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Abstract

The optimal decision under risk depends upon the ability of the decision
makers to adapt their actions to the state of nature ex post. We examine
two choice problems, one in which agents select their action ex post, and
one in which they must commit on their action ex ante. Contrary to the
intuition, it is not true in general that agents are more tolerant to risk in
the flexible context than in the rigid one. We provide some sufficient con-
ditions to guarantee that the optimal risk exposure is larger in the flexible
context. We apply these results to examine various questions. In particu-
lar, we examine the effect of housing and labour markets rigidities and of
rigid long-term saving plans on the demand for equity. We also compare the
optimal portfolios in continuous and discrete time.
Keywords: dynamic portfolio choice, risk sharing, continuous versus

discrete time



1 Introduction

Arrow (1963) and Pratt (1964) were the first to relate the optimal decision
under risk to the shape of the decision marker’s utility function on consump-
tion. They assumed that the only decision is about which lottery to accept,
and that the outcome of the lottery is immediately consumed. Drèze and
Modigliani (1966, 1972), Mossin (1969) and Spence and Zeckhauser (1972)
noticed that this is rarely a realistic assumption. Most agents will react to
the outcome of the lottery by making additional decisions. If they find it
optimal ex post, households holding stocks will react to a crash on finan-
cial markets by moving to a smaller house, by working more, by reducing
their stock holding, or by reducing their saving. In other words, they will
rarely compensate their immediate financial loss by a corresponding reduc-
tion in their consumption. The expectation of these ex post actions affects
the optimal attitude towards risk ex ante. Mossin (1968), Merton (1969) and
Samuelson (1969) used backward induction to determine the optimal port-
folio when investors are fully flexible both on their saving decision and on
their portfolio rebalancement strategy.
In this paper, we examine a quite general dynamic choice problem to

determine the effect of flexibility on the optimal risk attitude. We compare
the choices under risk in two different contexts. In the flexible context, the
agent first chooses a lottery in a choice set, and then takes an action x
after observing the outcome of the lottery. In the rigid context, the agent
must commit on an action before observing the state of nature. The intuition
suggests that the agent should be more risk-prone in the flexible context than
in the rigid one. Spence and Zeckhauser (1972) showed this in a numerical
example in which the Cobb-Douglass agent’s ex post choice problem is a
standard consumption choice with two goods. Using the same framework
in continuous time, Bodie, Merton and Samuelson (1992) and Chetty and
Szeidl (2003) showed that flexibility enhances risk tolerance for a subset of the
parameter values of the Cobb-Douglass specification. The same result holds
when the agent’s utility function is log linear rather than Cobb-Douglass.
Thus, rigidities on housing and labor markets can potentially explain the
equity premium puzzle that arises when we assume full flexibility.
However, Machina (1982) used an exponential-quadratic utility function

to show numerically that it is not true in general that flexibility induces a
more risk-prone behavior. It may thus be possible that the loss of flexibility
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on housing and labor decisions raises the demand for risky assets. Our contri-
bution to this literature is twofold. We first derive some sufficient conditions
that yield an unambiguous effect on the risky choice. In the second part of
the paper, we discuss various applications of these general results.
As explained by Drèze and Modigliani (1972), the intuition that flexibility

enhances risk tolerance is based on the well-known result that, in the flexible
EU context, the value of information is always non-negative. It implies that
the certainty equivalent of any lottery is larger in the flexible context than
in the rigid one. If the choice problem is to choose between a risky prospect
or a risk free prospect, any lottery that is acceptable in the rigid context
is also acceptable in the flexible one. However, as for example explained
in Gollier (2001, chapter 6), the enlargement of the lottery acceptance set
due to flexibility does not mean that risk aversion is globally reduced. For
example, it does not imply that the demand for risky asset is reduced. The
enlargement of acceptable lottery just implies that flexibility reduces risk
aversion locally around the initial safe wealth. This is because the direction
of the adaptation of the ex post action always reduces the sensitiveness of
the marginal utility to change in wealth. This direct effect of flexibility may
however be dominated by an ”action” effect. It comes from the fact that the
action selected ex ante in the rigid context may yield a low aversion to risk
on wealth.
We are mostly interested in determining the effect of various rigidities on

the optimal one-risky-one-risk-free-asset portfolio. More generally, we exam-
ine a class of ex ante decision problems under uncertainty in which the payoff
is linear: ez = z0+αer, as is the case in the portfolio problem, the coinsurance
problem, or the capacity problem of the firm under price uncertainty. For this
class of ex ante choice problems, if the objective function is supermodular
or submodular, the optimal risk exposure α in the flexible context is larger
than in a rigid context in which the action is selected as if wealth would equal
z0 with certainty. Thus, when the option to invest in stocks has a negligi-
ble effect on the optimal action in the rigid context, super/submodularity is
sufficient to imply that flexibility enhances risk tolerance. Because we also
show that the option to invest is stocks only yields a second-order effect on
the optimal rigid action, this result is useful in many applications.
The most obvious applications of this theory are when the second stage

choice problem is a standard consumption allocation problem under certainty.
After observing their portfolio return, consumers decide how to allocate their
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wealth into consumption for various goods. The existence of durable goods
like housing, or the rigidities existing on the labor market, have an effect
on the consumers’ optimal portfolio allocation. When preferences are Cobb-
Douglass, the optimal action in the rigid context is independent of the option
to invest in the risky asset. If the parameters of the Cobb-Douglass utility
function yield a value function that is less risk-averse than the log, the utility
function is supermodular. Therefore, we can use the general result summa-
rized above to claim that flexibility always raises the demand for stocks un-
der these conditions, as shown by Bodie, Merton and Samuelson (1992). We
also show that when the parameters of the Cobb-Douglass preferences yield
a value function that is more risk-averse than the log, it is always possible to
find an initial wealth and a distribution of excess returns such that flexibility
reduces the demand for the risky asset.
Following Gabaix and Laibson (2002), we also examine the effect of re-

ducing the frequency at which the consumption plan is reoptimized given the
observation of the portfolio return since the previous reset date. There are
several potential reasons for why consumers are unable to adapt their con-
sumption level to shocks on their wealth in continuous time, as the existence
of transaction costs or the willingness to commit on a specific saving plan to
solve a time inconsistency problem. We examine a dynamic choice problem
in which the second stage problem is a consumption/saving problem under
certainty. Time-additive intertemporal utility functionals are supermodular.
We show that the reduction of the frequency of reoptimizations of the con-
sumption plan yields a reduction in the demand for stocks when the utility
function exhibits harmonic absolute risk aversion (HARA), a class of prefer-
ences that includes power, exponential and logarithmic functions. The same
model can be used to determine the effect of the households’ inability to
internally share risk efficiently on the demand for stocks.
We also apply our general model to the analysis of the reduction of the

frequency at which the portfolio is rebalanced. We show that it reduces
the demand for stocks when relative risk aversion is constant and less than
unity. When relative risk aversion is larger than unity, we can always find
a distribution of excess returns such that the reduction of rebalancement
frequency raises the demand for stocks. This analysis sheds some light on
the relationship between discrete time and continuous time in the modern
theory of finance.
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2 Some general results

The utility U of the decision-maker depends upon wealth z ∈ R and a decision
x belonging to a decision set A. Function U : R× A→ R is increasing in z
and concave in x. We consider two dynamic choice problems. In the flexible
framework, the agent first selects a risk-taking decision. Once the outcome z
of the risk exposure is observed, the agent selects the x ∈ A that maximizes
U :

v(z) = max
x∈A

U(z, x). (1)

Because U is concave in x, the solution x∗(z) of the above program is unique.
In this flexible framework, the attitude on risk in the first stage of the decision
problem is fully characterized by the indirect utility function v. In other
words, the first-stage choice among various lotteries can be rationalized by
an expected utility functional

V ∗(ez) = Ev(ez),
where ez is the random variable describing the distribution of wealth. Because
the operator max is convex, the value function v is not necessarily concave.
The alternative framework is rigid in the sense that the choice of x ∈ A

cannot be made sensitive to the realization of ez. In this rigid framework, the
choice of x must be made before observing the realization of z. The choice of
among various lotteries is rationalized in the rigid framework by the following
functional: bV (ez) = max

x∈A
EU(ez, x). (2)

Because concavity is preserved by summation, the solution bx(ez) of program
(2) is unique. As first stated by Mossin (1969), Drèze and Modigliani (1972)

and Spence and Zeckhauser (1972), bV is not an expected utility functional.

In particular, bV violates the independence axiom. It implies that contrary to
what we have in the flexible framework, the risk attitude in the rigid world
cannot be expressed by the concavity of a von Neumann-Morgenstern utility
function. This is an important source of complexity of the analysis.
The main objective of the paper is to determine the conditions under

which flexibility enhances risk tolerance. To be more precise, consider a
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specific first-stage choice problem under uncertainty that is specified by a

risk opportunity set S, a subset of real-valued random variables. Let bez ∈ S

and bx = bx(bez) ∈ A be respectively the optimal risk on wealth and the optimal
choice in the rigid context. The problem is to determine whether the optimal

risk in the flexible framework is riskier than bez? To answer this question, one
should compare the concavity of functions v(.) and U(., bx). Notice that it is
essential here to specify not only function U , but also the risk opportunity set
S. A change in S potentially modifies the optimal bx and the reference function
U(., bx). In the remainder of this section, we consider two first-stage choice
problems: the acceptance of a lottery, and a portfolio allocation problem.

2.1 The first stage problem is a binary choice

In the following Proposition, we consider the simplest risk opportunity set,
which is limited to two random variables, one of which being degenerated.
We show that flexibility always enlarges the set of acceptable risks. It is a
direct consequence of the well-known property that the value of information
is nonnegative. This value of information raises the willingness to accept
risk.

Proposition 1 For any pair (z0, ez), z0 being degenerated, bV (ez) ≥ bV (z0)
implies V ∗(ez) ≥ V ∗(z0).

Proof: Suppose that bV (ez) ≥ bV (z0). The proof is directly obtained by the
following sequence of relations:

V ∗(ez) = Emax
x∈A

U(ez, x)
≥ EU(ez, bx(ez)) = bV (ez)
≥ bV (z0). ¥

In this binary riskfree-risky choice problem, we can evaluate the effect
of flexibility by estimating the difference in the risk premia. Let consider a
risk-free wealth z0 and the introduction of a small risk keε with Eeε = 0. In
the flexible context, the maximum premium π∗(k) that the decision-maker is
ready to pay to eliminate risk keε satisfies the following condition:

Ev(z0 + keε) = v(z0 − π∗(k)). (3)
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In the rigid context, the risk premium bπ(k) associated to risk keε is defined
by

max
x∈A

EU(z0 + keε, x) = max
x∈A

U(z0 − bπ(k), x). (4)

In Proposition 2, we show that the aversion to small risk is larger in the rigid
context than in the flexible one.

Proposition 2 Suppose that U is twice differentiable and that A = R. The
risk premia associated to zero-mean risk keε respectively in the rigid and flex-
ible contexts satisfy the following properties:

bπ(k) = 1

2
k2σ2�

∙
−Uzz(z0, x

∗(z0))

Uz(z0, x∗(z0))

¸
+ o(k2) (5)

π∗(k) =
1

2
k2σ2�

∙
−v

00(z0)

v0(z0)

¸
+ o(k2), (6)

with

−v
00(z)

v0(z)
= −Uzz(z, x

∗(z))

Uz(z, x∗(z))
+

U2
zx(z, x

∗(z))

Uz(z, x∗(z))Uxx(z, x∗(z))
. (7)

Consequently, in the case of small risk, flexibility always reduces risk aver-
sion.

Proof: See the Appendix. ¥
In the rigid context, we see that the risk premium for small risk is not dif-

ferent from what one would obtain with a completely exogenous x that would
be fixed equal to x∗(z0), the optimal action when z = z0 with certainty. In-
deed, equation (5) tells us that the premium associated to small risk keε is the
one that a von Neumann-Morgenstern agent with utility bv0(.) = U(., x∗(z0))
would be ready to pay. The fact that the choice of action x is affected by
the existence of risk keε has only a second-order effect on bπ. This is because,
as noticed in the proof, dbx/dk = 0 when evaluated at k = 0 : the intro-
duction of a small risk does not affect the optimal action at the margin. In
consequence, as clearly explained by Machina (1984), the expected utility

approximation (5) holds in the rigid context. The preference functional bV is
Fréchet differentiable at z0 with local utility function U(., x∗(z0)).
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The picture is completely different in the flexible context. The risk aver-
sion on wealth is determined by the Arrow-Pratt index −v00/v0 of the indirect
utility function v . As shown by Machina (1984), the absolute aversion to tem-
poral risk is the sum of two terms that are expressed in the right-hand side
of (7). Evaluated at z = z0, the first term is the absolute risk aversion ofbv0(.) = U(., x∗(z0)), as in the rigid context. The second term in the right-
hand side of (7) originates from the flexibility of action x∗(z). It is always
negative. Thus, flexibility always reduces local risk aversion.
The above two propositions suggest that flexibility always leads to a glob-

ally less risk-averse behavior. However, as noticed by Machina (1982), this is
not true in general. To see this, notice that v(.) is less concave than U(., bx)
in the sense of Arrow-Pratt if

−zUzz(z, x
∗(z))

Uz(z, x∗(z))
[1− F (z)] ≤ −zUzz(z, bx)

Uz(z, bx) (8)

for all z, where F (z) is an index of ”flexibility tolerance” that is defined by:

F (z) =
−U2

zx(z, x
∗(z))

Uzz(z, x∗(z))Uxx(z, x∗(z))
≥ 0. (9)

We see that flexibility has two effects on risk aversion. The direct effect of
flexibility is expressed by the multiplicative term (1 − F ) < 1 in the left-
hand side of (8), as explained above. We qualify this effect to be ”direct”
because it directly comes from the fact that the action x∗ is sensitive to the
outcome z. It is useful to see why the direct flexibility effect always reduces
risk aversion. Suppose that Uzx is positive. It implies that x

∗ is increasing
in z. It implies that an increase in z raises x∗ and Uz in the flexible context.
Similarly, if Uzx is negative, an increase in z reduces x∗ and it raises Uz. In
both cases, the direct effect flexibility on the marginal utility of wealth is to
make it less sensitive to wealth. In short, it reduces risk aversion.
The second effect comes from the fact that the absolute risk aversion of U

at z is evaluated at x∗(z) in the flexible context, and at bx in the rigid one. Let
us refer to this second effect as the ”action effect”. It can be either positive
or negative. In Figure 1, these two effects can easily be isolated. Considering
a specific z, the action effect is obtained by comparing the concavity indexes
of the two plain curves corresponding to U(., bx) and U(., x∗(z)). The direct
flexibility effect is obtained by comparing the concavity indexes of the plain
curve U(., x∗(z)) and the dashed curve v(.).

7



v 

U(.,x) 

U(.,x*(z)) 

z wealth 

utility 

^ 

Figure 1: The value function and utility functions conditional to choice x∗(z)
and bx.
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Flexibility would raise risk aversion if the unambiguously risk-prone direct
effect of flexibility is more than compensated by the action effect. Whereas
Proposition 2 states that this cannot be the case for small risks becausebx = x∗(z), we cannot exclude this possibility for larger risks.

2.2 The first stage problem is a portfolio choice

If v is not globally risk-averse than U(., bx), we cannot sign the effect of flex-
ibility on the optimal portfolio allocation. We illustrate this point by the
following example. We consider a two-stage decision problem under uncer-
tainty. In the first stage, the agent endowed with wealth z0 = 1 invests in a
portfolio of two assets, one of which is risk-free with a zero return. The other
asset has a return distributed as er ∼ (−1, 1/10; 10, 9/10). In the second stage,
after observing the outcome of this investment, the agent can either accept
or reject a lottery ey ∼ (−0.2, 1/2; 1, 1/2). The agent has constant relative
risk aversion γ = 4. It can be shown that the optimal strategy in the first
stage consists in investing α = 14.98% of z0 in the risky asset. In the second
stage, the agent accepts lottery ey only if the risky asset return is positive.
Suppose alternatively that the two decisions must be made simultaneously,
i.e., that the lottery decision cannot be made after observing the portfolio
return. In this rigid context, it can be shown that the optimal decision is
to reject the lottery and to invest a share α = 15.90% of z0 in the risky
asset. From the observation of the demand for the risky asset, it appears
that the investor is more risk-averse in the flexible context than in the rigid
one. Flexibility does not enhance risk tolerance. Notice that this model is
characterized by an objective function U(z, x) = E [z + xey]1−γ /(1− γ) and
a choice set A = {0, 1}.
As in the above example, we will hereafter focus much of our attention

on the one-risk-free-one-risky-asset choice problem in the first stage. In the
flexible context, this first stage problem can be written as

α∗ = argmax
α

Ev(z0R+ αer), (10)

where z0 is initial wealth, er is the excess return of the risky asset, R is the
gross risk-free rate and α is the demand for this asset.1 We hereafter suppose
without loss of generality that the Eer > 0, which implies that α∗ is positive.

1Many other economic problems can be written in that way, as the coinsurance prob-
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In the following Lemma, we show that the demand for the risky asset in
the flexible context is larger than when the action x is exogenously fixed at
x∗(z0).

Proposition 3 Consider the first stage portfolio problem described by pro-
gram (10). Suppose that U is concave in its first argument. If U is either
supermodular or submodular, then α∗ is larger than α0 = argmaxαEU(z0R+
αer, x∗(z0)), i.e., the demand for the risky asset in the flexible context is larger
than when action a is exogenously fixed at x∗(z0), its optimal level without
the risky asset.

Proof: Suppose that U is supermodular (submodular). By Topkis’ the-
orem (Topkis (1978)), x∗(z) is nondecreasing (nonincreasing) in z. Because
Uz is nondecreasing (nonincreasing) in x, it implies that

rUz(z0R+ α∗r, x∗(z0)) ≤ rUz(z0R+ α∗r, x∗(z0 + α∗r)) = rv0(z0R+ α∗r)

for all r. Taking the expectation, we obtain that

EerUz(z0R+ α∗er, x∗(z0)) ≤ Eerv0(z0R+ α∗er) = 0.
Because U is concave in z, this inequality implies that the optimal demand
for risky asset is less than α∗ when x is exogenously fixed at x∗(z0) . ¥
This Proposition sheds some light on the above numerical example. It

can be shown that the optimal choice when z = z0 with certainty is to reject
lottery ey, i.e., a0 = 0. The optimal decision to invest α = 15.90% of initial
wealth in the risky asset does not affect the decision to reject this lottery.
The fact that U(z, x) = E [z + xey]1−γ /(1 − γ) is neither supermodular nor
submodular explains why the demand α∗ = 14.98% for the risky asset is not
larger than in the rigid context.
Proposition 3 has some interest on its own, but it does solve our problem

only when the optimal action in the rigid context is close to x∗(z0). But
in general, the option to invest in the risky asset also has an effect on the
optimal rigid action: bx will in general differ from x∗(z0). As we will see in
the applications, the action effect may be stronger than the direct flexibility
effect, inducing the demand for the risky asset to be reduced by flexibility.
This can be the case only for large portfolio risks, i.e., when the equity
premium is large relative to the return volatility.

lem, the capacity problem of the risk-averse firm under price uncertainty, or various risk
prevention problems.
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3 Applications

3.1 Cobb-Douglass: Labor, health and housing

We start the list of applications of the above theory with a second stage
choice represented by the standard consumption problem under certainty,
whereas the first stage choice is the portfolio problem examined in the previ-
ous section. Wealth z is allocated to the consumption of n+1 goods indexed
from i = 0 to i = n.2 The price of good i > 0 relative to the numeraire
good i = 0 is denoted pi. The utility of bundle (x0, x1, ..., xn) is measured
by u(x0, x1, ..., xn). The choice set is A = Rn

+ and the objective function is
written as

U(z, x1, ..., xn) = u

Ã
z −

nX
i=1

pixi, x1, ..., xn

!
. (11a)

Following for example Bodie, Merton and Samuelson (1992), let us consider
the following Cobb-Douglass specification:

u(x0, x1, ..., xn) = γ−10

nY
i=0

xγii , (12)

where the elements in vector (γ0, ..., γn) are restricted to have the same sign
and where Γ =

Pn
i=0 γi is less than unity. In the rigid context, the consump-

tion of the goods other than good i = 0 must be chosen before observing the
outcome of the risk on z, so that the only way to adapt to a shock on wealth
is to modify the consumption of the numeraire good x0 accordingly.
Using Proposition 2, we first examine the case of small risks. Under spec-

ification (11a) and (12), the relative risk aversion locally at z0 respectively
in the rigid and flexible contexts are measured by

−zUzz(z0, bx1, ..., bxn)
Uz(z0, bx1, ..., bxn) = Γ(γ−10 − 1) and −

z0v
00(z0)

v0(z0)
= 1− Γ. (13)

2Strictly speaking, this model is a particular case of the above general model only when
n = 1. In the case of Cobb-Douglass, it is easy to show that the choice problem with n > 1
is equivalent to the one with n = 1 for a composite bundle of the goods (x1, ..., xn) with
shares (γ1/p1, ..., γn/pn).

11



As stated in Proposition 2, the local risk aversion is reduced by flexibility.
The effect is particularly powerful when the γis are positive and Γ is close to
unity, yielding a risk behavior close to risk neutrality in the flexible context.
For example, when γ0 = Σn

i=1γi = 0.5, the share of wealth invested in equity
is infinite in the flexible case, whereas it approximately equals Eer/σ2r in the
rigid context.
We then show that the optimal bundle (bx1, bx2, ..., bxn) in this rigid context

is not affected by the option to invest in the risky asset.

Lemma 1 Suppose that the decision maker must determine her demand for
consumption goods i = 1, ..., n before observing the return of her portfolio.
Suppose also that the utility function u : Rn+1

+ → R satisfies (12). It implies
that the optimal bundle of these consumption goods is not affected by the
option to invest in equity.

Proof: Consider an arbitrary bundle (x1, ..., xn) ∈ Rn+1
+ with z0−Σn

i=1pixi >
0. It is easy to check that the portfolio α that is optimal conditional to this
bundle is characterized by

α(x1, ..., xn) = b

Ã
z0R−

nX
i=1

pixi

!

where scalar b is implicitly defined by Eer(1+ ber)γ0−1 = 0. It implies that the
optimal bundle in the rigid context must maximize the following objective
function

γ−10 E(1 + ber)γ0 Ãz0R− nX
i=1

pixi

!γ0 nY
i=1

xγii .

The optimal solution of this program is independent of er. ¥
It implies that the optimal demand for the n goods in the rigid framework

is bxi = γiz0R/piΓ. Because the optimal second stage choice is independent
of the investment opportunity, we can use Proposition 3 to determine the
effect of flexibility in this framework. The objective function (11a) cannot
be submodular. It is easy to check that it is supermodular if and only if the
γs are positive. The following Corollary is thus a direct consequence of the
combination of Proposition 3 and Lemma 1.
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Corollary 1 Consider the two stage problem with a portfolio choice and
a budget allocation with multiple goods, assuming a Cobb-Douglass utility
function (12) with γi > 0, i = 0, ..., n. Under this assumption, the demand
for equity is larger in the flexible context than in the rigid one.

The assumption the γis are positive is equivalent to the flexible indirect
utility function being less risk-averse than the log. In fact, this assumption
implies that the indirect utility function U(., bx1, ..., bxn) in the rigid context is
globally more concave than the indirect utility function v in the flexible one.
To check this, we measure the relative risk aversion at an arbitrary wealth
level z by

−zUzz(z, bx1, ..., bxn)
Uz(z, bx1, ..., bxn) =

(1− γ0)Γz

zγ0 + (z − z0)(Γ− γ0)
(14)

in the rigid context, and

−zv
00(z)

v0(z)
= 1− Γ (15)

in the flexible one. In fact, the flexibility index F (z) defined by (9) is constant
and equal to F = (Γ − γ0)/Γ(1 − γ0). Risk aversion in the rigid context is
uniformly larger than risk aversion in the flexible context if and only if zΓ
is uniformly larger than z0(Γ − 1). This is the case only when the γis are
positive. It is the case only locally around z = z0 when the γis are negative.
In this latter case, the local aversion to risk at large wealth levels is larger in
the flexible context! In the following Proposition, we prove that the effect of
flexibility is intrinsically ambiguous for this set of utility functions.

Proposition 4 Consider the two stage problem with a portfolio choice and
a budget allocation with multiple goods, assuming a Cobb-Douglass utility
function (12) with γi < 0, i = 0, ..., n. We can always find an initial wealth
level z0 and a distribution of the equity return er such that the demand for
equity is smaller in the flexible context than in the rigid one.

Proof: See the Appendix. ¥
To illustrate, suppose that n = 1, p1 = 1, γ0 = γ1 = −2, z0R = 1 ander ∼ (−0.2, π; 5, 1−π) with π = 0.00404. In the rigid context, it is optimal to
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take bx1 = 0.5 and bα = 100%. The demand for the risky asset in the flexible
context is reduced to α∗ = 77%. Observe that this counterexample is based
on a very skewed distribution of er in order to take advantage of the larger
local risk aversion of v(.) compared to U(., bx) at large wealth levels.
Bodie, Merton and Samuelson (1992) examined the consequences of the

flexibility of labor supply on the optimal portfolio. Relying on some speci-
fications of the consumption/leisure utility function as the one presented in
Corollary 1, they claimed that the ability to vary labor supply as a function
of the portfolio return should induce young individuals to raise their demand
for risky assets. All their numerical simulations yield the same conclusion.
We have shown above that this result does not hold in general, except for
small portfolio risks. We have also shown above that other variables like
health and housing can be included in the utility function without chang-
ing the structure of the results. The presence of high transaction costs and
taxes in the housing market together with a rigid health insurance system in
many countries of continental Europe may also explain the relative resistance
of European households to invest in stocks.

3.2 Additive model: Saving and risk-sharing

We now examine a simple portfolio-saving problem under certainty. At the
beginning of period t = 0, individuals initially endowed with wealth z0 deter-
mine their α for the risky asset with return er. Wealth z0 includes the human
capital, which is the net present value of the flow of future labor incomes. In
the flexible context, they observe their portfolio return before determining
their consumption plan (x0, x1, ..., xn) over the remaining n+1 dates. In the
rigid context, the future consumption plan (x1, ..., xn) must be determined
before observing the portfolio return in the first period, i.e., the portfolio risk
must be entirely allocated to the consumption in the first period. Assuming
a time-additive utility function, the objective function for this problem can
be written as

U(z, x1, ..., xn) = u0

Ã
z −

nX
i=1

pixi

!
+

nX
i=1

ui(xi), (16)

where z = z0 + αer is the wealth accumulated in the first period, and pi is
the price of consumption at date i relative to consumption at date 0. In
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the special case of a flat yield curve, pi = R−i. The utility functions ui on
consumption at i = 0, ..., n are assumed to be increasing and concave.
During the last three decades, tax incentives have been developed for

long-term saving schemes, as the 401k in the US, or the PEL or PERP in
France. Following Laibson (1997), these tax incentives can be justified on the
basis that individual have difficulties to commit themselves to save for their
retirement. This may be due for example because of a time-inconsistency
problem due to the hyperbolic structure of their time preferences. However,
there is a clear cost associated to the system, since it does not allow individ-
uals to use their savings as a buffer stock to smooth shocks on their incomes.
We hereafter focus on another indirect cost of rigid saving schemes. When
the contributions to the long-term saving plan are fixed ex-ante, households
cannot time-diversify their portfolio risks. This induces them to be less tol-
erant to portfolio risks, thereby reducing the benefit that they can extract
from the positive equity premium. We examine the condition under which
the demand for equity is reduced by the rigidity of the saving plan.
Function u is neither supermodular nor submodular. However, a rewriting

of this choice problem using backward induction allows us to use Proposition
3. To see this, let us define the value function J such that

J(x) = max
x1,...,xn

nX
i=1

ui(xi) s.t.
nX
i=1

pixi = x,

where x is the amount saved from z in the first period. Using this definition,
we can rewrite the objective function (16) as

U
◦
(z, x) = u0(z − x) + J(x).

Because U
◦
is supermodular in (z, x), we know from Proposition 3 that the

demand α∗ for the risky asset in the flexible context is larger than the demand
α0 that is optimal when saving is exogenously fixed at x

∗(z0), the optimal
saving when the individual has no access to the equity market. However,
except in the case where u0 would be logarithmic, we know that the access
to the equity market affects the optimal saving bx in the rigid context. We
would be done if we would have that bα be smaller than α0. Because the
optimal portfolio risk bα in this context must maximize Eu0(z0 − bx + αer),
whereas α0 maximizes Eu0(z0 − x∗(z0) + αer), we would have bα ≤ α0 if
u0 exhibits decreasing absolute risk aversion and bx > x0. To sum up, the
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question boils down to determining the conditions under which the access to
the equity market raises the optimal saving. This is the case if

Eu00(w0 + α0er) ≤ u00(w0), (17)

with w0 = z0−x∗(z0), and where α0 must satisfy condition Eeru00(w0+α0er) =
0. Gollier and Kimball (1996) and Gollier (2001, Proposition 75) solved this
question. Using the concept of risk tolerance T0(z) = −u00(z)/u000(z), they
showed that the necessary and sufficient condition to guarantee that inequal-
ity (17) holds for all z0 and all acceptable distributions of er is that the
derivative of risk tolerance T0 be uniformly larger than unity: T

0
0(z) ≥ 1 for

all z. This condition is stronger than decreasing absolute risk aversion, which
is equivalent to T 00(z) ≥ 0 for all z. This proves the first part of the following
proposition.

Proposition 5 Consider the two stage problem with a portfolio choice and
a saving decision. The demand for equity is larger when the saving plan is
flexible than when it must be fixed before observing the portfolio return if one
of the two conditions is satisfied:

1. The derivative of risk tolerance T0 is uniformly larger than unity;

2. The derivative of risk tolerance T0 is uniformly negative.

Proof: It just remains to prove the sufficiency of condition 2, which is
equivalent to increasing absolute risk aversion. Following Gollier and Kimball
(1996), this condition implies that inequality (17) is reversed, yielding bx ≤
x0. Increasing absolute risk aversion implies in turn that the maximum of
Eu0(z0−bx+αer) is smaller than the one of Eu0(z0−x∗(z0)+αer), or bα ≤ α0.
Because U is supermodular, we also know that α0 ≤ α∗. This concludes the
proof of the sufficiency of condition 2. ¥
Both conditions 1 and 2 imply that bα be smaller than α0, which we know

is smaller than α∗. In the intermediate case of weakly decreasing absolute
risk aversion, i.e., when absolute prudence is in between one and two time
the absolute risk aversion, bα is larger than α0 ≤ α∗, and the Gollier and
Kimball’s result does not allow us to conclude whether bα is larger or smaller
than α∗.
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We can use an alternative approach by explicitly measuring the risk tol-
erance indexes of v(.) and U(., x1, ..., xn). Fully differentiating the first-order
condition v0(z) = u00(z − x∗(z)) = p−1i u0i(x

∗
i (z)) yields

Tv(z) = T0(z − x∗(z)) +
nX
i=1

piTi(x
∗
i (z)), (18)

where Tv(z) = −v0(z)/v00(z) and Ti(z) = −u0i(z)/u00i (z) are the indexes of
absolute risk tolerance of v and ui respectively. Suppose that functions u0
and ui are proportional to each other (ui = βiu0), so that T0 ≡ Ti , T .
Under the additional assumption that T is convex, we obtain that

Tv(z) = (1 + P )

"
1

1 + P
T (z − x∗(z)) +

nX
i=1

pi
1 + P

T (x∗i (z))

#

≥ (1 + P )T

µ
z − x∗(z) +

Pn
i=1 pix

∗
i (z)

1 + P

¶
= (1 + P )T

µ
z

1 + P

¶
,

with P = Σn
i=1pi. Suppose moreover that the absolute tolerance of risk on

consumption is subhomogeneous, which implies that the right-hand side of
the above inequality is larger than T (z).3 Under decreasing absolute risk
aversion, this is in turn larger than T (z − x) for all x ≥ 0. This proves the
following proposition.

Proposition 6 Consider the two stage problem with a portfolio choice and
a saving decision. Suppose that ui(.) = βiu0(.). The demand for equity is
larger when the saving plan is flexible than when it is fixed ex-ante at an
arbitrary level x ≥ 0 if the absolute risk tolerance is increasing, convex and
subhomogeneous.

Under this condition, the indirect utility function v(.) is less concave than
U(., x) for all x. This condition is satisfied for the important set of HARA
utility functions

u(z) = ζ(η +
z

γ
)1−γ (19)

3A function T is subhomogeneous if and only if kT (z) ≥ T (kz) for all z and all k ≥ 1.

17



with ζ(1 − γ)γ−1 > 0 to ensure monotonicity and concavity. The corre-
sponding absolute risk tolerance T (z) = η + z/γ is increasing, convex and
subhomogeneous when η and γ are both nonnegative. This covers the clas-
sical cases of constant relative risk aversion (η = 0) and of constant absolute
risk aversion (γ →∞). Chiappori (1999) and Bodie, Merton and Samuelson
(1992) have examined in a consumption/leisure context the special case of
log linear preferences where η = 0 and γ → 1, implying u(z) = log z.
Lynch (1996) and Gabaix and Laibson (2002) examined a model of de-

layed adjustments in consumption. Investors can rebalance their portfolio
every period, but they adapt their consumption to change in portfolio wealth
only every D periods. They showed that the reduced flexibility of consump-
tion plans due to these delays can potentially explain the equity premium
puzzle. Because they assume constant relative risk aversion, we know from
Proposition 6 that this loss of flexibility reduces the demand for equity,
thereby increasing the equity premium. Their decision problem can be writ-
ten as

J(z) = max
(c0,...,cD−1)
(α0,...,αD−1)

D−1X
t=0

βtu(ct) + βDEJ

ÃÃ
z −

D−1X
t=0

ct
Rt

!
RD +

D−1X
t=0

αtert! ,
(20)

where the consumption plan (c0, ..., cD−1) between two reset dates must be
chosen at the previous reset date, whereas the portfolio choices (α0, ..., αD−1)
can depend upon the history of returns since that date. We assume that
the excess returns (er0, ..., erD−1) are independent and identically distributed.
When D = 1, this model is the standard portfolio-saving model of Merton
(1969) with full flexibility. Assuming that u(z) = z1−γ/(1− γ), it is easy to
check that the optimal demand for equity at each reset date is proportional
to z, the total wealth of the investor at that date. The optimal share of
wealth invested in equity equals

α(z;D)

z
= b

¡
RβE(1 + ber)−γ¢D/γ

, (21)

where b solves Eer(1 + ber)−γ = 0. Because RβE(1 + ber)−γ must be less than
unity for the solution to be bounded, we obtain that the share of wealth in-
vested in equity is exponentially decreasing with the lengthD of time between
two reset dates. This illustrates Proposition 6. If the equity premium Eer is
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small compared to the volatility σ2r , we obtain the following approximation
for the portfolio allocation rule:

α(z;D)

z
' b exp−

"
δ − µ

γ
+

γ − 1
γ

(Eer)2
2γσ2r

#
D, (22)

where δ = − log β is the rate of pure preference for the present and µ = logR
is the risk-free rate. To illustrate, suppose that investors rebalance their
portfolio every year, but they adapt their consumption to their portfolio
wealth only every D years. For γ = 4, δ − r = 2%, Eer = 7% and σr = 17%,
we obtain that the share of wealth invested in equity is approximately equal to
0.61 exp−0.021D. When there is no delay in the adjustment of consumption
(D = 1, flexible context), the optimal share invested in equity is 59.3%. It
goes down to 58.1% (49.1%) if consumption is planned every two (ten) years.4

Going back to the original problem expressed by (16), observe that it can
be reinterpreted as a risk-sharing problem between n+ 1 agents with utility
functions ui, i = 0, ..., n. The transfer of one unit of the consumption good
from agent i yields pi units to the reference agent 0. The intuition suggests
that syndicates that are able to internally share risks efficiently should accept
more portfolio risk, compared to syndicates in which individual 0 bears the
entire portfolio risk, whereas agents i 6= 0 get a fixed income xi. Propositions
5 and 6 provides sufficient conditions for this property to hold. An immediate
extension of these results are obtained by combining risk sharing with one’s
future self and risk sharing with another individual.

3.3 Dynamic portfolio management

In the previous section, we examined a portfolio-saving model in which we
introduced some rigidities in the way consumption can be adjusted to finan-
cial shocks. In this section, we alternatively examine the effect of introducing
some rigidities in the way the portfolio allocation can be adjusted to these
shocks. We consider the pure investment problem in which consumption
takes place only at the end of the investment period. There are three dates.

4Gabaix and Laibson (2002) get an effect of the low frequency of consumption adjust-
ments on the equity premium that is much stronger than what this analysis suggests. This
is because a (rotating) small fraction 1/D of investors participates to the sharing of the
market risk in each period.
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At date t = 0, the agent is endowed with wealth z0. This wealth can be in-
vested in two assets, one of which is risk-free. At date t = 1, after observing
the portfolio return, the investor can rebalance her portfolio in the flexible
context. At date t = 2, the portfolio is liquidated and the accumulated
wealth is consumed. The gross risk-free rate in each subperiod is denoted
R. The return of the risky asset in the first and second subperiods are de-
noted respectively er and er1. We assume that er and er1 are independent. This
application is a special case of our general model with

U(z, x) = Eu(zR+ xer1), (23)

where z is the wealth accumulated at the intermediary date, and x is the
euro investment in the risky asset in the second subperiod. The optimal
investment in the risky asset in this flexible context at date t = 0 solves the
following backward induction problems:

α∗ = max
α

Ev(z0R+ αer) with v(z) = max
x

Eu(zR+ xer1). (24)

In the rigid context, the demand for the risky asset in the two subperiods
must be determined at date t = 0 :

(bα, bx) = argmax
α,x

Eu(z0R
2 + αerR+ xer1). (25)

When er and er1 are identically distributed, it must be that bx = bαR. This
corresponds to a ”buy-and-hold” strategy in which the excess return of the
risky portfolio during the first subperiod is automatically reinvested in the
risk-free asset during the second subperiod.
The objective function U defined in (23) is neither supermodular nor

submodular, so that the only general result that we can use from section 2 is
that the ability of the investor to rebalance her portfolio induces her to raise
her demand for the risky asset at date t = 0 (α∗ > bα) when the expected
excess return Eer in the first subperiod is small compared to its standard
deviation. In order to compare α∗ and bα for larger portfolio risk in the first
subperiod, let us assume that the utility function u exhibits constant relative
risk aversion γ. It is well-known since Mossin (1968) that v(z) = ku(Rz) for
all z, which means that myopia is optimal. In the flexible context described
by (24), the demand α∗ at t = 0 is independent of the distribution of the
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return of the risky asset in the second subperiod. It implies that

α∗ = max
α

Eu(z0R
2 + αerR). (26)

Thus, in the CRRA case, the question can be restated in a completely static
framework. It boils down to determining the effect on the demand for the
risky asset er of the introduction of another risky asset er1. Gollier (2001,
Proposition 36) showed that independent static risks er and r1 are substitutes,
i.e., bα < α∗, if absolute risk aversion is decreasing and absolute prudence is
decreasing and larger than twice the absolute risk aversion. In the CRRA
case, it is easy to check that these conditions hold when relative risk aversion
is less than unity. Gollier, Lindsey and Zeckhauser (1997) showed that this
condition is necessary to guarantee the result when returns are identically
distributed.

Proposition 7 Consider the two-period investment problem with constant
relative risk aversion and independent and identically distributed returns.
If relative risk aversion is less than unity, the initial demand for the risky
asset is larger when the portfolio can be flexibly rebalanced at the end of
the first period than when the investor follows a rigid buy-and-hold strategy.
When relative risk aversion is larger than unity, it is always possible to find
a distribution of excess returns so that the initial demand is smaller in the
flexible context than in the more rigid one.

To understand the necessity of relative risk aversion less than unity, con-
sider the case of utility function u(z) = −z−3, which exhibits constant relative
risk aversion γ = 4. Normalize the risk free rate to zero. If the yearly excess
return of the risky asset is distributed as (−0.1, 2/3, 10, 1/3), the optimal
investment in the risky asset in the flexible context equals 16.16% of initial
wealth, whereas it goes up to 16.27% in the rigid context for a time horizon
of two years. Observe that this counterexample is built on a very skewed
distribution of excess returns. For more symmetric distributions, the stan-
dard intuition that an increase of the frequency at which the portfolio can be
rebalanced raises the demand for the risky asset. To illustrate, consider the
more realistic assumption that the distribution of excess return is normally
distributed with mean 4.6% per year and a standard deviation of 14.2%.5 In

5We calibrate our model on the real excess return of SP500 over the period 1963-1995.
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this case, the optimal portfolio allocation is to invest 56.35% of the investor’s
wealth if the investor rebalances her portfolio every year. This share of wealth
invested in the risky asset goes sligthly down to 56.01% when the investor
rebalances her portfolio only every two years.6

4 Conclusion

Because the value of information is nonnegative in the expected utility model,
flexibility always raises the expected utility of the decision maker. In this
paper, we examine the comparative statics consequence of flexibility on the
attitude towards risk ex ante. At the exception of Machina (1982), the gen-
eral tone of the literature is that flexibility enhances risk tolerance. Workers
who can adjust their labor supply to their financial wealth should take more
risk on financial markets. Spouses should take more risk on their job if
these risks are efficiently shared within their household. Investors should in-
vest more in risky assets if they can rebalance their portfolio more frequently.
Consumers who have access to the credit market should take more risk than
those who cannot adjust their saving/credit to the shocks on their incomes.
When the decision under risk is a choice between a risky prospect or a

safe one, or when it entails only small risks, the intuition that flexibility
enhances risk tolerance is correct. For more general choice problems under
uncertainty, additional restrictions on preferences or on the characteristics of
the available ex post adjustments are necessary to guarantee the comparative
statics result. When the choice under uncertainty is a portfolio allocation, we
have shown that the submodularity or the supermodularity of the objective
function is useful to derive sufficient conditions in various applications.

6The demand for the risky asset goes down to 55.66%, 55.28% and 54.87% when the
frequency of portfolio rebalancement is respectively every 3, 4 and 5 years. We solve the
problem numerically by using a discrete approximation for the normal distribution of log er
with n = 20 equally distant points between µ− 5σ and µ+ 5σ. An increase in n over 20
has no effect on the first four digits of α.
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Appendix: Proof of Proposition 2
We first examine the flexible context. The first-order condition of program

1 is written as

Ua(z, x
∗(z)) = 0. (27)

Fully differentiating this condition yields

x∗0(z) = −Uzx(z, x
∗(z))

Uxx(z, x∗(z))
. (28)

Using the envelop theorem, we have that

v0(z) = Uz(z, x
∗(z)). (29)

Fully differentiating this condition implies that

v00(z) = Uzz(z, x
∗(z)) + x∗0(z)Uzx(z, x

∗(z)) (30)

Combining equations (28), (29) and (30) yields property (7). Condition (6)
is in Pratt (1964).
We now turn to the analysis of the rigid context. It is obvious thatbπ(0) = 0. Using the envelop theorem, fully differentiating condition (4)

yields

EeεUz(z0 + keε, bx(k)) = −bπ0(k)Uz(z0 − bπ(k), x(k)), (31)

where functions bx(k) and x(k) satisfy the following conditions:

EUx(z0 + keε, bx(k)) = 0 (32)

Ux(z0 − bπ(k), x(k)) = 0. (33)

We have that bx(0) = x(0) = x∗(z0) and bπ0(0) = 0. Fully differentiating
equations (31), (32) and (33) shows that bx0(0) = x0(0) = 0 and

Eeε2Uzz(z0 + keε, bx(k)) + bx0(k)EeεUzx(z0 + keε, bx(k))
= (bπ0(k))2Uzz(z0 − bπ(k), x(k))− bπ00(k)Uz(z0 − bπ(k), x(k)) + x0(k)Uzx(z0 − bπ(k), x(k)).
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Evaluating this at k = 0 yields

bπ00(0) = σ2�
−Uzz(z0, x

∗(z0))

Uz(z0, x∗(z0))
.

It implies that

bπ(k) = bπ(0) + kbπ0(0) + 1
2
k2bπ00(0) + o(k2)

=
1

2
k2σ2�

−Uzz(z0, x
∗(z0))

Uz(z0, x∗(z0))
+ o(k2).

This concludes the proof.¥

Proof of Proposition 4
In the rigid context, the optimal bundle is characterized by bxi = γiz0R/piΓ,

i = 1, ..., n, yielding a total expenditure equaling z0R(1− (γ0/Γ)). It implies
that the portfolio choice problem in this context can be written as

bα = argmax
α

Ebu(z0R+ αer),
where bu(z) == γ−10 (z − z0 (1− γ0Γ

−1))
γ0 . In the flexible context, the opti-

mal portfolio solves

α∗ = argmax
α

Ev(z0R+ αer),
with v(z) = k zΓ. Gollier and Kimball (1996)7 have shown that the nec-
essary and sufficient condition for α∗ to be larger than bα for all acceptable
distributions of the equity return er is that v be ”centrally less risk-averse”
than bu around z0, i.e., that

h(r; z0) = r

µ
v0(z0R+ r)

v0(z0R)
− bu0(z0R+ r)bu0(z0R)

¶
≥ 0 (34)

7See also Gollier (2001), section 6.3.3.
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for all r. For r positive, this condition can be rewritten asµ
1 +

r

z0R

¶Γ−1
>

µ
1 +

Γ

γ0

r

z0R

¶γ0−1
.

When r tends to infinity, the two sides of this inequality tend to zero. How-
ever, because Γ−1 < γ0−1 < 0, the left-hand side converges quicker to zero
than the right-hand side. This implies that the necessary condition (34) is
violated for large r. ¥
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