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Abstract
We analyse the model in which the latent durations Ti are i.i.d. gene-

rated by a distribution F . The statistician observes Yi = min (Ti , Ci) and
Ai = 1I {Ti ≤Ci} where Ci is a censoring time. The prior probability on F
is a Dirichlet process. Hjort (1990) shows that the posterior distribution is
a neutral to the right process whose hasard function is a Beta process. Lo
(1993) has the same type of results with different assumptions on censoring
times. For a large class of specifications on censoring times, we exhibit a
representation of the posterior process which has the following form : F =∑
j FjF

j where j indexes the intervals between censoring times, the Fj ’s are
product of independent Beta distributed random variables and the F j ’s are
independent Dirichlet processes. Using powerful representations of Dirichlet
processes (Rolin (1992) and (1993), Sethuraman (1994), Florens and Rolin
(1994)) we deduce from this property a very efficient way to simulate various
functionals of F .
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1 Introduction

The reference model in Bayesian nonparametric statistics has been intro-
duced by Ferguson (1973). In this model, the observations Ti , 1 ≤ i ≤ n ,
are independent and identically distributed and the commun distribution F
is a priori a Dirichlet measure of parameter n0F0 to be written as F ∼
Di( n0F0 ) where n0 is a non negative number and F0 a given probability
measure. This prior specification is “natural conjugate” in the sense that
the posterior distribution of F is still a Dirichlet measure; more precisely :
F | T n

1 ∼ Di( n∗Fn∗ ) where n∗ = n0 + n , n∗Fn∗ = n0F0 + nFn and Fn is
the empirical measure of the sample.

In case of survival data, a Dirichlet measure Di(n0F0) verifies several sim-
ple and interesting properties. For example, the cumulative hazard function
H( [0, t] ) = − ln F ( (t,∞] ) is a Lévy process having easy finite dimensional
distributions (see, e.g., Florens, Mouchart and Rolin (1999)). However, other
characteristics of a Dirichlet measure are difficult to derive analytically. For
example, real functionals like F (f) =

∫
f dF have, in general, a complex dis-

tribution known only in very particular cases (see, e.g., Hannum, Hollander,
Landberg (1981), Yamato (1984), Cifarelli, Regazzini (1990), Diaconis, Kem-
perman (1995) and Florens, Rolin (1994)). Asymptotic approximations have
been exhibited (see Lo (1983), (1986) and (1987)) but the Bayesian viewpoint
is more focused upon small sample properties and simulation methods are
then very useful. In particular, very efficient representations of the trajecto-
ries of a Dirichlet measure (a purely discrete probability measure) providing
the distributions of the locations and the sizes of the jumps give the founda-
tion of a simulation strategy (Bayesian bootstrap), (see Rolin (1992) (1993),
Florens and Rolin (1994) and Sethuraman (1994)).

This representation is more complex in the case of censored observations.
Let us assume that Ti is the duration of interest and that Ci is a censoring
time. The statistician only observes Yi = min ( Ti , Ci ) and Ai = 1I {Ti≤Ci}.
An important literature has been developed on this model which appears to
be very relevant for survival analysis. The process generating the censoring
times may be specified in several ways. The censoring times may be fixed
or may be assumed to be generated by a stochastic mechanism, depending
or not on the generation process of the durations. Our assumptions on the
censoring times will be made precise in the next section.

In case of censored observations, the natural conjugate property of the
Dirichlet prior on the probability distribution of the duration disappears.
Susarla and Van Ryzin (1976) have computed the posterior expectations of
the integer powers of the survival function showing that the posterior dis-
tribution is not a Dirichlet measure and they conjectured that the posterior
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distribution was a mixture of Dirichlet measures (Antoniak (1974)). This
conjecture was proved later on by Blum and Susarla (1977). The class of
prior distributions has been extended to the wider class of neutral to the
right processes which includes the Dirichlet measures (Docksum (1974), Fer-
guson and Phadia (1979)). This class of distributions is also “natural con-
jugate”. This result implies that the Susarla-Van Ryzin’s posterior distribu-
tions are neutral to the right. The family of neutral to the right processes is
not the smallest family of processes verifying this closure property as shown
by Hjort (1990) who introduced the family of Beta processes (see also Lo
(1993) who defined Beta neutral processes). The Dirichlet prior measures
arise from particular Beta processes and a consequence of Hjort’s analysis
is that the Susarla-Van Ryzin’s posterior distributions are particular Beta
processes.Hjort (1990) a-na-lyzes a model conditional on censoring times but
Lo (1993) obtains identical results in case of a joint specification of Ti and
Ci .

The Beta processes are usually defined through some characteristics of
the distribution of the “predictable” form of the hazard function defined as
H−( [0, t] ) =

∫
[0,t] F ([s,∞])−1F (ds) and up to the best of our knowledge

no representation of their trajectories is available. The Beta processes still
induce purely discrete probability measures but the distributions of the lo-
cations and the sizes of the jumps have not a tractable expression and we
cannot extend the simulation of the functionals of F realized in the case of
Dirichlet processes.

Note however that a simulation of the trajectories using Markov Chain
Monte Carlo methods for Dirichlet priors has been proposed by Doss (1994).
Another different simulation strategy has been proposed by Damien, Laud,
Smith (1995) and (1996) for general neutral to the right processes priors.
But these simulation techniques must rely on more complicated schemes.
The latter strategy is more general but only simulates the probabilities of
intervals and the method hardly extends to simulations of the distributions
of functionals. In the case of non informative priors, Lo (1987) and (1993)
provides a Bayesian Bootstrap for censored durations.

The objective of this paper is to propose a representation theorem of a
sub-class of Beta processes from which efficient simulations of functionals
may be derived. This sub-class of Beta processes is the sub-class of posterior
distributions obtained from a Dirichlet prior measure after the observation
of right censored observations and is then the class of distributions derived
by Susarla and Van Ryzin.

Our paper is organized as follows: the model and some general proper-
ties are considered in Section 2 and the main representation theorem and
its implications are developed in Section 3. Practical considerations on the
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implementation of the simulation and a revisit of the Kaplan-Meyer data set
used by Susarla-Van Ryzin are exposed in Sections 4 and 5. The main proofs
are given in an Appendix.

2 Model Specification

Let ( Ti , Ci ) , 1 ≤ i ≤ n , be a sequence of positive latent variables where
Ti is the duration of interest and Ci is a censoring time. The sampling
distribution of this sequence is indexed by a parameter ( F , G ) where F

is a probability measure on ( IR
+

, B+
) and G is a probability measure on

(IR+n , B+n) . We assume

• H1 : The sequence T n
1 = { Ti : 1 ≤ i ≤ n } and Cn

1 = {Ci : 1 ≤ i ≤ n }
are sampling independent, i.e.,

T n
1 ⊥⊥Cn

1 | F , G . (2.1)

• H2 : The Ti , 1 ≤ i ≤ n , are independently and identically distributed
and the distribution of Ti is F , i.e.,

⊥⊥
1≤i≤n

Ti | F , G Ti⊥⊥G | F Ti | F ∼ F . (2.2)

• H3 : The joint distribution of Cn
1 is G , i.e.,

Cn
1 ⊥⊥F | G Cn

1 | G ∼ G . (2.3)

The Bayesian model requires a prior specification on ( F , G ) . We first
only assume the following property on such a prior:

• H4 : F and G are a priori independent, i.e.,

F ⊥⊥G . (2.4)

The variables Ti , 1 ≤ i ≤ n , are not all available but the statistician
only observes (Yi , Ai , Ci) , 1 ≤ i ≤ n , where

Yi = min ( Ti , Ci ) Ai = 1I{Ti ≤Ci } . (2.5)

The independence assumption H1 is motivated by an identification argu-
ment. Indeed, it is known that any probability measure on (Yi , Ai ) may be
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considered as deduced from the product of two independent probabilities on
Ti and Ci . Equivalently, in the absence of specific restrictions, any distri-
bution on ( Ti , Ci ) is observationally equivalent to a product of probability
measures (see, e.g., Mouchart and Rolin (1995)).

Using elementary manipulations of conditional independence (see, e.g.,
Florens, Mouchart and Rolin (1990)), we deduce from assumptions H1 to H3
the following properties :

i) The observed random variables are independent given Cn
1 , i.e.,

⊥⊥
1≤i≤n

( Yi , Ai ) | F , G , Cn
1 . (2.6)

ii) The distribution of ( Yi , Ai ) conditionally on (F , G , Cn
1 ) only de-

pends on F and Ci , i.e.,

(Yi , Ai)⊥⊥ (G , Cn
1 ) | F , Ci , (2.7)

and that implies

(Y n
1 , An

1 )⊥⊥G | F , Cn
1 . (2.8)

These two properties are summarized in saying that (Y n
1 , An

1 ) is Cn
1 -

conditionally independent.
Under assumptions H1 to H4 the observed model may be separated

through a Bayesian cut defined by the three independence conditions (see
Florens, Mouchart and Rolin (1990))

F ⊥⊥G Cn
1 ⊥⊥F | G (Y n

1 , An
1 )⊥⊥G | F , Cn

1 . (2.9)

Therefore, without loosing information, the inference may be totally sepa-
rated into the inference on G through the marginal model generating Cn

1

and the inference on F through the conditional model generating (Y n
1 , An

1 )
given Cn

1 . Equivalently Cn
1 may be considered as “known” or “fixed” for

the estimation of F . Moreover F and G are a posteriori independent, i.e.,

F ⊥⊥G | Y n
1 , An

1 , Cn
1 . (2.10)

We have in fact a stronger result : the inference on F does not require
the knowledge of the censoring times if (Yi , Ai) , 1 ≤ i ≤ n , are observed.
This means that the knowledge of ”unactive” censoring times ( Ci greater
than Ti ) is unnecessary.
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Lemma 2.1 Under assumptions H1 to H4 the following conditional inde-
pendence relation is verified:

F ⊥⊥Cn
1 | Y n

1 , An
1 .

Proof: see Appendix A.1

This, along with (2.10), is equivalent to

F ⊥⊥ ( Cn
1 , G ) | Y n

1 , An
1 . (2.11)

In conclusion, under H.1 to H.4 , whatever is the distribution of Cn
1 , i.e.,

G , the posterior distribution of F , i.e., the distribution of F conditionally
on (Y n

1 , An
1 ), will be the same as the posterior distribution of F obtained

in the model conditional on Cn
1 , i.e., in the model considering that the

censoring times are fixed and known. This result extends slightly Lemma
7.1 of Lo (1993) that shows that, under the supplementary assumption of
independence of the censoring times, F ⊥⊥G | Y n

1 , An
1 . Such results show

that comparisons between marginal and conditional models are irrelevant.

3 Posterior Distribution under a Dirichlet

Prior Specification

Let us now specify the prior distribution on F . We assume

• H5 : F is a Dirichlet measure with parameters n0 ∈ IR+ and F0 , a
probability measure on ( IR

+
, B+

) , i.e.,

F ∼ Di(n0 F0) . (3.1)

Let us recall (see Ferguson (1973)) that the Dirichlet measure is entirely
characterized by the finite dimensional distributions of {F (B`) : 1 ≤ ` ≤ k }
where {B` : 1 ≤ ` ≤ k } is a (non trivial) measurable partition of IR

+
.

Namely, the distribution of this vector on the k − 1 dimensional simplex of
[0, 1]k is a Dirichlet distribution of parameter {n0 F0(B`) : 1 ≤ ` ≤ k} , i.e.,

{F (B`) : 1 ≤ ` ≤ k } ∼ Di[ {n0 F0(B`) : 1 ≤ ` ≤ k } ] . (3.2)

This distribution may be characterized as follows:
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E

 ∏
1≤`≤k

F (B`)
a`

 =
Γ(n0)

Γ(n0 + a)

∏
1≤`≤k

Γ[n0F0(B`) + a`]

Γ[n0F0(B`)]
1I{F0(B`)> 0 } (3.3)

∀ a` > −n0F0(B`) , 1 ≤ ` ≤ k , and a =
∑

1≤`≤k
a` .

This prior specification entails three remarks:

(i) The prior distribution is defined on the structural parameter (or on
the parameter of interest) F and not on the reduced parameter (or
sufficient parameter), i.e. the probability measure generating the actual
data (Y n

1 , An
1 ) conditionally on Cn

1 . Recall that we assume F ⊥⊥Cn
1 .

(ii) We only consider as a prior a Dirichlet measure and not a member of
a larger class of natural conjugate priors such as neutral to the right
processes or Beta-neutral processes.

(iii) Thanks to the result of section 2, the prior distribution on G , the
nuisance parameter, may be left unspecified.

The description of the posterior distribution requires some definitions and
notations.

Let {aj : 1 ≤ j ≤ m} be the distinct censoring times in increasing order,
i.e., {Ci : 1 ≤ i ≤ n} = {aj : 1 ≤ j ≤ m} and 0 ≤ a1 < a2 < . . . < am <∞ .

They generate the following (measurable) partition of IR
+
:

B1 = [0, a1]

Bj = (aj−1, aj ] 2 ≤ j ≤ m (3.4)

Bm+1 = (am,∞] .

Under this partition, F (and F0 ) may be decomposed into marginal and
conditional probability measures as follows:

Fj = F (Bj) 1 ≤ j ≤ m + 1 (3.5)

and

F j ( · ) = F ( · | Bj ) =
F ( · ∩ Bj )

F ( Bj )
1 ≤ j ≤ m + 1 . (3.6)

Clearly
F =

∑
1≤j≤m+1

Fj F j . (3.7)
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We use the same notations in adding the subscript 0 for the marginal and
conditional probabilities defined from F0 .

The next proposition is derived from a basic general property of Dirichlet
measures (i.e., not related to the structure of ( IR

+
, B+

) or to the particular
partition we consider (see, e.g., Rolin (1992) or Florens, Rolin (1994)) .

Proposition 3.1 If F ∼ Di(n0 F0) , then

(i) ⊥⊥
1≤j≤m+1

F j ⊥⊥ {Fj : 1 ≤ j ≤ m + 1} ,

(ii) F j ∼ Di(n0 F0 j F j
0 ) 1 ≤ j ≤ m + 1 ,

(iii) {Fj : 1 ≤ j ≤ m + 1} ∼ Di[ {n0 F0 j : 1 ≤ j ≤ m + 1} ] .

Now, the marginal probabilities {Fj : 1 ≤ j ≤ m+1} may be reparametrized
in terms of survival probabilities and in terms of hazard probabilities that
will be particularly useful in this context.

Let us define the survival probabilities by

S0 = 1

Sj = F ( (aj,∞] ) =
∑

j+1≤`≤m+1

Fj 1 ≤ j ≤ m (3.8)

Sm+1 = 0

so that
Fj = Sj−1 − Sj 1 ≤ j ≤ m + 1 , (3.9)

and the hazard probabilities by

H1 = F1 = 1− S1

Hj =
F ( (aj−1, aj ] )

F ( (aj−1,∞] )
=

Fj
Sj−1

= 1− Sj
Sj−1

2 ≤ j ≤ m (3.10)

Hm+1 = 1 .
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This gives, in terms of hazard probabilities, the following product represen-
tations of the marginal probabilities :

Fj = Hj

∏
1≤`<j

(1−H`) 1 ≤ j ≤ m + 1 (3.11)

and of the survival probabilities:

Sj =
∏

1≤`≤j
(1−H`) 1 ≤ j ≤ m + 1 . (3.12)

We use the same notations in adding the subscript 0 for the survival and
hazard probabilities defined from F0.

Now by a known property of the Dirichlet distribution (see, e.g., Rolin
(1983)), we have the following proposition :

Proposition 3.2 If F ∼ Di(n0 F0) , then

(i) ⊥⊥
1≤j≤m

Hj

(ii) Hj ∼ Be[ n0F0 j , n0S0 j ] 1 ≤ j ≤ m ,

i.e., Hj has a beta distribution of parameters n0F0 j and n0S0 j .

Note that
E(Hj) = H0 j 1 ≤ j ≤ m . (3.13)

Now, the main result of the paper states that the independence relations
(i) in Proposition 3.1 and in Proposition 3.2 still hold a posteriori and provide
the posterior distributions of F j , 1 ≤ j ≤ m + 1, and of Hj , 1 ≤ j ≤ m .
We first introduce some notations. Let

Fn =
1

n

∑
1≤i≤n

εYi (3.14)

be the empirical probability measure of the observations and

Fun =
1

n

∑
1≤i≤n

Ai εYi (3.15)

be the empirical subprobability measure of the observed deaths.
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Just as before, we define

F j
un( · ) = Fun( · | Bj ) 1 ≤ j ≤ m + 1 , (3.16)

Fun j = Fun(Bj) =
1

n
Dj 1 ≤ j ≤ m + 1 , (3.17)

Sn j = Fn( (aj,∞] ) =
1

n
Nj 1 ≤ j ≤ m (3.18)

where Dj is the number of observed deaths in Bj and Nj is the number
of individuals at risk just after time aj . Let Lj be the number of censoring
times at aj , i.e.,

Lj =
∑

1≤i≤n
(1− Ai) 1I{Yi = aj } 1 ≤ j ≤ m , (3.19)

then we have
Nj−1 = Nj + Dj + Lj 1 ≤ j ≤ m . (3.20)

We can now state the main result of this paper.

Theorem 3.3 Under the assumptions H1 to H5 ,

(i) ⊥⊥
1≤j≤m+1

F j ⊥⊥{Fj : 1 ≤ j ≤ m + 1} | Y n
1 , An

1 ,

(ii) F j | Y n
1 , An

1 ∼ Di( n0 F0 j F j
0 + nFun j F j

un ) 1 ≤ j ≤ m + 1 ,

(iii) Fj = Hj
∏

1≤`<j
(1−H`) 1 ≤ j ≤ m + 1 ,

(iv) ⊥⊥
1≤j≤m

Hj | Y n
1 , An

1 ,

(v) Hj | Y n
1 , An

1 ∼ Be[ n0 F0 j + Dj , n0 S0 j + Nj + Lj ] 1 ≤ j ≤ m .

The proof is given in Appendix A.2.

Let us remark that, in view of the posterior distribution of F j given
in (ii), by Propositions 3.1 and 3.2, Theorem 3.3 is also true for any finer
partition that the one we used.

Note that (v) implies

E[ Hj | Y n
1 , An

1 ] =
n0F0 j + Dj

n0S0 j−1 + Nj−1
1 ≤ j ≤ m . (3.21)
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The main object of inference is the survival function St , i.e.,

St = F ( (t,∞] ) . (3.22)

Now for aj−1 ≤ t < aj , we note that

St = Fj F j( (t, aj] ) + Sj (3.23)

or in terms of hazard probabilities,

St =
∏

1≤`<j
(1−H`) · {Hj F j( (t, aj] ) + 1−Hj} . (3.24)

By a known property of the Beta distribution (namely : X ⊥⊥Y , X ∼
Be(a, b) , Y ∼ Be(a + b, d) imply XY ∼ Be(a, b + d)), we obtain that

Hj F j( (t, aj ] ) + 1−Hj | Y n
1 , An

1 (3.25)

∼ Be[ n0F0( (t,∞] ) + nFn( (t,∞] ) , n0F0( (aj−1, t] ) + nFun( (aj−1, t] ) ] .

Therefore, as noticed by Susarla-Van Ryzin, St is expressed as a product of
independent beta-distributed random variables and may then be simulated
without approximations (see Devroye (1986) section 9.4). By taking expec-
tation, we recover the Susarla-Van Ryzin estimator. Indeed, using (3.21) and
(3.25), we obtain

E[ St | Y n
1 , An

1 ] (3.26)

=
n0S0 t + nSn t

n0S0 j−1 + Nj−1

·
∏

1≤`<j

n0S0 ` + N` + L`

n0S0 `−1 + N`−1

= Sn∗ t ·
∏

1≤`<j
{1 +

L`

n0S0 ` + N`
}

where

Sn∗ t =
n0S0 t + nSn t

n0 + n
=

n0F0( (t,∞] ) + nFn( (t,∞] )

n0 + n
. (3.27)

This is indeed the correct expression of the Susarla-Van Ryzin estimator.

More generally, if f is a positive Borel function defined on ( IR
+

, B+
) ,

we obtain as a corollary of Theorem 3.3 ,

E[ F (f) | Y n
1 , An

1 ] =
∑

1≤j≤m+1

E[ Fj | Y n
1 , An

1 ] E[ F j(f) | Y n
1 , An

1 ] , (3.28)
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E[ Fj | Y n
1 , An

1 ] =
n0F0 j + Dj

n0S0 j−1 + Nj−1
·
∏

1≤`<j
{1− n0F0 ` + D`

n0S0 `−1 + N`−1
} (3.29)

and

E[ F j(f) | Y n
1 , An

1 ] =
n0F0 j F j

0 (f) + nFun j F j
un(f)

n0F0 j + Dj
(3.30)

where
F0 j F j

0 (f) =
∫
Bj

f dF0 (3.31)

and
nFun jF

j
un(f) =

∑
1≤i≤n

Ai f(Yi) 1IBj ( Yi ) . (3.32)

Finally, in Section 2, we proved that the posterior distribution depends
on the active censoring times only while in this section we consider all the
values of the censoring times. Note that a censoring time aj is not active if
and only if Lj = 0 . In view of (3.26), it is clear that such a censoring time
has no effect on the posterior expectation of the survival distribution and ,
from Lemma 2.1, the same is true for the posterior distribution of F .

Proposition 3.4 Under assumptions H1 to H5 , Theorem 3.3 is still valid if
we take into account only the aj ’s for which Lj > 0 .

Thanks to the comment following Theorem 3.3, we may consider the finer
partition generated by the observed durations. If Zj , 1 ≤ j ≤ M , are the
distinct observed durations in increasing order, i.e., {Yi : 1 ≤ i ≤ n} =
{Zj : 1 ≤ j ≤ M} and 0 ≤ Z1 < Z2 < . . . < ZM < ∞ , we consider the

following partition of IR
+

:

B1 = [0, Z1] , (3.33)

Bj = (Zj−1, Zj] 2 ≤ j ≤M ,

BM+1 = (ZM ,∞] .

We use the same notations as before and note that, for this partition,

Dj =
∑

1≤i≤n
Ai 1I{Yi =Zj } , (3.34)

Lj =
∑

1≤i≤n
(1− Ai) 1I{Yi =Zj } ,

Nj =
∑

1≤i≤n
1I{Yi>Zj } ,
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i.e., Dj is the number of deaths at Zj , Lj the number of losses at Zj and
Nj the number of individuals at risk just after Zj . Then Theorem 3.3 holds
for this finer partition but (ii) becomes

F j | Y n
1 , An

1 ∼ Di( n0F0 jF
j
0 + Dj εZj ) 1 ≤ j ≤M + 1 (3.35)

and formula (3.30) is simplified into

E[ F j(f) | Y n
1 , An

1 ] =
n0F0 j F j

0 (f) + Dj f(Zj)

n0F0 j + Dj
1 ≤ j ≤ M + 1 . (3.36)

If we analyze the jumps of the distribution function at the observations, i.e.,

F (Zj) = SZj− − SZj , (3.37)

we obtain, using (3.24),

F (Zj) = F j(Zj) Hj

∏
1≤`<j

(1−H`) (3.38)

and

F j(Zj) | Y n
1 , An

1 ∼ Be[ n0F0(Zj) + Dj , n0F0 j − n0F0(Zj) ] . (3.39)

Therefore

E[ F (Zj) | Y n
1 , An

1 ] =
n0F0(Zj) + Dj

n0 + n

∏
1≤`<j

{ 1 +
L`

n0S0 ` + N`
} . (3.40)

This shows in particular that, if F0 is atomeless, the expectation of the
posterior distribution has jumps only at the observed deaths, i.e., at points
Zj for which Dj > 0 .

4 Implementation of the simulation

Theorem 3.3 (ii) shows that the F j ’s , 1 ≤ j ≤ m + 1, are the conditional
probability measures of a random probability measure F p , satisfying

F p | Y n
1 , An

1 ∼ Di n0F0 + nFun ) . (4.1)

According to the representation of trajectories of Dirichlet measures when
F0 is atomeless (see Rolin (1992) and (1993), Florens, Rolin (1994) and
Sethuraman (1994)), we may write

F p = (1− π)F a + πF s (4.2)
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where

(i) π⊥⊥F a⊥⊥F s | Y n
1 , An

1 , (4.3)

(ii) π | Y n
1 , An

1 ∼ Be[ nu , n0 ] ,

(iii) F a | Y n
1 , An

1 ∼ Di( n0 F0 ) ,

(iv) F s | Y n
1 , An

1 ∼ Di( n Fun ) ,

where nu is the total number of observed deaths, i.e.,

nu =
∑

1≤j≤M
Dj . (4.4)

F a is then the prior Dirichlet measure and F a has the following represen-
tation:

F a =
∑

1≤k<∞
αk ετk (4.5)

where

(i) αk = δk
∏

1≤`<k
(1− δ`) (4.6)

(ii) δ∞1 ⊥⊥ τ∞1
(iii) τk , 1 ≤ k <∞, are i.i.d. F0

(iv) δk , 1 ≤ k <∞, are i.i.d. Be( 1 , n0 ) .

Since F a has an (infinite) countable number of jumps, in practice, it must
be truncated and replaced by

F̃ a = (
∑

1≤k≤K
αk)

−1
∑

1≤k≤K
αk ετk =

∑
1≤k≤K

αk ετk . (4.7)

The approximation error is given by (see, e.g., Rolin (1993) or Florens,
Rolin (1994))

sup
B∈B+

|F a(B)− F̃ a(B)| =
∏

1≤k≤K
(1− δk) = eK (4.8)

Its value may be easily computed for each simulation. Moreover, − ln eK ∼
Γ(n0 , K) and so, as K is large, ln eK is a.s. of order −K

n0
. The choice of

K is therefore related to the value of n0 .

F s may be considered as the posterior Dirichlet measure for a non informa-
tive prior, i.e., corresponding to n0 = 0 and is often called the sampling
Dirichlet measure. It may be represented almost surely as

F s =
∑

1≤j≤M
βj εZj (4.9)
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where

{ βj : 1 ≤ j ≤M } | Y n
1 , An

1 ∼ Di[ {Dj : 1 ≤ j ≤M} ] . (4.10)

Using a known relation between Beta and Gamma distributions (namely:
X ∼ Γ(1, a) , Y ∼ Γ(1, b) , X ⊥⊥ Y is equivalent to X + Y ⊥⊥ X / ( X +
Y ) , X + Y ∼ Γ(1, a + b) and X / ( X + Y ) ∼ Be(a, b) ), we obtain an
equivalent representation of F p , namely

F p =

γ F a +
∑

1≤i≤n
γi Ai εYi

γ +
∑

1≤i≤n
γi Ai

(4.11)

where

(i) γ⊥⊥ γn1 , (4.12)

(ii) γ ∼ Γ(1, n0) ,

(iii) γi , 1 ≤ i ≤ n, are i.i.d. Exp(1) .

We can now describe the simulation of the posterior distribution of F (f) =∫
f dF where f is a Borel measurable function defined on ( IR

+
, B+

) such
that

∫ |f | dF0 < ∞ .
1. Generation of

• δk , 1 ≤ k ≤ K , i.i.d. Be(1, n0) ,

• τk , 1 ≤ k ≤ K , i.i.d. F0 ,

• γi , 1 ≤ i ≤ n , i.i.d. Exp(1) ,

• γ ∼ Γ(1, n0) .

2. Computation of

• αk = δk
∏

1≤`<k
(1− δ`) 1 ≤ k ≤ K ,

• αk = (
∑

1≤`≤K
α`)
−1 αk 1 ≤ k ≤ K .

3. Computation of the prior terms

• D̃a
j = γ

∑
1≤k≤K

αk 1IBj (τk) 1 ≤ j ≤ m + 1 ,

14



• D̃a
j (f) = γ

∑
1≤k≤K

αk f(τk) 1IBj (τk) 1 ≤ j ≤ m + 1 .

4. Computation of the sampling terms

• D̃s
j =

∑
1≤i≤n

γi Ai 1IBj (Yi) 1 ≤ j ≤ m + 1 ,

• L̃s
j =

∑
1≤i≤n

γi (1− Ai) 1IBj (Yi) 1 ≤ j ≤ m + 1 ,

• D̃s
j (f) =

∑
1≤i≤n

γi Ai f(Yi) 1IBj (Yi) 1 ≤ j ≤ m + 1 .

5. Computation of the posterior terms

• Hj =
D̃a
j + D̃s

j∑
j≤`≤m+1

(D̃a
` + D̃s

` + L̃s
`)

1 ≤ j ≤ m ,

• Fj = Hj

∏
1≤`<j

(1−H`) 1 ≤ j ≤ m + 1 ,

• F j(f) =
D̃a
j (f) + D̃s

j(f)

D̃a
j + D̃s

j

1 ≤ j ≤ m + 1 ,

• F (f) =
∑

1≤j≤m+1

Fj F j(f) .

It can be verified that in absence of censored data (Ai = 1 ∀1 ≤ i ≤ n),
Fj reduces to

Fj =
D̃a
j + D̃s

j

γ +
∑

1≤i≤n
γi

1 ≤ j ≤ m + 1 (4.13)

so that

F (f) = (γ +
∑

1≤i≤n
γi)
−1 { γF a(f) + (

∑
1≤i≤n

γi) F s(f) } (4.14)

and is therefore identical to F p given in (4.11).

This implementation may be particularized in the case of non informative
prior specification ( n0 = 0 ) with the partition generated by the observa-
tions. In such a situation, the posterior distribution is called the ”sampling
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posterior distribution”. The hazard probabilities are represented as

Hj =

∑
1≤i≤n

γi Ai 1I{Yi=Zj}∑
1≤i≤n

γi 1I{Yi≥Zj}
1 ≤ j ≤M . (4.15)

From (3.24) and (3.26), we deduce that, for Zj ≤ t < Zj+1 and 1 ≤ j ≤M ,

St = SZj =
∏

1≤`≤j
(1−H`) (4.16)

and

E[ St | Y n
1 , An

1 ] =
∏

1≤`≤j
(1− D`

N`−1
) (4.17)

The second member of (4.17) is the Kaplan-Meyer estimator of the sur-
vival function, and (4.15) and (4.16) have been proposed by Lo (1993) as a
Bayesian Bootstrap for censored data.

In the sampling theory framework, several authors consider that the
Kaplan-Meyer estimator is undefined for ZM ≤ t < ∞ , but according
to the generalized maximum likelihood principle, (4.17) must also hold in
that case. This implies that if LM > 0 , St is defective (there is a positive
probability not to die) since HM ∼ Be(DM , LM ) .

In the Bayesian framework, some care is needed when we let n0 tend to
zero.
If Dj > 0 and 1 ≤ j ≤ M , we obtain from (3.35) that F j | Y n

1 , An
1 ∼

Di( Dj εZj ) but this is equivalent to F j = εZj a.s. and therefore

F j(f) = f(Zj) 1 ≤ j ≤M . (4.18)

If Dj = 0 and 1 ≤ j ≤ M , from (3.35) we obtain F j = εζj where ζj is

a F j
0 -distributed random variable ( see, e.g., Sethuraman, Tiwari(1982) or

Florens, Rolin (1994)). But in that case, since Hj | Y n
1 , An

1 ∼ Be( Dj , Nj+
Lj ) , Hj (and therefore Fj ) is equal to zero a.s. and we may use (4.18) for
all 1 ≤ j ≤ M . Similarly, for j = M + 1 , when n0 = 0 , FM+1 = εζM+1

where ζM+1 is a FM+1
0 -distributed random variable. Therefore,

FM+1(f) = f(ζM+1) (4.19)

and

E[ FM+1(f) | Y n
1 , An

1 ] =
1

F0( (ZM ,∞] )

∫
(ZM ,∞]

f dF0 (4.20)
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In particular, for ZM ≤ t <∞ ,

St = SZM 1I{ζM+1> t} (4.21)

and

E[ St | Y n
1 , An

1 ] =
∏

1≤`≤M
(1− D`

N`−1

) · F0( (t,∞] )

F0( (ZM ,∞] )
(4.22)

As a consequence, if LM > 0 (this implies SZM > 0 a.s.), the prior speci-
fication is still playing a role in the so-called ” non informative” situation.
However, the Bayesian estimator is no longer defective.

5 Example: Susarla-Van Ryzin revisited

We illustrate the proposed simulation by reworking the example of Kaplan,
Meier (1958). The data are presented in Table 1.

Zj 0.8 1.0 2.7 3.1 5.4 7.0 9.2 12.1
Dj 1 0 0 1 1 0 1 0
Lj 0 1 1 0 0 1 0 1
Nj−1 8 7 6 5 4 3 2 1

Table 1: Kaplan-Meier data

This example has been used for Bayesian estimations by Susarla, Van
Ryzin (1976) and Ferguson, Phadia (1979).

Three methods of simulation of the densities of the survival probabilities
have been proposed by Damien, Laud, Smith (1995) and (1996) ( to be re-
ferred to as DLS later on). Thanks to an approximate simulation of infinitely
divisible distribution, they are able to simulate the hazard function or the
”predictable” hazard function of any neutral to the right process.
In the first paper, the method is based on approximate simulations of H(Bj) ,
1 ≤ j ≤M ( where Bj is given in (3.33)) using the fact that, for a Dirichlet
prior specification, the hazard function H( [0, t] ) = − ln St is a Levy process.
In the second paper, they perform approximate simulations of the ”pre-
dictable” hazard function H−( [0, t] ) =

∫
[0,t] F ( [s,∞] )−1 F (ds) which is a

Beta process when F is a Dirichlet measure. The first method uses Hjort’s
approximation which considers that on small intervals H− is approximately
Beta-distributed. The second method is based on approximate simulations
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of H−(Bj), 1 ≤ j ≤M . But in these two last methods, another approxima-
tion is necessary to recover St from H−( [0, t] ) . Indeed, since H− is purely
discrete,

St =
∏

0≤s≤t
(1−H−(s)) (5.1)

and so they have to approximate
∏

Zj−1<s<Zj

(1−H−(s)) by 1−H−( (Zj−1, Zj) ).

Other methods of simulation of the trajectories of the posterior distribu-
tion function using Markov Chain Monte Carlo methods have been used by
Doss (1994) and Arjas and Gasbara (1994) (see also Doss, Huffer and Lawson
(1997)). But these methods require much more extensive computations and
the error of approximation is difficult to control.

In the case of Dirichlet prior specification, as mentioned in the comments
of Theorem 3.3, no approximate simulation is required since the survival
probabilities are product of independent Beta-distributed random variables.
However, thanks to this result, we will show that our proposed simulation is
much faster and more accurate than the methods described above because
it provides complete trajectories of the posterior process. The only approxi-
mation is the truncation of the prior simulation.

Note however, that the method proposed by DLS can be used more gen-
erally for neutral to the right prior specification.

To compare the results, we used the same prior specification, i.e., n0 = 1
and S0 t = e−θ0t with θ0 = 0.1 (the maximum likelihood estimate of θ0 in the
exponential model is 0.0969). We perform the same number of simulations,
i.e., B = 2000 . Computations were made on a Mcintosh Performa 5200 with
Matlab 4.2c.1. This clearly shows the great simplicity of our method.

The Kaplan-Meier, prior, sampling and posterior estimations of the sur-
vival function appear in Figure 1.

For the posterior survival probabilities at the observations, SZj and
SZj− , 1 ≤ j ≤ M , the expectations (St) , the standard deviations (Ssdt)
along with the means (Ss) and standard deviations (Ssds) of the simulated
samples are reported in Table 2 (t stands for theoretical and s for simulated).
It includes (when available) the values obtained by DLS (1995) and (1996).
It also gives the intervals with 95 percent posterior probabilities (CI), i.e., es-
timates of the 2.5 and 97.5 percentiles. Note that estimation of any quantile
is easily obtained.

Prior, sampling and posterior densities estimations of the survival prob-
abilities are presented in Figure 2. We use a Beta histogram estimator, i.e.,

f̃(t) =
∑

1≤j≤k
fB jBe(j, k − j + 1)(t) (5.2)
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where fB j is the proportion of the B simulated values falling in the interval
( (j − 1)/k, j/k ] with k = 100 .
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Figure 1 : Kaplan-Meier and Bayesian Estimations.
Dashed line is the Kaplan-Meier estimation, dot the prior, dashdot the

sampling and solid the posterior.
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St Ss DLS DLS Ssdt Ssds CI
(1995) (1996)

SZ1− 0.9915 0.9910 0.990 0.9922 0.0291 0.0306 0.9075 1.0000
SZ1 0.8803 0.8797 0.1026 0.1052 0.6143 0.9952
SZ2 0.8783 0.8778 0.921 0.8802 0.1034 0.1055 0.6109 0.9948
SZ3 0.8603 0.8593 0.898 0.8629 0.1106 0.1127 0.5692 0.9929
SZ4− 0.8559 0.8552 0.897 0.8587 0.1126 0.1135 0.5683 0.9923
SZ4 0.7066 0.7097 0.1568 0.1552 0.3526 0.9479
SZ5− 0.6841 0.6871 0.701 0.6910 0.1608 0.1596 0.3326 0.9408
SZ5 0.5348 0.5289 0.1758 0.1730 0.2116 0.8523
SZ6 0.5219 0.5265 0.502 0.5243 0.1762 0.1748 0.1952 0.8487
SZ7− 0.5014 0.5044 0.416 0.5036 0.1787 0.1775 0.1707 0.8368
SZ7 0.2924 0.2938 0.1764 0.1759 0.0280 0.6772
SZ8 0.2714 0.2713 0.275 0.2716 0.1734 0.1732 0.0184 0.6564

Table 2: Posterior Survival Probabilities Estimations

In the special case of sampling estimations ( n0 = 0 ), the densities and
the distribution functions of the survival probabilities are analytically com-
putable. The expectations, standard deviations and intervals with 95 percent
posterior probabilities along with their simulated values appear in Table 3.
The densities and the Beta histogram estimations are presented in Figure 3.

S Ssd CI
SZ1 0.8750 0.1102 0.5904 0.9964

0.8745 0.1142 0.5800 0.9959
SZ4 0.7000 0.1689 0.3232 0.9551

0.7035 0.1691 0.3302 0.9580
SZ5 0.5250 0.1884 0.1621 0.8671

0.5299 0.1880 0.1766 0.8633
SZ7 0.2626 0.1865 0.0107 0.6839

0.2648 0.1859 0.0102 0.6770

Table 3: Sampling Survival Probabilities Estimations
First line: real values

Second line: estimated values
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Figure 2: Bayesian Densities of the Survival Probabilities
Dot lines are the prior estimations, dashdot the sampling and solid the

posterior

From the left to the right
Top line SZ1− SZ1 SZ2 SZ3

Middle line SZ4− SZ4 SZ5− SZ5

Bottom line SZ6 SZ7− SZ7 SZ8

21



0 0.5 1
0

2

4

6

8
 S(Z(1))

0 0.5 1
0

0.5

1

1.5

2

2.5

3
S(Z(4))

0 0.5 1
0

0.5

1

1.5

2

2.5

3
 S(Z(5))

0 0.5 1
0

0.5

1

1.5

2

2.5

3
S(Z(7))

Figure 3 : Sampling Densities of the Survival Probabilities
Dot lines : true densities

Solid lines : simulated densities

A more interesting application of our proposed simulation is the estima-
tion of functionals. Indeed, no analytical form of the distribution is available.
Moreover, the simulation methods of DLS do not seem to be applicable in
such a case. We choose to give the estimation of the expected lifetime, i.e.,

E[ T | F ] =
∫

[0,∞]
t F (dt) . (5.3)

The prior, sampling and posterior expectations ( Ft ) and the standard de-
viations ( Fsdt ) along with the means ( Fs ),the standard deviations ( Fsds )
and the intervals with 95 percent posterior probabilities ( CI ) computed from
the simulated sample are reported in Table 4.
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Ft Fs Fsdt Fsds CI
Prior 10.0000 9.7371 7.0711 6.7759 1.5951 27.9205
Sampling 9.8038 9.7658 4.4814 4.2378 4.7219 21.3353
Posterior 9.8915 9.9048 4.0708 4.0250 5.0066 20.8981

Table 4: Expected Lifetime Estimations

Densities estimations using a normal kernel and a bandwidth equal to
B−1/5 multiplied by the standard deviations of the sample ( Fsds ) appear
in Figure 4.
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Figure 4 : Bayesian Densities of the Expectation
Dot line is the prior estimation, dashdot the sampling and solid the

posterior

23



Appendix

A.1 Proof of Lemma 2.1

We have to prove that under H1 to H4

F⊥⊥Cn
1 | Y n

1 , An
1 .

First note that under H1, H2, H3 and H4,

(F , T n
1 )⊥⊥ (G , Cn

1 ) .

This implies that for any J ⊂ { 1, 2, . . . , n } , if TJ = { Ti : i ∈ J } ,

F ⊥⊥Cn
1 | TJ .

Now, let g be a positive Borel measurable function defined on [0, 1]B
+

, i.e.,

the set of functions defined on B+
, the Borel subsets of IR

+
, with values in

[0, 1] , equipped with the product σ -field, and let hi , 1 ≤ i ≤ n , be positive
Borel measurable functions defined on IR+ × {0 , 1} . Then

E[ g(F )
∏

1≤i≤n
hi(Yi, Ai) | Cn

1 ] =
∑

J⊂{1,2,...,n}
E[ g(F )

∏
1≤i≤n

hi(Yi, Ai)1IAJ | Cn
1 ]

where

AJ = ∩
i∈J
{Ai = 1} ∩ ∩

i∈Jc
{Ai = 0} = ∩

i∈J
{Ti ≤ Ci} ∩ ∩

i∈Jc
{Ti > Ci} .

Now

E[ g(F )
∏

1≤i≤n
hi(Yi, Ai)1IAJ | Cn

1 ]

= E[ g(F )
∏
i∈J

hi(Ti, 1)1I{Ti≤Ci} ·
∏
i∈Jc

hi(Ci, 0)1I{Ti >Ci} | Cn
1 ] .

But, since ⊥⊥
1≤i≤n

Ti | F , Cn
1 , we have

E[
∏
i∈J

hi(Ti, 1)1I{Ti ≤Ci} ·
∏
i∈Jc

1I{Ti >Ci} | F , Cn
1 ]

=
∏
i∈J

E[ hi(Ti, 1)1I{Ti≤Ci} | F , Cn
1 ] ·

∏
i∈Jc

F ( (Ci,∞] )

= E[
∏
i∈J

hi(Ti, 1)1I{Ti≤Ci} ·
∏
i∈Jc

F ( (Ci,∞] ) | F , Cn
1 ] .
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Therefore

E[ g(F )
∏

1≤i≤n
hi(Yi, Ai)1IAJ | Cn

1 ]

= E[ g(F )
∏
i∈Jc

F ( (Ci,∞] )
∏
i∈J

hi(Ti, 1)1I{Ti ≤Ci} | Cn
1 ] ·

∏
i∈Jc

hi(Ci, 0) .

Now , since F ⊥⊥Cn
1 | TJ ,

E[ g(F )
∏
i∈Jc

F ( (Ci,∞] ) | TJ , Cn
1 ] = E[ g(F )

∏
i∈Jc

F ( (Ci,∞] ) | TJ , CJc ]

where CJc = {Ci : i ∈ Jc} , and if we define

k(TJ , CJc) =

E[ g(F )
∏
i∈Jc

F ( (Ci,∞] ) | TJ , CJc ]

E[
∏
i∈Jc

F ( (Ci,∞] ) | TJ , CJc ]
,

clearly on AJ , k(TJ , CJc) = k(YJ , YJc) and

E[ g(F )
∏
i∈Jc

F ( (Ci,∞] ) | TJ , CJc ]

= E[ k(TJ , CJc)
∏
i∈Jc

F ( (Ci,∞] ) | TJ , CJc ] .

Hence

E[ g(F )
∏

1≤i≤n
hi(Yi, Ai)1IAJ | Cn

1 ]

= E[ k(TJ , CJc)
∏
i∈J

hi(Ti, 1)1I{Ti ≤Ci}
∏
i∈Jc

hi(Ci, 0)F ( (Ci,∞] ) | Cn
1 ]

= E[ k(TJ , CJc)
∏
i∈J

hi(Ti, 1)1I{Ti ≤Ci}
∏
i∈Jc

hi(Ci, 0)1I{Ti>Ci} | Cn
1 ]

= E[ k(YJ , YJc)
∏

1≤i≤n
hi(Yi, Ai)1IAJ | Cn

1 ]

since F ( (Ci,∞] ) = P ( Ti > Ci | F , Cn
1 , TJ ) ∀ i ∈ Jc .

Therefore,

E[ g(F ) | Y n
1 , An

1 , Cn
1 ] = k(YJ , YJc) on AJ

and this implies

E[ g(F ) | Y n
1 , An

1 , Cn
1 ] = E[ g(F ) | Y n

1 , An
1 ] .
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A.2 Proof of Theorem 3.3

As shown in Appendix 1, on AJ =
⋂
i∈J
{Ai = 1} ∩ ⋂

i∈Jc
{Ai = 0} ,

E[ g(F ) | Y n
1 , An

1 , Cn
1 ] =

E[ g(F )
∏
i∈Jc

F ( (Ci,∞] ) | TJ , CJc ]

E[
∏
i∈Jc

F ( (Ci,∞] ) | TJ , CJc ]
.

But, by assumptions H1 to H4,

F | TJ , CJc = F | TJ ∼ Di(n0F0 + nFun) ,

since
∑
i∈J

εTi = nFun .

Therefore, by Proposition 3.1 and 3.2, we have

(i) ⊥⊥
1≤j≤m+1

F j ⊥⊥ ⊥⊥
1≤j≤m

Hj | TJ , CJc ,

(ii) F j | TJ , CJc ∼ Di(n0F0 j F j
0 + nFun j F j

un) ,

(iii) Hj | TJ , CJc ∼ Be[ n0F0 j + Dj , n0S0 j + Nu j ]

where Nu j =
∑

1≤i≤n
Ai 1I{Yi>aj} .

Now

∏
i∈Jc

F ( (Ci,∞] ) =
∏

1≤j≤m
F ( (aj,∞] )Lj

=
∏

1≤j≤m

∏
1≤`≤j

(1−H`)
Lj =

∏
1≤j≤m

(1−Hj)
Nc j+Lj

where Nc j =
∑

1≤i≤n
(1− Ai) 1I{Yi>aj} .

This clearly implies that

(i) ⊥⊥
1≤j≤m+1

F j ⊥⊥ ⊥⊥
1≤j≤m+1

Hj | Y n
1 , An

1 , Cn
1 ,

(ii) F j | Y n
1 , An

1 , Cn
1 = F j | TJ , CJc ,

(iii) Hj | Y n
1 , An

1 , Cn
1 ∼ Be[ n0F0 j + Dj , n0S0 j + Nu j + Nc j + Lj ] ,

i.e.,

(iii’) Hj | Y n
1 , An

1 , Cn
1 ∼ Be[ n0F0 j + Dj , n0S0 j + Nj + Lj ] .

26



References

[1] Antoniak C. (1974), Mixtures of Dirichlet process with applications to
Bayesian nonparametric problems, Annals of Statistics 2, 1152-1174.

[2] Arjas E. and Gasbarra D. (1994), Nonparametric Bayesian inference
from right censored survival data, using Gibbs sampler, Statistica Sinica,
4, 505-524.

[3] Blum K., V. Susarla (1977), On the posterior distribution of a Dirichlet
process given randomly right censored data, Stochastic Process. Appl.
5, 207-211.

[4] Cifarelli D.M., E. Regazzini (1990), Distributions functions of means of
a Dirichlet process, Annals of Statistics 18, 429-442.

[5] Damien P., P.W. Laud, A.F.M. Smith (1995), Approximate random
variate generation from infinitely divisible distributions with applica-
tions to Bayesian inference, Journal of the Royal Statistical Society,
Series B, 57(3), 547-563.

[6] Damien P., P.W. Laud, A.F.M. Smith (1996), Implementation of
Bayesian non-parametric inference based on Beta processes, Scandina-
vian Journal of Statistics, 23, 27-36.

[7] Devroye L. (1986), Non-Uniform Random Variate Generation, Springer-
Verlag, New-York.

[8] Diaconis P., J.B.K. Kemperman (1995), Some new tools for Dirichlet
priors, in Bayesian Statistics V: Fifth Valencia International Meeting on
Bayesian Statistics, Oxford Sciences Publications, 589-597.

[9] Doksum K. (1974), Tailfree and neutral random probabilities and their
posterior distributions, Annals of Probability 2, 183-201.

[10] Doss H. (1994), Bayesian nonparametric estimation for incomplete data
via successive substitution sampling, Annals of Statistics 22, 1763-1786.

[11] Doss H., F.W. Huffer and K.L. Lawson (1997), Bayesian nonparametric
estimation via Gibbs sampling for coherent systems with redundancy,
Annals of Statistics 25, 1109-1139.

[12] Ferguson T.S. (1973), A Bayesian analysis of some nonparametric prob-
lems, Annals of Statistics 1, 209-230.

27



[13] Ferguson T.S., E. Phadia (1979), Bayesian nonparametric estimation
based on censored data, Annals of Statistics 7, 163-186.

[14] Florens J.P., M. Mouchart, J.M. Rolin (1990), Elements of Bayesian
Statistics. Marcel Dekker, New York.

[15] Florens J.P., M. Mouchart, J.M. Rolin (1999), Semi- and non-parametric
Bayesian analysis of Duration models, International Statistical Review
67 (2), 187-210.

[16] Florens J.P., J.M. Rolin (1994), Bayes, Bootstrap, Moments , Discussion
Paper 9413, Institut de Statistique, Université catholique de Louvain,
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