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Abstract

Because agents have anticipatory feelings about future risks, it is optimal
for them to manipulate their expectations. As in Brunnermeier and Parker
(2003) and Gollier (2004), we examine the trade-off between the costs of erro-
neous decisions based on these manipulated beliefs and the benefits of antici-
pating a better future. In this paper, we assume that contingent markets are
complete, with applications to portfolio choices, insurance and markets for
lotteries. We show that agents will overestimate the probabilities of the good
states, a form of optimism. Moreover, this bias in beliefs is approximately
independent of the agent’s degree of risk aversion.
Keywords: anticipatory feelings, portfolio choice, optimism, optimal

expectations.



1 Introduction

Human beings have a natural tendency to believe what makes them happier.
Faced by an uncertain future, they tend to discard more easily information
that would force them to revise their expectations downwards. This manip-
ulation of beliefs is useful to extract more pleasure from anticipatory feelings
about the likelihood of a reward, or to limit the disutility of a stress gener-
ated from a risk of loss. Religious beliefs yielding a reward after dead, the
optimistic attitude towards lotteries and horsetrack bettings, or the limited
efforts to prevent a health risk to occur, could illustrate this phenomenon.
As stated by Glaeser (2004), the problem is that distorting beliefs has a neg-
ative impact on the adequacy of risk management. Overoptimistic agents
invest too much in risky assets, purchase too many lottery tickets, and retain
too much of insurable risks. There is thus a trade-off in this manipulation of
expectations between the desire to improve anticipatory feelings and the will-
ingness to limit the adverse consequences of the inefficient risk management
that this manipulation generates.
Brunnermeier and Parker (2003) and Gollier (2004) examined a portfolio

choice problem with only one risky asset and one risk-free asset. They showed
that, at least when the intensity of anticipatory feelings is not too large,
risk-averse investors optimally manipulate their beliefs in an optimistic way,
inducing them to purchase too much of the risky asset compared to what
would maximize the objective expected utility. An important characteristic
of optimal beliefs in this framework is that they set positive probability only
to the worst and best possible returns of the risky asset.
In this paper, we consider the same basic framework, but with an alter-

native decision problem under uncertainty. When there are only two assets
but more than two possible states of nature, markets are incomplete. We
alternatively assume that contingent markets are complete. This is useful
to examine a wide set of applications. For example, in a n-horse race, mar-
kets are usually complete in the sense that claims on any bet are priced.
Can this model explain why risk-averse agents accept to gamble in spite of
the unfair pricing of parimutuel contracts, or the well-documented favorite-
longshot bias (Thaler and Ziemba (1988))? In financial markets, investors
are assumed to have access to option markets that complete the market for
contingent claims. Tus, we may ask how anticipatory feelings influence the
willingness to diversify risks, or to purchase portfolio insurance. In the lit-
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erature of optimal insurance (Gollier (2000)), the policyholder is allowed to
select any indemnity schedule contingent to the loss. If the premium is pro-
portional to the actuarial value of the policy, Arrow (1971) has shown that
the optimal insurance contract contains a straight deductible. We examine
how the existence of anticipatory feelings affects thsi important result.

2 Portfolio choice under complete markets

Our model is static, with a decision date t = 0 and a consumption date
t = 1. At date 0, the consumer selects an asset portfolio, but has no utility
for consumption. The portfolio is liquidated at date 1, and the agent extracts
utility from consuming its market value. The uncertainty at date 0 is charac-
terized by the existence of S possible states of nature indexed by s = 1, ..., S
that could occur at date 1. There is an objective probability distribution
Q = (q1, ..., qS) > 0 that belongs to the simplex S = {(p1, ..., pS) ∈ RS |
ps ≥ 0 for all s and Σsps = 1} in RS. The consumer is endowed with a
state-contingent wealth (ω1, ..., ωS) > 0 at date 1. We assume that, at date
0, there is a complete set of markets for contingent claims. The Arrow-Debreu
security associated to state s yields 1 unit of the single consumption good at
date t = 1 if and only if state s occurs. The price of this asset at date t = 0
is denoted Πs > 0. The price-taking agent exchanges these securities and
ends up with portfolio C = (c1, ..., cS), where cs represents the demand for
asset s and the consumption level in state s. The portfolio choice problem is
subject to the standard budget constraint

SX
s=1

Πscs = w =def

SX
s=1

Πsωs, (1)

where w denotes the wealth level of the agent. Among the different feasible
portfolios, the agent can decide to purchase a risk-free portfolio with a state-
independent demand c = w/ΣsΠs for each of Arrow-Debreu asset. Without
loss of generality, we assume that the risk-free rate of the economy is zero,
so that ΣsΠs = 1. It means that the agent can secure a sure consumption
c = w at date t = 1.
The consumer has a von Neumann-Morgenstern utility function u that

is assumed to be twice differentiable, increasing and strictly concave. We
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assume that the Inada conditions are satisfied, with limc→0+ u
0(c) = +∞ and

limc→∞ u0(c) = 0. Let T (c) = −u0(c)/u00(c) denote the absolute risk tolerance
of u measured at c. Without anticipatory feelings, the investor selects the
portfolio C(Q) that maximizes the expected utility of final consumption:

C(Q) = arg max
(c1,...,cS)

SX
s=1

qsu(cs) s.t.
SX
s=1

Πscs = w. (2)

This standard Arrow-Debreu portfolio problem has a unique solution with
the following first-order condition: for all s = 1, ..., S,

u0(cs(Q)) = ξ
Πs

qs
. (3)

The following well-known properties of the objectively optimal portfolio are
easily derived from this condition.1

Lemma 1 The optimal portfolio C(Q) in the absence of anticipatory feelings
satisfies the following properties:

1. The demand for the contingent claim associated to state s depends upon
s only through the state price per unit of probability πs = Πs/qs : cs =
φ(Πs/qs);

2. This demand is inversely related to the state price per unit of probabil-
ity: πs0 ≥ πs implies cs0 ≤ cs;

3. The optimal portfolio risk is increasing in the investor’s risk tolerance:
|φ0(π)| = T (φ(π))/π;

4. Consider two agents respectively with utility functions u1 and u2 and
with optimal demand functions φ1 and φ2. Agent 1 is more risk-averse
than agent u2 if and only if φ1 crosses φ2 from below, for all price struc-
tures of financial markets: [∀c : −u01(c)/u001(c) ≤ −u02(c)/u002(c)]⇐⇒ ∀(Π1, ...,ΠS) ∈
S, ∃π0∀π : (φ1(π)− φ2(π))(π − π0) ≥ 0.

1See for example Gollier (2001, chapter 13).
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The first property means that if there are two states with the same price
per unit of probability, the demand for the corresponding two contingent as-
sets must be the same. To illustrate, suppose that asset prices as actuarially
fair in the sense that Πs = qs for all s. By property 1, investors facing this
price structure should purchase a risk-free portfolio with cs = w for all s.
Some risk is acceptable only if prices are not fair. In that case, it is optimal
to consume more in states with a smaller state price per unit of probability
(property 2). How much risk is desirable depends upon the agent’s degree of
risk tolerance. The portfolio riskiness can be measured by how the variabil-
ity of state prices per unit of probability is transfered to the variability of
contingent consumption, i.e., by φ0(π) = −T (c(π))/π. Agents with a larger
risk tolerance select a consumption plan that is more sensitive to differences
in state prices per unit of probability (property 3). Only agents with a zero
risk tolerance are willing to purchase a risk free portfolio when assets are not
actuarially priced.
Notice moreover that, as observed by Dybvig (1988), any portfolio C > 0

satisfying properties 1 and 2 can be rationalized by an increasing and concave
utility function u whose derivative would be defined by condition (3). Thus,
the expected utility model can be tested only through the comonotonicity of
vectors C and (π1, ..., πS). Property 4 tells us that comparative risk aversion
can be tested by determining whether the demand functions of the two agents
cross only once.
To illustrate, consider an economy with S = 10 states of nature. Objec-

tively, these states are equally likely to occur: q1 = ... = q10 = 0.1. The
state prices are Πs = 0.045+0.01s. For example, this means that the Arrow-
Debreu security s = 1 yields a return of 100(1 − 0.055)/0.055 = 1718% if
state 1 occurs, and −100% otherwise. Its expected return equals 81.8%. The
Arrow-Debreu security s = 10 yields a return of 100(1−0.145)/0.145 = 590%
only if state 10 occurs. Its expected return equals −31%. Suppose that the
investor’s utility function is u(c) = c1−γ/(1− γ), with constant relative risk
aversion. In Figure 1, we depicted the demand for the 10 Arrow-Debreu se-
curities when relative risk aversion is γ = 2 or γ = 4. The portfolio selected
by the more risk-tolerant agent has a larger expected return (4.6% rather
than 2.2%), but the standard deviation of returns is also larger (17% rather
than 8%).
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Figure 1: Demand for contingent claims without anticipatory feelings, re-
spectively when relative risk aversion equals 2 (triangles) and 4 (squares).

3 A model of portfolio choice with anticipa-

tory feelings

We now allow investors to use a subjective distribution of states when choos-
ing their portfolio that differs from the objective probability distribution Q.
At decision date t = 0, the beliefs of the consumer are characterized by a sub-
jective probability distribution P = (p1, ..., pS) beloging to S. Given these
beliefs P , the consumer selects the portfolio that maximizes his subjective fu-
ture expected utility on consumption. We obtain the following well-behaved
decision problem:

S(P ) = max
(c1,...,cS)

SX
s=1

psu(cs) s.t.
SX
s=1

Πscs = w. (4)

S(P ) measures the felicity at date t = 0 generated by anticipatory feelings.
The portfolio selected by the agent is denoted C(P ) = (c1(P ), ..., cS(P )).
It satisfies the following set of necessary and sufficient conditions: for all
s = 1, ..., S :

psu
0(cs) = ξΠs, (5)
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where ξ is the Lagrange multiplier associated to (1).
Because of the potential bias in the subjective beliefs, the objective ex-

pected utility of the consumer at date 1 may differ from S(P ). The objective
expected utility of a consumer with subjective beliefs P equals

O(P ) =
SX
s=1

qsu(cs(P )). (6)

The consumer’s objective expected utility depends upon the subjective prob-
ability distribution P only through the choice of the portfolio allocation in-
duced by P .
We now specify the lifetime well-being of the consumer with subjective

beliefs P . At date t = 0, the consumer savors his subjective future utility,
yielding savoring felicity S(P ) at that date. At date t = 1, the agent extracts
felicity O(P ) from consuming his terminal wealth. His lifetime well-being W
is assumed to be a convex combination of his felicity at these two dates:

W (P ) = kS(P ) + (1− k)O(P ). (7)

As in Gollier (2004), parameter k ∈ [0, 1[ measures the intensity of anticipa-
tory feelings in lifetime utility. When k = 0, the consumer has no anticipatory
feeling at date 0. When k tends to unity, he extracts felicity just from savor-
ing future consumption flows. Brunnermeier and Parker (2003) consider the
special case with k = 1/2.
As justified in the introduction, we assume that prior to date t = 0,

the agent controls his thoughts. He selects the beliefs P that maximizes his
lifetime well-being:

P ∗ = argmax
P∈S

W (P ). (8)

The optimal demand for the risky asset is C∗ = C(P ∗). The main objective
of the paper is to compare P ∗ to Q, and C∗ to C(Q), the portfolio that is
optimal under the objective beliefs.

4 The first-order condition for optimal ex-

pectations

In order to determine the optimal beliefs, it is important to know of a change
in them disorts the structure of the portfolio selected by the agent. This
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question has raised much attention since the work by Rothschild and Stiglitz
(1971) who have shown that a mean-preserving spread in the distribution of
the return of the risky asset does not necessarily reduce the demand for it.2

Abel (2002) described two very restrictive changes in distribution that yield
an unambiguous increase in the demand for the risky asset for investors with
constant relative risk aversion. Because this literature relies on an incomplete
market framework with only two assets, these results cannot be used here.
Up to our knowledge, we are the first to restate the problem under complete
markets. The following proposition characterizes the change in the structure
of the optimal portfolio due to a change in beliefs in that case.

Proposition 1 Consider a change dp = (dp1, ..., dpS) is the beliefs of the
agent. The demand for the contingent claim associated to state s, s = 1, ..., S,
is increased by

dcs =
SX
t=1

∂cs
∂pt

dpt

with

∂cs
∂pt

=

(
− ΠtT (ct)

pt
S
τ=1ΠτT (cτ )

T (cs) if t 6= s

− ΠsT (cs)

ps
S
τ=1ΠτT (cτ )

T (cs) +
T (cs)
ps

if t = s
(9)

where T (c) = −u0(c)/u00(c) is the absolute risk tolerance of the agent.

The proof of this proposition is skipped. It is easily obtained by totally
differentiating the system of equations (1,5) with respect to P . Observe
that, as suggested by the intuition, an increase in the subjective probability
pt associated to state t raises the demand for the contingent claim associated
to this state, and it reduces the demand for all other contingent claims.
These distortions are stronger in states where the risk tolerance of the agent
is larger. Again, this is very intuitive: if the agent is very risk-averse (T
= 0), the risk-free portfolio cs = w is optimal, and a change in the subjective
beliefs has no effect on this portfolio.
We can now turn to the analysis of the choice of expectations. We assume

that beliefs are selected to maximize a weighted average of respectively the

2Gollier (1995) provides a survey of this literature. He characterizes the changes in
beliefs that guarantees that all risk-averse investors reduce their demand for the risky
asset.
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subjective and objective expected utilities:

W (P ) =
SX
t=1

(kps + (1− k)qs)u(cs(P )).

The Inada conditions implies that the non-negativity constraints ps ≥ 0 are
never binding. It implies that the first-order condition for program (8) can
be written as

∂W

∂pt
= ku(ct) + (1− k)

SX
s=1

qsu
0(cs)

∂cs
∂pt
− ψ = 0,

where ψ is the Lagrange multiplier associated to constraint Σsps = 1. Sub-
stituting ∂cs/∂pt by its expression given in (9) allows us to rewrite the above
condition as

pt
∂W

∂pt
= kptu(ct)+(1−k)u0(ct)T (ct)

"
qt − pt

PS
s=1 qsu

0(cs)T (cs)PS
s=1 psu

0(cs)T (cs)

#
−ptψ = 0.

(10)
This condition must hold for all t = 1, ..., S. Taking the sum over all t yields

k
SX
t=1

ptu(ct) = ψ. (11)

Combining the above two conditions yields the following proposition.

Proposition 2 The first-order condition for optimal expectations are writ-
ten as

Ht(P
∗) = kp∗t [u(ct)− S(P ∗)]+(1−k)u0(ct)T (ct)

"
qt − p∗t

PS
s=1 qsu

0(cs)T (cs)PS
s=1 p

∗
su
0(cs)T (cs)

#
= 0

(12)
for t = 1, ..., S and cs = cs(P

∗) for all s.

This system of equations has usually no analytical solution. A simple
consequence of this proposition is presented in the following corollary. It
states that, except in the case where the feelings-free agent select the risk-
free position, it is always optimal to manipulate beliefs.
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Corollary 1 Suppose that k is positive. Suppose also that asset prices are
not objectively actuarially fair in the sense that there exists at least one state
t such that Πt is not equal to qt . It implies that the objective distribution
cannot be optimal: P ∗ 6= Q.

Proof: Suppose by contradiction that P ∗ = Q. It would imply that the
second term in the right-hand side of (12) is zero for all t. It would also imply
that c∗s = cs(Q) and S(P

∗) = O(Q). Consider state t such that Πt 6= qt, which
implies that u(ct(P

∗)) is not equal to S(P ∗). It implies in turn than the first
term in the right-hand side of (12) is not zero. Therefore, Ht(P

∗) is not zero,
a contradiction. ¥

5 The case of small anticipatory feelings

The benchmark case is when there is no anticipatory feelings (k = 0). Ob-
serve that even without any such feelings, the agent needs to form beliefs
ex ante in order to choose his portfolio. Because W (P ) equals O(P ) when
k = 0, the agent will select the beliefs that induce him to purchase the
portfolio C(Q) that maximizes the objective expected utility. As a striking
difference with the model of Brunnermeier and Parker (2003) and Gollier
(2004), there is here only one subjective distribution P that guarantees the
absence of any bias in the portfolio choice. This is the objective distribution
Q. As shown in Proposition 1, any other subjective beliefs would yield a
dominated portfolio. This is compatible with the observation that P ∗ = Q is
a solution of the first-order conditions (12) when k = 0. Thus, when k = 0,
the first-order condition (12) is necessary and sufficient. By a simple con-
tinuity argument, this condition is also necessary and sufficient when k is
small enough.
In this section, we explore the properties of the optimal beliefs in the

neighborhood of k = 0. To any degree k of anticipatory feelings, there is an
optimal subjective distribution P ∗(k) and an an optimal portfolio allocation
C∗(k) = C(P ∗(k)). By determining dP ∗/dk at k = 0, we will be able to
evaluate the optimal beliefs when k is positive by using the following Taylor
approximation:

P ∗(k) = Q+ k
dP ∗

dk

¯̄̄̄
k=0

+ o(k2).
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In addition to allowing us to derive simple properties of optimal beliefs,
the assumption of a small anticipatory feelings is made here because of the
difficulty to check the second-order condition otherwise. It is indeed note-
worthy that the first-order condition (12) is not sufficient for optimal expec-
tations, because the lifetime utility function W is generally not concave in
the vector P of subjective beliefs. Notice in particular that the subjective
expected utility S is a convex function of P, since by definition (4) it is the
upper envelope of linear functions of P . On the contrary, we have shown
above that the objective expected utility function O(P ) is well-behaved with
a single maximum at P = Q. By a standard continuity argument, condition
(12) is necessary and sufficient when k is positive but small. It needs not be
sufficient for larger intensities of anticipatory feelings.
In order to determine the derivative of p∗t with respect to k, we totally

differentiate Ht(P
∗) defined by (12) with respect to k. Doing this at k = 0

makes life much easier because we know that P ∗(0) = Q. It implies that the
bracketted term in (12) vanishes. Thus, we get

dHt(P
∗)

dk

¯̄̄̄
k=0

= p∗t [ut −O(Q)]− u0tTt
d

dk
p∗t

PS
s=1 qsu

0(cs)T (cs)PS
s=1 p

∗
su
0(cs)T (cs)

¯̄̄̄
¯
k=0

= 0,

where ut = u(ct(Q)), u
0
t = u0(ct(Q)) and Tt = T (ct(Q)). Using again that

P ∗(0) = Q, this condition can be rewritten as

1

p∗t

dp∗t
dk

¯̄̄̄
k=0

=
ut −O(Q)

u0tTt
+

PS
s=1

dp∗s
dk

¯̄̄
k=0

u0sTsPS
s=1 p

∗
su
0
sTs

. (13)

This must be true for all t = 1, ..., S. This system of S equations has the
following unique solution:

1

p∗t

dp∗t
dk

¯̄̄̄
k=0

=
ut −

PS
s=1 qsus

u0tTt
−

SX
τ=1

qτ
uτ −

PS
s=1 qsus

u0τTτ
. (14)

Turning to the impact of anticipatory feelings on the optimal portfolio, we
have that

dc∗t
dk

¯̄̄̄
k=0

=
SX
s=1

∂ct
∂ps

dp∗s
dk

¯̄̄̄
k=0

.
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Using conditions (9) and (14), this simplifies to

dc∗t
dk

¯̄̄̄
k=0

=
ut −

PS
s=1 qsus
u0t

. (15)

Finally, we derive from this equation that

dO(P ∗)

dk

¯̄̄̄
k=0

= 0 and
dS(P ∗)

dk

¯̄̄̄
k=0

= cov

µ
u,

u−Eu

u0T

¶
.

We summarize the characteristics of the impact of marginal anticipatory
feelings in the next proposition.

Proposition 3 The optimal subjective beliefs are a function P ∗(k) of the
intensity k of anticipatory feelings. When k = 0, it is optimal not to manip-
ulate beliefs: P ∗(0) = Q. The optimal portfolio is (c1(Q), ..., cS(Q)) = C(Q)
in that case. Everything else unchanged, the marginal sensitivities of the op-
timal portfolio and the optimal beliefs to anticipatory feelings are respectively
equal to

dc∗t
dk

¯̄̄̄
k=0

= ∆t =def
ut −

PS
s=1 qsus
u0t

, (16)

and
1

p∗t

dp∗t
dk

¯̄̄̄
k=0

=
∆t

Tt
− η, with η =

SX
s=1

qs
∆s

Ts
, (17)

for all t = 1, ..., S, where functions are evaluated for the optimal objective
consumption plan C(Q). At the margin, the objective expected utility is not
affected by these distortions, whereas the increase in the subjective expected
utility is proportional to the objective covariance between ut and ∆t/Tt.

At the margin, the objective expected utility of the decision maker is not
affected by the optimal manipulation of beliefs induced by anticipatory feel-
ings. In other words, anticipatory feelings have only a second order effect on
the objective welfare. On the contrary, anticipatory feelings have in general
a first order effect on the asset allocation, the optimal subjective distribution
of returns and the subjective expected utility. The only exception is when
objective asset prices are actuarially fair: Πs = qs for all s = 1, ..., S. In that
case, the feelings-free agent would fully insure against risk: cs(Q) = w and
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us = u(w) for all s. Because it implies that ∆s = 0 for all s, we conclude
from the above proposition that full insurance remains the optimal portfolio
strategy for agents with a limited intensity of anticipatory feelings. More
generally, we obtain the following corollary.

Corollary 2 Suppose that k is small and that there exist two states (t, t0)
with the same state price per unit of objective probability: πt = Πt/qt =
Πt0/qt0 = πt0. The introduction of a small intensity of anticipatory feelings
affects the demand for the two contingent claims together with their subjective
log probabilities in the same way. It implies that agents with a small intensity
of anticipatory feelings purchase the same quantity of the two corresponding
Arrow-Debreu securities: c∗t = c∗t0 .

Proof: From (3), Πt/qt = Πt0/qt0 implies that ct(Q) = ct0(Q) = c. It
implies in turn that ∆t = ∆t0 = ∆ and

c∗s = c+ k∆+ o(k2)

for s = t or t0. This concludes the proof. ¥
Notice that we also obtain from (17) that the percentage increase in p∗t

and p∗t0 from respectively qt and qt0 are equal at the margin. This corollary
shows that property 1 in Lemma 1 is robust to the introduction of marginal
anticipatory feelings. It has several applications. For example, it means that
all risks that can be diversified at an objectively fair price will be diversified
away in individual portfolios. Another application concerns the theory of
optimal insurance. The main result (Arrow (1971)) in this theory states that,
if transaction costs are proportional to the indemnity, the optimal insurance
contract is full insurance above a straight deductible. The above corollary
shows that this result is robust to the introduction of a small intensity of
anticipatory feelings.
Suppose alternatively that the objectively optimal portfolio C(Q) is risky,

because asset prices are not objectively fair. We hereafter determine how the
riskiness of the selected portfolio is affected by anticipatory feelings. Let bc
denote the objective certainty equivalent of the consumption plan C(Q) that
is optimal under the objective beliefs. The following result is directly derived
from Proposition 3.
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Corollary 3 Suppose that k is small and define the objective certainty equiv-
alent bc by u(bc) = Σsqsu(cs(Q)). Define bπ as the state price per unit of prob-
ability such that bc = φ(bπ). The optimal portfolio strategy has the following
two properties:

1. Anticipatory feelings raise the demand for all Arrow-Debreu securities
whose demand is larger bc, and they reduce the demand for all Arrow-
Debreu securities whose demand is less than bc. In this sense, they raise
the riskiness of the portfolio selected by the investor.

2. The effect of anticipatory feelings on the demand for the contingent
claim associated to state t is approximately proportional to the product
of the investor’s intensities of anticipatory feelings and of risk tolerance:

c∗t − ct(Q) = kT (bc)bπ − πtbπ + o(k2) + o((bπ − πt)
2). (18)

Proof: Define ∆(c) = (u(c)− u(bc))/u0(c). Observe that ∆0(bc) = 1, which
implies that function ∆ satisfies the following single-crossing property: (c−bc)∆(c) ≥ 0. Combining this observation with (16) proves the single crossing
property 1. Define function g such that g(π) = ∆(φ(π)). Because φ(bπ) = bc,
∆0(bc) = 1 and φ0(π) = −T (c)/π as stated in Lemma 1, we have that g0(bπ) =
−T (bπ)/bπ. Because g(bπ) = 0, we have that

∆t = g(πt) = T (bπ)bπ − πtbπ + o((bπ − πt)
2).

Combining this with condition (16) yields (18). ¥
This single-crossing property 1 is a central result of this paper, since it

shows that optimal expectations yield an excess of portfolio risk compared to
what would be optimal based on the objective state probability distribution.
The optimal manipulation of beliefs affects the structure of the selected port-
folio exactly as an exogeneous reduction in risk aversion. Both changes yield
a single-crossing change in asset demand. To illustrate this result, consider
again the numerical example presented at the end of section 2, with S = 10
states and constant relative risk aversion γ = 4. The squares in Figure 2 cor-
repond to the optimal portfolio without any anticipatory feelings, whereas
the triangles describe the optimal portfolio when k = 0.2. The increased de-
mand for contingent claims for low states and the corresponding reduction

13



0,9

1,0

1,1

1,2

1,3

1 2 3 4 5 6 7 8 9 10
state

c k=0

k=0.2

Figure 2: Effect of anticipatory feelings on the asset allocation, when relative
risk aversion γ equals 4 and k = 0 (squares) or k = 0.2 (triangles).

for high states yield a riskier portfolio. Compared to the objectively opti-
mal portfolio, the objective expected return has been increased from 2.2% to
3.2%, and the objective standard deviation from 8.3% to 12%.
Property 2 in the above corollary tells us that more risk-tolerant agents

have a demand for contingent claims that is more sensitive to the intensity
of anticipatory feelings. More precisely, if agents 1 and 2 are such that agent
1 has twice the degree of risk tolerance of agent 2 and half of her intensity
of anticipatory feelings, both agents will manipulate their beliefs in such a
way to change their demand for Arrow-Debreu securities in the same way.
This result holds only when the riskiness of the objectively optimal portfolio
is small, i.e. when cs(Q)−bc are small. Indeed, this result has been obtained
by a linear approximation for ∆(c) ' c−bc. Notice however that ∆ is locally
convex in c at bc since ∆00(bc) = 1/T (bc) > 0. This means that the effect of
anticipatory feelings on the demand for contingent claim s is larger than
k (cs(Q)− bc). In consequence, this effect is magnified for states where the
demand is already large. This is apparent in Figure 2.
The effect of anticipatory feelings on subjective probabilities is quantified

by equation (17). It tells us that anticipatory feelings yields a direct increase
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in log p∗t by ∆t/Tt, for t = 1, ..., S, together with an indirect reduction by
Σsqs∆s/Ts to guarantee that this changes preserve the identity Σsp

∗
s = 1. Of

course, the direct effect measured by ∆/T has the single-crossing property: it
is positive when c is larger than bc, and it is negative otherwise. The existence
of anticipatory feelings induces the agent to raise the subjective probabilities
associated to all states where consumption is larger than bc, and to reduce
the subjective probabilities of the other states. This can be defined as a
concept of optimism. However, these changes in subjective probabilities do
not necessarily sum up to zero. The second term denoted η in the right-hand
side of (17) takes care of this, but it can potentially break down the single-
crossing property for relative changes in probabilities. This is due to the fact
that h(c) = ∆(c)/T (c) is in general not increasing in c. It is increasing only
locally around c = bc, an observation that yields optimal optimism for small
risks, i.e., when the state prices per unit of objective probability are in a
small neighborhood of their objective mean bπ = 1.
In order to guarantee that anticipatory feelings yield an increase in the

probability of the good states and a reduction in the probability of the bad
states, we would need that h(c) = ∆(c)/T (c) be increasing in c. In spite of the
fact that it is not true in general, it is true when the utility function exhibits
constant relative risk aversion, i.e., when u(c) = c1−γ/(1−γ). Indeed, in that
special case, we have that

h0(c) =
∂

∂c

Ã
u(c)−

PS
s=1 qsus

u0(c)T (c)

!
= γcγ−2

SX
s=1

qsc
1−γ
s ,

which is positive for all c.

Corollary 4 Suppose that k is small. The optimal subjective beliefs have the
following two properties:

1. The effect of anticipatory feelings on the subjective log probability asso-
ciated to state t is approximately proportional to the agent’s intensity
of anticipatory feelings. At the margin, it is independent of the agent’s
degree of risk tolerance:

log p∗t − log qt = k
bπ − πtbπ + o(k2) + o((bπ − πt)

2). (19)

15



2. Suppose that bπ − πt, t = 1, ..., S are small, or that relative risk aver-
sion is constant. Anticipatory feelings raise the subjective probability
of states where the excess return of their portfolio is positive, and they
reduce the subjective probability of states where this return is negative.
In this sense, anticipatory feelings raises the agent’s optimism.

Proof: See the Appendix.
As suggested by the intuition, anticipatory feelings induce optimism. In

order to feel better, investors overestimate the probabilities of states in which
their selected portfolio has a positive return. To illustrate, let us go back
once again to the numerical example introduced in section 2. In this example,
the portfolio that is optimal for a feelings-free agent with constant relative
risk aversion γ = 4 has an excess return that is positive for the low price
states s = 1 to 4, and has a negative return for the high price states s = 6
to 10. In Figure 3, we draw the optimal subjective beliefs when k is between
0 and 0.20. We see that, as predicted by the above corollary, the agent with
k = 0.05 overestimates the probabilities of states s ∈ {1, 2, 3, 4}, and he
underestimates the probabilities of states s ∈ {6, 7, 8, 9, 10}. The optimal
optimism is reinforced for investors with more powerful anticipatory feelings.
Property 2 in Corollary 4 tells us that the induced optimism is not much

sensitive to the risk tolerance of the investor, as shown in Figure 4 when
k = 0.2. For all states except s = 1, the difference between the optimal
subjective state probabilities of the investor with γ = 2 and and the one with
γ = 6 does not exceed 0.3%. However, these two agents differ much about
the subjective probability of the best state, with p∗1 = 12.9% or p∗1 = 14.6%
respectively for γ = 2 and γ = 6.

6 Asset prices with anticipatory feelings

In this section, we examine an asset pricing model which is based on the
portfolio choice problem presented above. We assume that the economy is
composed of a large number N of identical consumers, indexed i = 1, ..., N,,
all with the same utility function u, the same intensity of anticipatory feelings
k and the same endowment of contingent claims (ω1, ..., ωS). A competitive
equilibrium in this economy is a set {(Ci∗, P i∗)i=1,...,N , (Π1, ...,ΠS)} such that
(1) for each i, given asset prices Π and beliefs P i∗, agent i0s portfolio Ci∗
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maximizes his subjective expected utility subject to his budget constraint;
(2) beliefs P i∗ maximizes agent’s i lifetime utility W i; and (3) the S markets
for contingent claims clear.
As in the previous section, we assume that k is small enough, so that, for

any price vector (Π1, ...,ΠS) > 0, the beliefs selection problem has a unique
solution, which implies that the equilibrium must be symmetric. Therefore,
we hereafter drop the index i from our notation. The symmetry of the
equilibrium implies that the market-clearing condition is written as c∗t = ωt
for all t. The optimality of this portfolio (condition (1)) requires in turn that

p∗tu
0(ωt) = ξΠt, (20)

for t = 1, ..., S. To keep our notation simple, we replace our normalizing
assumption that prices sum up to unity by the alternative condition ξ = 1.
Finally, the optimality of beliefs P ∗ requires the S equations (12) to be
satisfied. Using the market-clearing conditions, this is written as

kp∗t

"
u(ωt)−

SX
s=1

p∗su(ωs)

#
+(1−k)u0(ωt)T (ωt)

"
qt − p∗t

PS
s=1 qsu

0(ωs)T (ωs)PS
s=1 p

∗
su
0(ωs)T (ωs)

#
= 0

(21)
for t = 1, ..., S. Thus, finding the equilibrium asset prices requires first to
solve this system of S equations for the S unknowns (p∗1, ..., p

∗
S). In a second

step, we use equation (20) to derive (Π1, ...,ΠS). The difficulty is that (21) is
a system of polynomial equations of degree 3, yielding at most three possible
equilibria. As in the previous section, we simplify this problem by limiting
the analysis to small intensities of anticipatory feelings. From Proposition 3,
we know that equation (21) implies that

p∗t = qt + kqt

∙
∆t

Tt
− η

¸
+ o(k2), (22)

where ∆t is evaluated at ωt. This yields the following result.

Proposition 4 Suppose that the intensity of anticipatory feelings is small.
Then, there exists a unique competitive equilibrium. It is symmetric. The
equilibrium price vector satisfies the following condition: for t = 1, ..., S,
Πt/qt = b(ωt) with

b(ω) = u0(ω)

½
1 + k

∙
u(ω)− u(bω)
u0(ω)T (ω)

− η

¸¾
+ o(k2), (23)

18



where bω is the certainty equivalent consumption defined by u(bω) ==PS
s=1 qsu(ωs),

and η =
PS

s=1 qs(u(ωs) − u(bω))/u0(ωs)T (ωs). If the macroeconomic risk is
small or if relative risk aversion is constant, anticipatory feelings raise (resp.
reduce) the price of states where aggregate wealth is larger (resp. smaller)
than some threshold ω defined by u(ω)− u(bω) = ηu0(ω)T (ω).

The result specific to constant relative risk aversion comes from the fact
that the fraction in the right-hand side is increasing in ω in that special case.
In order to discuss this proposition, observe first that the equilibrium state

prices per unit of objective probability depend upon the state only through
the aggregate wealth ω of the corresponding state: Πt/qt = b(ωt). This
implies in particular that at equilibrium, diversifiable risks are actuarially
priced. This property of the equilibrium is a consequence of the observation
made earlier that investors diversify diversifiable risks in their portfolio. If
there is no aggregate risk, equilibrium prices are objectively actuarially fair.
When there is an aggregate risk, the above proposition tells us that antic-

ipatory feelings distort equilibrium prices by raising the price of good states,
and by reducing the price of bad state. This is an inituitive consequence of
the optimal optimism, which increases the demand for contingent claims as-
sociated to the good states. The theshold wealth level ω corresponding to
the state for which anticipatory feelings do not affect the equilibrium price
is characterized in Proposition 4. The simplest case is when consumers have
logarithmic utility functions. In that case, it is easy to check that η = 0,
which implies ω = bω. But η is not zero in general. Because it can be checked
that η is positive when relative risk aversion is larger than unity,3 the theshold
ω is larger than bω in that case.
The most important property of the price kernel Π/q in the classical case

is that it is monotone decreasing in ω. This property implies there is a
positive equity premium on financial markets. Observe that the price kernel
b(ω) needs not be decreasing in our model, because the bracketted term in
the right-hand side of (23) is increasing in ω.

3More generally, η is positive (resp. negative) when u000u0/u002 is smaller (resp. larger)
than 2.
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Figure 5: The lifetime well-being as a function of the subjective probability of
the high return, for various intensities k of anticipatory feelings. Parameter
values: γ = 4, Π1 = Π2 = q1 = q2 = 1/2.

7 The case of large anticipatory feelings

Because by construction S(P ) is convex in P, the problem of maximizing
W (P ) = kS(P ) + (1− k)O(P ) is well-behaved only when k is small. In this
section, we illustrate some features of the optimal assets allocation when k
is not small. Let us consider the case of constant relative risk aversion γ = 3
and w = 1. We also assume that there are two states that are objectively
equally likely: q1 = q2 = 1/2. Finally, we assume that the prices of the two
contingent claims are actuarially fair: Π1 = Π2 = 1/2. From Corollary 2,
when k is small enough, consumers fully insure risks and do not manipulate
their beliefs. In Figure 5, we have drawn the lifetime well-being W as a
function of the subjective probability p of state 1, for various values of k.
When k is smaller than or equal to 1/2, W is globally single-peaked and the
optimal subjective probability is p∗1 = p∗2 = 1/2, implying that investing only
in the riskfree asset is optimal as stated in Corollary 2.
When k is in ]1/2, 1[, function W exhibits a concave-convex-concave

shape, with two symmetric optimal beliefs. The optimal subjective prob-
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Figure 6: The optimal subjective probability p∗ as a function of the intensity
k of anticipatory feelings. Parameter values: γ = 4, Π1 = Π2 = q1 = q2 =
1/2.

ability that is larger than one-half is first constant and then increasing in
k, as seen in Figure 6. Notice that the existence of two symmetric optima
shows that providing zero-sum gambling opportunities can be helpful to im-
prove welfare in an homogeneous economy of risk-averse agents. Consider an
economy with no aggregate risk. Suppose that agents with constant relative
risk aversion γ = 4 and with an intensity k = 0.6 of anticipatory feelings are
considering playing Heads-or-Tail game with a fair coin. In this economy,
there is a competitive equilibrium with fair prices Π1 = Π2 = 1/2 where
each agent puts 21.6% of initial wealth at stake by betting on either Heads
or Tail. Half of the population bets on Heads, believing that the probability
of Heads equals p∗ = 78, 4%. The other half bets on Tail, believing that the
probability of Tail is 1− p∗ = 78, 4%
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Appendix: Proof of Corollary 4

We prove property 1. When bπ − πs, s = 1, ..., S are small, property 2
is a direct consequence of property 1. Property 2 with constant relative risk
aversion is immediate from (17) and the fact that∆/T is increasing. Consider
a vector Θ = (θ1, ..., θS) and a family of state prices indexed by ε, with Πs =
qs(1+εθs), or πs = 1+εθs, for all s. In order to preserve our assumption that
the state prices sum up to unity, we impose that Σsqsθs = 0. Let cs(ε) and bc(ε)
denote the optimal asset allocation and the certainty equivalent consumption
as a function of ε. Define bπ(ε) accordingly. Because this corollary focuses on
situations where the heterogeneity of πs is small, we examine the properties of
these functions around ε = 0. Observe that when ε = 0, cs(0) = bc(0) = w andbπ(0) = 1. Totally differentiating the first-order condition u0(cs) = ξ(1 + εθs)
and using the budget constraint Σsqsπscs = w yields

c0s(0) = −T (w)θs
for all s. Totally differentiating condition u(bc) = Σsqsu(cs) yields in turn
that

bc0(0) = PS
s=1 qsu

0(cs(0))c
0
s(0)

u0(bc(0)) = −u
0(w)T (w)

PS
s=1 qsθs

u0(w)
= 0.

It implies that bπ0(0) = 0 and that bπ(ε) = 1 + o(ε2).
Let us define function hs as hs(ε) = [u(cs(ε))−u(bc(ε))]/u0(cs(ε))T (cs(ε)).

From the computations above, it is easy to check that hs(0) = 0 for all s,
and

h0s(0) = −θs
for all s. In consequence, we have that

d

dε

SX
s=1

qshs(ε)

¯̄̄̄
¯
ε=0

= −
SX
s=1

qsθs = 0.

It implies that equation (17) can be rewritten as

1

p∗t

dp∗t
dk

¯̄̄̄
k=0

= ht(ε)−
PS

s=1 qshs(ε)

= ε [−θt] + o(ε2)

=
bπ − πtbπ + o((bπ − πt)

2).
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Equation (19) is a simple rewriting of this condition. It implies the single
crossing property 1 for log p∗t with respect to log qt. ¥
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