 0 0 0

'( ) '( ( )) '( ) '( )1 1 1ln ln ln ,
'( ) '( ( )) '( ) '( )

t t t t
t

v z u z u z u zr
t v z t u z u z t u z

ψδ δ δ
ψ

= − = − ≤ −

 (9.16) 

This means that if the sure growth of the economy is positive, and if risk tolerance is 

convex, then wealth inequality reduces the efficient discount rate. Assuming that 

economic growth is uncertain makes the problem considerably more complex, because it 

requires the degree of prudence of the representative agent to be described in addition to 

their risk tolerance (Gollier (2001)). 

 

 

Epitaph for long-term risk-sharing allocations 

 

Up to now this chapter has assumed that agents can credibly commit to share risk 

efficiently over long time horizons. This assumption fits quite well with the reality of the 

western world over time horizons corresponding to life expectancies, in which people can 

write legally enforceable insurance and credit contracts. The assumption is not perfect 

however, because of the existence of transaction costs and asymmetric information that 

result in credit constraints for households. Further, if time horizon t exceeds the lifetime 

of the current generation, risk-sharing arrangements can only be implicit, which raises a 
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commitment problem.  An alternative view is that the agents described above are 

governments that commit their citizens to intergenerational risk sharing contracts. 

However, this is quite unrealistic. Even within the European Union, countries have only 

limited commitments to assist other countries in economic distress, as illustrated  by the 

absence of solidarity within the EU during the financial crisis of 2008-2010.  

 

The potential social value of international risk sharing is enormous, in particular when a 

long term perspective is taken. Imagine for a moment, Marco Polo as a plenipotential 

ambassador for the western world going to China to sign a treaty of risk sharing with the 

eastern world, each party committing to financially compensate the other in case of a 

persistent divergence in their respective growth rates. Imagine for another moment that 

today we were able to create a global “Commonwealth” for a progressive mutual 

assistance scheme where, unlucky countries would get positive transfers from the lucky 

ones over the next two centuries. In both these examples, there exists a large set of 

mutually-beneficial risk-sharing contracts, which are not currently implemented – even at 

the margin – because of the huge commitment and agency problems that they would 

generate. 

 

This means that the model presented earlier in this chapter is unrealistic, in particular for 

the time horizons that correspond to global investment projects and sustainable 

development generally. It is a useful benchmark however, since it is the classical model 

used in the modern theory of finance, which heavily relies on the existence of a 

representative agent.  

 

 

The case of inefficient risk sharing 

 

We hereafter take dynastic or country-specific consumption growth as completely 

exogenous. An extreme interpretation of this model is that there are no transfers at all 

between parties in this community, and that each agent consumes at each date its 

exogenous endowment of the consumption good. Let itc  denote the consumption of agent 
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i at date t. The dynamic stochastic process of 1( ,..., )Nz z is not specified at this stage, but 

it may exhibit temporal and geographical correlations. Intertemporal marginal rates of 

substitution are not equalized between agents because this allocation is not Pareto 

efficient. This implies that agents will in general use different discount rates to evaluate 

any reallocation of consumption through time. It also means that, contrary to the case of 

efficient risk-sharing examined earlier in this chapter, the law of a single discount rate 

(for a specific time horizon) is lost. The discount rate to be used to evaluate a collective 

investment project depends upon how costs and benefits are allocated within the 

economy. 

 

Let us consider an “egalitarian” investment project that allocates costs and benefits in a 

non-discriminatory way. More specifically, consider a safe investment project that 

reduces consumption of all agents by ε  at date 0, and that raises consumption of all 

agents by exp( )tr tε at date t. We are looking for the critical internal rate of return for the 

project that has no effect at the margin on intertemporal social welfare. Intertemporal 

social welfare is defined, as before, as the discounted sum of the flow of temporal 

welfare. The welfare at date t is arbitrarily defined as the sum of the individual felicities 

weighted by Pareto-weights 1( ,..., )Nq q , with 1i iqΣ = . Thus, the objective function is 

defined as: 

 0
0 1

( ).
N

t
i it

t i
W e q Eu cδ−

= =

= ∑ ∑  (9.17) 

Following the same path as in chapter 1, the critical internal rate of return of the safe 

project is characterized by the following rule: 

 1

0
1

'( )
1 ln .

'( )

N

i it
i

t N

i i
i

q Eu c
r

t q u c
δ =

=

= −
∑

∑
 (9.18) 

Consider the efficient discount rate that should be used by agent i if they alone bear the 

full costs and benefits of the project: 

 
0

'( )1 ln .
'( )

it
it

i

Eu cr
t u c

δ= −  (9.19) 
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Following Emmerling (2010) let us also define the date-0 inequality-neutral Pareto-

weights 1ˆ ˆ( ,..., )Nq q  such that: 

 0

0
1

'( )ˆ .
'( )

i
i i N

j j
j

u cq q
q u c

=

=

∑
 (9.20) 

Using equation (9.18), it is then easy to check that the efficient discount rate tr  for an 

egalitarian cash-flow at date t is linked to the individual discount rates 1( ,..., )t Ntr r in the 

following way: 

 
1

ˆ .t it

N
r t r t

i
i

e q e− −

=

= ∑  (9.21) 

The efficient discount factor is a weighted mean of the individual discount factors. This is 

reminiscent of equation (6.4) that describes the term structure of efficient discount rates 

when there is a single representative agent with utility function u, but in which there is 

some uncertainty about the true stochastic process for the growth of per capita 

consumption. Equation (9.21) describes the efficient discount rate in an economy with a 

representative agent who faces a stochastic process itc  with probability ˆiq , i=1,…,N. In 

this model, there is therefore a formal equivalence between the fact that different agents 

may face different destinies, and the fact that all agents face the same uncertain destiny. 

This equivalence is an illustration of John Rawls’ concept of the veil of ignorance. It 

follows that the analysis in this section can be limited by referring to the results presented 

in Chapter 6.  For example, for distant time horizons, the efficient discount rate tends to 

the smallest individual long-term discount rate. The equivalence with the model of 

parametric uncertainty is perfect only when there is no inequality of consumption at date 

0, otherwise the Pareto-weights need to be biased. 

 

To illustrate, consider a specification similar to that which was examined in Chapter 6: 

 1

0 1, ,... . . . ( , ) 1,..., .

itx
it it

i i i i

c c e
x x i i d N i Nμ σ

+⎧ =⎪
⎨

∀ =⎪⎩ ∼
 (9.22) 

Under constant relative risk aversion γ, it implies that:  

 2 20.5 .it i i ir r δ γμ γ σ= = + −  (9.23) 
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Combined with equation (9.21), this implies that the efficient discount rate tr  is 

decreasing and tends to the smallest ir  when t tends to infinity. Moreover, tr  satisfies the 

following property: 

 0
1

ˆlim .
N

t t i i
i

r q r→
=

= ∑  (9.24) 

The short-term discount rate is the weighted mean of the individual discount rates. The 

intuition is the same as in the framework of parametric uncertainty. For the very distant 

future, what really matters when evaluating a project is whether it can improve the 

welfare of the poorest agent. The true shape of the term structure depends upon the 

distorted Pareto-weights ˆiq , which depends upon our ethical values 1( ,..., )Nq q , the initial 

degree of inequality 10 0( ,..., )Nc c , and its correlation with the distribution of economic 

growth. 

 

 

Economic convergence and the discount rate 

 

In order to have a more precise description of the term structure, it is necessary to specify 

the degree of convergence of economic development. Let us first consider an economy 

without any convergence, in which the current level of development of a country is 

uninformative about its future economic growth. More precisely, suppose that 0log ic is 

independent of the distribution of the growth rate itx . Let itX be the cumulative growth of 

log consumption between 0 and t. Under constant relative risk aversion γ, this implies 

that: 
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0 0
1 1

0
1 1
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 (9.25) 
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The second equality is a direct consequence of the no-convergence hypothesis. This 

implies in turn that: 

 ( )
1

1 ln exp .
N

t i it
i

r q E X
t

δ γ
=

= − −∑  (9.26) 

 
This means that the term structure of discount rates is independent of the initial 

distribution of wealth in this framework. Only the unequal expectation about future 

growth matters.   

 

Let us now consider the case of economic convergence. An economy is characterized by 

its initial allocation of consumption 0 10 0 0( , ;...; , )N Nc c q c q∼ and by its individual 

expectations 1 1( , ;...; , )t t Nt tX X q X q∼ . Following Gollier (2010), it can be said that 

economic convergence increases in this economy if the pair of random variables 0( , )tc X  

becomes less concordant, as defined in Chapter 8. Remember that this means that the new 

distribution of  0( , )tc X  is obtained from the initial one by a sequence of marginal-

preserving reductions in concordance. In other words, for initially poor agents, growth 

prospects are FSD-improved, whereas they are FSD-deteriorated for the initially wealthy 

agents. Those transfers in probability are made in such a way that the unconditional 

distribution of growth is unchanged.   

 

Lemma 2 in chapter 8 is useful for evaluating the impact of economic convergence on the 

efficient discount rate. Observe that the numerator in the right-hand side of equation 

(9.18) can be expressed as:  

 0 0
1

'( ) '( ) '(exp(ln )).t

N
X

i it t
i

q Eu c Eu c e Eu c X
=

= = +∑  (9.27) 

Lemma 2 in chapter 8 tells us that a reduction of concordance of  0ln c  and tX  , that is an 

increase in economic convergence, reduces this numerator if and only if 

1 2 1 2( , ) '(exp( ))h x x u x x= +  is supermodular. This is true if and only if relative prudence is 

uniformly larger than unity. Therefore, it can be concluded that economic convergence 

raises the efficient discount rate if relative prudence is larger than unity. This is the case, 

for example, with constant relative risk aversion, for which equation (9.26) 
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underestimates the true discount rate for all time horizons. Symmetrically, economic 

divergence tends to reduce the discount rate. 

 

To illustrate, consider a global economy with two countries. Country i=1 has a GDP per 

capita at date 0 that is normalized to one. Country i=2 has a GDP per capita at date 0 that 

is 50 times larger. Our ethical values impose 1 2 1/ 2q q= = . Suppose that, in economy A, 

the two countries converge, with country 1 enjoying a constant growth rate of 3%, 

whereas the growth rate of the wealthier country 2 is only 1%. These growth rates imply 

that the two countries will have the same per capita consumption level in just under 200 

years. Consider alternatively an economy B with the same initial consumption 

levels, 10 20( , ) (1, 50)c c = , but the same uncertain growth rate for the two countries, which 

will be either 1% or 3% with equal probabilities. Clearly, economy A exhibits more 

economic convergence than economy B, as defined above. In Figure 9.1, we have drawn 

the term structure of efficient discount rates in these two economies. As expected, the two 

curves are decreasing, and the discount rates are larger when there is convergence. 

 

 
Figure 9.1: Term structure in a two-country model with 10 20( , ) (1,50)c c =  and 

1 2( , ) (3%,1%)t tx x = . It is assumed that 2γ =  and 0%δ = . The dashed curve corresponds 

to the case where the two countries face an uncertain constant growth rate of either 1% or 

3% with equal probabilities. 
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A simple calibration exercise 

 

What is known about economic convergence? The classical economic theory of 

economic growth provides an argument for it, since decreasing marginal productivity of 

capital implies that wealthier countries should grow at a smaller rate. Furthermore, poorer 

countries can replicate successful production methods, technologies and institutions 

which were implemented earlier by more developed countries. However, in spite of the 

existence of some successful newly developed countries such as India, Singapore, South 

Korea, China or Brazil, many poor countries seem to be permanently underdeveloped, 

whereas some others are becoming ever poorer (for example, Haïti and Zimbabwe). 

According to Clark (2007), the industrial revolution has reduced inequalities within 

societies, but it has increased them between societies.  This process has been labelled ‘the 

Great Divergence’ (Pomeranz (2000)). 

 

Accepting that history is full of periods of global divergence, in contrast the last forty 

years have been characterized by a global convergence between countries. In the 

following calibration exercise, the focus is on estimating the level of convergence during 

the period 1969 to 2009. The calibration examined in Gollier (2010) is based on the ERS 

International Macroeconomic data set that gives us estimation of the GDP per capita for 

190 countries over this period. A set of 13 regions that are relatively homogenous in size 

and in socio-economic structure were defined because of the extremely large 

heterogeneity of the 190 country sizes. This data set is summarized in Table 9.1 and 

Figure 9.2. 

 
REGION POPULATION 

2009 
GDP/cap Annualized 

1969 2009 growth rate 
North America 340 699 331 20 745 41 213 1,72% 
Latin America 585 675 448 2 841 5 242 1,53% 
EU15 387 805 629 15 834 33 410 1,87% 
EU27- EU15 103 777 223 3 452 9 053 2,41% 
Former Soviet Union 276 203 629 2 773 4 302 1,10% 
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China 1 338 612 968 128 2 494 7,43% 
Japan 127 078 679 13 466 32 818 2,23% 
Southeast Asia 593 051 249 454 1 829 3,48% 
South Asia 1 566 502 232 247 814 2,98% 
Oceania 36 460 398 14 075 24 662 1,40% 
Middle East 279 897 739 3 319 5 415 1,22% 
North Africa 161 140 693 1 013 2 359 2,11% 
Sub-Saharan Africa 828 412 224 1 030 997 -0,08% 

Table 9.1: Global economic convergence over the period 1969-2009. 

Source: ERS International Macroeconomic data set. 
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Figure 9.2 : Global economic convergence over the period 1969-2009. 0c is the GDP/cap 

in 1969 (expressed in USD of 2005), and X is the total growth rate over the period. The 

surface of the circle is proportional to the population size in 2009. 

Source: ERS International Macroeconomic data set. 

 

Let us first assume that there is no economic convergence. Under the assumption of 

constant absolute risk aversion, we know that the initial inequalities do not matter for the 

determination of the discount rate. Equation (9.26) can therefore be used, which is 

rewritten as: 

 ( )1 ln exp .t tr E X
t

δ γ= − −  (9.28) 
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The regional data set described above yields ln 0.9047tE Xμ = =  and 

2 ln 0.5128tVar Xσ = = . Assuming that ln tX  is normally distributed, 2γ =  and 0δ = , 

Lemma 1  implies that: 

 
2

2
40 0.5 2 2.26% 2 1.28% 1.96%

40 40
r μ σδ γ γ= + − = × − × =  (9.29) 

 
It is notable that this calibration, based on a the comparison of the growth rates of 13 

regions over the same period, generates a much smaller discount rate than the 3.6% 

obtained in Chapter 3 using the growth rate of the US economy over the XXth century.. 

This is because the annualized standard deviation of growth rates is much larger in the 

cross-section data above (11.3%) than in the time-series data of the US economy (3.6%). 

The precautionary effect is therefore much larger.  

 

Let us now recognize that economic growth rates across regions are not independent. The 

degree of economic convergence is estimated through the following simple regression: 

 02.89 - 0.26ln .tX c ε= +  (9.30) 
The t-statistic of the slope coefficient β equals -2.41, so that it is significantly different 

from 0. The R2 of the regression is 0.35. Therefore, economies are converging. Notice 

that this is mostly due to the extraordinary growth rates observed in China and India over 

the last 2 decades.  

 

These numbers can be plugged into equation (9.18), weighting countries by their 

population in 2009.  It follows that: 

 
( )

13
(1 )

1
40 13

1

exp( (2.89 )
1 ln ,
40

i i
i

i i
i

E q c
r

q c

γ β

γ

γ ε
δ

− +

=

−

=

− +
= −

∑

∑
 (9.31) 

 
where ic  is the GDP per capita of region i in 2009, and β =-0.26. Using Lemma 1 with 

the fact that the variance of the residuals in (9.30) is 0.31Varε =  gives 40 4.06%r = . The 

effect of economic convergence, which is positive as expected, is surprisingly large.  
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Conclusion 

 

This chapter has described two discounting models which incorporate wealth inequality. 

In the first model, it was assumed that our modern society has developed efficient risk-

sharing schemes: insurance markets, derivative markets, and social security. Under this 

view, there is no loss of generality to assume that there is a representative agent who 

aggregates the preferences towards risk and time into a single utility function. Wealth 

inequality is irrelevant for the determination of the term structure of discount rates, under 

CRRA.  

 

If it is recognized that risk-sharing schemes do not work efficiently, in particular towards 

risk occurring in the distant future, this can justify a decreasing term structure in a way 

similar to the case of parametric uncertainty.  In addition, the possibility of economic 

convergence tends to raise the efficient discount rate.  
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Discounting non-monetary benefits 

 

The determinants of human happiness, or utility, are many and varied.  They include the 

consumption of goods and services, the quality of the environment, health, and social status. 

Up to this point in the book, the analysis has been simplified by assuming that utility is 

derived from a univariate variable that was referred to as consumption, or income. This 

approach relies on the notion of an indirect utility function, which characterizes the maximum 

utility that can be extracted from a given income.  The function assumes that individuals 

select the optimal bundle of the determinants of their utility level given their budget 

constraint.   

 

It must be recognized, however, that the indirect utility function approach is often 

unsatisfactory for at least two reasons. First, many of the determinants of utility are not 

tradable market goods.  This category includes, for example, various environmental assets. 

Second, the indirect utility function depends upon the vector of prices of the tradable goods 

and services whose prices fluctuate over time because of changes in their relative scarcity. 

Therefore, the indirect utility function also changes over time. Think for example of the 

relative price of oil, of land, of masterpieces of art, or more prosaically of the services of a 

plumber. When valuing a project that generates multidimensional impacts scattered over a 

long time span, it is crucial to take into account these transformations of the indirect utility 

function, and the changing relative value of the project’s impacts. 

 

The main economic justification for discounting is based on the wealth effect. If one believes 

that future generations will be wealthier than us, one more unit of consumption is more 

valuable to us than to them.  This is because of decreasing marginal utility of consumption. 

However, a large proportion of the impacts of our actions, for example the emission of 

greenhouse gases, affect the quality of the environment for future generations rather than their 

level of consumption. The environmental impacts may take the form of increased 

temperatures, reduced biodiversity, or the destruction of environmental assets such as forests.  

In this chapter, the question of how to discount future changes in the quality of the 
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environment is addressed. If it is believed that the environment is deteriorating over time, and 

if it is assumed that the marginal utility of environmental quality is decreasing, then 

improvements to environmental quality is more valuable to future generations than to us. This 

argument, which is symmetric to the Ramsey wealth effect, supports the use of a smaller 

discount rate for changes in the environment than for changes in consumption. The full 

characterization of this "ecological" discount rate should also take into account the potential 

substitutability between environmental assets and consumption, and the uncertainty that 

affects the dynamics of consumption and environmental quality. This chapter is based on 

Gollier (2010). 

 

 

Two methods to evaluate future non-financial benefits 

 

There are two possible methods to evaluate the present monetary value of a certain 

environmental impact which will occur in the future. The classical method consists of first 

measuring the future monetary value of the impact, and second discounting this monetary 

value back to the present. This involves a pricing formula to value future changes in 

environmental quality, and an economic discount rate to discount these monetarized impacts.  

The second approach, first suggested by Malinvaud (1953), consists in first discounting the 

future environmental impact to transform it into an equivalent environmental impact 

happening in the present, and then measuring the monetary value of this immediate impact. 

This involves an ecological discount rate, to discount environmental impacts. Of course, these 

two methods are strictly equivalent. However,  in the case of certainty, the two discount rates 

(economic and ecological) differ if the monetary value of environmental assets evolves over 

time.  This has been shown by Guesnerie (2004), Weikard and Zhu (2005) and Hoel and 

Sterner (2007). 

 

The classical method, using an economic discount factor, is not well adapted to dealing with 

uncertainty. Indeed, the value of environmental assets in the future depends upon their relative 

scarcity, which is unknown. As a result, for any particular project, there is uncertainty over 

the monetary value of its environmental impacts.  This is a problem because the economic 
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discount rate is used to discount sure future monetary benefits. It is therefore necessary to 

compute a certainty equivalent value. This requires the use of a stochastic discount factor, 

which determines at the same time the risk premium and the economic discount rate. Standard 

pricing formulas exist that can be borrowed from the theory of finance, but they are seldom 

used in cost-benefit analyses of environmental projects because of their complexity. In this 

chapter, we describe in detail the alternative method based on the ecological discount rate. 

The ecological discount factor associated with date t is the number of units of immediate sure 

environmental impact that has the same effect on intergenerational welfare as a unit of 

environmental impact at date t. The (shadow) price of an immediate environmental impact 

can then be used to value environmental projects. This alternative method is simpler because 

it is not necessary to compute certainty equivalent future values. 

 

 

A simple model of the ecological discount rate 

 

To keep the notation simple, it is assumed that the representative agent’s felicity is affected by 

two determinants or “goods”, available in quantities 1 2( , )t tc c  at date t. It is conceptually 

straightforward, though it makes heavy demands on notation, to extend this model to more 

than two dimensions. Determinant 1 is hereafter assumed to be an aggregated consumption 

good, whereas 2tc  is an index of the quality of the environment, which includes, for example, 

how hospitable the climate is, the ‘use’ and ‘non-use’ value of biodiversity, the impact on 

human morbidity of various pollutants, and life expectancy.  The felicity at any date t is a 

function, U, of the available quantities  1 2( , )t tc c  of the two goods. U is assumed to be 

increasing and concave. The intertemporal social welfare is measured by the discounted value 

of the flow of temporal expected felicity: 

 1 2
0

( , ).t
t t

t
W e EU c cδ−

=

= ∑  (10.1) 

The expectation is linked to the fact that, seen from date 0, the future evolution of the 

availability of the consumption good and of the quality of the environment is uncertain. 
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The economic discount rate is examined first. Let us consider a simple marginal project that 

would reduce consumption by exp( )tr tε − today, and that would raise consumption by a sure 

amount ε  at date t, leaving the environment unaffected by the action. The internal rate of 

return tr  that is such that implementing the project has no effect on W at the margin is called 

the “economic discount rate”, and is denoted 1tr : 

 1 1 2
1

1 10 20

( , )1 ln ,
( , )

t t
t

EU c cr
t U c c

δ= −  (10.2) 

where 1 2( , )iU c c  is the partial derivative of U with respect to ic . This economic discount rate 

allows the value of different consumption increments at different dates to be compared. 

     

Consider alternatively an investment project that increases the environmental quality by ε at 

date t. The standard way to include this environmental impact in the cost-benefit analysis 

would be to first express this impact in future monetary terms. The instantaneous value tv  of 

the environment at date t is measured by the marginal rate of substitution between 

consumption and the environment: 

 1 2 1 2

2 1 1 2

( , ) .
( , )

t t t
t

t t tU

dc U c cv
dc U c c

= − =  (10.3) 

If the quality of the environment was tradable, tv  would be its equilibrium price, taking the 

aggregate consumption good as the numeraire. More generally, tv  is the instantaneous 

willingness to pay for a one unit improvement in environmental quality. Its evolution over 

time is uncertain, so that seen from t=0,  tv  is a random variable, as is the future monetary 

benefit tvε   of the sure improvement in environmental quality. This implies that in spite of the 

fact that an investment project with a sure ecological benefit is being considered, its monetary 

benefit is uncertain. Up to now, this book has focused on the valuation of sure cash flows; 

extending the analysis to the valuation of uncertain projects will be carried out later in this 

book.  

     

A much simpler approach is to define an ecological discount rate. Consider a marginal project 

that would increase environmental quality by a sure amount ε at date t, but would reduce the 
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environmental quality by exp( )rtε − today. Implementing this project would be socially 

efficient if 

 2 1 2
2

2 10 20

( , )1 ln .
( , )

t t
t

EU c cr r
t U c c

δ≥ = −  (10.4) 

This equation defines the ecological discount rate 2tr for the time horizon t. It allows the 

comparison of sure changes in environmental quality at different dates. In particular, an 

increase in environmental quality by ε at date t has an effect on intertemporal welfare that is 

equivalent to an increase in current environmental quality by 2exp( )tr tε − . In monetary terms, 

this is equal to 0 2exp( )tv r tε − , where 0v  is the current value of one unit of environmental 

quality. 

         

To sum up, the benefit of a unit increment in environmental quality at date t should be 

accounted for in the evaluation of a project as equivalent to an immediate increase in 

consumption by 0 2exp( )tv r t− . This really means that environmental costs and benefits should 

be discounted at the ecological rate 2tr , which does not have to be the same as the economic 

discount rate 1tr . The potential discrepancy between the economic discount rate and the 

ecological discount rate takes into account the stochastic changes in the relative social 

valuation of the environment. 

 

 

Determinants of the ecological discount rate 

 

In this section, we examine the determinants of the rate 2tr with which a sure increase in 

environmental quality at date t should be discounted.  It is characterized by equation (10.4). 

Let us first focus on the role of the level of 2tc  and the uncertainty surrounding it.  A better 

environmental quality in the future raises the ecological discount rate, ceteris paribus, because 

U is concave in 2c . This effect is symmetric to the wealth effect presented in chapter 2. One 

is ready to sacrifice less today if the future quality of the environment is larger because of the 

decreasing marginal utility of environmental quality. This is referred to as “the ecological 

growth effect”. 
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If it is assumed that 2U  is convex in 2c , then the uncertainty surrounding 2tc  reduces the 

ecological discount rate. This effect, referred to as the “ecological prudence effect”, is 

analogous to the precautionary effect for monetary cash flows described in chapter 3. The 

basic idea is that one should do more to improve future environmental quality if it is more 

uncertain. 

 

It is also necessary to take into account changes in GDP per capita, 1tc , on the level of the 

ecological discount rate. Suppose for example that the two goods are substitutes, which 

requires that the marginal utility of 2c  is decreasing in 1x . In other words, suppose that 12U  is 

negative. Then, an increase in the GDP per capita at date t reduces the marginal utility of 

environmental quality at that date. Therefore, it raises the ecological discount rate. This is 

referred to as “the substitution effect”.  

 

One difficulty is to determine whether consumption and the environment are substitutes 

( 12 0U ≤ ) or complements ( 12 0U ≥ ).  Fortunately, there is a simple way to answer this 

question. Consider an arbitrary situation characterized by 1 2( , )c c , an arbitrary reduction in 

consumption 1 0l > , and an arbitrary reduction in environmental quality 2 0l > . Consider two 

lotteries. Lottery A is a fifty-fifty chance of facing the monetary loss or the environmental 

loss. Lottery B is a fifty-fifty chance of facing the two losses simultaneously, or to lose 

nothing. If one prefers A to B, it must be that 12U  is negative. Indeed, it means that: 

 1 1 2 1 2 2 1 1 2 2 1 2
1 1 1 1( , ) ( , ) ( , ) ( , ),
2 2 2 2

U c l c U c c l U c l c l U c c− + − ≥ − − +  (10.5) 

which is equivalent to : 

 
2 2

2 2 2 2

2 1 1 2 1( , ) ( , ) .
c c

c l c l

U c l y dy U c y dy
− −

− ≥∫ ∫  (10.6) 

This requires that 12U  is negative, or U is supermodular. Richard (1975), Bommier (2007), 

and Eeckhoudt, Rey and Schlesinger (2007) call this idea “correlation aversion”, which is 

another way to say that the two goods are substitutes. 
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A more complex problem is to evaluate the effect of uncertainty about economic growth on 

the ecological discount rate. Obviously, a zero-mean risk on 1tc raises 2 1 2( , )t tEU c c  if 2U  is 

convex in its first argument. This effect is referred to as the “cross-prudence in consumption” 

effect. In order to evaluate whether condition 211 0U ≥  is reasonable, the approach of 

Eeckhoudt, Rey and Schlesinger (2007) can be followed.  They use a multidimensional 

version of equation (3.10), and again consider an arbitrary initial situation 1 2( , )c c , an arbitrary 

zero-mean risk in consumption 1ε , and an arbitrary reduction in environmental quality 2 0l > . 

Consider two lotteries. Lottery A is a fifty-fifty chance to face the monetary risk or the 

environmental loss. Lottery B is a fifty-fifty chance to face the monetary risk and the 

environmental loss simultaneously, or to lose nothing. If one prefers A to B, it must be that 

211U  is positive. Indeed, this preference implies that: 

 1 1 2 1 2 2 1 1 2 2 1 2
1 1 1 1( , ) ( , ) ( , ) ( , ),
2 2 2 2

EU c c U c c l EU c c l U c cε ε+ + − ≥ + − +  (10.7) 

which is equivalent to : 

 
2 2

2 2 2 2

2 1 1 2 1( , ) ( , ) .
c c

c l c l

EU c y dy U c y dyε
− −

+ ≥∫ ∫  (10.8) 

This requires that 2U  is convex in 1c . The preference of lottery A over lottery B provides an 

economic justification to reduce the ecological discount rate when the economic growth rate 

becomes more uncertain.  

 

Finally, the existence of a positive correlation between economic growth and improvement in 

environmental quality provides a last determinant of the ecological discount rate. As many 

readers may now anticipate, this is formalized by a positive statistical dependence of  1 2( , )t tc c  

through the notion of an increase in concordance. Using Lemma 2 of chapter 8, an increase in 

concordance raises 2 1 2( , )t tEU c c  if and only if 2U is supermodular, that is if 221U is positive. 

By symmetry to the notion of cross-prudence in consumption, this means that the 

representative agent is cross-prudent towards the environment. They prefer a lottery with a 

fifty-fifty chance to face either a sure monetary loss or a zero-mean environmental risk in 

isolation rather than a lottery with a fifty-fifty chance of facing both together or facing no risk 

at all. Under this assumption, the existence of a positive correlation in the economic and 
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ecological growth rates raises 2 1 2( , )t tEU c c , thereby reducing the efficient ecological discount 

rate.  Intuitively, one wants to do more for the future when the economic and ecological risks 

are positively correlated than when they are independent. This is the “correlation effect”. 

 

In this section, we assumed the sign of the cross-derivatives of the utility function to 

guarantee that the representative agent always prefers to incur one of the two harms for 

certain, with the only uncertainty being about which one will be received, as opposed to a 50-

50 gamble of receiving the two harms simultaneously, or receiving neither. Following a 

terminology introduced by Eeckhoudt and Schlesinger (2006), pairs of harms are "mutually 

aggravating".  

 

Under this set of assumptions on U, the following factors raise the ecological discount rate: 

• An increase in future environmental quality; 

• An increase in future GDP per capita. 

On the contrary, the following factors reduce it: 

• An increase in the uncertainty affecting future environmental quality; 

• An increase in the uncertainty affecting the future GDP per capita; and 

• An increase in the correlation in the two risks. 

 

A symmetric analysis can be made for the determinants of the economic discount rate 1tr . 

 

 

An analytical solution 

 

The integral 2 1 2( , )t tEU c c has an analytical solution in the special case of a bivariate geometric 

Brownian motion for 1 2( , )t tc c and a Cobb-Douglas utility function. Suppose that 

 1 21 1
1 2 1 2( , )U c c kc cγ γ− −=  (10.9) 

in the domain 2
1 2( , )c c +∈\ . We suppose that 

 1 2(1 ) (1 )k sign signγ γ= − = −  (10.10) 
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in order to guarantee that U is increasing in its two arguments. The concavity of U with 

respect to its two arguments requires that 1γ and 2γ are positive. If they are both larger than 

unity, it is easy to check that this utility function satisfies the assumptions made in the 

previous section that pairs of harms are "mutually aggravating", that the two goods are 

substitutes, and that the agent is (cross-)prudent in consumption and in environmental quality: 

 12 222 122 112 1110; 0; 0; 0; 0.U U U U U< > > > >  (10.11) 

 

In the same way as the benchmark univariate model presented in chapter 3, let us assume that 

1 2(ln , ln )t tc c  is normally distributed with mean 10 1 20 2(ln , ln )c t c tμ μ+ +  and variance-

covariance matrix , 1,2( )ij i jtσ =Σ = . We have that: 

 2 1 2 2( , ) (1 ) exp( ),t t tEU c c k E zγ= −  (10.12) 

where 1 1 2 2(1 ) ln lnt t tz c cγ γ= − −  is normally distributed with mean: 

 ( ) ( )1 10 1 2 20 2(1 ) ln ln ,tEz c t c tγ μ γ μ= − + − +  (10.13) 

and variance : 

 ( )2 2
1 11 2 22 1 2 12( ) (1 ) 2(1 ) .tVar z tγ σ γ σ γ γ σ= − + − −  (10.14) 

Using Lemma 1 yields : 

 ( )( )2 22 1 2
1 1 2 2 1 11 2 22 1 2 12

2 10 20

( , ) exp (1 ) 0.5 (1 ) 2(1 ) .
( , )

t tEU c c t
U c c

γ μ γ μ γ σ γ σ γ γ σ= − − + − + − −  (10.15) 

By equation (10.4), we obtain that: 

 2 2
2 2 2 2 22 1 1 1 11 1 2 120.5 (1 ) 0.5(1 ) (1 ) .tr δ γ μ γ σ γ μ γ σ γ γ σ= + − − − − − + −  (10.16) 

Finally, let 1
0ln( / ) 0.5i it i i iig t Ec c μ σ−= = +  be the growth rate of itEc . The above equation 

can thus be rewritten as: 

 2 2 2 2 2 22 1 1 1 1 11 1 2 120.5 ( 1) ( 1) 0.5 ( 1) ( 1) .tr g gδ γ γ γ σ γ γ γ σ γ γ σ= + − + + − − − − −  (10.17) 

The term structure of the ecological discount rate is flat. In such an economy, the random 

evolution of aggregate consumption and environmental quality does not justify the use of a 

smaller discount rate for benefits occurring in a more distant future. 
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In addition to the rate of pure time preference, the 5 determinants of the ecological discount 

rate that were described in the previous section can be recognized in the right-hand side of 

equality (10.17): 

• 2 2gγ  is the positive ecological growth effect, assuming an improving environmental 

quality; 

• 2 2 220.5 ( 1)γ γ σ− + is the negative ecological prudence effect; 

• 1 1( 1)gγ −  is the positive substitution effect, assuming a growing economy; 

• 1 1 110.5 ( 1)γ γ σ− − is the negative cross-prudence in consumption effect; 

• 1 2 12( 1)γ γ σ− − is the negative correlation effect, assuming a positive correlation 

between the economic and ecological growth rates. 

 

Symmetrically, we can compute the economic discount rate: 

 1 1 1 1 1 11 2 2 2 2 22 2 1 120.5 ( 1) ( 1) 0.5 ( 1) ( 1) .tr g gδ γ γ γ σ γ γ γ σ γ γ σ= + − + + − − − − −  (10.18) 

We can also determine the difference between the two discount rates : 

 ( ) ( )2 1 2 1 1 11 2 22 2 1 12.t tr r g g γ σ γ σ γ γ σ− = − + − + −  (10.19) 

Interestingly, under certainty, the difference between the two discount rates is independent of 

the parameters of the Cobb-Douglas utility function. This equation provides two arguments in 

favour of using an ecological discount rate which is smaller than the economic discount rate. 

First, it is often suggested that the growth rate for environmental quality is smaller than the 

economic growth rate ( 2 1g g< ).  Indeed, 2g  is potentially negative.  Second, it seems that 

there is more uncertainty surrounding the evolution of environmental quality than the 

evolution of the economy itself ( 22 11σ σ> ). If the degrees aversion to risk on 1c and on 2c  are 

not too heterogeneous, this implies that ( )1 11 2 22γ σ γ σ−  is negative. The last term on the right-

hand side of equation (10.19) is more difficult to sign. 

 

 

A calibration exercise  
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Because of the lack of time-series data about environmental quality, calibrating the 

specification above is problematic. Various authors have argued in favour of a closer link 

between environmental quality and economic growth. Following this idea, let us make the 

alternative assumption that the environmental quality is a deterministic function of economic 

achievement: 2 1( )t tc f c= . Common wisdom suggests that environmental quality is a 

decreasing function of GDP per capita, but this is heavily debated in scientific circles. The 

environmental Kuznets curve hypothesis speculates that the relationship between per capita 

income and environmental quality has an inverted U-shape, but there is no consensus about 

the validity of this hypothesis (see for example Millimet, List and Stengos (2003)). From now 

on it is hypothesized that there is a monotone relationship by assuming that there exists ρ ∈\  

such that 2 1t tc kcρ= , where ρ can be either positive or negative. If we assume that 1tc follows a 

geometric Brownian motion, 2tc  also follows a geometric Brownian motion, so that an 

analytical solution for the discount rates can be obtained. Using the standard trick of Lemma 

1, it follows that: 

 ( )( )2 2 1 1 2 1 111 0.5( ) ,tr gδ ργ γ ργ γ σ= + + − − +  (10.20) 

and : 

 ( )( )1 1 2 1 1 2 11( 1) 0.5(1 ( 1)) .tr gδ γ ρ γ γ ρ γ σ= + + − − + + −  (10.21) 

The interested reader can recover from these equations the different determinants of these two 

rates that were discussed earlier in the chapter. 

 

In order to calibrate this model, let us assume that the rate of pure preference for the present δ 

is zero. It is also assumed, as before, that the relative aversion to risk on consumption is a 

constant 1 2γ = . The parameter 2γ  for aversion to environmental risk is not easy to calibrate. 

Observe however that, if it were a tradable good, the share of total consumption expenditures 

that would be made up of expenditures on environmental quality is: 

 * 2

1 2

1 .
2

γγ
γ γ

−
=

+ −
 (10.22) 

Hoel and Sterner (2007) and Sterner and Persson (2008) suggested *γ  somewhere 10% and 

50%, which implies that 2γ  should be somewhere between 1.1 and 2 under our specification. 
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We hereafter assume * 0.3γ = , which implies that 2 1.4γ = . Suppose also that 1 2%g = , and 

11 3.6%σ = . 

 

The last parameter to calibrate is the elasticity ρ  of environmental quality to changes in GDP 

per capita. The calibration depends upon how environmental quality is defined. In order to 

estimate ρ, the SYS_LAN indicator contained in the Environmental Sustainability Index 

(ESI2005, Yale Center for Environmental Law and Policy, (2005)) has been used.  It 

measures, for 146 countries in 2005, the percentage of total land area (including inland 

waters) having very high anthropogenic impact.  Let 1c  be the 2005 GDP per capita from the 

World Economic Outlook Database of IMF (April 2008), and 2c  be defined as 

3 _SYS LAN+ from ESI2005. In Figure 10.1, we have represented this database and the 

associated OLS regression line which is  

 2 1ln 1.93 0.10lnc c ε= − +  (10.23) 

The t-statistics for the slope-coefficient is -4.69, whereas the 2R  coefficient equals 0.13. 

Plugging 0.10ρ = −  in equations (10.20) and (10.21) yields  

 2 11.6%  and  3.5%.t tr r= =  (10.24) 
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Figure 10.1: OLS regression using a panel of 146 countries in 2005, with 1c  being the 

GDP/cap (World Economic Outlook Database of IMF), and 2 3 _c SYS LAN= +  

(Environmental Sustainability Index 2005). 
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It is useful to provide a few comments on this result. First, the difference between the 

ecological rate and the economic rate comes mostly from the large expected economic growth 

rate ( 1 2%g = ) compared to the expected environmental growth rate ( 2 1 0.2%g gρ= = − ). 

Second, the level of the ecological discount rate is mostly determined by the substitution 

effect. Because ρ is small in absolute value, the (negative) ecological growth effect 

2 1 0.28%gγ ρ = −  is also small, particularly in comparison to the substitution effect 

1 1( 1) 2%gγ − = . Third, the effect of uncertainty (prudence, cross-prudence and correlation 

effects) is marginal because of the low volatility of 1c  and 2c , and because it is assumed that 

shocks are not serially correlated. Finally, a comparison should be made between the 

economic discount rate obtained here and the one that was estimated at around 3.6% in 

chapter 3 (in the absence of separate treatment of environmental quality). Diminishing 

expectations about the quality of the environment and the associated substitution effect, 

2 1( 1) 0.08%gγ ρ− = − ,  explains most of the discrepancy between the benchmark 3.6% and 

the 3.5% obtained here. 

 

 

Extension to parametric uncertainty 

 

In the previous two specifications of the bivariate model, a geometric Brownian motion with 

known parameters was heavily relied upon. Without surprise, flat term structures were 

obtained under this framework. One easy extension can be made by recognizing that some of 

the parameters governing the stochastic economic and ecological growth are uncertain. 

Consider for example the model that we calibrated in the previous section, and suppose that 

the parameters 1 11( , , )g σ ρ  depend upon a variable θ  that is not known with certainty. 

Suppose as in chapter 6 that θ  can take integer values 1 to n, respectively with probabilities 

1,..., nq q . Then, as before, it is easy to derive from equation (10.4) that 

 2 2 ( )

1
,t

n
r t r te q e θ

θ
θ

− −

=

= ∑  (10.25) 

where 2 ( )r θ  is the ecological discount rate that would prevail if the true value of the unknown 

parameter would be θ , i.e., 
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 ( )( )2 2 1 1 2 1 11( ) ( ) 1 ( ) 0.5( ( ) ) ( ) .r gθ δ ρ θ γ γ θ ρ θ γ γ σ θ= + + − − +  (10.26) 

The reader is now accustomed to the fact that this model yields a decreasing term structure 

that converges to the smallest 2 ( )r θ .  A symmetric result holds for the economic discount 

rate. 

 

Suppose for example that 1g  and 11σ  are known, but the elasticity ρ of environmental quality 

to changes in GDP is not. Rather than assuming that 0.1ρ = − , as was estimated in the 

previous section (with a small R2 for the OLS estimation), let us suppose that ρ is either -0.6 

or +0.4 with equal probabilities. All other parameters remain unchanged compared to the 

previous section. We draw the term structure of 1tr  and 2tr  in the next figure. Since the 

economic growth follows a Brownian motion, the economic discount rate is almost 

independent of the time horizon. It reduces to a lower rate of 3.2% for distant cash flows, 

which would be the efficient economic discount rate if the elasticity ρ  was -0.6. In that case, 

the negative substitution effect would be stronger than in the benchmark case with ρ =-0.1. 

The ecological discount rate goes from 1.6% to 0.3% when t goes from 0 to infinity. The high 

uncertainty affecting the long-term evolution of the environment in this specification explains 

why the term structure of the ecological discount rate is decreasing. Another way to interpret 

this result is obtained by examining the worst-case scenario. In the case in which ρ would be 

-0.6, the large economic growth rate would have a strong negative impact on the quality of the 

environment. This would generate a strong negative ecological growth effect, 

2 1 1.68%gγ ρ = − , which offsets most of the substitution effect 1 1( 1) 2%gγ − = . 
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Figure 10.2: The economic and ecological discount rates with 1 0.4
1 2 1 2( , )U c c c c− −= − , 0%δ = , 

1 2%g = , 11 3.6%σ =  and 2 1t tc cρ=  with ( 0.6,1/ 2;0.4,1/ 2).ρ −∼  

 

 

 

CES utility functions 

 

Guesnerie (2004), Hoel and Sterner (2007), Sterner and Persson (2008) and Traeger (2007) 

consider the case of certainty, which implies that the only determinants at play for the 

ecological discount rate are the ecological growth effect and the substitution effect. In 

exchange for this simplification, they examined a family of utility functions that are more 

general than the Cobb-Douglas specification. In particular, they assumed that U has constant 

elasticity of substitution 0σ > : 

 
1 11 1

1 2 1 2( , )   with  (1 ) ,
1
yU c c y c c

σ
σ σα σ
σ σγ γ

α

− −− −⎡ ⎤
= = − +⎢ ⎥− ⎣ ⎦

 (10.27) 

where 0α >  is relative aversion towards the risk on "aggregate good" y, and [ ]0,1γ ∈  is a 

preference weight in favour of the environment. Parameter σ  is the percentage rate at which 

the demand for 2c  declines when the relative price of 2c  is increased by 1%.  When σ  tends 

to unity, y tends to 1
1 2c cγ γ− , so that the Cobb-Douglas specification is obtained as a special 
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case. When 1σ ≠ , the additive nature in y implies that it can never be lognormally 

distributed, thereby prohibiting the possibility of finding an analytical solution under 

uncertainty. We have that 

 
1 1

2 1 2 2( , ) .U c c y c
α

σ σγ
− −

=  (10.28) 

It can be checked that the two goods are substitutes if 1ασ −  is positive. Under this condition, 

an increase in economic growth raises the ecological discount rate. Under the same condition, 

22U is negative, so that an anticipated deterioration in the quality of the environment reduces 

the ecological discount rate. To make this more explicit, suppose that growth rates are 

constant, which means that exp( )it ic g t= . The following equation is a direct rewriting of 

equation (10.4) under this specification:  

 2
2

1 ( ),t
gr G tδ α
σ σ

⎛ ⎞= + + −⎜ ⎟
⎝ ⎠

 (10.29) 

With: 

 
1 2

1 11( ) ln (1 ) .
1

g t g t
G t e e

t

σ σ
σ σσ γ γ

σ

− −⎡ ⎤
= − +⎢ ⎥− ⎣ ⎦

 (10.30) 

Observe that exp ( )G t  is the certainty equivalent of 1 2(exp ,1 ;exp , )g gγ γ−  under utility 

function (( 1) / )( ) ( /( 1)) tf G G σ σσ σ −= − , it is increasing, and has an Arrow-Pratt coefficient of 

risk aversion which is increasing (decreasing) in t when σ  is smaller (larger) than unity. This 

implies that the certainty equivalent G(t) is decreasing (increasing) in t when σ  is smaller 

(larger) than unity. This implies in turn that the term structure of the ecological discount rate 

is decreasing if ( 1)(1 )ασ σ− −  is positive. More details are given in Guesnerie (2004), 

Guéant, Guesnerie and Lasry (2009), and Gollier (2010). 

 

 

Conclusion 

 

Environmentalists are often quite sceptical about using standard cost-benefit analysis to shape 

environmental policies because environmental damages incurred in the distant future are 

claimed to receive insufficient weight in the economic evaluation. This may be caused either 
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because future environmental assets are undervalued, or because the economic discount rate is 

too large. In this chapter, we addressed these two questions together by defining an ecological 

discount rate compatible with social welfare when the representative agent cares about both 

the economic and ecological environment faced by future generations. This ecological rate at 

which future environmental damages are discounted may be much smaller than the economic 

rate at which economic damages are discounted, because of the integration of a potentially 

increasing willingness to pay for the environment into the ecological discount rate. This 

increased interest in environmental assets is modelled in this chapter by the potential for 

increased scarcity of these assets, which drives their value upward through time. We have also 

shown that the uncertainties surrounding the future evolution of environmental quality and the 

economy tend to reduce the discount rates, in particular if they are positively correlated. 
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Alternative decision criteria 

 

The discounted expected utility (DEU) model that is used in this book is not without its 

critics. Since Allais (1953), many researchers have found contexts in which human behaviour 

is incompatible with the DEU model. It is clear that the model is violated by many people, in 

many contexts. Some of these violations are informative about the true nature of individuals’ 

actual preferences, whereas others are generated by errors, biased beliefs, lack of information, 

or a lack of time and effort spent on finding the optimal strategy.    These violations imply 

that the DEU model is not very good for explaining, or predicting, actual behaviours under 

uncertainty. However, the aim of this book is not positive, it is normative. The interest is not 

directly in what people actually do, but instead to determine what they should do.  

 

Many experiments stress the weakness of the independence axiom (IA), which is the 

cornerstone of von Neumann-Morgenstern expected utility theory. The IA can be illustrated 

as follows. Suppose that, for tonight, you are offered tickets for the theatre or a meal at a 

restaurant.  Which do you prefer? Suppose that you prefer to go to the restaurant. Now, you 

are told that the theatre and the restaurant are downtown. The only way to get there is to take 

the subway because you live in the suburb. The problem is that there is a 10% probability that 

the subway will be on strike. Therefore, the actual decision choice that you face is not 

whether you prefer to go to the restaurant with certainty, or to go to the theatre with certainty. 

The actual choice is whether you prefer lottery R to lottery T, where lottery R is a good dinner 

at the restaurant with probability 0.9, or staying at home with probability 0.1, and lottery T is 

a nice evening at the theatre with probability 0.9, or staying at home with probability 0.1. The 

IA claims  that it is natural to assume that the fact that there is now a 0.1 probability of staying 

at home, whatever choice you make, should not change your initial preference. If you prefer 

the restaurant to the theatre in the certainty case, you should also prefer lottery R to lottery T. 

This is intuitive, and it is desirable that our collective preferences satisfy this axiom. Although 

many people violate this axiom as cleverly shown by Allais (1953), we want to rely on this 

axiom to drive public decisions.  
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Several interesting decision criteria, which provide an alternative to the expected utility 

model, have blossomed over the last 3 decades. Most of them violate the independence axiom, 

and will not be examined here. The aim in this chapter is to describe a sample of the 

alternative decision criteria that have features which are normatively attractive. 

 

 

Recursive expected utility 

 

The concavity of the utility function plays two roles in the DEU model. The index ''/ 'u u−  

measures the aversion to consumption inequalities across time and across states of nature. The 

first feature yields the crucial wealth effect in the Ramsey rule, whereas the second is linked 

to risk aversion and to prudence. It is possible to question the logic for decreasing marginal 

utility of consumption generating both an aversion to risk within each period as well as an 

aversion to non-random fluctuations of consumption between periods. If the marginal welfare 

gain from k more units of consumption is less than the marginal loss owing to k units 

reduction in consumption, agents will reject the opportunity to gamble on a fifty-fifty chance 

to gain or lose k units of consumption. For the same reason, if their current consumption plan 

is constant, patient consumers will reject the opportunity to exchange k units of consumption 

today against k units of consumption tomorrow. Kreps and Porteus (1978), Selden (1978) and 

Epstein and Zin (1991) claimed that there is no logical reason to impose the use of the same 

utility function for both of these psychological processes. They proposed an alternative model 

which disentangles attitudes towards consumption smoothing over time and across states. 

Following Gollier (2002) and Traeger (2009), this section summarizes the application of this 

model to the problem of evaluating a safe investment project.  

 

The analysis is limited to a model with two dates. As before, let 0c  and 1c  denote 

consumption per capita respectively in the present and in the future. Welfare at date 0 is 

evaluated “recursively” by backward induction, in two steps. The certainty equivalent  m of 

future consumption, 1c  , is evaluated first by using an increasing and concave von-Neumann-

Morgenstern utility function v: 

 1( ) ( ).v m Ev c=  (11.1) 
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A time-aggregating utility function u is then used to evaluate intertemporal welfare W: 

 0( ) ( ).W u c e u mδ−= +  (11.2) 

The utility function v characterizes attitudes towards risk, whereas function u characterizes 

attitudes towards time. The reader can easily check that the standard DEU model is recovered 

if the functions u and v are identical. If v is linear, it follows that 1m Ec=  and the agent is risk 

neutral. This is compatible with a positive wealth effect in the Ramsey rule if u is concave and 

1 0Ec c> . In other words, one can be risk neutral and have a preference for a reduction in 

consumption fluctuations over time. Symmetrically, one can be risk-averse and, at the same 

time, neutral towards consumption fluctuations over time. This would be the case if v is 

concave and u is linear. To sum up, -v’’/v’ measures risk aversion, whereas –u’’/u’ measures 

aversion to intertemporal inequality of consumption. 

 

Consider a safe investment project that generates, at date 1, exp( )r Euros per Euro invested at 

date 0.  A marginal investment in this project has no effect on intertemporal welfare W if: 

 0
0

'( ) '( ) 0,r

s

mu c e u m
s

δ−

=

∂
− + =

∂
 (11.3) 

where m=m(0) and  m(s) is defined as follows: 

 1( ( )) ( ).v m s Ev s c= +  (11.4) 

It yields: 

 1

0

'( ) .
'( )s

Ev cm
s v m=

∂
=

∂
 (11.5) 

All this implies that the efficient discount rate equals: 

 1
1

0

'( ) '( )ln .
'( ) '( )

u m Ev cr
u c v m

δ= −  (11.6) 

When u v≡ , the standard pricing formula used in this book is recovered. Let us first examine 

the wealth effect as in chapter 2. Suppose that 1c is safe, so that 1m c= . In that case, equation 

(11.6) simplifies to (2.9) with t=1.  
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The analysis of the precautionary effect is more complex than in chapter 3. In the following, 

the condition under which adding a zero-mean risk to 1c  reduces the efficient discount rate is 

determined. Using (11.6), this is the case if and only if: 

 1 1

0 0

'( ) '( ) '( ) ,
'( ) '( ) '( )

u m Ev c u Ec
u c v m u c

≥  (11.7) 

or equivalently, if : 

 1 1'( ) '( ) .
'( ) '( )

Ev c u Ec
v m u m

≥  (11.8) 

Observe first that the right-hand side of this inequality is less than unity, because m  is larger 

than 1Ec  under risk aversion. This upper bound is attained when the representative agent has a 

neutral attitude toward consumption inequalities over time. Thus, inequality (11.8) will surely 

holds if its left-hand side is greater than unity, i.e. if 1'( )Ev c  is greater than '( )v m . Let 

1( )x v c=  and 1( ) '( ( ))g x v v x−= . With this notation, this condition can be rewritten as: 

 ( ) ( ).Eg x g Ex≥  (11.9) 

By Jensen’s inequality, this is the case if and only if g is convex. Because ( ( )) '( ),g v c v c=  it is 

obtained that: 

 
''( )'( ( )) ,
'( )

v xg v x
v x

− = −  (11.10) 

This immediately implies that g is convex if and only if v exhibits decreasing absolute risk 

aversion (DARA).  

 

It can be concluded that the precautionary effect on the discount rate is negative, as in the 

standard DEU model, if v exhibits DARA. This condition is necessary and sufficient if u is 

linear. It is notable that DARA is a condition that is stronger than prudence since  

 
2

2

''( ) ''( ) '''( ) '( ) ''( ) ''( ) '''( ) .
'( ) '( ) '( ) '( ) ''( )

v c v c v c v c v c v c v c
c v c v c v c v c v c

⎛ ⎞⎛ ⎞ ⎛ ⎞ ⎛ ⎞ ⎛ ⎞∂ − − − − −
= = −⎜ ⎟⎜ ⎟ ⎜ ⎟ ⎜ ⎟ ⎜ ⎟∂ ⎝ ⎠ ⎝ ⎠ ⎝ ⎠ ⎝ ⎠⎝ ⎠

 (11.11) 

The implication is that DARA holds if and only if prudence is greater than risk aversion. It 

should not be a surprise that a more general model than the DEU model generates more 

demanding conditions for a specific comparative static property. 
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This model can be calibrated using power utility functions and a lognormal distribution for 1c : 

 1 0'( ) , '( ) , ln (ln , ).v uv c c u c c and c N cγ γ μ σ− −= = +∼  (11.12) 

Observe that function v exhibits DARA, therefore a negative precautionary effect must be 

expected. Using Lemma 1, it follows that: 

 ( ) 2 2
0 0ln ln 0.5 1 ln 0.5 ,v vm c c gμ γ σ γ σ= + + − = + −  (11.13) 

with 20.5g μ σ= + . This implies in turn that: 

 

2 2
1

2
0

2 2

exp( ( 0.5 ))exp( ( 0.5 ))'( ) '( )
'( ) '( ) exp( ( 0.5 ))

exp( ( 0.5 ))exp(0.5 ).

u v v v

v v

u v v

gu m Ev c
u c v m g

g

γ γ σ γ μ γ σ
γ γ σ

γ γ σ γ σ

− − − −
=

− −

= − −

 (11.14) 

This implies that the socially efficient discount rate equals: 

 2
1 0.5 ( 1) .u v ur gδ γ γ γ σ= + − +  (11.15) 

In the DEU case, with u vγ γ= , this formula is equivalent to equation (3.21). This shows that 

the model does not radically modify our understanding of the determinants of the efficient 

discount rate. In the short run, the driving force of the discount rate is the wealth effect, which 

is the same as in the DEU case. Because 2σ is small, changing the precautionary effect from 
20.5 ( 1)u uγ γ σ+  to 20.5 ( 1)v uγ γ σ+  does not impact on 1r  very significantly. An appraisal of 

the effect of v uγ γ≠ for the long term discount rate remains to be made. 

 

 

Maxmin ambiguity aversion 

 
In chapter 6, models in which the true probability distribution of future consumption, 1c  , is 

uncertain were examined. The DEU model was used to evaluate safe projects under this 2-

stage risk context, with stage 1 being the random selection of the true distribution, and stage 2 

being the random draw of the realization of 1c  from this distribution. Since Ellsberg (1961), it 

has been known that many people do not evaluate such a 2-stage risk in a way that is 

compatible with the DEU model.  
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Let us consider a simplified version of the Ellsberg game. Consider an urn that contains 100 

balls, some are black, and the others are white. The two games that will be considered have 

the same basic structure. The player must pay an entry fee to play the game. The player bets 

on one of the two colours. The experimenter randomly extracts a ball from the urn, and pays 

1000 Euros to the player if the colour of the ball corresponds to the one on which they bet. In 

the first game, which is referred to as the “risky game”, there are exactly 50 black balls and 50 

white balls. Betting on either of the two colours yields the same lottery to win 1000 Euros 

with probability ½, therefore most people are indifferent as to which colour they bet on. The 

entry fee that individuals are ready to pay is less than the expected gain of 500 Euros because 

of risk aversion.  

 

Consider alternatively the “ambiguous game”, in which the player gets no information about 

the proportion black and white balls in the urn. The closed ambiguous urn is brought in front 

of the player before they select the colour to bet on. What is usually observed in this second 

experiment is that most people are still indifferent between betting on white or on black, but 

that they are ready to pay much less to play this ambiguous game than the risky game. This 

cannot be explained under the DEU model. Indeed, if the player is indifferent between white 

or black, this must mean that they believe that their chance to win by betting white is the same 

as by betting black. This implies that their expected probability to win is ½ because the 

probabilities must sum up to unity, independently to the colour on which the player bets. The 

player therefore faces a lottery to win 1000 Euros with probability ½, which is the same 

lottery as in the risky game. The player should thus be ready to pay the same entry fee in the 

two games. The fact that most people are ready to pay much less for the ambiguous game than 

for the risky game tells us that people are ambiguity-averse, a psychological trait that cannot 

be explained by the DEU model. Ambiguity aversion just means that people prefer a lottery to 

win a widget with a sure probability p than another lottery to win the same widget with an 

ambiguous probability with mean p.  

 

The first attempt to produce a decision criterion that produces ambiguity aversion was made 

by Gilboa and Schmeidler (1989). Suppose that people form an expectation about the set of 

plausible distributions of the random variable x  that they face. A form of ambiguity aversion 
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is obtained if we state that agents evaluate their welfare, ex ante, once their choice has been 

made, by the minimum expected utility over a set of plausible probability distributions. This 

“maxmin” criterion would explain the behaviour observed in the Ellsberg game. Indeed, 

suppose that people form their beliefs such that the probability of a white draw is either 0.25 

or 0.75. If they bet on white, people will compute their welfare by assuming that there are 

only 25 white balls. If they bet on black, they will do so by assuming that there are only 25 

black balls. Thus, under the maxmin criterion, their welfare will be measured by the expected 

utility of 1000 Euros with the minimum plausible probability, which is 0.25, whether they bet 

on white or on black! The certainty equivalent of that lottery is indeed much smaller than in 

the risky game in which the probability to win is 0.5.  

 

Let us apply this idea to the discounting problem. To retain the notation used earlier, suppose that the 

distribution of 1c  depends upon an unknown parameter θ  that can take n possible values 1,...,nθ = . 

Let 1θ =  denote the value of the parameter that yields the smallest expected utility at date 1. The 

efficient discount rate would then satisfy the standard pricing formula (3.14), but in which the 

distribution of 1c  would be 1 1c θ =  rather than the unconditional distribution of 1c . What would the 

consequences be for the short-term efficient discount rate 1r ? Suppose that the uncertainty is about the 

mean growth rate. In that case, ambiguity aversion would replace the mean growth rate by the 

minimum growth rate in the Ramsey rule. Suppose alternatively that the uncertainty is about the 

volatility of the growth rate. In that case, ambiguity aversion would replace the mean volatility by the 

maximum volatility in the Ramsey rule. In the two cases, the problem becomes equivalent to 

computing the discount rate that would be efficient conditional on each realization of θ , and then 

selecting the smallest of these rates as the efficient discount rate 1r . Interestingly enough, the short-

term discount rate that is efficient under the maxmin theory is the discount rate that is efficient for the 

distant future in the DEU model examined in chapter 6! 

 
 

Smooth ambiguity aversion 

 

There are difficulties using the maxmin model in order to provide normative 

recommendations.  This is because it does not explain how to determine the set of plausible 
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distributions that is part of the preferences of the representative agent. This is problematic 

because this model is very sensitive to the characteristics of the worst probability distribution, 

which could be arbitrarily catastrophist. Klibanoff, Marinacci and Mukerji (KMM, 2005, 

2010) have recently proposed a model that is easier to implement, and is less sensitive to the 

extreme plausible distribution. They define ambiguity aversion as the aversion to any mean-

preserving spread in the space of probabilities. Remember that risk aversion is an aversion to 

any mean-preserving spread in the space of payoffs. For example, risk aversion means that 

one prefers to get 500 in two equally probable states, than to receive 1000 in state 1, and 0 in 

state 2. Taking this risky lottery as a benchmark, ambiguity aversion means that one prefers a 

lottery in which the true probability of state 1 is 0.5 with certainty rather than a lottery where 

the probability of state 1 is either 0.25 or 0.75 with equal probabilities.  

 

KMM have proposed the following decision criterion under ambiguity. For each possible 

value of θ , the conditional expected utility 1( )E u c θ⎡ ⎤⎣ ⎦ is computed. In the standard DEU 

criterion used in Chapter 6, we just take the mean of the conditional expected utilities under 

the subjective distribution 1( ,..., )nq q  of θ . Rather than doing this, we take its certainty 

equivalent by using an increasing and concave function φ : 

 ( )0 1
1

( ) ( ) ( ) .
n

W u c e M with M q E u cδ
θ

θ

φ φ θ−

=

⎡ ⎤= + = ⎣ ⎦∑  (11.16) 

Because φ  is concave, M is smaller than the unconditional expected utility, which means that 

this welfare function exhibits ambiguity aversion.  It is helpful to examine two special cases. 

First, if function φ  is the identity function, then this welfare function is the same as in the 

standard DEU case, in which agents are neutral to mean-preserving spreads in probabilities. 

The expected utility criterion is linear in probabilities. In fact, function ''/ 'φ φ−  is an index of 

absolute ambiguity aversion.  The other special case is obtained by assuming that 
1( ) exp( )u A A uφ φφ −= − − , where the index of absolute ambiguity aversion Aφ  tends to infinity. 

It was demonstrated in Chapter 6 that ( )E uφ  tends to the minimum of u in that case, so that 

we get the maxmin criterion as another special case. 
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As usual, let us consider a safe investment project that yields exp( )r  Euros at date 1 per Euro 

invested at date 0. At the margin, this project has no effect on intertemporal welfare, W , if: 

 
( )1 1

1
0

' ( ) '( )
'( ) 0.

'( )

n

r
q E u c E u c

u c e
M

θ
δ θ

φ θ θ

φ
− =

⎡ ⎤ ⎡ ⎤⎣ ⎦ ⎣ ⎦
− + =

∑
 (11.17) 

This yields the following efficient discount rate: 

 
( )1 1

1
1

0

' ( ) '( )
ln .

'( ) '( )

n

q E u c E u c
r

u c M

θ
θ

φ θ θ
δ

φ
=

⎡ ⎤ ⎡ ⎤⎣ ⎦ ⎣ ⎦
= −

∑
 (11.18) 

 

Gierlinger and Gollier (2009) illustrate two effects of ambiguity aversion in this model : an 

ambiguity prudence effect and a pessimism effect. The ambiguity prudence effect is easiest to 

explain if it is assumed that the representative agent is risk-neutral, i.e. if u is the identity 

function.  This switches off both the wealth effect and the precautionary effect of the standard 

DEU model. In that case, equation (11.18) simplifies to  

 
( )

( )
1

1
1 1

1

'
ln ( ) ,

'( )

n

nq c
r with M q c

M

θ θ
θ

θ θ
θ

φ
δ φ φ

φ
=

=

= − =
∑

∑  (11.19) 

where 1c θ  is the conditional expected consumption at date 1. Therefore, the ambiguous 

distribution of economic growth reduces the efficient discount rate if:  

 ( ) ( )1 1
1 1

' '( ) ( ).
n n

q c M whenever q c Mθ θ θ θ
θ θ

φ φ φ φ
= =

≥ =∑ ∑  (11.20) 

Exactly the same technical condition was encountered in the section on recursive expected 

utility (see condition (11.8)), where it was shown that it requires that the φ  function exhibits 

decreasing absolute aversion: ( ''/ ') ' 0φ φ− ≤ . We refer to this condition as “decreasing 

absolute ambiguity aversion” (DAAA). Duplicating this proof, define function 
1( ) '( ( ))g x xφ φ −=  and 1( )x cθ θφ= . Condition (11.20) can then be rewritten as ( ) ( )Eg x g Ex≥ , 

where x is distributed as 1 1( , ;...; )n nx q x q . The proof is concluded by observing that this is the 

case if g is convex, which is equivalent to DAAA. This is more demanding than requiring the 

prudence of φ  ( ''' 0φ ≥ ). This ambiguity prudence condition guarantees that, under risk-

neutrality, the existence of some ambiguity on the distribution of future consumption reduces 

the discount rate. 
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The pessimism effect is similar to the one that is obtained under the maxmin criterion. It is 

easiest to illustrate by switching off the ambiguity prudence effect, that is, by assuming that 

absolute ambiguity aversion ''/ 'φ φ−  is constant. If it is assumed that ( ) exp( )u A A uφ φφ = − − , it 

follows that '( )Mφ  equals ( )'q Euθ θ θφΣ . This implies that equation (11.18) can be rewritten 

as: 

 
( )

( )
11

1
1 0

1
1

' ( )'( )
ˆ ˆln .

'( ) ' ( )

n

n

E u cE u c
r q with q q

u c q E u c
θ θ θ

θ
τ

τ

φ θθ
δ

φ τ=

=

⎡ ⎤⎡ ⎤ ⎣ ⎦⎣ ⎦= − =
⎡ ⎤⎣ ⎦

∑
∑

 (11.21) 

If this discount rate is compared to the one that was obtained under the standard DEU 

criterion, which is equation (6.2) with t=1, it can be observed that the only difference is that 

the beliefs described by 1( ,..., )nq q  have been distorted, becoming 1ˆ ˆ( ,..., )nq q  defined in 

(11.21).  Because 'φ  is decreasing, these distorted beliefs put more probability weight on the 

θ  that yields a smaller conditional expected utility. This is a clear expression of pessimism, 

whose extreme version was illustrated by the maxmin model. If it is supposed, for example, 

that there is uncertainty about the expected growth rate, the probabilities will be distorted in 

favour of the θ  with the smallest expected growth rate, for which the expected marginal 

utility is larger. This will tend to reduce the discount rate 1r .  

 

To sum up, ambiguity aversion tends to reduce the discount rate. One can illustrate this 

intuitive idea by considering the following specification suggested in Gierlinger and Gollier 

(2009). Suppose as in chapter 6 that ln tc θ  is normally distributed with mean 0ln c tθμ+  and 

variance 2tσ . Suppose that the mean of the change θμ  in the log of consumption is itself 

normally distributed with mean 0μ  and variance 2
0 .σ  Consider the case of a power utility 

function with constant relative risk aversion γ . This model is exactly the benchmark case that 

was considered in Chapter 6. The only new dimension is ambiguity aversion. Suppose that φ  

exhibits constant relative ambiguity aversion ''( ) / '( )u u uη φ φ= − .  Using Lemma 1 twice, 

Gollier and Gierlinger (2009) obtained the following formula: 

 2 2 2 2
0 00.5 (1 )( ) 0.5 1 ,tr g t tδ γ γ γ σ σ η γ σ= + − + + − −  (11.22) 
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where 2 2
0 00.5( )g tμ σ σ= + + is the expected growth rate of consumption. This equation 

should be compared to equation (6.13), which is a special case of (11.22) with 0.η =  This 

observation allows us to conclude that ambiguity aversion yields a fourth determinant to the 

discount rate, which, under the specification considered here, is negative and linear with the 

time horizon. This is because, with an uncertain trend in economic growth, the degree of 

ambiguity is magnified by the time horizon in this framework. 

 

It is noteworthy that Gierlinger and Gollier (2009) show that the introduction of ambiguity 

aversion does not always reduce the discount rate, even under decreasing absolute ambiguity 

aversion. 

 

 

Intergenerational habit formation 

 

Although the current generation consumes considerably more goods and services than their 

parents, they are not really happier. This is a paradox. The indices of happiness do not parallel 

those of GDP per capita (see for example Layard (2005)). One possible explanation is that 

people evaluate their well-being in relative rather than in absolute terms. In particular, their 

felicity at date t is not a function of their consumption at date t alone. In the literature on 

external habit formation, it is assumed that the agent’s felicity at date t is a function of tc  and 

of a weighted average of past consumption 1 2( , ,...)t tc c− − . This breaks down the time-additivity 

property of the DEU model. Constantinides (1990) has argued for a positive effect of past 

consumption on today’s marginal utility of consumption, which is a simple definition of a 

consumption habit. A large consumption level in the past raises the marginal utility of current 

consumption, thereby creating some form of addiction to consumption.  

 

A simple specification is the multiplicative habit in which the felicity at date t is measured 

by 1( / )t tu c cα
− , for some positive constant 1α ≤ . A special case is 1α = , in which case the 

felicity is a function of the growth rate of consumption rather than of the level of 

consumption. For example, if the growth rate of consumption is a positive constant, the 
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felicity will remain constant over time in this model. Under these preferences, at any time, a 

temporary increase in consumption above its historical trend is beneficial in the short run, but 

generates a negative externality for future welfare because of the consumption habit that this 

transitory increase generates. When α  is less than unity, this negative externality is reduced. 

Therefore, α  is a measure of the degree of habit formation. 

 

To keep the model very simple, let us assume that 1( ) /(1 )u x x γ γ−= −  with 1γ > . Suppose 

also that that the growth rate of consumption is a positive constant  g. Observe now that  

 (1 )(1 ) (1 ) 1 '

1

1 ,
1

t
t t

t

cu c g kc
c

α γ α γ γ
α γ

− − − −

−

⎛ ⎞
= =⎜ ⎟ −⎝ ⎠

 (11.23) 

with ' (1 )γ α α γ= + − . This shows that the existence of a multiplicative internal consumption 

habit transforms the intertemporal welfare function in a very simple way. First, it multiplies 

the felicity by a common positive constant (1 )gα γ− . Second, it modifies the degree of relative 

risk aversion from γ  to 'γ , which is the mean of γ  and 1, weighted respectively by (1 )α−  

and α . Since it is usually assumed that γ  is larger than unity, this model of habit formation 

just reduces the degree of concavity of the felicity function. The Ramsey rule (2.11) therefore 

still holds, but with γ  being replaced by the smaller 'γ : 

 ' .tr gδ γ= +  (11.24) 
Owing to a consumption habit downsizing the wealth effect, it yields a smaller discount rate. 

The intuition is that investing for the future is a good way to impose self-control on today’s 

level of consumption, thereby limiting the formation of consumption habits that have adverse 

effects on future welfare. Gollier, Johansson-Stenman and Sterner (2010) extend this result to 

the case of uncertainty. 

 

The internal habit formation model briefly described above has some interesting features with 

which to explain observed human behaviours. For example, it can contribute to solving the 

equity premium puzzle (Constantinides (1990)). However, it is still an open question whether 

or not this model should be used for normative analysis of public policies spanning several 

generations. It is clear that parents transfer consumption habits to their children, so that habit 
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formation is not strictly speaking an intra-individual feature. But is it enough to justify more 

sacrifices from the current generation? 

 

 

Conclusion 

 

In this chapter, the recent blossoming of new decision criteria for choices in the face of risk 

and time has been illustrated, focusing on their applications to the selection of the discount 

rate. The chapter examined, in the following order, the recursive expected utility model, the 

maxmin and the smooth ambiguity aversion models.  A short introduction to the internal habit 

formation model was also provided. Many other models could have been considered for 

inclusion in this chapter, but to be concise, decisions had to be made. Other models that could 

have been discussed include, for example, the cumulative prospect theory introduced by 

Tversky and Kahneman (1992).  This model shares with the habit formation model the idea 

that future consumption will be evaluated in relation to some reference point that may be 

related to past consumption. But prospect theory also has other features, such as the 

assumption that agents are risk-lovers over a range of losses below the reference point. It is 

also assumed that they distort the distribution function by using some specific nonlinear 

function that plays a role symmetric to the utility function that transforms payoffs into utility 

in a nonlinear way. This transformation raises the subjective probability of extreme events, 

which has the effect of raising the precautionary term in the extended Ramsey rule, thereby 

reducing the discount rate. It is still too early to determine which of these innovations will 

survive the rigours of the scientific validation process over the longer term. 
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Evaluation of risky and uncertain projects  
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Evaluation of risky projects 

 

 

This book is mostly devoted to the evaluation of safe investment projects. However, most real 

projects are not safe, and indeed many of them are very risky.  This is particularly the case for 

those yielding cash flows in the distant future. The last part of this book is devoted to 

exploring adaptations to the rules presented earlier in this book to the problem of risky and 

uncertain projects. The evaluation of risky projects and of risky assets has been the Holy Grail 

of the theory of asset pricing, which is an important branch of the modern theory of finance. 

This chapter provides a short overview of the main concepts, ideas and tools that have been 

produced by more than fifty years of research in that field. 

 

 

The equity premium 

 

It is easy to make a crude estimate of the effect of risk on the value of projects or assets in the 

economy. Investors on financial markets have the opportunity to invest in a large set of 

projects. Their optimal asset allocation is such that they are indifferent at the margin to a 

transfer of wealth from one asset to any other one.  This is why two safe assets with the same 

maturity must have the same return. By risk aversion, if an asset has a cash flow that 

correlates positively with aggregate risk in the economy, its equilibrium price is smaller than 

the corresponding safe asset with the same expected payoff at the same maturity. In other 

words, the expected return of the risky asset is greater than the return on the safe asset. This 

means that investors discount the expected cash flows of the risky asset at a higher rate. The 

social planner should do the same to evaluate risky public investments. This chapter is 

devoted to the analysis of the risk premium for risky projects that should be added to the 

discount rate for safe projects.  

 

Dimson, Marsh and Staunton (2002) have computed the annualized return on bonds and 

equities for different countries during the 20th century. Using extended data from the same 
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authors over the period 1900-2006, the main facts are summarized in Figure 12.1. In the 

United States, the return on 10-year Treasury bonds, which are probably the safest assets in 

the world, gave a real return of around 1.9%, whereas equities delivered an average real return 

of 6.6% per year.  This implies an equity premium of around 4.7%. The real return on bonds 

varies significantly across different countries during the period. In particular, the real return of 

bonds was negative in countries who fought a world war on their own soil, including Japan, 

France and Italy. However, the equity premium is surprisingly stable across countries, lying 

within the range of 3-5%.  

 

 
Figure 12.1 : Average annual real returns of equity and bonds from 1900 to 2006.  

Sources: Morningstar and Dimson, Marsh and Staunton, (2002) 

 

In Figure 12.2, the same exercise has been repeated over the  shorter time period of 1971-

2006.  It is notable that the safe return on bonds was much larger in this period than over the 

century as a whole, whereas the return on equities has remained stable. A possible explanation 

for this is the successful fight against inflation by central banks in recent years.  The data 

implies a smaller equity premium for the shorter period. For example, in the United States, the 

annualized real return on bonds has been 4%, whereas the annualized real return on equity has 

been 6.6%, implying an equity premium of 2.6%.  
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Figure 12.2 : Average annual real returns of equity and bonds from 1971 to 2006.  

Sources: Morningstar and Dimson, Marsh and Staunton, (2002) 

 

By the standard arbitrage argument, these numbers justify a discount rate of 4% to evaluate 

safe projects in the United States. At the same time, if the project under scrutiny has a risk 

profile similar to that of U.S. equities, a discount rate of 6.6% should be used. This is not far 

from the 7% that is recommended by the OMB in 1992. However, it would be inefficient to 

use that discount rate to evaluate a safe project. These numbers give us some sense of the 

scale of the effect of risk on the evaluation of risky projects.  

 

 

Certainty equivalent and risk premium 

 

Consider a representative agent with utility function u and a (risky) consumption plan 

0 1( , ,...)c c . Let us also consider an investment project that yields tB  Euros per capita at date t 

per Euro invested today. tB  is allowed to be random and potentially correlated with 

consumption tc . Investing ε  in the project yields the following intertemporal welfare: 

 0( ) ( ) ( ).t
t tW u c e Eu c Bδε ε ε−= − + +  (12.1) 

A marginal investment in that project has a positive effect on intertemporal welfare if: 

 0'( ) '( ) 0.t
t tu c e EB u cδ−− + ≥  (12.2) 

This can be rewritten as: 
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0

'( ) '( )1 0.
'( ) '( )

t t t t

t

Eu c EB u ce
u c Eu c

δ−− + ≥  (12.3) 

It is easier to write this condition as: 

 1 0,tr t
tNPV e F−= − + ≥  (12.4) 

with: 

 
0

'( )1 ln ,
'( )

t
t

Eu cr
t u c

δ= −  (12.5) 

and: 

 
'( ) .

'( )
t t

t
t

EB u cF
Eu c

=  (12.6) 

When the future cash flow is uncertain, its evaluation requires a two-step procedure. First, the 

risky cash flow tB  is replaced by its certainty equivalent, tF , defined by (12.6). This first 

operation simplifies the problem to the one of valuing a safe project. Therefore, the second 

step is obvious: this certainty equivalent must be discounted by using the discount rate tr  

defined by (12.5), which the reader will recognize as the rate that is efficient for safe projects 

that has been described throughout this book. The project should be implemented if and only 

if its net present value computed with this two step procedure is positive.  This procedure is 

very useful, because it shows us that what has been done so far in this book to characterize the 

efficient discount rate, can also be used to evaluate risky projects.  

 

The only new element to be examined in this chapter is the transformation of a risky cash-

flow tB  into its certainty equivalent tF . If this project can be traded on frictionless financial 

markets, its equilibrium forward price should be equal to tF . Equation (12.6) is in fact the 

classical equilibrium asset pricing formula that can be found in any textbook on the theory of 

finance. It happens to be the case that tF  is a weighted mean of the different possible 

realizations of tB . For example, if tB  is certain, then t tF B= . If it is risky, let us define the 

“risk-neutral expectation”  operator Ê  as follows: 

 
( ) '( )ˆ ( ) .

'( )
t

t

Ef b u cEf b
Eu c

=  (12.7) 

This corresponds to the notion of the « risk-neutral probability” of a state, which is the true 

probability of a state multiplied by the marginal utility of consumption in that state, and 
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divided by 1'( )Eu c  in order to guarantee that the risk-neutral probabilities sum up to one. It 

therefore follows that  ˆ .t tF EB=  The certainty equivalent of a cash flow is equal to its risk-

neutral expectation. Hereafter the implications of  this observation are described. It is natural 

to define the risk premium for the valuation of the cash flow tB  as the difference between the 

expected cash flow tEB  and its certainty equivalent ˆ
t tF EB= .  

 

 

The Arrow-Lind Theorem 

 

The simplest case arises when the cash flow tB  is risky, but this risk is independent of the 

systematic risk corresponding to tc . In that case, applying equation (12.6) immediately 

implies that t tF EB= . The equilibrium price – and the efficient valuation – of the asset is 

actuarially fair, in the sense that the risk premium vanishes. There is no risk premium 

associated to idiosyncratic risk. This result is usually referred to as the Arrow-Lind Theorem 

in the public economics literature (Arrow and Lind (1970)). 

 

It is important to get the intuition for this result. To put it simply, risks that are uncorrelated 

with the aggregate risk are in fact fully diversified away in the portfolio of the representative 

agent. Adding this risk to the portfolio does not increase the portfolio riskiness.  This is due to 

the fact that the risk premium for small risk is proportional to its variance. This comes from 

the Arrow-Pratt approximation (3.3). Thus, when the size k  of the risk goes to zero, its risk 

premium goes to zero as 2k , whereas its expected value goes to zero as k . This means that 

when the size of the risk is small, only the mean matters when valuing it. Following Segal and 

Spivak (1990), in the DEU model, risk aversion is a second-order phenomenon.  This is not 

the case for many other decision criteria under uncertainty, as for example with prospect 

theory.  

 

 

The consumption-based capital asset pricing model 
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Suppose alternatively that the cash flow of the project and the GDP per capita are positively 

stochastically dependent.  To be more precise, suppose that tB  and tc  are more concordant 

than when assuming independence as in the previous section, in the sense of Tchen (1980). In 

crude words, this means that when the economy is growing faster, the conditional distribution 

of  the cash flow of the investment is improved in the sense of first-degree stochastic 

dominance.  Using Lemma 2 in Chapter 8, this statistical dependence of ( , )t tB c  raises the 

value tF  of the cash flow if ( , ) '( )t t t th B c B u c=  is supermodular.  That is if u is concave. In 

other words, the risk premium is positive if the cash flow is positively correlated with the 

systemic or macroeconomic risk, and the risk premium is negative if they are negatively 

correlated. The Arrow-Lind theorem is obtained in the limit case of independence. In case of a 

negative correlation, implementing the project reduces the global risk. It therefore has an 

insurance value, which takes the form of a negative risk premium. 

 

Suppose that (ln , ln )t tB c follows an arithmetic Brownian motion. Their trends and volatilities 

are denoted respectively ( , )B cμ μ and ( , )B cσ σ . Their index of correlation is denoted ρ . It 

implies that (ln , ln )t tB c  are jointly normal. Suppose that '( )u c c γ−= .  Lemma 1 can then be 

used twice to compute the two expectations in (12.6): 

 ( )( )2
0'( ) exp ln 0.5 .t c cEu c c t tγ μ γσ= − + −  (12.8) 

 
( )( )

( )( )2 2 2
0 0

'( ) exp ln ln

exp ln ln 0.5 2 .

t t t t

B c B c B c

EB u c E B c

B t c t t

γ

μ γ γμ σ γ σ γσ σ ρ

= −

= + − − + + −
 (12.9) 

Using (12.6), it follows that : 

 ( )( )2
0 exp 0.5 2 .t B B B cF B t μ σ γσ σ ρ= + −  (12.10) 

Now, observe that 2
0 exp ( 0.5 )t B BEB B t μ σ= + , so that the above equation can finally be 

rewritten as: 

 ( ) ( )2 ( ) ,c t t
t t tF EB e EB eγβσ π β− −= =  (12.11) 

where the “consumption β ” of the project is defined as: 
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 1 1
2

cov(ln / , ln / ) ,t t t tB

c c

B B c cρσβ
σ σ

− −= =  (12.12) 

and where  2( ) cπ β γβσ=  is defined as the risk premium of the project. The consumption β  of 

an investment project can be interpreted as the expected percentage increase in its cash flow 

when aggregate consumption increases by 1%. Equation (12.11) confirms that the signs of the 

risk premium and of the covariance of (ln , ln )t tB c are the same.  Under this specification, the 

certainty equivalent of the cash flow at maturity t increases (or decreases) exponentially with t. There 

are two reasons for that. First, the expected cash flows increase exponentially. Second, the effect of 

risk on the certainty equivalent also increases exponentially. 

 
Computing the risk premium therefore requires information about the volatility Bσ  of the 

cash flows and about their correlation ρ  with the growth of GDP per capita. If similar 

investment projects have been implemented in the past, one can use these observations to 

estimate these parameters by using standard regression methods. If suitable data is not 

available, the Monte-Carlo methodology is a good alternative. It remains important, however, 

to keep in mind that the idiosyncratic risk of the project has no value, because agents diversify 

it away. As stated by the Arrow-Lind Theorem, only the correlation with the macroeconomic 

risk is relevant. 

 

 

Risk premium and the risk-adjusted discount rate 

 

In this chapter, the reader has been advised to disentangle the problem of time (discounting) 

and the problem of risk (certainty equivalence). However, under the joint lognormal 

specification, considered in this section, a nice simplification occurs. Observe from equation 

(12.11) that the certainty equivalent of a cash flow expressed as a fraction of its expected 

value varies exponentially with time. Therefore, taking into account this treatment of risk is 

equivalent to adapting the discount rate to the riskiness of the project in the following way. As 

explained in Chapter 4, the discount rate for safe projects is constant when the logarithm of 

consumption follows an arithmetic Brownian motion. Let us denote it 2 20.5f c cr δ γμ γ σ= + − . 

Combining equations (12.4) and (12.11) yields: 



 - 179 - 

 ( )1 1 ,fr t r t
t tNPV e F e EBβ− −= − + = − +  (12.13) 

with : 

 2( ) ( ).f c fr r rβ γβσ π β= + = +  (12.14) 

Equation (12.13) tells us that the two-step evaluation procedure that was presented earlier in 

this chapter is equivalent to an alternative procedure in which one discounts the expected cash 

flows at a rate that takes into account the riskiness of the project. This risk-adjusted rate r  , 

defined by equation (12.14), is the sum of the risk free discount rate fr  examined in this book 

and a risk premium 2( ) cπ β γβσ= . This risk-adjusted discount rate ( )r β , which can be 

interpreted as the minimum expected rate of return of an investment project with risk profile 

β , is specific to each project through the estimation of each project’s β . Equation (12.14) is 

usually referred to as the “consumption-based capital asset pricing” formula (CCAPM) first 

developed by Lucas (1978).  

 

This alternative evaluation procedure is very specific to the joint lognormal specification 

considered above. In general, the certainty equivalent cash flows are not proportional to their 

expected values, and when they are, they do not vary exponentially with time, as in (12.11). 

Consider, for example, the case of the nuclear sector. The lifecycle for the costs of producing 

electricity with nuclear technology passes through different phases, each yielding very 

different levels of risk. During the construction phase, risks on cash flows come mostly from 

uncertainty surrounding costs of labour and physical inputs. During the long production 

period, when the plant is generating electricity, the uncertainty is mostly about the price of 

electricity on the market. In the decommissioning phase, the uncertainty is about the cost of 

recycling or storing nuclear waste. Clearly, the correlations of these cash flows with the 

macroeconomic risk differ greatly between the three phases, and this alternative evaluation 

procedure needs to be adapted. This can be done by estimating the βof the cash flows in each 

phase separately, and by using different discount rates for them according to the CCAPM 

formula (12.14). 

 

 

Valuation of the macroeconomic risk and the equity premium 
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In this section, an investment project whose risk profile exactly duplicates the macroeconomic 

risk is examined. This project has a cash flow that duplicates the GDP per capita. When tc  

increases or decreases by 1%, so does tB . This project has a consumption β  equalling 1. 

Under the geometric Brownian specification, the riskiness of such a project should be taken 

into account by raising the discount rate above fr  by 2
cγσ . Earlier in this book, risk aversion 

γ  was estimated to be around 2, whereas the volatility of the growth of GDP per capita, cσ  , 

was estimated at around 3.6%. Therefore, a macroeconomic risk premium of around 

(1)mπ π= =0.26% is obtained. This means that one should discount such an investment 

project with a discount rate of 3.86%, because the safe discount rate, fr , was estimated at 

3.6%.  

 

Suppose alternatively that there is a project whose cash flows increase by %β  when GDP per 

capita increases by 1%. Observe that this implies that 2
1 1cov(ln / , ln / ) /t t t t cB B c c σ β− − = , so 

that we are indeed referring here to the consumption β . Following the CCAPM equation 

(12.14), such a project should be evaluated by using the following discount rate: 

 ( ) 3.6% 0.26%.f mr rβ βπ β= + = + ×  (12.15) 

Suppose that this investment corresponds to a traded asset. At equilibrium, agents should be 

indifferent to a marginal increase in their investment in this asset, so that its price must be 

such that the NPV of buying the asset is zero. This is the case if the equilibrium expected 

return of this asset is ( )r β .  

 

Let us now consider an asset that duplicates the equity market. Kocherlakota (1996) used 

annual data from the Standard & Poor 500 for the U.S. equity market over the period 1889-

1978. He obtained a consumption β  for this equity portfolio of around 500 1.72SPβ = . 

Applying equation (12.15), implies that the expected excess return of the SP500 is around 

1.72 0.26% 0.44%× = . However, as shown earlier in this chapter, the excess return of equity 

in the U.S. during the 20th century was in fact around 4-5% per year. This large discrepancy 
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between the observed equity premium and the prediction of the CCAPM is called the equity 

premium puzzle. 

 

Weil (1989) reinforces the puzzle by observing that the real risk free rate observed in the 

United States over the same period is much smaller than predicted by the same model. The 

CCAPM formula for the risk free rate is nothing else than the extended Ramsey rule 

examined in Chapter 3, which corresponds to around 3.6%. This is indeed much larger than 

either the 1.9% documented earlier in this chapter for period 1900-2006, or the 1% 

documented by Kocherlakota (1996) for period 1889-1978.  It is noteworthy that this “risk 

free rate puzzle” can be solved by reducing the index of risk aversion, whereas the equity 

premium requires an increase in the index of risk aversion to be solved.  

 

This puzzle has attracted much attention in the economics profession. In all, hundreds of 

papers have been published to try to solve it. The main difficulty comes from the low level of 

the macroeconomic risk premium 2
m cπ γσ= , and the low volatility of economic growth that 

lies behind it. As seen earlier in this book, there are reasons to believe that this latter risk is 

underestimated. To solve this problem, the method that led to equation (12.15) can be 

reversed to evaluate the efficient risk-adjusted discount rate. Suppose that markets estimate 

correctly the macroeconomic risk and the consumption β  for equities ( 500 1.72SPβ = ). The 

average real return of the equity market in the United States has been 500SPr =6.6%.  

Combining this with an observed risk free rate of 1.9%fr =  yields an estimate of the 

macroeconomic risk premium 2
m cπ γσ=  by using equation (12.14): 

 500

500

6.6% 1.9% 2.73%.
1.72

SP f
m

SP

r r
π

β
− −

= = =  (12.16) 

This implies the following alternative formula for the risk-adjusted discount rate: 

 ( ) 1.9% 2.73%.r β β= + ×  (12.17) 

For example, a project whose risk profile duplicates the macroeconomic risk ( 1β = ) should 

be discounted at a rate of 4.63%. An investment whose risk profile is similar to the riskiness 

of the SP500 ( 1.72β = ) should be discounted at 6.6%.  
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The CCAPM discount rate r  defined by (12.17) is linked to the “weighted average cost of 

capital” (WACC) used by firms to evaluate the NPV of their investment projects. At 

equilibrium, the cost of capital of a corporation with a portfolio of investments each with 

different β  must be the capital-weighted average of the discount rates ( )r β of these 

investments. However, each new project should be evaluated with its own ( )r β  rather than 

with the firm’s WACC. 

 

 

A solution to the equity premium puzzle 

 

At this stage, an important question arises about the pricing of risky investment projects. 

Which of the two rules (12.15) and (12.17) should be used for the risk-adjusted discount rate? 

Compared to observed prices on the market, the calibration of the CCAPM suggests a larger 

risk free rate (3.6% vs 1.9%) and a smaller macroeconomic risk premium (0.26% vs 2.73%). 

These two discrepancies can be explained by the hypothesis that the markets assume a larger 

macroeconomic risk, cσ , than there is evidence for in the data. Indeed, a larger uncertainty 

over economic growth reduces the risk free rate because of the magnified precautionary 

effect, in particular in the long run. Part II discussed various arguments for why the 

macroeconomic risk could be underestimated in the long term, and it was shown that reducing 

the interest rate from 4% to 2% is within the range of reasonable values. In addition, observe 

that raising the perceived macroeconomic risk, cσ , also raises the macroeconomic risk 

premium 2
m cπ γσ= . Therefore, what was done in Part II may be helpful in solving the equity 

premium puzzle. 

 

A possible path to take, is to recognize that our calibration can be affected by the Peso 

problem that was illustrated in Chapter 6. It may just be the case that the data set does not 

contain the deep potential recessions and economic catastrophes that investors have in mind 

when determining their asset allocations. Barro (2006) shows that this could solve the puzzle. 

Weitzman (2007) proposes an alternative explanation based on the presence of uncertainty 
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surrounding the stochastic dynamics of the economy.  Let us briefly describe the idea, which 

follows the line of argument developed in Chapter 6.  

 

Suppose that the growth process of the economy is lognormal with parameters ( , )c cμ σ , but 

the true values of these parameters are uncertain. As usual, let us describe this parametric 

uncertainty by assuming that they are functions of parameter θ , which can take integer values 

1 to n, with probability 1q  to nq  respectively. Let us reconsider the macroeconomic risk 

premium (1)mπ π= , i.e., the premium associated to an asset whose cash flows duplicate the 

GDP/cap. Without parametric uncertainty, by using equations (12.6) and (12.11), it is equal 

to:  

 
'( )1 1ln ln .
'( )

t t t
m

t t t

F Ec u c
t Ec t Ec Eu c

π = − = −  (12.18) 

With the parametric uncertainty described above, this equation must be rewritten as follows: 
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 (12.19) 

Assume constant relative risk aversion γ . Using Lemma 1, this can be rewritten in the 

following way: 
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 (12.20) 

In the special case of no parametric uncertainty, this simplifies to 2
m cπ γσ= . Otherwise, when 

( , )c cμ σ  depends upon θ , it can be shown that the macroeconomic risk premium is increasing 

with the time horizon. Weitzman (2007) shows that if the uncertainty is about 2
cσ , whose 

inverse is distributed according to a gamma distribution as described in Chapter 6, then 

mπ becomes infinite.  This therefore reverses the equity premium puzzle. As an alternative, 

consider a model in which 3.6%cσ = is known, but the growth of log consumption is either 

1% or 3% with equal probabilities (as in our simple calibration exercise in Chapter 6). Taking 
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2γ =  as usual, a term structure for the macroeconomic risk premium is obtained, which is 

shown graphically in Figure 12.3. The parametric uncertainty magnifies the long term risk, 

raising the equilibrium risk premium. The long term risk premium enters into the range of the 

equity premium observed on financial markets over the last century. 

 

 
Figure 12.3 : The term structure of the macroeconomic  risk premium with 0%δ = , 2γ = , 

3.6%cσ = and (1%,1/ 2;3%,1/ 2)cμ ∼ . 

 

A simple picture emerges from this analysis. For short horizons, the safe discount rate should 

be relatively large, and the risk premium should be relatively small. However, for longer 

horizons, one should use a smaller safe discount rate fr  following the methods that were 

developed in Part II. At the same time, a larger macroeconomic risk premium mπ  should be 

used, as justified by arguments like the one developed above. This is line with the intuition 

that if the macroeconomic risk increases with time at a faster rate than the one assumed by the 

standard Brownian motion model used in finance, then one should do two things. First, more 

effort should be made for the future in general (implying a reduction of the discount rate). 

Second, it should bias our investment towards safer projects.  

 

 

The capital asset pricing model 
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In Chapter 9, the use of a representative agent was justified through the existence of efficient 

risk-sharing schemes in the economy. Real people may have very different von Neumann-

Morgenstern preferences, and very heterogeneous income risks or investment projects. Still, if 

insurance markets are complete, one can assume the existence of a representative agent who 

consumes the income per capita in the economy, and who gets a fair share of the cash flows of 

the investment project under consideration. The efficiency of the allocation of risk in the 

economy implies that all agents will value collective investment projects in the same way. 

They use the same discount rates, and the same risk premia. People will unanimously accept 

or reject marginal investment projects. This property of competitive and complete markets has 

been used systematically throughout this manuscript.  

 

Since Townsend (1994), economists have tested the efficiency of risk sharing in our 

economies. The general tone of the results obtained in this literature is that risks are not 

shared efficiently, even in small rural villages in developing countries where stronger 

informal incentive devices exist to control risk transfers. As already observed in Chapter 9, 

this implies that different people who are exposed to different risks will value collective 

investments differently. Consider for example an investor who is fully invested in a 

diversified portfolio of risky assets, and has no other source of income than this investment. 

Therefore, the income of this investor is the return of that stocks portfolio, which is denoted 
p

tr . This could be taken to represent the community of large investors on financial markets. 

From their specific point of view, how will they value an investment project?  Their 

intertemporal welfare can be written as: 

 0 1 1( ) ( ) ( ),p p t pW u r e Eu r Bδε ε ε−= − + +  (12.21) 

where the investment project consists of investing ε  today for a risky payoff 1Bε at date 1. 

The same methodology as shown above can be used to get a symmetric result. These investors 

will use a risk-adjusted discount rate:  

 ( ) ,p p p
fr rβ β π= +  (12.22) 

where  

 1 1
2

cov(ln / , ln / )p p
p t t t t

p

B B r rβ
σ

− −=  (12.23) 



 - 186 - 

measures the sensitiveness of the return of the project with the investor’s portfolio rather than 

with the macroeconomic risk, and 2p pπ γσ= is the risk premium associated with that 

portfolio.   
 

The capital asset pricing model developed in the 60’s used the capital market as the 

representative portfolio of investors to price assets. Other reference portfolios or income 

profiles could be used. The fact that people facing different risks will evaluate collective 

investment projects in different ways confronts collective decision makers with a difficult 

challenge. This tells us that the process of valuing an investment project cannot in general be 

disentangled from the question of who will bear the risk.  

 

 

Valuing the reduction of inequalities 

 

Another application of the analysis presented in this chapter is to the evaluation of projects 

that reduce (or increase) inequalities in our society. Suppose that the economy is composed of 

N agents, indexed by i=1,…,N. Let iq  be the Pareto-weight of agent i in the social welfare 

function, with 1i iqΣ = , and let itc  denote his consumption at date t. Consider an investment 

project whose sure payoffs are not distributed homogeneously in the population, yielding 

potentially an increase or a reduction of income inequalities. Let  itB  be the benefit accruing 

to agent i at date t. One can define a inequality-neutral payoff tF  , following Dalton-Atkinson, 

as: 

 
1 1

( ) ( )
N N

i it it i it t
i i

q u c B q u c Fε ε
= =

+ = +∑ ∑  (12.24) 

For a marginal investment: 
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where the expectation operator is with respect to ( , )B c  which, under a ‘veil of ignorance’, 

takes value ( , )it itB c  with probability iq . Equation (12.25) is formally equivalent to (12.6), 

and the same methodology that was developed to evaluate the risk premium can be used to 

evaluate the “inequality premium”. In particular, if ( , )B c  exhibits more concordance, that is 

if the project raises income inequality at date t, the inequality-neutral payoff will be smaller 

than the Pareto-weighted average payoff, under risk aversion. This is a direct consequence of 

Lemma 2. 

 

 

Conclusion 

 

Valuing risky projects introduces a new dimension to the theory of investment. We have 

shown that this new dimension can be treated by transforming each future cash flow into its 

certainty equivalent. By doing this, one is back to the problem of evaluating a safe project, 

and the discount rates discussed in this book can be used. Thus, disentangling the valuation of 

risk and the valuation of time is in theory a simple operation. We have shown that in a very 

particular case with a joint brownian motion for the cash flows of the project and aggregate 

consumption, this methodology is equivalent to an increase of the discount rate by a risk 

premium which is proportional to the beta of the project, as claimed by the Consumption-

based Capital Asset Pricing theory.  

 

An important result is that marginal projects whose risks can be diversified away in individual 

portfolios do not get any risk premium. They are actuarially priced, i.e., they should be 

implemented as soon as the discounted value of their expected cash flows is non-negative. 

This is because risk aversion is second order (compared to the expected value) in the expected 

utility model. Moreover, because the macroeconomic risk as estimated by time series data is 

small, the effect of risk and risk aversion on the valuation of projects and assets remain small. 

This yields the well-known equity premium puzzle. This puzzle remains a real challenge for 

the cost-benefit analysis of collective projects.  
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The option value of uncertain projects 
 

Up to now in this book, an investment project was described by its flow of costs and benefits. 

When we introduced uncertain cash-flows in the previous chapter, we did not allow the 

decision-maker to react to the potential new information that could arise about the 

profitability of the project. The only decision was to invest or not in the project. This is quite 

counterintuitive. Indeed, the most basic idea of risk management is that flexibility is crucial to 

behave efficiently in an uncertain world. According to this idea, an investment project is not 

characterized by its cash-flow. Rather, it is described by an oft complex and intricate dynamic 

decision process, where decisions must be made at different points in time. When a country 

decides to invest in a civil nuclear program, it must first decide to start the program, with a 

research and development phase that is followed by the decision to build a first prototype 

electricity plant. If it is successful, the decision must be made to implement the construction 

of several power plants in the country. Afterwards, the country has the option to expand the 

program, or to use the accumulated experience to start a second generation program. 

Similarly, when one consider the possibility to create a high-speed railway between New 

York and Philadelphia, one should include in the evaluation of this investment project the 

option value that this first investment generates to extend the line to Boston, or to 

Washington. When initiating a program of abatement of greenhouse gases, one can start with 

a slow reduction rate with the idea that one will have the option to strengthen the program in 

the future if the economic and technological environment becomes more favourable. 

 

If no new information is made available between different decision dates, the standard NPV 

approach remains valid to evaluate this kind of project. One just needs to make sure that all 

options with a positive incremental NPV are included into the project from the beginning. But 

in most applications, new information is revealed over time about variables that may affect 

the profitability of the investment project and its extensions. During the implementation phase 

of the nuclear program, one can get new information about costs and safety, about the 

competitiveness of alternative technologies to produce electricity, or about the evolution of 

the demand for electricity. A similar observation can be made for the illustration about the 
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high speed train. Concerning the climate change application, the U.S. government has often 

justified its low-key position to fight climate change on the basis that one should wait for 

better information about the intensity of the problem, and about the cost of green 

technologies. Thus, the full characterization of an investment project can be an intricate 

combination of decisions and information revelations scattered along the time line. In some 

circumstances, the flow of information depends upon past decisions (R&D, 

experimentation,…). 

 

In this context, the standard NPV approach is not adapted, since the cash-flows to be 

discounted depend upon decisions to be made in the future that themselves depend upon 

information not yet available today.  The method to be used in this context is based on 

backward induction, in which the standard NPV is used in each decision date, starting from 

the last one. In each decision date but the last one, the information-dependent optimal choices 

that will be made in the future are used to compute the risk-adjusted NPV that drives the 

decision at that date. By construction, these net present values include a positive option value 

coming froim the possibility to flexibily react to future information. These observations have 

been first made independently by Henry (1974) and Arrow and Fischer (1974). Since then, an 

important literature on option value has been developed, which is nicely summarized by Dixit 

and Pindyck (1994). 

 

In the remainder of this chapter, I first illustrate the notion of an option value with a simple 

numerical example. I then examine a more sophisticated application with a Poisson two-

armed bandit. In the first case, there is an option value to wait. In the second case, there is an 

option value to experiment.  

 

 

A simple numerical example 

 

Consider a simple investment project. For the next 10 years, it yields a sure annual payoff that 

is normalized to unity. The annual payoff beyond this time horizon is uncertain. With equal 

probabilities, it will be either 1.6 forever or 0.4 forever. We assume that these events are not 
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correlated to other macroeconomic variables, as economic growth. There is an irreversible 

sunk cost to implement the project which is equal to 20, independent of the date at which the 

project is implemented. We assume that the risk free discount rate is 4%, and is constant over 

time. Should one invest in this project? 

 

Because the annual payoffs are independent with respect to the growth of aggregate 

consumption, its beta is zero, and one can use the risk free rate to discount the expected cash-

flows. If one invests today, one gets 

 0.04

0

120 20 5.
0.04

tNPV e dt
∞ −= − = − =∫  (13.1) 

Because the expected net present value of the strategy to invest today is positive, this suggests 

that investing today is optimal. This would indeed be the case if investing today or never 

investing are the only two options. In reality, the good question is not whether to invest in the 

project today. As is often the case in investment decisions, the problem is dynamic in nature, 

because the decision to invest can be postponed to get more information. 

 

Of course, postponing the investment decision by one year has no interest. It would save one 

year of interest payment on the perpetuity associated to the financing of the investment cost, 

but the investor would give up the first annual cash-flow. The net benefit of this equals 

20 0.04 1 0.02× − = − , which is negative. Waiting to invest has a cost expressed by the 

difference between the unearned annual cash-flows and the saved cost of capital. 

 

The only benefit to postpone the decision would be to learn the state of nature about the long-

term profitability of the project, and this would require waiting 10 years. If one does this, one 

must separately consider the two alternative scenarios. In the bad state of nature, it is obvious 

that not investing is optimal, because the perpetuity of the annual cash-flow of 0.4 is not 

enough to compensate for the sunk cost (10<20). In the good state of nature, it is optimal to 

invest in the project for the symmetric argument. Evaluated at that time and in that state of 

nature, the NPV of investing in the project equals (1.6 / 0.04) 20 20− = , which is positive. 

One is now confronted to two alternative strategies. The first strategy consists in investing 

today, with a NPV of 5. The second strategy consists in investing in 10 years only in the good 
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state of nature. In short, it yields a single cash-flow of 20 with probability 50% in 10 years. 

Evaluated from today, the expected present value of this alternative project equals 
0.04 100.5 20 6.7e− ×× × = . This is larger than the expected NPV from investing today. Because 

the project is small and uncorrelated with aggregate growth, risk neutrality can be assumed. In 

spite of the fact that investing today has a positive expected NPV, postponing the decision to 

invest in 10 years is optimal. The value of information obtained from waiting is larger than 

the cost to wait coming from giving up 10 years of positive cash-flows net of the cost of 

capital. 

 

The literature on real option values relies heavily on this methodology based on backward 

induction. When there exist traded assets whose prices are correlated with the payoff of the 

project, the option value can be evaluated by using techniques of pricing by arbitrage, as in 

the financial literature on options initiated by Black and Scholes (1973). McDonald and 

Siegel (1986) evaluate by arbitrage the option value to wait in the context of a cash-flow 

governed by a geometric Brownian motion. Describing the resolution of the decision problem 

in this context would require using more sophisticated methods based on the Ito’s Lemma, 

which is beyond the scope of this book. 

 

 
Learning in the Poisson bandit problem 

 

In this section, we consider a simple investment problem with two mutually exclusive 

projects. In order to obtain an analytical solution to this problem, we depart from the standard 

discrete time approach used in this book to consider a continuous time framework. This 

change is made to obtain an analytical solution to this difficult exercise. The first project is 

safe and yields a constant cash-flow s . The other project is uncertain. It entails payoffs at 

random dates in the future, with an uncertain frequency. More specifically, the uncertain 

project distributes a lump-sum payoff h  according to a Poisson process with parameter λ. In 

words this means that, when dt is small, there is a probability λdt to geta cash-flow h in any 

time interval [t,t+dt]. The problem is that parameter λ is unknown. It can take two possible 

values, 0λ and 1 0λ λ≥ . At any date t, the beliefs of the decision-maker are summarized by the 
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probability tp that the true value of λ is the good one 1λ . The expected Poisson parameter at 

date t is thus ( )tpλ with 

 1 0( ) (1 ) .p p pλ λ λ= + −  (13.2) 

Suppose that the subjective belief at date 0 about facing a good project with 1λ λ= is 0p . 

Suppose also that the decision-maker is risk-neutral, for example because the uncertain 

project is fully diversifiable.  

 

Consider first a rigid context in which the take-it-or-leave-itbdecision to invest must be made 

at date 0, and is irreversible. In such a context, it is efficient to invest in the uncertain project 

if and only if its subjective discounted expected payoff, 0( ) /p h rλ , is larger than /s r , the 

sure discounted payoff of the safe project, where r denotes the discount rate. This is the case if 

and only if the probability of facing a good investment project is larger than 

0 1 0( / ) /( ).mp s h λ λ λ= − − Because we hereafter assume that the safe project is preferred to the 

bad risky project ( 0s hλ> ), but is dominated by the good one ( 1s hλ< ), we have that 

[0,1].mp ∈   

 

The evaluation problem becomes more complex if we relax the irreversibility assumption. Let 

us alternatively assume that the decision-maker can switch from one project to the other at 

any time. The problem of evaluating the uncertain project and of describing the associated 

optimal investment strategy is referred to in the literature as the “two-armed bandit” problem, 

with one safe arm, and one uncertain arm. Rothschild (1974) and Bolton and Harris (1999, 

2000) are the classical references cited in this field. In this alternative context, it may be 

desirable to first invest in the uncertain project even when 0
mp p> , because of the value of 

learning the true value of λ by doing so. In a word, it may be optimal to experiment. If the 

observed frequency is too low, that would signal a bad project, and the agent should switch to 

the safe investment sooner or later. In the remainder of the chapter, we determine the option 

value generated by investing in the uncertain project. 
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We first examine the intensity of learning in an interval of time [ , ]t t dt+ . Suppose that tp is 

the probability of facing a good project,, as evaluated at date t. If no payoff is observed in this 

interval, the probability of facing a good project will be lowered. Otherwise, this posterior 

probability will be increased. In order to quantify the dynamics of beliefs, we use Bayes’ rule 

under the following probabilistic scenarios: 

  

 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Figure 13.1: Scenarios of learning in the two-armed Poisson bandit problem 
 

Suppose that no payoff is observed during this interval of time. In that case, the beliefs at date 

t dt+ must equal 

 21
1 0

1 0

(1 ) (1 )( ) ( ).
(1 ) (1 )(1 )

t
t dt t t t

t t

p dtp p p p dt o dt
p dt p dt

λ λ λ
λ λ+

−
= = − − − +

− + − −
 (13.3) 

It implies that when no payoff is observed, the probability to face a good project 

decreases smoothly at rate 1 0(1 )( )tp λ λ− − per unit of time. On the contrary, if a payoff is 

observed during the interval of time [ , ]t t dt+ , the beliefs at time t dt+ must satisfy 

 1 1

1 0

.
(1 ) ( )
t t

t dt t
t t t

p dt pp p
p dt p dt p

λ λ
λ λ λ+ = = >

+ −
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Thus, when a payoff is obtained in [ , ]t t dt+ , the probability of a good project has an 

upward jump from tp to 1( ) / ( ).t t tj p p pλ λ= The intensity of the upward jump goes to 

zero when tp tends to unity. Observe that 1p = is an absorbing state. 

 

Of course, the stochastic process of the beliefs tp is a martingale in the sense that 

.t dt tEp p+ =  One can compute the rate of reduction in the subjective probability of facing 

a good project conditional to actually facing a bad project ( 0λ λ= ). We have that 

 
( )0 0 0 1 0

2 2
21 0

( ) (1 ) (1 )( )

(1 )( ) ( ).
( )

t t t t t

t t

t

E dp dt j p p dt p p dt

p p dt o dt
p

λ λ λ λ λ λ

λ λ
λ

⎡ ⎤= = − − − − −⎣ ⎦
− −

= − +
 (13.5) 

In this context, the expected value of the Poisson parameter λ  goes down in expectation: 

 
2 3

1 0
0 1 0 0

(1 )( )( ) .
( )

t t t t

t

d dp p pE E
dt dt p
λ λ λλ λ λ λ λ λ

λ
− −⎡ ⎤ ⎡ ⎤= = − = = −⎢ ⎥ ⎢ ⎥⎣ ⎦ ⎣ ⎦

 (13.6) 

A symmetric result is obtained conditional to the good project. 

 

 
Optimal investment strategy in the Poisson bandit problem 

 

Thus, investing in the uncertain project conveys information about its quality. Because 

we assume that the agent can switch to the safe project if the uncertain one has a low 

subjective expected return, this learning process has a value that should be taken into 

account in the evaluation process. Let tk denote the strategy at date t, with 1tk = means 

that the agent invests in the uncertain project at date t, and 0tk = means that the agents 

invests in the safe project at that date. We focus on Markov strategies, that is, strategies 

that only depend upon current beliefs: ( ).t tk k p= We are looking for the Markov strategy 

that maximizes the discounted expected cash flow extracted from the investment: 

 ( )
0

(1 ) ,rt
t t tU E s k hk e dtλ

∞ −⎡ ⎤= − +⎢ ⎥⎣ ⎦∫  (13.7) 

where the expectation operator is over the stochastic processes of tp and tk . 
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We hereafter follow the resolution strategy proposed by Keller and Rady (2010). The 

Bellman equation for this problem can be written as 

 { } ( )0,1( ) max (1 ) ( ) ( ).rdt
kU p k s k p h dt e EU p dpλ −
∈= − + + +  (13.8) 

Because dt  is small, this can be rewritten as 

 
{ } ( )

( )( )( )
0,1

1 0

( ) max (1 ) ( )

(1 ) ( ) ( ) ( ( )) ( ) ( ) (1 ) '( ) .

kU p k s k p h dt

rdt U p kdt p U j p U p p p U p

λ

λ λ λ

∈= − +

+ − + − − − −
 (13.9) 

Indeed, if the agent does not experiment (k=0), there is no learning and dp=0. If she 

experiments, dp will be adapted according to the Bayes rule as described above, and 

( )U p dp+  will differ from ( )U p according to the second line of the above equation. 

After eliminating ( )U p  in both sides of this equality, it is rewritten as follows : 

 
{ }

( )
0,1

( ) max(1 ) ( ) ( ) ( ) (1 ) '( ) ,
k

rU p k s k p h k p U p p p U pλ λ λ
∈

= − + + Δ − − Δ  (13.10) 

where ( ) ( ( )) ( )U p U j p U pΔ = − and 1 0λ λ λΔ = − . The objective to maximize in the 

right-hand side of this equation is the sum of the expected payoff and of the value of 

information. Conditional to the current belief p, it is optimal to experiment if 

 ( ) ( ) ( ) (1 ) '( ) .s p h p U p p p U pλ λ λ< + Δ − − Δ  (13.11) 

In that case, the discounted expected value of the uncertain project satisfies the following 

ordinary differential-difference equation: 

 ( ) ( ) ( ) ( ) (1 ) '( ) .rU p p h p U p p p U pλ λ λ= + Δ − − Δ  (13.12) 

It can be shown that the solution of this equation is 

 
( ) 1( ) (1 ) ,p h pU p C p
r p

μ
λ ⎛ ⎞−

= + − ⎜ ⎟
⎝ ⎠

 (13.13) 

where C is a constant of integration and μ  is the unique positive root of the following 

equation: 

 0
0 1 0 0

1

( ) .r
μ

λλ μ λ λ λ
λ

⎛ ⎞
+ − − = ⎜ ⎟

⎝ ⎠
 (13.14) 

It can be shown that μ  is increasing in the discount rate r. Equation (13.13) shows that in 

the continuation region (where experimenting is optimal), the discounted expected payoff 
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of the uncertain project equals the subjective expected value of its cash-flow ( /h rλ ) plus 

an option value V of switching to the safe project. 

 

Of course, investing in the safe strategy is an absorbing state, with ( ) /U p s r= . Investing 

in the safe project is optimal if the probability of facing the good project is below a 

threshold *p that is obtained jointly with the constant of integration C by solving the joint 

value-matching condition *( ) /U p s r=  and the smooth-pasting condition *'( ) 0.U p =  

Following Keller and Rady (2010), the solution of this system of 2 equations with two 

unknown is 

 * 0

0 1

( ) ,
( ) ( 1)( )

s hp
s h h s

μ λ
μ λ μ λ

−
=

− + + −
 (13.15) 

and 

 
*

*
*

*

( ) 0.
1(1 )

s p hC
pr p

p

μ

λ−
= >

⎛ ⎞−
− ⎜ ⎟

⎝ ⎠

 (13.16) 

It is easy to see that the critical probability *p is smaller that the myopic threshold 

0 1 0( / ) /( ).mp s h λ λ λ= − −  This expresses the fact that it may be optimal to experiment 

when the expected return of the uncertain project is below the sure return of the safe 

project.  

  
Because C is positive, the option value ( )V p  to switch to the safe project is positive in 

the continuation region *.p p>  It takes the following form: 

 
*

*
*

*

1(1 )
( )( ) .

1(1 )

pp
ps p hV p

r pp
p

μ

μ

λ
⎛ ⎞−

− ⎜ ⎟− ⎝ ⎠=
⎛ ⎞−

− ⎜ ⎟
⎝ ⎠

 (13.17) 

Without surprise, at *p p= , the option value * *( ) ( ( ) ) /V p s p h rλ= −  just compensates 

for the difference between the discounted expected cash-flows of the two projects. 
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Let us illustrate the problem with the following numerical example. Suppose that the safe 

asset yields a constant payoff 1s =  per unit of time. The uncertain project generates a 

payoff 10h = ten times larger, but only at random dates, with a frequency that equals 

either 0 5%λ =  or 1 15%λ = . It yields the myopic strategy to invest in the uncertain 

project if the subjective probability of facing a good project is larger than 50%mp = . 

Suppose also that the discount rate is 4%r = . Equation (13.14) exhibits solution 

0.657μ = . We also get from equation (13.15) that the critical subjective probability of 

the good project above which it is optimal to invest in the uncertain project is 
* 28.4%p = . We finally have that 4.1C = , so that in the continuation region *p p> , the 

discounted expected payoff of the optimal investment strategy equals  

 
( ) 1( ) 4.10 (1 ) .p h pU p p
r p

μ
λ ⎛ ⎞−

= + × − ⎜ ⎟
⎝ ⎠

 (13.18) 

This function is depicted in Figure 13.2. The option value can be quite large. For 

example, if the subjective beliefs is 50%p = , the option value is (0.5) 2.05V = , or 7.6% 

of the total value of the project (0.5) 27.05U = . 
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Figure 13.2: The discounted expected payoff of the optimal investment strategy, with 

1s = , 10h = , 0 5%λ = , 1 15%λ = , and 4%r = .  The dashed curve is the value of the 

project when using the myopic strategy. 

 

 

Conclusion 
 
In an uncertain world, flexibility is crucial. Irreversible decisions have a hidden cost coming 

from the subsequent inability to use information that will emerge in the future. The theory of 

real option value has the objective to adjust the standard cost-benefit methodology, which is 

static by nature, in order to integrate these dynamic aspects of the evaluation problem. 

Applications are very wide in spectrum, from finance to climate change through corporate 

governance, R&D strategy, public health policy, or the extraction of natural resources.    

 

This observation adds an important degree of complexity to the evaluation analysis. Defining 

an efficient dynamic risk management strategy is unescapably difficult when the current 

uncertainty is subject to further revision due to the arrival of new information. The citizen, the 

judge, the politician and the entrepreneur may have hard time to determine this strategy. How 

many vaccines should one purchase against a possible epidemy of unknown severity? How 

much effort to abate greenhouse gases whose effects on the environment are still imperfectly 

known? Should we impose a moratorium on some new biotechnologies yielding genetic 

manipulations whose long-term ecological impacts are uncertain? The precautionary principle 

that has emerged at the Rio conference in 1992 is aimed at providing a cautious decision 

principle in the context of evolving uncertainties. My interpretation of this principle is that the 

theory of real option values should be considered seriously for the evaluation of public 

policies (Gollier and Treich, (2003)). 
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Evaluation of non-marginal projects 
 

We used in this book the classical marginalist approach to value investments and assets. 

Under this approach, prices and values express marginal rates of intertemporal 

substitution. We obtained the ubiquitous pricing formula for the discount rate by 

considering a marginal transfer of consumption through time. For the risk premium, we 

evaluated a marginal introduction of the investment risk on welfare. This approach makes 

sense to express prices that sustain equilibrium with divisible goods, but this requires 

knowing the allocation at equilibrium. This approach also makes sense when one 

normatively evaluates a marginal action along the current equilibrium consumption path. 

It does not make sense when one evaluates non-marginal projects. Non marginal projects 

are those which impact the consumption path, so that they affect equilibrium prices and 

normative values. Discount rates and risk premiums become endogenous in that case. 

 

Let us illustrate this point with two examples. The first one is provided by Diez and 

Cameron (2010), and is about a large infrastructure project in Laos. The Nam Theun II 

hydropower dam project has a generation capacity of 1 Giga Watt from a 350 meters 

difference in elevation between the reservoir and the power station. The construction cost 

was US$ 1.3 billion, to be compared to growth consumption of the country which is 

around US$ 2.5 billion. The construction started in 2005, and was completed in the 

spring of 2010. The export of the electricity is expected to yield an annual benefit of US$ 

250 million. From these figures, it is clear that the implementation of the project does 

affect the growth rate of the economy, and the willingness to invest for the future. 

Therefore, the choice of the discount rate to evaluate the project and to optimize its size 

must be endogenously determined. 

 

The second example is in the context of climate change. In Diez, Hope and Patmore 

(2007), the expected damages due to climate change in the business-as-usual “high-

climate” scenario is evaluated to 13.8% of world GWP in 2200. The 5–95% confidence 

interval spans a range from 2.9% to 35.2% of GWP. Consider a strategy that would 
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eliminate these damages at some non-marginal cost. If we use the classical approach of 

discounting, should we use the extended Ramsey rule with a reduced growth rate to take 

into account of the increasing damages, and with an increased uncertainty on growth 

coming from the uncertainty about these damages? This is problematic if the aim of the 

policy is precisely to reduce the intensity and the uncertainty of climate change! 

 

When comparing different non-marginal policies, one needs to go back to the basic 

principles of public economics. If option A yields a consumption path { }
0,1,...

A
t t

c
=

 and if 

option B yields a consumption path { }
0,1,...

B
t t

c
=

, option A dominates option B if and only if 

it yields a larger discounted expected utility: 

 ( ) ( )0 0
t A t B

t tt t
e Eu c e Eu cδ δ− −

= =
≥∑ ∑  (14.1) 

This approach is rarely used in cost-benefit analyses, probably because of the complexity 

of the problem. Indeed, it requires a full description of the utility function, of the rate of 

pure preference for the present, and of the joint probability distribution of the status-quo 

consumption and of the payoff of the action. In spite of these challenges, this approach to 

the evaluation of non-marginal projects was undertaken by Nordhaus and Boyer (2000), 

Stern (2007), and Nordhaus (2008). Tol (2005), who reviewed the empirical literature on 

the estimation of the shadow value of emission abatement, showed that 62 of the 103 

estimations of shadow value of carbon ignored the non-marginal nature of the impacts of 

climate change and of our global strategy to limit them. 

 

Following Diez and Hepburn (2010), we hereafter examine the error that one does by 

following the classical discounting approach when evaluating non-marginal projects.  

 

 

Evaluation error for the discount rate 

 

Suppose that we use the classical discounting approach to evaluate a project that has a 

non-marginal impact on the growth of consumption. What is the sign and the size of the 

error that one does on the true value of the project? Concerning the sign of the effect, the 



 - 203 - 

intuition is quite simple. If the project is standard, with a cost incurred today for a sure 

benefit in the future, investing in the project will raise the expected growth rate of 

consumption. It will increase the discount rate through the wealth effect. Thus, the 

classical discounting approach will rely on a too small discount rate. Therefore, if it 

underestimates the discount rate, it overestimates the social value of the project. 

 

As in the first part of this book, consider a project that reduces current consumption by k 

today, and that increases consumption by a sure amount x at some specific date t. What is 

the maximum cost k that one is ready to incur today to get x at date t? In other words, 

what is the present value of increasing consumption by x at date t? Earlier in this book, 

we addressed this question in the special case with x being small, and we obtained that 
tr t

tk xe−= , where tr is the discount rate. Suppose now that x is not small. The maximum 

cost that one is ready to incur today to get x at date t is a function ( )tk x whose properties 

are explored in this section. This function is defined as follows: 

 0 0( ( )) ( ) ( ) ( ),t t
t t tu c k x e Eu c x u c e Eu cδ δ− −− + + = +  (14.2) 

 

where 0c  and tc  are consumption levels in the status-quo scenario respectively at dates 0 

and t.  If the maximum cost is incurred, investing has no effect on the intertemporal 

utility of the agent. This means that ( )tk x is the value of x. Our aim here is to compare  

( )tk x to   tr t
tk xe−= . Of course, we have that k(0)=0. What about k’(0)? 

 

Differentiating equation (14.2) with respect to x yields 

 '

0

'( )( ) ,
'( ( ))

t
t

t
t

e Eu c xk x
u c k x

δ− +
=

−
 (14.3) 

which is positive. Using pricing formula (4.1) yields 

 ' (0) .tr t
tk e−=  (14.4) 

Without surprise, this result just states that the linear extrapolation ( ) tr t
tk x xe−� is exact 

for marginal projects. Differentiating once again equation (14.3) yields in turn 

 
' 2

'' 0

0

( ) ''( ) ''( )( ) .
'( )

t
t t t

t
t

k x u c k e Eu c xk x
u c k

δ−− + +
=

−
 (14.5) 
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This is unambiguously uniformly negative. Thus, the valuation function ( )tk x  is 

increasing and concave. It implies that the extrapolation formula   tr t
tk xe−= which is 

systematically used in cost-benefit analyses overestimates the true social value of all 

projects with positive future cash flows.  

 

One can estimate the order of magnitude of the valuation error by considering the 

following numerical example. Normalize current consumption to unity. Suppose that the 

growth rate of consumption is a safe 2%, that relative risk aversion is a constant equalling 

2, and that the rate of impatience is zero. In this framework, the discount rate is 4%. The 

true present valuation function ( )tk x  is depicted in Figure 14.1 for a project with a 1-year 

time horizon (t=1).  It appears that it is very quickly different from 0.04xe− . For example, 

for a benefit that represents 10% of current consumption, the true present value is 

(0.1)tk =8%, which should be compared to the traditional valuation 0.040.1 9.6%e− = . The 

(over-)estimation error represents one fifth of the true present value. 

 
Figure 14.1: The true present valuation function as a function of the size x of the future 

benefit. We assume that t=1, 0 1c = , 1 1.02c = , 0δ = , and 2'( )u c c−= . The dashed line 

corresponds to the present value extrapolated from the Ramsey rule ( 4%r = ). 

 

 

The size-adjusted efficient discount rate 
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The use of an explicit welfare function to evaluate non-marginal project may be 

cumbersome for practionners. We hereafter elaborate an alternative approach in which 

we preserve the basic discounting approach, but in which we adapt the discount rate to 

take into account the size of the project. This may be done by defining the size-adjusted 

discount rate ( )tr x by the following condition: 

 ( )( ) ,tr x t
tk x xe−=  (14.6) 

where ( )tk x  is defined by condition (14.2). If the cost of the project is less (larger) than 

its present value defined by (14.6), its implementation will obviously raise (reduce) the 

intertemporal welfare, so that ( )tr x can indeed be interpreted as a size-adjusted discount 

rate. It can be rewritten explicitly as 

 
( )1( ) ln .t

t
k xr x

t x
= −  (14.7) 

Using the L’Hospital’s rule, we obtain the standard formula for marginal projects: 

 
0

'( )1 1(0) ln '(0) ln ,
'( )

t
t

Eu cr k
t t u c

δ= − = −  (14.8) 

where the second equality is obtained from (14.3). We are interested in measuring the 

sensitiveness of the discount rate in the neighborhood of small benefits. By condition 

(14.7), we have that 

 
'

' ( ) ( )1( ) .
( )

t t
t

t

k x x k xr x
t xk x

−
= −  (14.9) 

Using L’Hospital’s rule twice, we obtain : 

 
'' ''' '' ''

'
' ' '' '0 0

( ) ( ) ( ) (0)1 1(0) lim lim .
( ) ( ) 2 ( ) ( ) 2 (0)

t t t t
t x x

t t t t t

k x x k x x k x kr
t k x xk x t k x xk x tk→ →

+
= − = − = −

+ +
 (14.10) 

From equations (14.4) and (14.5), we have that 
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⎛ ⎞ ⎛ ⎞
= − + −⎜ ⎟ ⎜ ⎟

⎝ ⎠ ⎝ ⎠

= +

 (14.11) 
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where 0 0 0 0''( ) / '( )R c u c u c= − is the index of relative risk aversion evaluated at 0c , and 

''( ) / '( )t t t tR Ec Eu c Eu c= − is the risk-adjusted relative risk aversion at date t. Combining 

equations (14.10) and (14.11) yields 

 
( )(0)

' 0(0) ,
2

t tr t
t

t t
e R Rr Ec

t

μ − +
=  (14.12) 

where 0/t t
te Ec cμ = is the annualized growth rate of expected consumption between dates 0 

and t. Notice that the left-hand side of the above equation is the quasi-elasticity of the 

discount rate relative to the size of the cash-flow in the neighborhood of x=0. It measures the 

percentage increase in the efficient discount rate when the cash-flow at date t increases by 1% 

of expected consumption. When t is normalized to unity, the right-hand side of this equality is 

close to the average of relative risk aversion evaluated at dates 0 and t.  

Let us reconsider the numerical example of the previous section, with t=1, 0 1c = , 1 1.02c = , 

0δ = , and 2'( )u c c−= . It yields 0 1 2R R= = and ( )1 1(0) 0.98Exp rμ − = . Consider a benefit 

that represents 1% of consumption at date 1. Adjusting for the size of this benefit would 

require increasing the discount rate from 4% to 4% 1% (0.98 2 2) / 2 5.98%+ × × + = . In Figure 

14.2, we draw function ( )tr x for benefits x up to 10% of future GDP. 

 

 
 

Figure 14.2: The size-adjusted discount rate as a function of the size x of the future benefit. 
We assume that t=1, 0 1c = , 1 1.02c = , 0δ = , and 2'( )u c c−= . The dashed line corresponds to 

size-adjusted rate from the first-order Taylor approximation  '( ) (0) (0)t t tr x r r x+� . 
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Evaluation  error for the risk premium 

 

The risk premium presented in chapter 12, and the standard asset prices from the classical 

theory of finance, are also valid only for marginal risks. Let us for example re-examine the 

theorem of Arrow and Lind (1970) that states that the risk premium should be zero if the cash-

flows are risky but independent of the risk on aggregate consumption.We noticed in chapter 

12 that this result is justified by the observation that risk aversion is of the second order on the 

certainty equivalent. When a risk tends to zero, its risk premium tends to zero as the square of 

its size. Consider a risky cash-flow xyμ +  at date t , where y is a zero-mean risk,  x is a scalar 

that characterizes the size of the risk on the cash-flow, and μ is the expected cash-flow. Let us 

consider the compensating risk premium ( )c xπ  which is implicitly defined by the following 

equality: 

 ( ( )) ( ).t c tEu c xy x Eu cμ π μ+ + + = +  (14.13) 
The compensating risk premium is the amount to pay to the risk bearer to compensate her for 

the risk. In general, it differs from the standard risk premium, which is the equivalent sure 

reduction in consumption that has the same effect on expected utility than the risk under 

consideration. But for small risks, the classical risk premium and the compensated risk 

premium are equal. 

 

Of course, (0) 0cπ = . Differentiating equation (14.13) with respect to x yields 

 '( ( )) '( ( )) 0.c t cE y x u c xy xπ μ π+ + + + =  (14.14) 

It implies that 

 ' '( ( ))( ) .
'( ( ))

t c
c

t c

Ey u c xy xx
Eu c xy x

μ ππ
μ π

+ + +
= −

+ + +
 (14.15) 

The right-hand side of this equality is non-negative, since y and u’ are negatively 

correlated when x is positive. By the covariance rule, it implies that ' ' 0Eyu EyEu≤ = . 

However, when x tends to zero, we have that ' (0) 0cπ = . This is the Arrow-Lind theorem. 

Marginal risks that are uncorrelated to the economy have no social cost. But what can we 
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say about non-marginal independent risks? Differentiating equation (14.14) again implies 

that 

 ' 2 ''( ( )) ''( ( )) ( ) '( ( )).c t c c t cE y x u c xy x x Eu c xy xπ μ π π μ π+ + + + = − + + +  (14.16) 
 
Observe that the left-hand side of this equality is uniformly negative under risk aversion. It 

implies that the compensating risk premium is an increasing and convex function of the size 

of risk. This result does not hold for the classical risk premium, as shown by a counter-

example presented in Eeckhoudt and Gollier (2001). 

 

One can evaluate the error when estimating the risk premium by using the Arrow-Lind 

theorem. Using equation (14.16) around x=0 and assuming 0μ = for the sake of a simple 

notation, we obtain that 

 
2 2

'' ''( )(0) ,
'( )

t t
c

t t

Ey Eu c Ey R
Eu c Ec

π = − =  (14.17) 

where ''( ) / '( )t t t tR Ec Eu c Eu c= − is the risk-adjusted relative degree of risk aversion at date t. 

The second order Taylor approximation of the compensated risk premium around x=0 implies 

that 
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( ) 0.5 ,c

t t

x xyVar R
Ec Ec

π ⎛ ⎞
⎜ ⎟
⎝ ⎠

�  (14.18) 

which is the Arrow-Pratt approximation. This means that the risk premium expressed as a 

percentage of initial expected consumption is approximately equal to half times the product of 

the variance of the relative change in consumption by the risk-adjusted relative risk aversion. 

For example, if the standard deviation of the cash-flow of the project equals 5% of aggregate 

consumption and relative risk aversion equals 2, the risk premium is approximately equal to 

one-fourth of a percent of aggregate consumption. As explained earlier in this book, this 

approximation is exact when y is log normally distributed, tc  is constant, and the utility 

function belongs to the CRRA family.   

 

 

Conclusion 
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The beauty and usefulness of cost-benefit analysis is that it relies on a few numbers, which 

represent the social value of the different dimensions of costs and benefits: the value of life, 

the value of environmental assets, the discount rate, or the risk premium for example. Once 

these values are determined, the evaluator is just required to estimate the flows of these multi-

dimensional impacts, and to value them according to these prices. We have shown in this 

chapter that this simple toolbox can be used only if the actions under scrutiny are marginal, 

i.e., if implementing them has no macroeconomic effects. Otherwise, one needs to go back to 

the basics of public economics to evaluate these actions. Alternative non-marginal strategies 

need to be compared through their impact on the social welfare function, whose description 

may raise new questions and new challenges in the public debate. 
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