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1 Introduction

The objective of this section is to study the properties of the solution of an integral
equation of the second kind (also called Fredholm equation of the second type) defined
by:

(I −K)ϕ = r (1)

where ϕ is an element of an Hilbert space H, K is a compact operator from H to H and
r is an element of H. As in the previous sections, K and r are known functions of a data
generating process characterized by its c.d.f. F and the functional parameter of interest
is the function ϕ.
In most cases, H is a functional space and K is an integral operator defined by its

kernel k and Equation (1) becomes:

ϕ(t)−
Z

k(t, s)ϕ(s)Π(ds) = r(t) (2)

The estimated operators are often degenerated, see Subsection 2.6.2. and, in that case,
Equation (2) simplifies into:

ϕ(t)−
LX
c=1

ac(ϕ)εc(t) = r(t) (3)

where the ac(ϕ) are linear forms on H and εc belongs to H for any c.
The essential difference between equations of the first kind and of the second kind

is the compactness of the operator. In (1), K is compact but I − K is not compact.
Moreover, if I−K is one-to-one, its inverse is bounded. In that case, the inverse problem
is well-posed. Even if I−K is not one-to-one the ill-poseness of equation (1) is less severe
than in the first kind case because the solutions are stable in r.
In most cases, K is a self-adjoint operator (and hence I−K is also self-adjoint) but we

will not restrict our presentation to this case. On the other hand, Equation (1) could be
extended by considering an equation (S −K)ϕ = r where K is now a compact operator
fromH to E and S is a bounded operator fromH to E , one-to-one with a bounded inverse.
This extension will not be considered in this paper.
This section will be organized in the following way. The next paragraph recalls the

main mathematical properties of the equations of the second kind. The two following
paragraphs present the statistical properties of the solution in the cases of well-posed and
of ill-posed problems and the last paragraph applies these results to the two examples
given in Section 1.
The implementation of the estimation procedures is not discussed here because this

issue is similar to the implementation of the estimation of a regularized equation of the
first kind (see Section 3). Actually, regularizations transform first kind equations into
second kind equations and the numerical methods are then formally equivalent, even
though statistical properties are fundamentally different.
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2 Riesz theory and Fredholm alternative

We first briefly recall the main results about equations of the second kind as they were
developed at the beginning of the 20th century by Fredholm and Riesz. The statements
are given without proofs (see e.g. Kress, 1999, Chapters 3 and 4).
LetK be a compact operator fromH toH and I be the identity onH (which is compact

only if H is finite dimensional). Then the operator I −K has a finite dimensional null
space and its range is closed. Moreover I −K is injective if and only if it is surjective. In
that case I −K is invertible and its inverse (I −K)−1 is a bounded operator.
An element of the null space of I−K verifiesKϕ = ϕ and if ϕ 6= 0, it is an eigenfunction

of K associated with the eigenvalue equal to 1. Equivalently the inverse problem (1) is
well-posed if and only if 1 is not an eigenvalue of K. The Fredholm alternative follows
from the previous results.

Theorem 1 (Fredholm alternative) Let us consider the two equations of the second
kind:

(I −K)ϕ = r (4)

and
(I −K∗)ψ = s (5)

where K∗ is the adjoint of K. Then:

i) Either the two homogeneous equations (I −K)ϕ = 0 and (I −K∗)ψ = 0 only have
the trivial solutions ϕ = 0 and ψ = 0 and in that case (4) and (5) have a unique
solution for any r and s in H

ii) or the two homogeneous equations (I − K)ϕ = 0 and (I − K∗)ψ = 0 have the
same finite number m of linearly independent solutions ϕj and ψj (j = 1, ...,m)
respectively and the solutions of (4) and (5) exist if and only if hψj , ri = 0 and
hϕj, si = 0 for any j = 1, ...,m.

3 Statistical properties of the solution of a well-posed
equation of the second kind

In the case of a one to one equation of the second kind, the asymptotic properties are easily
deduced from the properties of the estimation of the operator K and of the right-hand
side r.
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The starting point of this analysis is the relation:

ϕ̂n − ϕ0 =
³
I − K̂n

´−1
r̂n − (I −K)−1 r

=
³
I − K̂n

´−1
(r̂n − r) +

·³
I − K̂n

´−1
− (I −K)−1

¸
r

=
³
I − K̂n

´−1 h
r̂n − r +

³
K̂n −K

´
(I −K)−1 r

i
=

³
I − K̂n

´−1 h
r̂n − r +

³
K̂n −K

´
ϕ0

i
(6)

where the third equality follows from A−1 −B−1 = A−1 (B −A)B−1.

Theorem 2 If

i)
°°°K̂n −K

°°° = o (1)

ii)
°°°³r̂n + K̂nϕ0

´
− (r +Kϕ0)

°°° = O

µ
1

an

¶

Then kϕ̂n − ϕ0k = O

µ
1

an

¶
Proof. As I − K is invertible and admits a continuous inverse, i) implies that

k
³
I − K̂n

´−1
k converges to °°(I −K)−1

°° and the result follows from (6).

In some cases kr − r̂nk = O( 1
bn
) and kK̂n − Kk = O( 1

dn
). Then 1

an
= 1

bn
+ 1

dn
. In

some particular examples, as it will be illustrated in the last subsection the asymptotic
behavior of r̂n − K̂nϕ is directly considered.
Asymptotic normality can be obtained from different sets of assumptions. The follow-

ing theorems illustrate two kinds of asymptotic normality.

Theorem 3 If

i)
°°°K̂n −K

°°° = o (1)

ii) an
³³

r̂n + K̂nϕ0

´
− (r +Kϕ0)

´
=⇒ N (0,Σ) (weak convergence in H)

Then
an (ϕ̂n − ϕ0) =⇒ N ¡0, (I −K)−1Σ (I −K∗)−1

¢
Proof. The proof follows immediately from (6) and Theorem ?? in Section 2.

Theorem 4 We consider the case where H = L2(Rp, π). If
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i) kK̂n −Kk = o(1)

ii) ∃an s.t an
h³

r̂n + K̂nϕ0

´
− (r +Kϕ0)

i
(x)

d→ N (0, σ2 (x)) , ∀x ∈ Rp

iii) ∃bn s.t an
bn
= o(1) and

bnK̂
h³

r̂n + K̂nϕ
´
− (r +Kϕ0)

i
=⇒ N (0,Ω)

(weak convergence in H)
Then

an (ϕ̂n − ϕ0) (x)
d→ N ¡

0, σ2 (x)
¢ ∀x

Proof. Using
(I −K)−1 = I + (I −K)−1K

we deduce from (6):

an(ϕ̂n − ϕ0)(x) = an
n
(I − K̂n)

−1
h
r̂n + K̂ϕ0 − r −Kϕ0

io
= an(r̂ + K̂ϕ0 − r −Kϕ0)(x)

(7)

+
an
bn

n
bn(I − K̂)−1K̂(r̂ + K̂ϕ0 − r −Kϕ0)

o
(x)

The last term into bracket converges (weakly in L2). to a N(0, (I −K)−1Ω(I −K)−1)
and the value of this function at any point x also converges to a normal distribution (weak
convergence implies finite dimensional convergences). Then the last term into brackets is
bounded and the result is verified.

Note that condition (iii) is justified by circumstances when K is an integral operator
which increases the rate of convergence of r̂n + K̂nϕ.
We illustrate these results by the following three examples even if the first one appears

to be a little artificial.

Example. Consider L2(R, π) and (Y,Z) is a random element of R × L2(R, π). We
study the integral equation of the second kind defined by

ϕ(x) +

Z
EF (Z(x)Z(y))ϕ(y)π (dy) = EF (Y Z(x)) (8)

denoted by ϕ+ V ϕ = r.
This equation defines a well posed inverse problem because the covariance operator is

positive. We assume that an i.i.d. sample of (Y,Z) is available and the estimated equation
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(8) defines the parameter of interest as the solution of an integral equation having the
following form:

ϕ(x) +
1

n

nX
i=1

zi(x)

Z
zi(y)ϕ(y)π (dy) =

1

n

nX
i=1

yizi(x) (9)

Under regularity conditions one can check that kV̂n − V k = O
³

1√
n

´
and that

√
n
1

n

X
i

½
zi(·)

·
yi −

Z
zi(y)ϕ(y)π(dy)

¸
−EF (Y Z (·))−

Z
EF (Z(.)Z(y))ϕ(y)π(dy)

¾
⇒ N(0,Σ) in L2(R, π).

If for instance EF (Y |Z) = R
Z(y)ϕ(y)π(y)dy and under a homoscedasticity hypothesis

the operator Σ is a covariance operator with kernel σ2EF (Z(x)Z(y)) where

σ2 = V ar

µ
Y −

Z
Z(y)ϕ(y)π(dy)|Z

¶
.

Then, from Theorem 3,

√
n (ϕ̂n − ϕ0)⇒ N

¡
0, σ2(I + V )−1V (I + V )−1

¢
(10)

Example. Rational expectations asset pricing models:
Following Lucas (1978), such models characterize the pricing functional as a function

ϕ of the Markov state solution of an integral equation:

ϕ (x)−
Z

a(x, y)ϕ (y) f (y|x) dy =
Z

a(x, y)b(y)f (y|x) dy (11)

While f is the transition density of the Markov state, the function a denotes the
marginal rate of substitution and b the dividend function. For sake of expositional sim-
plicity, we assume here that the functions a and b are both known while f is estimated
nonparametrically by a kernel method. Note that if the marginal rate of substitution a
involves some unknown preference parameters (subjective discount factor, risk aversion
parameter), they will be estimated, for instance by GMM, with a parametric root n rate
of convergence. Therefore, the nonparametric inference about ϕ (deduced by solution of
(11) of a kernel estimation of f) is not contaminated by this parametric estimation; all the
statistical asymptotic theory can be derived as if the preference parameters were known.
As far as kernel density estimation is concerned, it is well known that under mild

conditions (see e.g. Bosq (1998)) it is possible to get with stationary strongly mixing
stochastic processes the same convergence rates and the same asymptotic distribution as
in the i.i.d. case. Then, we do not make explicit in this presentation the assumed dynamic
properties of the observations y and x of present and lagged values of a Markov process.
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Let us then consider a n-dimensional stationary stochastic process Xt and H the
space of square integrable functions of one realization of this process. In this example, H
is defined with respect to the true distribution. The operator K is defined by

Kϕ (x) = EF (a (Xt−1, Xt)ϕ (Xt) |Xt−1 = x) (12)

and
r (x) = EF (a (Xt−1,Xt) b(Xt)|Xt−1 = x) (13)

We will assume that K is compact though for example a Hilbert-Schmidt condition
(see assumption A.1 of Section ?? for such a condition). A common assumption in rational
expectation models is that K is a contraction mapping, due to discounting. Then, 1 is
not an eigenvalue of K and (11) is a well-posed Fredholm integral equation.
Under these hypotheses, both numerical and statistical issues associated with the

solution of (11) are well documented. See Rust, Traub and Wozniakowski (2002) and
references therein for numerical issues. The statistical consistency of the estimator ϕ̂n

deduced from the kernel estimator K̂n is deduced from Theorem 2 above. Assumption i)
is satisfied because K̂n−K has the same behavior as the conditional expectation operator
and

r̂n + K̂nϕ− r −Kϕ
= EFn (a (Xt−1, Xt) (b(Xt) + ϕ (Xt)) |Xt−1)
−EF (a (Xt−1,Xt) (b(Xt) + ϕ (Xt)) |Xt−1)

converges at the speed 1
an
=
³

1
ncmn

+ c4n

´1/2
if cn is the bandwidth of the (second order)

kernel estimator and m is the dimension of X.
The weak convergence obtained through Theorem 4, Assumption ii) is the usual result

on the normality of kernel estimation of conditional expectation. As K is an integral
operator, the transformation by K increases the speed of convergence which implies iii).

Example: Partially Nonparametric forecasting model:
Nonparametric prediction of a stationary ergodic scalar random process Xt is often

performed by looking for a predictor ϕ (Xt−1, ...,Xt−d) able to minimize the mean square
error of prediction:

E [Xt − ϕ (Xt−1, ..., Xt−d)]
2

In other words, if ϕ can be any squared integrable function, the optimal predictor is
the conditional expectation

ϕ0 (Xt−1,...,Xt−d) = E [Xt|Xt−1,...,Xt−d]

and can be estimated by kernel smoothing or any other nonparametric way to estimate a
regression function. The problems with this kind of approach are twofold. First, it is often
necessary to include many lagged variables and the resulting nonparametric estimation
surface suffers from the well-known ”curse of dimensionality”. Second, it is hard to
describe and interpret the estimated regression surface when the dimension is more than
two.
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A solution to deal with these problems is to think about a kind of nonparametric
generalization of ARMA processes. For this purpose, let us consider semiparametric
predictors of the following form

E [Xt|It−1] = mϕ (θ, It−1) =
∞X
j=1

aj (θ)ϕ (Xt−j) (14)

where θ is an unknown finite dimensional vector of parameters, aj (.) , j ≥ 1, are known
given scalar functions and ϕ (.) is the unknown functional parameter of interest. The
notation

E [Xt|It−1] = mϕ (θ, It−1)

stresses the fact that the predictor depends on the true unknown value of the parameters
θ and ϕ and of the information It−1 available at time (t− 1) as well. This information is
actually the σ-field generated by Xt−j, j ≥ 1. A typical example is

aj (θ) = θj−1 for j ≥ 1 with 0 < θ < 1. (15)

Then, the predictor (7.14) is actually characterized by

mϕ (θ, It−1) = θmϕ (θ, It−2) + ϕ (Xt−1) (16)

In the context of volatility modelling, Xt would denote a squared asset return over
period [t− 1, t] and mϕ (θ, It−1) the so-called squared volatility of this return as expected
at the beginning of the period. Engle and Ng (1993) have studied such a partially non-
parametric (PNP for short) model of volatility and called the function ϕ the “news impact
function”. They proposed an estimation strategy based on piecewise linear splines. Note
that the PNPmodel includes several popular parametric volatility models as special cases.
For instance, the GARCH (1,1) model of Bollerslev (1986) corresponds to ϕ (x) = w+αx
while the Engle (1990) asymmetric model is obtained for ϕ (x) = w+α (x+ δ)2 . See also
Linton and Mammen (2003) and references therein.
The nonparametric identification and estimation of the news impact function can be

derived for a given value of θ. After that, a profile criterion can be calculated to estimate
θ. In any case, since θ will be estimated with a parametric rate of convergence, the
asymptotic distribution theory of a nonparametric estimator of ϕ is the same as if θ were
known. For sake of notational simplicity, the dependence on unknown finite dimensional
parameters θ is no longer made explicit.

At least in the particular case (15)-(16), ϕ is easily characterized as the solution of a
linear integral equation of the first kind

E [Xt − θXt−1|It−2] = E [ϕ (Xt−1) |It−2] (17)

Except for its dynamic features, this problem is completely similar to the nonparametric
instrumental regression example described in Section ??. However, as already mentioned,
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problems of the second kind are often preferable since they may be well-posed. As shown
by Linton and Mammen (2003) in the particular case of a PNP volatility model, it is
actually possible to identify and consistently estimate the function ϕ of interest in (??)
from a well-posed linear inverse problem of the second kind. The main trick is to realize
that ϕ is characterized by the first order conditions of the least squares problem

min
ϕ

E

"
Xt −

∞X
j=1

ajϕ (Xt−j)

#2
(18)

Then, when ϕ is an element of the Hilbert space L2F (X), its true unknown value is
characterized by the first order conditions obtained by differentiating in the direction of
any vector h

E

"Ã
Xt −

∞X
j=1

ajϕ (Xt−j)

!Ã ∞X
l=1

alh (Xt−l)

!#
= 0

In other words, for any h in L2F (X)

∞X
j=1

ajE
X [E [Xt|Xt−j = x]h (x)]

−
∞X
j=1

a2jE
X [ϕ (x)h (x)]

−
∞X
j=1

∞X
l=1
l 6=j

ajalE
X [E [ϕ (Xt−l) |Xt−j = x]h(x)] = 0

(19)

where EX denotes the expectation with respect to the stationary distribution ofXt. As the
equality (19) is true for all h, it is in particular true for a complete sequence of functions
of L2F (X). It follows that

∞X
j=1

ajE [Xt|Xt−j]−
Ã ∞X

l=1

a2l

!
ϕ (Xt−j)

−
∞X
j=1

∞X
l 6=j

ajalE [ϕ (Xt−l) |Xt−j] = 0

PX− almost surely. Let us denote

rj (Xt) = E [Xt+j|Xt] and Hk (ϕ) (Xt) = E [ϕ (Xt+k) |Xt] .

Then, we have proved that the unknown function ϕ of interest must be the solution of
the linear inverse problem of the second kind

A (ϕ, F ) = (I −K)ϕ− r = 0 (20)
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where

r =

Ã ∞X
j=1

a2j

!−1 ∞X
j=1

ajrj

K = −
Ã ∞X

j=1

a2j

!−1 ∞X
j=1

X
l 6=j

ajalHj−l

,

and, with a slight change of notation, F characterizes now the probability distribution of
the stationary process (Xt) .
To study the inverse problem (20), it is first worth noticing that K is a self adjoint

integral operator. Indeed, while

K =

Ã ∞X
j=1

a2j

!−1 +∞X
h=±1

Hk

 +∞X
l=max[1,1−k]

alal+k


we immediately deduce from Subsection 2.5.1 that the conditional expectation operator
Hk is such that

H∗
k = H−k

and thus K = K∗, since

+∞X
l=max[1,1−k]

alal+k =
+∞X

l=max[1,1+k]

alal−k

As noticed by Linton and Mammen (2003), this property greatly simplify the practical
implementation of the solution of a sample counterpart of equation (7.19). But, even more
importantly, the inverse problem (7.19) will be well-posed as soon as one maintains the
following identification assumption about the news impact function ϕ
Assumption A: There exists no θ and ϕ ∈ L2F (X) with ϕ 6= 0 such thatP∞

j=1 aj (θ)ϕ (Xt−j) = 0 almost certainly.

To see this, note that assumption A means that for any non-zero function ϕ

0 < E

" ∞X
j=1

ajϕ (Xt−j)

#2
that is

0 <
P∞

j=1 a
2
j hϕ,ϕi

+
P∞

j=1

P∞
l=1
l 6=j

alaj hϕ,Hj−lϕi
Therefore

0 < hϕ, ϕi− hϕ,Kϕi (21)

for non zero ϕ. In other words, there is no non-zero ϕ such that

Kϕ = ϕ
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and the operator (I −K) is one-to-one. It is also worth noticing that the operator K
is Hilbert-Schmidt and a fortiori compact under reasonable assumptions. As already men-
tioned in subsection 2.5.1, the Hilbert-Schmidt property for the conditional expectation
operator Hk is tantamount to the integrability conditionZ Z ·

fX,Xt−k (x, y)

fXt(x)fXt (y)

¸2
fXt (x) fXt (y) dxdy <∞

It amounts to say that there is not too much dependence between Xt and Xt−k. This
should be tightly related to the ergodicity or mixing assumptions about the stationary
process Xt. Then, if all the conditional expectation operator Hk, k ≥ 1, are Hilbert-
Schmidt, the operator K will also be Hilbert-Schmidt insofar as

∞X
j=1

X
l 6=j

a2ja
2
l < +∞

Note that (21) implies that (I−K) has eigenvalues bounded from below by a positive
number.

Up to a straightforward generalization to stationary mixing processes of results only
stated in the i.i.d. case, the general asymptotic theory of this subsection 7.3 can then
be easily applied to nonparametric estimators of the new impact function ϕ based on
the Fredholm equation of the second kind (7.19). An explicit formula for the asymptotic
variance of ϕ̂n as well as a practical implementation by solution of matricial equations
similar to subsection 3.5 (without need of a Tikhonov regularization) is provided by Linton
and Mammen (2003) in the particular case of volatility modelling.

However, an important difference with the i.i.d. case (see for instance assumption
A.3 in section 5.4 about instrumental variables) is that the conditional homoskedasticity
assumption cannot be maintained about conditional probability distribution of Xt given
its own past. This should be particularly detrimental in the case of volatility modelling
since, when Xt denotes a squared return, it will be in general even more conditionally
heteroskedastic than returns themselves. Such a severe conditional heteroskedasticity will
likely imply poor finite sample performance and large asymptotic variance of the estimator
ϕ̂n defined from the inverse problem (7.19), that is from the least squares problem (7.18).
Indeed, ϕ̂n is basically kind of OLS estimator in infinite dimension. In order to better
take into account conditional heteroskedasticity of Xt in the context of volatility mod-
elling, Linton and Mammen (2003) propose to replace the least squares problem (7.18)
by a quasi-likelihood kind of approach where the criterion to optimize is defined from the
density function of a normal conditional probability distribution of returns, with variance
mϕ (θ, It−1) . Then, the difficulty is that the associated first order conditions now charac-
terize the news impact function ϕ as solution of a nonlinear inverse problem. Linton and
Mammen (2003) suggest to work with a version of this problem which is locally linearized
around the previously described least squares estimator ϕ̂n (and associated consistent
estimator of θ).
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4 Regularized solution of an ill posed equation of the
second kind and statistical implications

The objective of this section is to study equations (I −K)ϕ = r where 1 is an eigenvalue
of K, i.e. where I − K is not injective (or one-to-one). For simplicity we restrict our
analysis to the case where the order of multiplicity of the eigenvalue 1 is one and the
operator K is self-adjoint. This implies that the dimension of the null spaces of I −K is
one and using the results of Section 2, the space H may be decomposed into

H = N (I −K)⊕R(I −K)

i.e. H is the direct sum between the null space and the range of I −K, both closed. We
denote by PN r the projection of r on N (I −K) and by PRr the projection of r on the
range R(I −K).
Using ii) of Theorem 1, a solution of (I − K)ϕ = r exists in the non injective case

only if r is orthogonal to N (I −K) or, equivalently, if r belongs to R(I −K). In other
words, a solution exists if and only if r = PRr. However in this case, this solution is not
unique and there exists a one dimensional linear manifold of solutions. Obviously, if ϕ
is a solution, ϕ plus any element of N (I −K) is again a solution. This non uniqueness
problem will be solved by a normalization rule which selects a unique element in the set
of solutions. The normalization we adopt is

hϕ, φ0i = 0 (22)

where φ0 is the eigenfunction of K corresponding to the eigenvalue equal to 1.
In most statistical applications of equations of the second kind, the r element corre-

sponding to the true data generating process is assumed to be in the range of I−K where
K is also associated with the true DGP. However this property is no longer true if F is
estimated and we need to extend the resolution of (I −K)ϕ = r to cases where I −K is
not injective and r is not in the range of this operator. This extension must be done in
such a way that the continuity properties of inversion are preserved.
For this purpose we consider the following generalized inverse of (I − K). As K is

a compact operator it has a discrete spectrum λ0 = 1, λ1,... where only 0 may be an
accumulation point (in particular 1 cannot be an accumulation point). The associated
eigenfunctions are φ0, φ1, .... Then we define:

Lu =
∞X
j=1

1

1− λj
hu, φjiφj, u ∈ H (23)

This operator computes the unique solution of (I −K)ϕ = PRu satisfying the normaliza-
tion rule (22). It can be easily verified that L satisfies:

LPR = L = PRL
L(I −K) = (I −K)L = PR (24)
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It can easily be checked that L is the generalized inverse of I − K as it was defined in
Luenberger (1969).
We now consider estimation. For an observed sample, we obtain the estimator Fn of

F (that may be built from a kernel estimator of the density) and then the estimators r̂n
and K̂n of r and K respectively. Let φ̂0, φ̂1, ... denote the eigenfunctions of K̂n associated
with λ̂0, λ̂1, ... We restrict our attention to the cases where 1 is also an eigenvalue of
multiplicity one of K̂n (i.e. λ̂0 = 1). However φ̂0 may be different from φ0.
We have to make a distinction between two cases. First assume that the Hilbert

space H of reference is known and in particular the inner product is given (for example
H = L2(Rp, π) with π given), the normalization rule imposed to ϕ̂n is

hϕ̂n, φ̂0i = 0
and L̂n is the generalized inverse of I − K̂n in H (which depends on the Hilbert space
structure) where

L̂nu =
∞X
j=1

1

1− λ̂j
hu, φ̂jiφ̂j, u ∈ H

Formula (24) applies immediately for Fn.
If however the Hilbert spaceH depends on F (e.g. H = L2(Rp, F )), we need to assume

that L2(R, Fn) ⊂ L2(Rp, F ). The orthogonality condition which defines the normalization
rule (22) is related to L2(Rp, F ) but the estimator ϕ̂n of ϕ will be normalized by

hϕ̂n, φ̂0in = 0
where h , in denotes the inner product relative to Fn. This orthogonality is different from
an orthogonality relative to h , i.
In the same way L̂n is now defined as the generalized inverse of I − K̂n with respect

to the estimated Hilbert structure, i.e.

L̂nu =
∞X
j=1

1

1− λ̂j
hu, φ̂jinφ̂j

and L̂n is not the generalized inverse of I − K̂n in the original space H. The advantages
of this definition is that L̂n may be effectively computed and satisfies the formula (24)
where Fn replaces F . In the sequel PRn denotes the projection for the inner product

<, >non Rn = R
³
I − K̂n

´
.

>From (24) one can deduce that:

L̂n − L = L̂n(K̂n −K)L

+ L̂n(PRn − PR) + (PRn − PR)L (25)

since L̂n − L = L̂nPRn − PRL = L̂n(PRn − PR) + (PRn − PR)L− PRnL+ L̂nPr

and L̂n (Kn −K)L = L̂n (Kn − I)L+ L̂n (I −K)L = PRnL+ L̂nPr.
The convergence property is given by the following theorem:

12



Theorem 5 Let us define ϕ0 = Lr and ϕ̂n = L̂nr̂n. If

i)
°°°K̂n −K

°°° = o (1)

ii) kPRn − PRk = O
³
1
bn

´
iii)

°°°(r̂n + K̂nϕ0)− (r +Kϕ0)
°°° = O

³
1
an

´
Then

kϕ̂n − ϕ0k = O

µ
1

an
+
1

bn

¶
Proof. The proof is based on:

ϕ̂n − ϕ0 = L̂nr̂n − Lr

= L̂n(r̂n − r) + (L̂n − L)r

= L̂n(r̂n − r) + L̂n(K̂n −K)ϕ0 (26)

+ L̂n (PRn − PR) r + (PRn − PR)ϕ0

deduced from (25). Then

kϕ̂n − ϕ0k ≤ kL̂nkk(r̂n + K̂nϕ0)− (r +Kϕ0)k
+ (kL̂nkkrk+ kϕk)kPRn − PRk (27)

Under i) and ii) kL̂n − Lk = o(1) from (25). This implies kL̂nk → kLk and the result
follows.

If
an
bn
∼ O (1) , the actual speed of convergence is bounded by

1

an
. This will be the

case in the two examples of 5 where
an
bn
→ 0.

We consider asymptotic normality in this case. By (24), we have L̂n = PRn + L̂nK̂n,
hence:

ϕ̂n − ϕ0 = PRn

h
(r̂n + K̂nϕ0)− (r +Kϕ0)

i
+ L̂nK̂n

h
(r̂n + K̂nϕ0)− (r +Kϕ0)

i
(28)

+ L̂n(PRn − PR)r + (PRn − PR)ϕ0

Let us assume that there exists a sequence an such that i) and ii) below are satisfied

i) anPRn

h
(r̂n + K̂nϕ0)− (r +Kϕ0)

i
(x) has an asymptotic normal distribution

13



ii) an
h
L̂nK̂n(r̂n + K̂nϕ0 − r −Kϕ0)

i
(x) → 0 , an

h
L̂n (PRn − PR) r

i
(x) → 0 and

[(PRn − PR)ϕ0] (x)→ 0

Then the asymptotic normality of an(ϕ̂n − ϕ0) is driven by the behavior of the first
term of the decomposition (28). This situation occurs in the non parametric estimation
as illustrated in the next section.

5 Two examples: backfitting estimation in additive
models and panel model

5.0.1 Backfitting estimation in additive models

Let us recall that in an additive model defined by

(Y, Z,W ) ∈ R×Rp ×Rq

Y = ϕ(Z) + ψ(W ) + U
E(U |Z,W ) = 0,

(29)

in which case (see 1.24), the function ϕ is solution of the equation:

ϕ−E [E(ϕ (Z) |W )|Z] = E(Y |Z)−E [E(Y |W )|Z]

and ψ is the solution of an equation of the same nature obtained by a permutation of W
and Z. We focus our presentation on the estimation of ϕ. It appears as the resolution of
a linear equation of the second kind. More precisely, we have in that case :

• H is the space of the square integrable functions of Z with respect to the true data
generating process. This definition simplifies our presentation but an extension to
different spaces is possible.

• The unknown function ϕ is an element of H. Actually asymptotic considerations
will restrict the class of functions ϕ by smoothness restrictions.

• The operatorK is defined byKϕ = E [E(ϕ (Z) |W )|Z]. This operator is self adjoint
and we assume its compactness. This compactness may be obtained through the
Hilbert Schmidt assumption A.1 of section 5.

• The function r is equal to E(Y |Z)− E [E(Y |W )|Z].

The operator I − K is not one-to-one because the constant functions belong to the
null space of this operator. Indeed the additive model (29) does not identify ϕ and ψ. We
introduce the following hypothesis which warrants that ϕ (and ψ) are exactly identified
up to an additive constant or, equivalently, that the null space of I−K only contains the
constants.

14



Identification assumption. Z and W are measurably separated w.r.t. the distri-
bution F i.e. a function of Z almost surely equal to a function of W is almost surely
constant.

This assumption implies that if ϕ1, ϕ2, ψ1, ψ2 are such that E(Y |Z,W ) = ϕ1(Z) +
ψ1(W ) = ϕ2(Z) + ψ2(W ) then ϕ1(Z) − ϕ2(Z) = ψ2(W ) − ψ1(W ) which implies that
ϕ1 − ϕ2 and ψ2 − ψ1 are a.s. constant. In terms of the null set of I −K we have:

Kϕ = ϕ⇐⇒ E [E(ϕ (Z) |W )|Z] = ϕ (Z)

=⇒ E
£
(E [ϕ (Z) |W ])2¤

= E [ϕ (Z)E (ϕ(Z)|W )] = E
¡
ϕ2 (Z)

¢
.

But, by Pythagore theorem:

ϕ(Z) = E(ϕ (Z) |W ) + υ

E
¡
ϕ2 (Z)

¢
= E

¡
(E (ϕ (Z) |W ))2¢+Eυ2

Then:

Kϕ = ϕ =⇒ υ = 0

⇔ ϕ(Z) = E [ϕ(Z) |W ] .

Then if ϕ is an element of the null set of I −K, ϕ is almost surely equal to a function of
W and is therefore constant.
The eigenvalues of K are real positive and smaller than 1 except for the first one. We

have 1 = λ0 > λ1 > λ2... > .1 The eigenfunctions are such that φ0 = 1 and the condition
hϕ, φ0i = 0 means that ϕ has an expectation equal to zero. The range of I −K is the set
of functions with a mean equal to 0 and the projection of u, PRu, equals u−E(u).
It should be noticed that under the hypothesis of additive model, r has zero mean

and is then an element of R(I −K). Then a unique (up to the normalization condition)
solution of the structural equation (I −K)ϕ = r exists.
The estimation may be done by kernel smoothing. The joint density is estimated by

fn(y, z, w) =
1

nc1+p+qn

nX
i=1

ω

µ
y − yi
cn

¶
ω

µ
z − zi
cn

¶
ω

µ
w − wi

cn

¶
(30)

and Fn is the c.d.f. associated to fn. The estimated K̂n operator verifies:

(K̂nϕ)(z) =

Z
ϕ (u) ân (u, z) du (31)

1Actually K = T ∗T when Tϕ = E(ϕ|W ) and T ∗ψ = E(ψ|Z) when ψ is a function of W . The
eigenvalues of K correspond to the squared singular values of the T and T ∗ defined in Section 2.
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where

ân (u, z) =

Z
f̂n (., u, w) f̂n (., z, w)

f̂n (., ., w) f̂n (., z, .)
dw.

The operator K̂n must be an operator from H to H (it is by construction an operator

from L2Z(Fn) into L2Z(Fn)). Therefore
ω( z−zccn

)P
c ω(

z−zc
cn
)
must be square integrable w.r.t. F .

The estimation of r by r̂n verifies

r̂n(z) =
1

nP
c=1

ω
³
z−zc
cn

´ nX
c=1

Ã
yc −

nX
i=1

yiωli

!
ω

µ
z − zc
cn

¶

where ωli =
ω

Ãwl − wi

cn

!
nX
i=1

ω

Ãwl − wi

cn

! .

The operator K̂n has also 1 as the greatest eigenvalue corresponding to an eigenfunc-
tion equal to 1. Since Fn is a mixture of probabilities for which z and w are independent,
the measurable separability between Z and W is fulfilled. Then the null set of I − K̂n

reduces to a.s. (w.r.t. Fn) constant functions. The generalized inverse of an operator
depends on the inner product of the Hilbert space because it is defined as the function ϕ
of minimal norm which minimizes the norm of K̂nϕ− r̂n. The generalized inverse in the
space L2Z(F ) cannot be used for the estimation because it depends on the actual unknown
F . Then we construct L̂n as the generalized inverse in L2Z(Fn) of I − K̂n. The practical
computation of L̂n can be done by computing the n eigenvalues of K̂n, λ̂0 = 1, ..., λ̂n−1
and the n eigenfunctions φ̂0 = 1, φ̂1, ..., φ̂n−1. Then

L̂nu =
n−1X
j=1

1

1− λ̂j

½Z
u(z)φ̂j(z)f̂n(z)dz

¾
φ̂j (32)

It can be easily checked that property (24) is verified where PRn is the projection
(w.r.t. Fn) on the orthogonal of the constant function. This operator subtracts to any
functions its empirical mean computed through the smoothed density :

PRnu = u− 1

ncpn

X
i

Z
u(z)ω

µ
z − zi
cn

¶
dz (33)

The right hand side of the equation (I− K̂n)ϕ = r̂n has a mean equal to 0 (w.r.t. Fn).
Hence, this equation has a unique solution ϕ̂n = L̂nϕ0 which satisfies the normalization

condition 1
ncpn

P
i

R
ϕ̂n(z)ω

³
z−zi
cn

´
dz = 0.

The general results of Section 4 apply.

1) Under very general assumptions, kK̂n −Kk→ 0 in probability.
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2) We have to check the properties of PRn − PR

(PRn − PR)ϕ =
1

ncpn

X
i

Z
ϕ(z)ω

µ
z − zi
cn

¶
dz −

Z
ϕ(z)f(z)dz

The asymptotic behavior of k(PRn−PR)ϕk2 =
¯̄̄
1

ncpn

Pn
i=1

R
ϕ(z)ω

³
z−zi
cn

´
dz −E(ϕ)

¯̄̄2
is the same as the asymptotic behavior of the expectation of this positive random
variable :

E

Ã
1

ncpn

nX
i=1

Z
ϕ(z)ω

µ
z − zi
cn

¶
dz −E(ϕ)

!2
Standard computation on this expression shows that this mean square error is

O

µ
1

n
+ c

2min(d,d0)
n

¶
kϕk2, where d is the smoothness degree of ϕ and d0 the order of

the kernel.

3) The last term we have to consider is actually not computable but its asymptotic
behavior is easily characterized. We simplify the notation by denoting EFn(.|.) the
estimation of a conditional expectation. The term we have to consider is

(r̂n + K̂nϕ)− (r +Kϕ) = EFn(Y |Z)− EFn(EFn(Y |W )|Z) +EFn(EFn(ϕ(Z)|W )|Z)
− EF (Y |Z) +EF (EF (Y |W )|Z)−EF (EF (ϕ(Z)|W )|Z)
= EFn

¡
Y −EF (Y |W ) +EF (ϕ (Z) |W ) |Z¢

− EF
¡
Y − EF (Y |W ) + EF (ϕ (Z) |W ) |Z¢

− R

where R = EF
©
EFn (Y − ϕ (Z) |W )− EF (Y − ϕ (Z) |W )ª

1. Moreover
EF (Y |W ) = EF (ϕ (Z) |W ) + ψ|W )

Then

(rn +Knϕ)− (r +Kϕ) = EFn (Y − ψ (W ) |Z)−EF (Y − ψ (W ) |Z)
− R

The R term converges at a faster speed than the first part of the r.h.s. of this
equation and can be neglected.

We have seen in the other parts of this chapter that

kEFn(Y − ψ(W )|Z)−EF (Y − ψ(W )|Z)k2 ∼ 0
µ
1

ncpn
+ c2ρn

¶
where ρ depends on the regularity assumptions.
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We can conclude that kϕ̂n−ϕ0k→ 0 in probability and that kϕ̂n−ϕ0k ∼ 0
µ

1√
ncpn
+ cρn

¶
.

The pointwise asymptotic normality is now easy to verify. Consider
√
ncρn(ϕ̂n(z) −

ϕ0(z)). We adapt in this framework the formula (28) and Theorem 4.

1) Under a suitable condition on cn (typically nc
ρ+2min(d,r)
n → 0), we have:

√
ncpn

n
L̂n(PRn − PR)r + (PRn − PR)ϕ

o
→ 0 in probability.

2) Using the same argument as in 4, a suitable choice of cn implies thatp
ncρnL̂nK̂n

h
(r̂n + K̂nϕ0)− (r +Kϕ0)

i
→ 0

Actually, while EFn(Y − ψ(W )|Z) − EF (Y − ψ(W )|Z) only converges pointwise
at a non parametric speed, the transformation by the operator K̂n transforms this
convergence into a functional convergence at a parametric speed. Thenp

ncpn
°°°K̂n

£
EFn(Y − ψ(W )|Z)−EF (Y − ψ(W )|Z¤°°°→ 0

Moreover L̂n converge in norm to L which is a bounded operator and the result
follows.

3) The convergence of
√
ncpn(ϕFn(z)− ϕF (z)) is then identical to the convergence of

√
ncpnPRn

£
EFn(Y − ψ(W )|Z)− EF (Y − ψ(W )|Z¤

=
√
ncpn

"
EFn(Y − ψ(W )|Z)−EF (Y − ψ(W )|Z)

− 1
n

X
i

(Yi − ψ(Wi))− 1
ncpn

P
i

Z
(Y − ψ(W ))f(Y,W |Z)ω

µ
z − zi
cn

¶
dz

#
Then also it can be easily checked that the difference between the two sample means
converge to zero at a higher speed than

√
ncpn and these two last terms can be

cancelled. Then using standard results on nonparametric estimation, we obtain:

p
ncpn(ϕFn(z)− ϕF (z))

d→ N
µ
0,

R
ω2

fZ(z)
V ar(Y − ψ(W )|Z = z)

¶
where the 0 mean of the asymptotic distribution is obtained thanks to a suitable choice

of the bandwidth, which needs to converge to 0 faster than the optimal speed.
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5.0.2 Estimation of the bias function in a measurement error equation

We have introduced in Example 1.3.6, Section 1, the measurement error model:½
Y1 = η + ϕ (Z1) + U1 Y1, Y2 ∈ R
Y2 = η + ϕ (Z2) + U2 Z1, Z2 ∈ Rp

when η, Ui are random unknown elements and Y1 and Y2 are two measurements of η con-
taminated by a bias term depending on observable elements Z1 and Z2. The unobservable
component η is eliminated by difference and we get the model under consideration :

Y = ϕ (Z2)− ϕ (Z1) + U (34)

when Y = Y2−Y1 and E (Y |Z1, Z2) = ϕ (Z2)−ϕ (Z1) .We assume that i.i.d. observations
of (Y, Z1, Z2) are available. Moreover the order of measurements is arbitrary or equivalently
(Y1, Y2, Z1, Z2) is distributed identically to (Y2, Y1, Z2, Z1) . This implies that (Y,Z1, Z2)
and (−Y,Z2, Z1) have the same distribution. In particular, Z1 and Z2 are identically
distributed.

• The reference spaceH is the space of random variables defined on Rp that are square
integrable with respect to the true marginal distribution on Z1 (or Z2).We are in a
case where the Hilbert space structure depends on the unknown distribution

• The function ϕ is an element of H but this set has to be reduced by smoothness
condition in order to obtain asymptotic properties of the estimation procedure.

• The operator K is the conditional expectation operator

(Kϕ) (z) = EF (ϕ (Z2) |Z1 = z)
= EF (ϕ (Z1) |Z2 = z)

from H to H. The two conditional expectations are equal because (Z1, Z2) and
(Z2, Z1) are identically distributed (by the exchangeability property). This operator
is self-adjoint and we suppose that K is compact. This property may be deduced as
in previous cases from an Hilbert Schmidt argument.

Equation (34) introduces an overidentification property because it constrains the con-
ditional expectation of Y given Z1 and Z2. In order to define ϕ for any F (and in particular
for the estimated one), the parameter ϕ is now defined as the solution of the minimization
problem:

ϕ = argmin
ϕ

E (Y − ϕ (Z2) + ϕ (Z1))
2

or, equivalently as the solution of the first-order conditions:

EF [ϕ (Z2) |Z1 = z]− ϕ (z) = E (Y |Z1 = z)

because (Y,Z1, Z2) ∼ (−Y,Z2, Z1) .
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Then the integral equation which defines the functions of interest ϕ may be denoted
by

(I −K)ϕ = r

where r = E (Y |Z2 = z) = −E (Y |Z1 = z) . As in the additive models, this inverse prob-
lem is ill-posed because I − K is not one-to-one. Indeed, 1 is the greatest eigenvalue
of K and the eigenfunctions associated with 1 are the constant functions. We need an
extra assumption to warranty that the order of multiplicity is one, or, in more statistical
terms, that ϕ is identified up to a constant. This property is obtained if Z1 and Z2 are
measurably separated i.e. if the functions of Z1 almost surely equal to some functions of
Z2 are almost surely constant.

Then the normalization rule is
hϕ, φ0i = 0

where φ0 is constant. This normalization is then equivalent to

EF (ϕ) = 0.

If F is estimated using standard kernel procedure, the estimated Fn does not satis-
fied, in general, the exchangeability assumption ((Y, Z1, Z2) and (−Y,Z2, Z1) are iden-
tically distributed). A simple way to incorporate this constraint is to estimate F using
a sample of size 2n by adding to the original sample (yi, z1i, z2i)i=1,...,n a new sample
(−yi, z2i, z1i)i=1,...,n . For simplicity we do not follow this method here and we consider
an estimation of F which does not verify the exchangeability. In that case r̂n is not, in
general, an element of R

³
I − K̂n

´
and the estimator ϕ̂n is defined as the unique solution

of ³
I − K̂n

´
ϕ = PRn r̂n,

which satisfies the normalization rule

EFn (ϕ) = 0.

Equivalently we have seen that the functional equation
³
I − K̂n

´
ϕ = r̂n reduces to a n

dimensional linear system, which is solved by a generalized inversion. The asymptotic
properties of this procedure follows immediately from the theorems of Section 4 and are
obtained identically to the case of additive models.

20



References

[1] Ai, C. and X. Chen (1999) “Efficient Estimation of Models with Conditional Moment
Restrictions Containing Unknown Functions”, mimeo, New York University.

[2] Aronszajn, N. (1950) “Theory of Reproducing Kernels”, Transactions of the Ameri-
can Mathematical Society, Vol. 68, 3, 337-404.

[3] Basmann, R.L. (1957), A Generalized Classical Method of Linear Estimation of Co-
efficients in a Structural Equations, Econometrica, 25, 77-83.

[4] Bollerslev, T. (1986), “Generalized Autoregressive Conditional Heteroskedasticity”,
Journal of Econometrics 31, 307-327.

[5] Bosq, D. (1998) “Nonparametric Statistics for Stochastic Processes. Estimation and
Prediction”, Springer, Berlin.

[6] Carrasco, M., M. Chernov, J.-P. Florens, and E. Ghysels (2001) “Efficient estima-
tion of jump diffusions and general dynamic models with a continuum of moment
conditions”, mimeo, University of Rochester.

[7] Carrasco, M. and J. P. Florens (2000) “Generalization of GMM to a continuum of
moment conditions”, Econometric Theory, 16, 797-834.

[8] Carrasco, M. and J. P. Florens (2001) “Efficient GMM Estimation Using the Empir-
ical Characteristic Function”, mimeo, University of Rochester.

[9] Carrasco, M. and J.-P. Florens (2002a) “Spectral method for deconvolving a density”,
mimeo, University of Rochester.

[10] Carrasco, M. and J. P. Florens (2002b) “On the Asymptotic Efficiency of GMM”,
mimeo, University of Rochester.

[11] Carroll, R. and P. Hall (1988) “Optimal Rates of Convergence for Deconvolving a
Density”, Journal of American Statistical Association, 83, No.404, 1184-1186.

[12] Carroll, R., A. Van Rooij, and F. Ruymgaart (1991) “Theoretical Aspects of Ill-posed
Problems in Statistics”, Acta Applicandae Mathematicae, 24, 113-140.

[13] Chacko, G. and L. Viceira (2000) “Spectral GMM Estimation of Continuous-Time
Processes”, forthcoming in Journal of Econometrics.

[14] Chen, X., L.P. Hansen and J. Scheinkman (1998) “Shape-preserving Estimation of
Diffusions”, mimeo, University of Chicago.

[15] Chen, X., and H. White (1992), Central Limit and Functional Central Limit The-
orems for Hilbert Space-Valued Dependent Processes, Working Paper, University of
San Diego.

21



[16] Chen, X. and H. White (1996) “Law of Large Numbers for Hilbert Space-Valued
mixingales with Applications”, Econometric Theory, 12, 284-304.

[17] Chen, X. and H. White (1998) “Central Limit and Functional Central Limit Theo-
rems for Hilbert Space-Valued Dependent Processes”, Econometric Theory, 14, 260-
284.

[18] Darolles, S., J.P. Florens, and C. Gourieroux (2000) “Kernel Based Nonlinear Canon-
ical Analysis and Time Reversibility”, forthcoming in Journal of Econometrics.

[19] Darolles, S., J.P. Florens, and E. Renault (1998), “Nonlinear Principal Components
and Inference on a Conditional Expectation Operator with Applications to Markov
Processes”, presented at Garchy, France, September 1998.

[20] Darolles, S., J.P. Florens, and E. Renault (2002), “Nonparametric Instrumental Re-
gression”, Working paper 05-2002, CRDE.

[21] Dautray, R. and J.-L. Lions (1988) Analyse mathématique et calcul numérique pour
les sciences et les techniques. Vol. 5. Spectre des opérateurs, Masson, Paris.

[22] Davidson, J. (1994) Stochastic Limit Theory, Oxford University Press, Oxford.

[23] Debnath, L. and P. Mikusinski (1999) Introduction to Hilbert Spaces with Applica-
tions, Academic Press. San Diego.

[24] Dunford, N. and J. Schwartz (1988) Linear Operators, Part II: Spectral Theory,
Wiley, New York.

[25] Engle R.F., (1990), Discussion: Stock Market Volatility and the Crash of ’87, Review
of Financial Studies 3, 103-106.

[26] Engle, R.F., D.F. Hendry and J.F. Richard, (1983), “Exogeneity”, Econometrica, 51
(2) 277-304.

[27] Engle, R.F., and V.K. Ng (1993), “Measuring and Testing the Impact of News on
Volatility”, The Journal of Finance XLVIII, 1749-1778.

[28] Fan, J. (1993) “Adaptively local one-dimentional subproblems with application to a
deconvolution problem”, The Annals of Statistics, 21, 600-610.

[29] Feuerverger, A. and P. McDunnough (1981), “On the Efficiency of Empirical Char-
acteristic Function Procedures”, J. R. Statist. Soc. B, 43, 20-27.

[30] Florens, J.P., J. Heckman, C. Meghir and E. Vytlacil (2002), “ Instrumental Vari-
ables, Local Instrumental Variables and Control Functions”, Manuscript, University
of Toulouse.

22



[31] Florens, J.P. and Malavolti (2002) ”Instrumental Regression with Discrete Vari-
ables”, mimeo University of Toulouse, presented at ESEM 2002, Venice.

[32] Florens, J.P. and M. Mouchart (1985), “Conditioning in Dynamic Models”, Journal
of Time Series Analysis, 53 (1), 15-35.

[33] Florens, J.P., M. Mouchart, and J.F. Richard (1974), Bayesian Inference in Error-
in-variables Models, Journal of Multivariate Analysis, 4, 419-432.

[34] Florens, J.P., M. Mouchart, and J.F. Richard (1987), Dynamic Error-in-variables
Models and Limited Information Analysis, Annales d’Economie et Statistiques, 6/7,
289-310.

[35] Florens, J.P., C. Protopopescu, and J.F. Richard, (1997), “Identification and Esti-
mation of a Class of Game Theoretic Models”, GREMAQ-University of Toulouse.

[36] Forni, M. and L. Reichlin (1998) “Let’s Get Real: A Factor Analytical Approach to
Disaggregated Business Cycle Dynamics”, Review of Economic Studies, 65, 453-473.

[37] Gallant, A. R. and J. R. Long (1997) “Estimating Stochastic Differential Equations
Efficiently by Minimum Chi-squared”, Biometrika, 84, 125-141.

[38] Gaspar, P. and J.P. Florens, (1998), “Estimation of the Sea State Biais in Radar Al-
timeter Measurements of Sea Level: Results from a Nonparametric Method”, Journal
of Geophysical Research, 103 (15), 803-814.

[39] Guerre, E., I. Perrigne, and Q. Vuong, (2000), “Optimal Nonparametric Estimation
of First-Price Auctions”, Econometrica, 68 (3), 525-574.

[40] Hansen, L., (1982), “Large Sample Properties of Generalized Method of Moments
Estimators”, Econometrica, 50, 1029-1054.

[41] Hansen, L. (1985) “A method for calculating bounds on the asymptotic covariance
matrices of generalized method of moments estimators”, Journal of Econometrics,
30, 203-238.

[42] Hardle, W. and O. Linton (1994) “Applied Nonparametric Methods”, Handbook of
Econometrics, Vol. IV, edited by R.F. Engle and D.L. McFadden, North Holland,
Amsterdam.

[43] Hastie, T.J. and R.J. Tibshirani (1990), Generalized Additive Models, Chapman and
Hall, London.

[44] Hausman, J., (1981), “Exact Consumer’s Surplus and Deadweight Loss” American
Economic Review, 71, 662-676.

[45] Hausman, J. (1985), “The Econometrics of Nonlinear Budget sets” Econometrica,
53, 1255-1282.

23



[46] Hausman, J. and W.K. Newey, (1995) “Nonparametric Estimation of Exact Con-
sumers Surplus and Deadweight Loss”, Econometrica, 63, 1445-1476.

[47] Heckman, J., H. Ichimura, J. Smith, and P. Todd (1998), Characterizing Selection
Bias Using Experimental Data, Econometrica, 66, 1017-1098.

[48] Heckman, J., and V. Vytlacil (2000), Local Instrumental Variables, in Nonlinear Sta-
tistical Modeling: Proceedings of the Thirteenth International Symposium in Eco-
nomic Theory and Econometrics: Essays in Honor of Takeshi Amemiya, ed. by C.
Hsiao, K. Morimune, and J. Powells. Cambridge: Cambridge University Press, 1-46.

[49] Hoerl, A. E. and R. W. Kennard (1970) “Ridge Regression: Biased Estimation of
Nonorthogonal Problems”, Technometrics, 12, 55-67.

[50] Imbens, G., and J. Angrist (1994), Identification and Estimation of Local Average
Treatment Effects, Econometrica, 62, 467-476.

[51] Jiang, G. and J. Knight (2000) “Estimation of Continuous Time Processes Via the
Empirical Characteristic Function”, forthcoming in Journal of Business & Economic
Statistics.

[52] Judge, G., W. Griffiths, R. C. Hill, H. Lutkepohl, and T-C. Lee (1980) The Theory
and Practice of Econometrics, John Wiley and Sons, New York.

[53] Kitamura, Y. and M. Stutzer (1997), “An Information Theoretic Alternative to Gen-
eralized Method of Moments Estimation”, Econometrica, 65, 4, 861-874.

[54] Knight, J. L. and J. Yu (2002) “Empirical Characteristic Function in Time Series
Estimation”, Econometric Theory, 18, 691-721.

[55] Kress, R. (1999), Linear Integral Equations, Springer.

[56] Kutoyants, Yu. (1984), Parameter estimation for stochastic processes, Heldermann
Verlag, Berlin.

[57] Lancaster, H. (1968), The Structure of Bivariate Distributions, Ann. Math. Statist.,
29, 719-736.

[58] Linton, O. and E. Mammen (2003), “Estimating Semiparametric ARCH(∞) models
by kernel smoothing methods”, Discussion Paper, LSE. Invited Paper ESEM 2003,
Stockholm.

[59] Loubes, J.M. and A. Vanhems (2001), “Differential Equation and Endogeneity”, Dis-
cussion Paper, GREMAQ, University of Toulouse, presented at ESEM 2002, Venice.

[60] Loubes, J.M. and A. Vanhems (2003), “Saturation Spaces for RegularizationMethods
in Inverse Problems”, Discussion Paper, GREMAQ, University of Toulouse, presented
at ESEM 2003, Stockholm.

24



[61] Lucas, R. (1978) “Asset Prices in an Exchange Economy”, Econometrica, 46, 1429-
1446.

[62] Luenberger, D. G. (1969) Optimization by Vector Space Methods, Wiley, New York.

[63] Malinvaud, E. (1970), Methodes Statistiques de l’Econométrie, Dunod, Paris.

[64] Nashed, N. Z. and G. Wahba (1974) “Generalized inverses in reproducing kernel
spaces: An approach to regularization of linear operator equations”, SIAM J. Math.
Anal. 5, 974-987.

[65] Newey, W., and J. Powell (2000), Instrumental Variables for Nonparametric Models,
MIT Discussion Paper.

[66] Newey, W., Powell, J. and F. Vella (1999), Nonparametric Estimation of Triangular
Simultaneous Equations Models, Econometrica, 67, 565-604.

[67] Owen, A. (2001) Empirical likelihood, Monographs on Statistics and Applied Proba-
bility, vol. 92. Chapman and Hall, London.

[68] Pagan, A. and A. Ullah (1999), Nonparametric Econometrics, Cambridge University
Press.

[69] Parzen, E. (1959) “Statistical Inference on time series by Hilbert Space Methods,I.”,
Technical Report No.23, Applied Mathematics and Statistics Laboratory, Stanford.
Reprinted in (1967) Time series analysis papers, Holden-Day, San Francisco.

[70] Parzen, E. (1970) “Statistical Inference on time series by RKHS methods”, Proc.
12th Biennal Canadian Mathematical Seminar, R. Pyke, ed. American Mathematical
Society, Providence.

[71] Politis, D. and J. Romano (1994) “Limit theorems for weakly dependent Hilbert space
valued random variables with application to the stationary bootstrap”, Statistica
Sinica, 4, 451-476.

[72] Qin, J. and J. Lawless, (1994), “Empirical Likelihood and General Estimating Equa-
tions”, The Annals of Statistics, 22, 1, 300-325.

[73] Reiersol, O. (1941), Confluence Analysis of Lag Moments and other Methods of Con-
fluence Analysis, Econometrica, 9, 1-24.

[74] Reiersol, O. (1945), Confluence Analysis by Means of Instrumental Sets of Variables,
Arkiv for Mathematik, Astronomie och Fysik, 32.

[75] Rust, J., J. F. Traub, and H. Wozniakowski (2002) “Is There a Curse of Dimension-
ality for Contraction Fixed Points in the Worst Case?”, Econometrica, 70, 285-330.

25



[76] Ruymgaart, F. (2001) “A short introduction to inverse statistical inference”, lecture
given at the conference “L’Odyssée de la Statistique”, Institut Henri Poincaré, Paris.

[77] Saitoh, S. (1997) Integral transforms, reproducing kernels and their applications,
Longman.

[78] Sansone, G. Orthogonal Functions, Dover Publications, New York.

[79] Sargan, J.D. (1958), The Estimation of Economic Relationship using Instrumental
Variables, Econometrica, 26, 393-415.

[80] Singleton, K. (2001) “Estimation of Affine Pricing Models Using the Empirical Char-
acteristic Function”, Journal of Econometrics, 102, 111-141.

[81] Stefanski, L. and R. Carroll (1990) “Deconvoluting Kernel Density Estimators”, Sta-
tistics, 2, 169-184.

[82] Stock, J. and M. Watson (1998) “Diffusion Indexes”, NBER working paper 6702.

[83] Tauchen, G. (1997) “New Minimum Chi-Square Methods in Empirical Finance”, in
Advances in Econometrics, Seventh World Congress, eds. D. Kreps and K. Wallis,
Cambridge University Press, Cambridge.

[84] Tauchen, G. and R. Hussey (1991) “Quadrature-Based Methods for Obtaining Ap-
proximate Solutions to Nonlinear Asset Pricing Models”, Econometrica, 59, 371-396.

[85] Theil, H.(1953), Repeated Least Squares Applied to complete Equations System, The
Hague: Central Planning Bureau (mimeo).

[86] Vanhems, A. (2000), “Nonparametric Solutions to Random Ordinary Differential
Equations of First Orders”, GREMAQ-University of Toulouse.

[87] Van Rooij and F. Ruymgaart (1991) “Regularized Deconvolution on the Circle and
the Sphere”, in Nonparametric Functional Estimation and Related Topics, edited by
G. Roussas, 679-690, Kluwer Academic Publishers, the Netherlands.

[88] Van Rooij, A., F. Ruymgaart, and W. Van Zwet (2000) “Asymptotic Efficiency of
Inverse Estimators”, Theory Probab. Appl., 44, 4, 722-738.

[89] Vapnik A.C.M. (1998), Statistical Learning Theory, Wiley, New York.

26


