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Abstract

A large amount of literature has been developed on how to specify and to estimate
production frontiers or cost functions. Two different approaches have been mainly de-
veloped: the deterministic frontier model which relies on the assumption that all the
observations are on a unique side of the frontier, and the stochastic frontier models
where observational errors or random noise allows some observations to be outside of
the frontier. In a deterministic frontier framework, nonparametric methods are based
on envelopment techniques known as FDH (Free Disposal Hull) and DEA (Data Envel-
opment Analysis). Today, statistical inference based on DEA/FDH type of estimators
is available but, by construction, they are very sensitive to extreme values and to
outliers.

In this paper, we build an original nonparametric estimator of the “efficient frontier”
which is more robust to extreme values, noise or outliers than the standard DEA/FDH
nonparametric estimators. It is based on a concept of expected minimum input function
(or expected maximal output function). We show how these functions are related to
the efficient frontier itself. The resulting estimator is also related to the FDH estimator
but our estimator will not envelop all the data. The asymptotic theory is also provided.
Our approach includes the multiple inputs and multiple outputs cases.
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1 Introduction

Since the basic work of Koopmans (1951) and Debreu (1951) on activity analysis, a large

amount of literature has been developed on how to specify and to estimate production

frontiers or cost functions and on how to measure technical efficiency of production units. See

Shephard (1970) for a modern economic formulation of the problem. Consider a production

technology where the activity of production units is characterized by a set of inputs x ∈ IRp
+

used to produce a set of outputs y ∈ IRq
+.

The production set is defined as the set

Ψ = {(x, y) ∈ IRp+q
+ | x can produce y}. (1.1)

This set can be described mathematically by its sections. For example, in the input space

we have the input requirement sets defined for all y ∈ Ψ as C(y) = {x ∈ IRp
+ | (x, y) ∈ Ψ}.

The radial (input-oriented) efficiency boundary (“efficient frontier”) is then defined by:

∂C(y) = {x | x ∈ C(y), θx /∈ C(y) ∀ 0 < θ < 1}. (1.2)

The Farrell input measure of efficiency of a production unit working at level (x0, y0) is then

defined as:

θ(x0, y0) = inf{θ | θx0 ∈ C(y0)} = inf{θ | (θx0, y0) ∈ Ψ}. (1.3)

Note that ∂C(y) = {x | θ(x, y) = 1}.

The same could be done in the output space where the output requirement set is defined

for all x ∈ Ψ as P (x) = {y ∈ IRq
+ | (x, y) ∈ Ψ}. Its radial efficient boundary is then:

∂P (x) = {y | y ∈ P (x), λy /∈ P (x) ∀ λ > 1}. (1.4)

Then the Farrell output measure of efficiency for a production unit working at level (x0, y0)

is defined as

λ(x0, y0) = sup{λ | λy0 ∈ P (x0)} = sup{λ | (x0, λy0) ∈ Ψ}. (1.5)

Here, ∂P (x) = {y | λ(x, y) = 1}.

Note that the frontier of Ψ is unique and ∂C(y) and ∂P (x) are two different ways of de-

scribing it. Different assumptions can be assumed on Ψ like free disposability1 or convexity,...

(see, e.g., Shephard, 1970 for details).
1Free disposability in inputs and outputs of Ψ means that if (x, y) ∈ Ψ then (x′, y′) ∈ Ψ for any x′ ≥ x

and y′ ≤ y, where inequality between vectors has to be understood element by element.
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The econometric problem is thus how to estimate Ψ from a random sample of production

units {(Xi, Yi) | i = 1, . . . , n}. Two different approaches have been mainly developed: the

deterministic frontier model which relies on the assumption that the DGP (Data Generating

Process) is such that Prob((Xi, Yi) ∈ Ψ) = 1, and the stochastic frontier models where

observational errors or random noise allows some observations to be outside of Ψ.

In a deterministic frontier framework, nonparametric methods have known an increasing

success since the pioneering work of Farrell (1957). The methods are based on envelopment

techniques known as FDH (Free Disposal Hull) estimators initiated by Deprins, Simar and

Tulkens (1984) which rely only on free disposability assumptions for Ψ and DEA (Data

Envelopment Analysis) estimators, which assumes free disposability and convexity of Ψ, ini-

tiated by Farrell and operationalized as linear programming estimators by Charnes, Cooper

and Rhodes (1978). They can be defined as follows: the FDH estimator of Ψ is the free

disposal hull of the set of observations:

Ψ̂FDH =
{
(x, y) ∈ IRp+q

+ |y ≤ Yi, x ≥ Xi, i = 1, . . . , n
}

.

Then the convex hull of Ψ̂FDH provides the DEA estimator of Ψ:

Ψ̂DEA = {(x, y) ∈ IRp+q
+ |y ≤

n∑

i=1

γiYi ; x ≥
n∑

i=1

γiXi for (γ1, . . . , γn)

such that
n∑

i=1

γi = 1 ; γi ≥ 0, i = 1, . . . , n}.

It is the smallest free disposal convex set covering all the data.

Nonparametric envelopment estimators have been extensively used for estimating effi-

ciency of firms (see Seiford, 1996, for a nice survey). Today, statistical inference based on

DEA/FDH type of estimators is available either by using asymptotic results (Kneip, Park

and Simar, 1998 and Park, Simar and Weiner, 2000) or by using the bootstrap, see Simar

and Wilson (2000) for a recent survey of the available results. Nonparametric deterministic

frontier models are very appealing because they rely on very few assumptions but it is known

that by construction, they are very sensitive to extreme values and to outliers.

In a stochastic frontier framework, where noise is allowed, only parametric restrictions

on the shape of the frontier and on the DGP allow identification of noise from efficiency

and estimation of the frontier. Most of the available techniques are based on the maximum

likelihood principle, in the spirit of the work of Aigner, Lovell and Schmidt (1977) and

Meeusen and van den Broek (1977).

Our work is a part of the literature of nonparametric frontier estimation in that we

build an original nonparametric estimator of the “efficient frontier” which is more robust to

extreme values, noise or outliers than the standard DEA/FDH nonparametric estimators.
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To the best of our knowledge, very few methods are proposed in the literature to address

this important issue. Wilson (1993) and (1995) has proposed descriptive methods to detect

outliers in this framework. This paper proposes robust estimators of frontiers with their full

statistical treatment.

For sake of simplicity, we will make our presentation in the input-oriented framework,

where we have one input x (p = 1) and q outputs y. The input efficient frontier can then

be interpreted as a “minimum input function” or as a “minimum cost function”. We will

indicate, in Appendix A, how to make the changes for the output-oriented case where we

have one output y (q = 1) and p inputs x: in this case, the efficient frontier is a “maximum

production function”. A shown later, a complete multivariate extension (multi-input and

multi-output cases) is also possible.

We will define a concept of expected minimum input function (or expected minimum cost

function) and present the methodology for a nonparametric estimation of it. The output

oriented case provides the concept of expected maximum production function. We show

how these functions are related to the efficient frontier defined above under the hypothesis

of free disposability. The resulting estimator is also related to the FDH estimator but our

estimator will not envelop all the data. The method can also be adapted if, in addition, the

assumption of convexity of Ψ is made and convex estimators of Ψ are wanted. In this case,

our estimator will be related to the DEA estimator.

The paper is organized as follows. Section 2 presents the basic concepts of expected

minimum input function and its relation to frontiers. Section 3 proposes a nonparametric

estimator and analyses its asymptotic properties and its relations with other nonparametric

estimators. In Section 4, a numerical illustration is proposed: the methodology is applied

to estimate the expected minimum cost function for french post offices. We use a data set

on labor (as input) and mail volumes (as output) on around 10.000 post offices. Section

5 suggests some two useful extensions: how to introduce exogenous explanatory variables

in the model and how to generalize the approach to the multivariate case (multi-input and

multi-output). Section 6 concludes.

2 The Expected Minimum Input Function

Let us consider a random vector (X, Y ) on IR+× IRq
+. The first element X is the input and

the q-dimensional vector Y represents the outputs. The joint distribution on (X, Y ) defines

the production process. Such probability measure is usually decomposed into a marginal

distribution on Y and a conditional distribution on X given Y = y.

In this paper, we will rather concentrate on an other characterization of the joint proba-
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bility measure on (X, Y ): the joint survivor function. Let us denote by Y ≥ y the property

that Yj ≥ yj for j = 1, . . . , q. We will consider the conditional probability measure on X

given Y ≥ y. If the joint probability measure is characterized by the joint survivor function:

S(x, y) = Prob(X ≥ x, Y ≥ y), (2.1)

the conditional distribution on X given Y ≥ y may be described by its survivor function:

Sc(x | y) = Prob(X ≥ x | Y ≥ y) (2.2)

=
S(x, y)

SY (y)
, (2.3)

where SY (y) = S(0, y) = Prob(Y ≥ y) denotes the marginal survivor function of Y . It is

supposed here and below that SY (y) 6= 0 or that y is an interior point of the support of the

marginal distribution of Y .

The lower boundary of the support of the conditional distribution whose survivor function

is Sc(x | y) is given by the function:

ϕ(y) = inf{x | Sc(x | y) < 1}. (2.4)

This function is monotone non decreasing in y as shown by the following theorem:

Theorem 2.1 The frontier function ϕ(y) is monotone non decreasing in y:

For all y′ ≥ y we have ϕ(y′) ≥ ϕ(y). (2.5)

Proof:

ϕ(y) = inf{x | Sc(x | y) < 1}
= sup{x | Sc(x | y) = 1}.

Denote Ay the set {x | Sc(x | y) = 1}. We have

Ay = {x | Prob(X ≥ x | Y ≥ y) = 1}
= {x | Prob(X < x | Y ≥ y) = 0}
= {x | Prob(X < x, Y ≥ y) = 0}.

If y′ ≥ y, Ay ⊆ Ay′ , then sup{x | x ∈ Ay′} ≥ sup{x | x ∈ Ay} which completes the proof.

Note that this minimum input (or cost) frontier function ϕ(y) is always defined and

monotone non decreasing: no particular assumption on Ψ are needed. By construction and

from the preceding theorem, ϕ(y) is the largest monotone function which is smaller than
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∂C(y) the input-efficient frontier of Ψ (remember that here p = 1). It is clear that if the

attainable set Ψ is free disposal, ∂C(y) is monotone and coincides with ϕ(y).

Consider now an integer m ≥ 1 and let (X1, . . . , Xm) be m independent identically

distributed random variables generated by the distribution of X given Y ≥ y.

Definition 2.1 The expected minimum input function of order m denoted by ϕm(y) is the

real function defined on IRq
+ as

ϕm(y) = E(min(X1, . . . , Xm) | Y ≥ y), (2.6)

where we assume the existence of this expectation.

The function ϕm(y) can be computed as follows.

Theorem 2.2 If ϕm(y) exists, it is given by

ϕm(y) =
∫ ∞

0
[Sc(u | y)]m du. (2.7)

Proof: This result is an elementary consequence of the rules of integration by parts, since

if Xmin = min(X1, . . . , Xm), we have:

Prob(Xmin ≥ u | Y ≥ y) = [Sc(u | y)]m, (2.8)

from which the result derives.

From its definition, it is clear that for any y fixed, ϕm(y) is a decreasing function of m.

The limiting case when m→∞ is of particular interest. It achieves the efficient frontier:

Theorem 2.3 For any fixed value of y we have

lim
m→∞ϕm(y) = ϕ(y). (2.9)

Proof:

ϕm(y) =
∫ ∞

0
[Sc(u | y)]m du

=
∫ ϕ(y)

0
[Sc(u | y)]m du +

∫ ∞

ϕ(y)
[Sc(u | y)]m du.

For all u ≤ ϕ(y), Sc(u | y) = 1. So that

ϕm(y) = ϕ(y) +
∫ ∞

ϕ(y)
[Sc(u | y)]m du. (2.10)
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For u > ϕ(y), Sc(u | y) < 1, so [Sc(u | y)]m tends to zero when m→∞. Using the Lebesgue

convergence theorem, the integral on the right hand side of (2.10) converges to zero when

m→∞ giving the result.

The function ϕm(y) converges to a monotone non decreasing function ϕ(y) as m → ∞,

but it is not monotone non decreasing itself unless we add the following assumption.

Assumption 2.1 The conditional distribution of X given Y ≥ y has the following property

For all y′ ≥ y, Sc(x | y′) ≥ Sc(x | y). (2.11)

This assumption is not needed for all the results of this paper except the next theorem, but

it appears to be quite reasonable: it says that the chance of spending more than an input

(or cost) x does not decrease if a firm produces more. So, if we want a joint survival function

S(x, y) to represent a production process, Assumption 2.1 is quite natural. It also implies

the monotonicity of ϕm(y):

Theorem 2.4 Under Assumption 2.1, ϕm(y) is monotone non decreasing in y.

Proof: This is immediate by the expression of ϕm(y) given in Theorem 2.2 and from prop-

erties of integrals.

From an economic point of view, the expected minimum input (cost) function of order

m, ϕm(y) has its own interest: it is not the efficient frontier of the production set but it

might be useful in term of practical efficiency analysis. Suppose a production unit produces

a quantity of output y0 using the quantity x0 of input, ϕm(y0) gives the expected minimum

cost among a fixed number of m potential firms producing more than y0. For this particular

unit, working at level (x0, y0), it is certainly worth to know this value because it gives a clear

indication of how efficient he is compared with these m potential units. This is achieved by

comparing its own level x0 with the “benchmarked” value ϕm(y0). At this stage, m could be

any number from 1 to∞. In practice, a few values of m could be used to guide the manager

of the production unit to evaluate its own performance.

But the most attractive property of this function is that it can be easily non parametri-

cally estimated without the drawbacks of the methods trying to estimate the frontier itself:

it will be less sensitive to noise, extreme values or outliers. This is developed in the next

section.

In Appendix A, we indicate how the concepts and properties can be adapted to the

output oriented case with one output y and p inputs x.
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3 Nonparametric Estimation

Consider, for simplicity an i.i.d. sample (xi, yi), i = 1 . . . , n of the random vector (X, Y ).

The empirical survivor function is defined by:

Ŝn(x, y) =
1

n

n∑

i=1

1I(xi ≥ x, yi ≥ y). (3.1)

The empirical version of Sc(x | y) is then given by:

Ŝc,n(x | y) =
Ŝn(x, y)

ŜY,n(y)
, (3.2)

where ŜY,n(y) = (1/n)
∑n
i=1 1I(yi ≥ y). Note that this estimator does not require any smooth-

ing procedure as required when the conditional distribution of X given Y = y is required.

All the properties of ϕ(y) and ϕm(y) of the preceding section remain valid when the

function Sc(x | y) is replaced by Ŝc,n(x | y). In particular we have the lower boundary of

the support of the empirical conditional distribution characterizing the estimated efficient

frontier of the production set. It is given by the function:

ϕ̂n(y) = inf{x | Ŝc,n(x | y) < 1}. (3.3)

This function is monotone non decreasing in y. It is the input oriented efficient frontier

obtained by the FDH estimator. The estimator of the expected minimum input function of

order m is defined by:

ϕ̂m,n(y) = Ê(min(X1, . . . , Xm) | Y ≥ y), (3.4)

where X1, . . . , Xm are m i.i.d. random variables generated by the empirical distribution of

X given Y ≥ y whose survivor function is Ŝc,n(x | y). It is computed through

ϕ̂m,n(y) =
∫ ∞

0
[Ŝc,n(u | y)]m du. (3.5)

The relation (2.10) between ϕm(y) and ϕ(y) remains valid with their empirical versions:

ϕ̂m,n(y) = ϕ̂n(y) +
∫ ∞

ϕ̂n(y)
[Ŝc,n(u | y)]m du, (3.6)

from which we obtain again that for all y,

lim
m→∞ ϕ̂m,n(y) = ϕ̂n(y). (3.7)

So, our estimator of the expected minimum input function of order m converges to the

FDH input efficient frontier when m increases. In particular, in finite samples, it should be

noticed that, even when m = n, our estimator is different from the FDH estimator:

ϕ̂n,n(y) 6= ϕ̂n(y).
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Even for large finite values of m, the estimator ϕ̂m,n(y) is less sensitive to extremes values

than the FDH estimator ϕ̂n(y) which by construction, envelopes all the observations. The

asymptotic theory is discussed below. Note also that ϕ̂m,n(y) is not necessarily monotone

non decreasing. Indeed, even if Assumption 2.1 is assumed for the true conditional survivor

function, it could not be verified by its empirical counterpart. Of course we know that for

large sample size n, it will mostly be the case.

The integral in (3.5) defining our estimator may be easily computed in practice. Let n(y)

be the number of observations of yi greater or equal to y, i.e. n(y) =
∑n
i=1 1I(yi ≥ y), and,

for j = 1, . . . , n(y), denote by xy(j) the j-th order statistic2 of the observations xi such that

yi ≥ y: xy(1) < xy(2) < . . . < xy(n(y)).

The function Ŝc,n(u | y) is a step function such that:

Ŝc,n(u | y) = 1 if u ≤ xy(1)

=
n(y)− j

n(y)
if xy(j) < u ≤ xy(j+1)

= 0 if u > xy(n(y)).

Then we have:

ϕ̂m,n(y) = xy(1) +
n(y)−1∑

j=1

[
n(y)− j

n(y)

]m
(xy(j+1) − xy(j)). (3.8)

The following theorem summarizes the asymptotic properties of our estimator for any

fixed value of m.

Theorem 3.1 Assume that Ψ, the support of the random vector (X, Y ) is compact, then

for any interior point y in the support of the Y distribution, and for any m ≥ 1:

(i) ϕ̂m,n(y)→ ϕm(y) a.s. as n→∞ ;

(ii) L (
√

n(ϕ̂m,n(y)− ϕm(y)))→ N(0, σ2(y)) as n→∞, where

σ2(y) = E

[
m

SY (y)m

∫ ∞

0
S(u, y)m−11I(X ≥ u, Y ≥ y) du− mϕm(y)

SY (y)
1I(Y ≥ y)

]2

.

2We suppose here that there are no ties among the xy(j): this allow the simple formulation of Ŝc,n(u | y).
In case of ties, all the theory remains valid but the explicit expression of ϕ̂m,n(y) in (3.8) is no more valid.
The general expression (3.5) has to be used.
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Proof:

(i) This result follows from a strong law of large numbers which implies the almost sure

convergence of Ŝc,n(u | y) to Sc(u | y) and from the Lebesgue dominated convergence theorem

which warrants the convergence of the integrals defining ϕ̂m,n(y) and ϕm(y).

(ii) The argument will follow the standard Delta method (see Serfling, 1980, Chapter 6,

Theorem A). Let us denote by

T (S) =
∫ ∞

0
[Sc(u | y)]m du.

T (S) is an operator which associates a real value to any survivor function S. This operator

is differentiable at the Frechet sense w.r.t. the sup norm, that is:

T (R)− T (S) = DTS(R− S) + ε(R− S)||R− S||, (3.9)

for any two survivor functions S and R, where the sup norm is used:

||V (x, y)|| = sup
(x,y)∈Ψ

|V (x, y)|,

and where ε(V ) → 0 when ||V || → 0. The Frechet derivative is obtained by standard

calculus, noting that Sc(u | y) = S(u, y)/SY (y):

DTS(V ) =
m

SY (y)m

∫ ∞

0
S(u, y)m−1V (u, y) du−m

ϕm(y)

SY (y)
V (0, y). (3.10)

Now, applying (3.9) and noting that DTS(Ŝn − S) = DTS(Ŝn) we have:

√
n[T (Ŝ)− T (S)] =√
n

n

n∑

i=1

[
m

SY (y)m

∫ ∞

0
S(u, y)m−1 1I(xi ≥ u, yi ≥ y) du− mϕm(y)

SY (y)
1I(yi ≥ y)

]

+ε(Ŝn − S)(
√

n||Ŝn − S||). (3.11)

As
√

n||Ŝn − S|| = Op(1) by the Dvoretzky, Kiefer and Wolfowitz inequality (see Serfling,

1980, Chapter 2, Theorem A) and ε(Ŝn − S) → 0 in probability (because Ŝn is uniformly

convergent), the second term of the r.h.s. of (3.11) converges to 0. The theorem comes then

from a central limit theorem applied to the first term of the r.h.s. of (3.11). In particular, it

is easy to verify that the term between brackets has zero mean. Indeed:

E

[
m

SY (y)m

∫ ∞

0
S(u, y)m−1 1I(X ≥ u, Y ≥ y) du− mϕm(y)

SY (y)
1I(Y ≥ y)

]

= n

[
m

SY (y)m

∫ ∞

0
S(u, y)m−1 S(u, y) du− mϕm(y)

SY (y)
SY (y)

]
= 0.
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Note the
√

n rate of convergence of ϕ̂m,n(y) to ϕm(y) which is rather unusual in nonpara-

metric statistics. The expression of the variance can be used to derive asymptotic confidence

intervals for ϕm(y): by plugging estimators for the unknown quantities and taking the empir-

ical mean for the expectation provides σ̂2(y), a consistent estimator of the variance. Observe

that for a given sample size, σ̂2(y) will increase with y.

Note that these convergence results may be improved by a functional limit theorem

which is given in Appendix B. With this functional theorem the asymptotic can be derived

for transformations of ϕm.

The result can also be extended to the analysis of the asymptotic properties of a vector

(ϕ̂m,n(y
1), . . . , ϕ̂m,n(y

r)). We still have the asymptotic r-variate normal distribution with

asymptotic covariances given by

Σk,` = Cov(ϕ̂m,n(y
k), ϕ̂m,n(y

`)) = E
[
Γ(yk, X, Y ) Γ(y`, X, Y )

]
, (3.12)

where

Γ(y, X, Y ) =
m

SY (y)m

∫ ∞

0
S(u, y)m−11I(X ≥ u, Y ≥ y) du− mϕm(y)

SY (y)
1I(Y ≥ y).

The issue of how to choose m in practice has been discussed above in Section 2. We

know that the estimator ϕ̂m,n(y) converges to the FDH estimator ϕ̂n(y) defined in (3.3) as

m → ∞. But we know also from Park, Simar and Weiner (2000), that under regularity

conditions, as n → ∞, the FDH estimator ϕ̂n(y) converges to the true unknown frontier

ϕ(y) defined in (2.4).

The value of m can thus be viewed as a “trimming” or “smoothing” parameter and the

natural question then arises: how to define m as a function of n such that ϕ̂m,n(y) converges

to ϕ(y), as n → ∞. This could also give some insights on how to choose m in practice in

order to obtain a consistent estimator of the true frontier, if wanted. The result follows from

the next theorem.

Theorem 3.2 Assume that the joint probability measure of (X, Y ) on the compact support

Ψ provides a strictly positive density on the frontier ϕ(y) and that the function ϕ(y) is

continuously differentiable in y. Then, for any y interior to the support of Y we have:

L
(
n1/(1+q)(ϕ̂my(n),n(y)− ϕ(y))

)
→Weibull(µ1+q

y , 1 + q) as n→∞, (3.13)

where my(n) = O(β n log(n) SY (y)), with β > 1/(1 + q) and µy is a constant.
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Proof: From Park, Simar and Weiner (2000) we know that

L
(
n1/(1+q)(ϕ̂n(y)− ϕ(y))

)
→Weibull(µ1+q

y , 1 + q) as n→∞,

where the parameter µy of the Weibull depends on local properties of the DGP near the

frontier point (ϕ(y), y). Now using (3.6) we obtain:

n1/(1+q)(ϕ̂m,n(y)− ϕ(y)) = n1/(1+q)(ϕ̂n(y)− ϕ(y)) + n1/(1+q)
∫ ∞

ϕ̂n(y)
[Ŝc,n(u | y)]m du.

So the question is to find the value of m = my(n) such that the last term of the preceding

expression is op(1) as n → ∞. Using a mean value theorem, we can write the integral

as (xy(n(y)) − xy(1))[Ŝc,n(ũ | y)]m where ũ ∈ ]xy(1), x
y
(n(y))[. Since the support of (X, Y ) is

compact, the range of X is bounded, in addition, for u > ϕ̂n(y), Ŝc,n(ũ | y) is bounded by

(n(y)− 1)/n(y). So to achieve our goal, it is sufficient that my(n) is such that

[(n(y)− 1)/n(y)]my(n) = Op(n
−β),

where β > 1/(1 + q). Now, since log(1 − 1/n(y)) � −1/n(y) and n(y) � nSY (y) this is

equivalent to

my(n) = O(β n log(n) SY (y)),

with β > 1/(1 + q).

In practice, if a consistent estimator of the frontier itself is wanted, we might plug the

value of ŜY (y) in the formula to get an idea of the order of my(n), but of course the result

is only an asymptotic one.

Note that we loose the
√

n-consistency because here we use ϕ̂m,n(y) to estimate the

frontier ϕ(y) itself and not ϕm(y), the “order-m” frontier which can be viewed as a “trimmed”

frontier.

Remark 3.1 Convexifying the estimator: Robust DEA estimator

The above results do not rely on convexity assumption regarding the attainable set Ψ. If Ψ

is convex, our estimator remains consistent with the same asymptotics but a convex esti-

mates of Ψ is obtained by convexifying the set above the obtained frontier ϕ̂m,n(y). This

could be achieved by running a input-oriented DEA linear program on the set of points

{(ϕ̂m,n(yi), yi), i = 1, . . . , n}. Again the obtained estimator will converge to the DEA frontier

estimator if m→∞, but, for finite m, it will not envelop all the data points.
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4 Empirical Illustration

To illustrate our methodology, we analyze the production of the postal services in France.

More precisely, we focus on the cost of the delivery activity.

We use a cross-section data set of around 10.000 post offices, observed in 1994. We have

information about labor used and mail volumes for the delivery activity of each post office.

So, in this example, we have one input X and one output Y .

For each post office i, the variable Xi is the labor cost, which represents more than 80%

of the total cost of the delivery activity. It is measured by the quantity of labor. The output

Yi is defined as volume of the delivered mail (in number of objects). The data and the results

are shown in Figures 1–3.

Figure 1 plots the observed data, the cost xi (vertical axis) against the output yi (horizon-

tal axis), along with the nonparametric estimation of the expected minimum cost function

of order m: ϕ̂m,n(y). Here the value of m was fixed to 30. Figure 2 zooms in Figure 1 for

the 3.000 first observations with the smallest output levels. It appears more clearly, in the

zoom, that the estimates is typically monotone and that many points stay outside (below)

the frontier of order m = 30.

We have also estimated the variance function σ2(y) given in Theorem 3.1. This allows

to determine for some given points y confidence intervals. Figure 3 plots the pointwise

confidence intervals for a selected grid of points y. As expected, the lengths of the confidence

intervals increases when y is larger.

The FDH cost efficient frontier would envelop all the data points and is, of course, below

our estimate. Our obtained expected minimum cost of order m can thus be viewed as a

mark of “good practice” for producing units when studying their performance. However,

this benchmark is less “severe” than the FDH frontier because it is less sensitive to extreme

points.

With m = 30, 73% of the observations where used to determine the expected minimum

cost estimate of order m and so 27% of points were left out. Figure 4 indicates how the

percentage of points below the expected minimum cost estimate of order m decreases with

m. We notice that, in our example, this percentage is very stable from m = 50 where

roughly 10% of the observations are left out. These observations should be analyzed in

details because they are really extreme and could be outlying or perturbed by noise.
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5 Extensions

5.1 Introducing environmental factors

The analysis of the preceding section can easily be extended to the case where additional

information is provided by other variables Z ∈ IRk, exogenous to the production process

itself, but which may explain part of it. It could be environmental variables, not under the

control of the manager. For instance, in the case of our empirical illustration above, we

could consider a variable Z representing the geographical density of the distribution area

of a post office (the number of delivery points by unit of length of the distribution route).

This variable, at least in the short term, is not under the control of the managers of the post

office but might influence the cost of the post office.

One way for introducing in the model this additional information is to condition the

production process to a given value of Z. Then, in the empirical example of the post offices,

we could study the expected minimum cost function for a post office delivering a mail volume

greater than y, with a geographical density equal to z.

Here, the joint survival function is written as S(x, y, z) = Prob(X ≥ x, Y ≥ y, Z ≥ z).

Then the methodology can be adapted by replacing in Section 2, Sc(x | y) by Sc(x | y; z)

where

Sc(x | y; z) = Prob(X ≥ x | Y ≥ y, Z = z) =
∂zS(x, y, z)

∂zS(0, y, z)
, (5.1)

∂z denoting the operator of derivative of order k with respect to all the components of z:

∂z =
∂k

∂z1 . . . ∂zk
.

The estimation of this conditional survivor function will require a smoothing technique in z.

For example we will estimate S(x, y | Z = z) by:

Ŝn(x, y | Z = z) =

n∑

i=1

1I(xi ≥ x, yi ≥ y)K
(

z − zi
hn

)

n∑

i=1

K
(

z − zi
hn

) , (5.2)

where K(·) is a kernel and hn is the smoothing bandwidth which has the appropriate size for

getting the asymptotic theory. It can be shown that the resulting estimator of the mth order

expected minimum cost will achieve the rate of convergence
√

nhkn where k is the dimension

of Z. The theory can be developed in a similar way as in the preceding sections. We sketch

below the main points of the argument.

17



We want to estimate the conditional mth order expected minimum cost function defined

as

ϕm(y, z) =
∫ ∞

0
[Sc(u | y; z)]mdu, (5.3)

where

Sc(u | y; z) = Prob(X ≥ u | Y ≥ y, Z = z).

The estimator is given by:

ϕ̂m,n(y, z) =
∫ ∞

0




n∑

i=1

1I(xi ≥ u, yi ≥ y)K
(

z − zi
hn

)

n∑

i=1

1I(yi ≥ y)K
(

z − zi
hn

)




m

du. (5.4)

The asymptotic distribution of the estimator, with y and z fixed may be derived from the

general results of Aït-Sahalia (1995). Under regularity conditions on the distribution of Z

(continuous differentiable density function), if the kernel K(·) is symmetric and positive and

with the usual conditions on the bandwidth implying asymptotic normality and unbiasedness

of the estimator of the density of Z (i.e. nhkn → ∞ and nhk+4
n → 0 as n → ∞), we obtain

that

L
(√

nhkn(ϕ̂m,n(y, z)− ϕm(y, z)
)
→ N(0, σ2(y, z)fZ(z)

∫
K2), (5.5)

with

σ2(y, z) = Var(A(X, Y ; y, z) | Z = z),

where

A(X, Y ; y, z) =
m

[∂z(S(0, y, z))]m

∫ ∞

0
[∂z(S(u, y, z))]m−11I(X ≥ u, Y ≥ y)du

− mϕm(y, z)

∂z(S(0, y, z))
1I(Y ≥ y).

Note again that E(A(X, Y ; y, z) | Z = z) = 0.

The main argument of the proof is similar to the developments in Theorem 3.1. In the

linearization of
√

nhkn(ϕ̂m,n(y, z)−ϕm(y, z)), the analog of the leading term of (3.11) becomes
√

nhkn

n

n∑

i=1

[
m

[∂z(S(0, y, z))]m

∫ ∞

0
[∂z(S(u, y, z))]m−11I(xi ≥ u, yi ≥ y)

1

hkn
K
(

z − zi
hn

)
du

− mϕm(y, z)

∂z(S(0, y, z))
1I(yi ≥ y)

1

hkn
K
(

z − zi
hn

)]

=

√
nhkn

n

n∑

i=1

A(xi, yi; y, z)
1

hkn
K
(

z − zi
hn

)
,

then, under the appropriate regularity conditions on the kernel, the standard theory applies.
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5.2 Multivariate extensions

We consider here the setting of Section 1 where we have p inputs and q outputs. We continue

the presentation in the input-oriented case . The modifications for the formulation in the

output-oriented case are straightforward (see also Appendix A). The production process is

here described by the joint probability measure of (X, Y ) on IRp
+ × IRq

+. The support of

(X, Y ) is the attainable set Ψ.

There are several ways for describing the frontier ∂C(y) when p ≥ 1. For any (x, y) ∈ Ψ,

we can indeed define, as in (1.3), the input efficiency measure of the point (x, y):

θ(x, y) = inf{θ | θx ∈ C(y)} = inf{θ | (θx, y) ∈ Ψ}.

For any output level y in the interior of the support of Y , we want to describe, as in Section

2, the efficient frontier. In the multi-inputs case, the input-efficient frontier can then either

be described through the efficiency measures, since , ∂C(y) = {x | θ(x, y) = 1} or through

the efficient level of the inputs which, for any x ∈ IRp
+ is given by:

x∂(y) = θ(x, y) x. ∈ ∂C(y). (5.6)

So the frontier, for any (x, y), can be characterized either by θ(x, y) or by x∂(y). It is clear

that if Ψ is free disposal, y′ ≥ y ⇒ C(y′) ⊆ C(y), then, for any x, θ(x, y) and x∂(y) are non

decreasing in y and when p = 1, x∂(y) determines ϕ(y) as defined in Section 2.

For a given level of outputs y0 in the interior of the support of Y , consider now the m

i.i.d. random variables Xi, i = 1, . . . , m generated by the conditional p-variate distribution

function FX(x | y0) = Prob(X ≤ x | Y ≥ y0) and define the set:

Ψm(y0) = {(x, y) ∈ IRp+q
+ | x ≥ Xi, y ≥ y0}. (5.7)

Then, for any x, we may define

θ̃m(x, y0) = inf{θ | (θx, y0) ∈ Ψm(y0)}. (5.8)

Note that θ̃m(x, y0) may be computed by the following formula:

θ̃m(x, y0) = min
i=1,...,m

{
max
j=1,...,p

(Xj
i

xj

)}
(5.9)

where aj denotes the jth component of a vector a.

The following definition is the multivariate extension of our minimum input function of

order m as defined in Section 2 for p = 1.
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Definition 5.1 For any x ∈ IRp
+, the expected minimum input level of order m denoted by

x∂m(y) is defined for all y in the interior of the support of Y as:

x∂m(y) = x E(θ̃m(x, y) | Y ≥ y), (5.10)

where we assume the existence of the expectation.

The expected minimum level of inputs of order m may be computed as follows.

Theorem 5.1 If x∂m(y) exists, it is given by:

x∂m(y) = x
∫ ∞

0
(1− FX(ux | y))mdu. (5.11)

Proof: The conditional distribution of θ̃m(x, y) is given by

P (θ̃m(x, y) ≤ u | Y ≥ y) = P
(

min
i=1,...,m

{
max
j=1,...,p

(
Xj
i

xj
)

}
≤ u | Y ≥ y

)

= 1− P
(

min
i=1,...,m

{
max
j=1,...,p

(
Xj
i

xj
)

}
> u | Y ≥ y

)

= 1−
[
P
(

max
j=1,...,p

(
Xj
i

xj
) > u | Y ≥ y

)]m

= 1−
[
1− P

(
max
j=1,...,p

(
Xj
i

xj
) ≤ u | Y ≥ y

)]m

= 1−
[
1− P (X ≤ ux | Y ≥ y

)]m
.

Now, we obtain

E(θ̃m(x, y) | Y ≥ y) =
∫ ∞

0
(1− FX(ux | y))mdu , (5.12)

from which the theorem follows.

Here again, in this multivariate case, when m → ∞, the expected minimum input level

of order m converges to the efficient input level defining the frontier:

Theorem 5.2 For any value of x ∈ IRp
+ and for any y in the interior of the support of Y

we have:

lim
m→∞x∂m(y) = x∂(y). (5.13)
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Proof: This comes immediately from (5.12) where the integral is computed on two intervals

of values for u:

E(θ̃m(x, y) | Y ≥ y) =
∫ θ(x,y)

0
(1− FX(ux | y))mdu +

∫ ∞

θ(x,y)
(1− FX(ux | y))mdu

= θ(x, y) +
∫ ∞

θ(x,y)
(1− FX(ux | y))mdu,

where the integral converges to zero as m→∞.

The nonparametric estimation of x∂m(y) is straightforward: we replace the true FX(· | y)

by its empirical version, F̂X,n(· | y). We have

θ̂m,n(x, y) = Ê(θ̃m(x, y) | Y ≥ y) (5.14)

=
∫ ∞

0
(1− F̂X,n(ux | y))mdu. (5.15)

where

F̂X,n(x | y) =

∑n
i=1 1I(xi ≤ x, yi ≥ y)
∑n
i=1 1I(yi ≥ y)

.

Then, the estimator of the expected minimum input level of order m is given by:

x̂∂m,n(y) = x θ̂m,n(x, y). (5.16)

Note that here, due to the multivariate nature of F̂X,n(x | y), there is no simple explicit

expression of θ̂m,n(x, y). The easiest way to compute it is by Monte-Carlo simulations which

can be performed as follows.

For a given y, draw a sample of size m with replacement among these xi such that yi ≥ y

and denote this sample by (X1,b, . . . , Xm,b). Then compute θ̃bm(x, y) as:

θ̃bm(x, y) = min
i=1,...,m



 max
j=1,...,p

(Xj
i,b

xj

)


 .

Redo this for b = 1, . . . , B, where B is large. Then,

θ̂m,n(x, y) ≈ 1

B

B∑

b=1

θ̃bm(x, y). (5.17)

The empirical frontier, which envelopes all the data points, is given by the standard FDH

solution. For instance, the FDH input efficiency measure of any (x, y) is given by:

θ̂n(x, y) = inf{θ | (θx, y) ∈ Ψ̂FDH} , (5.18)

where Ψ̂FDH is defined in (1.6). It is computed through the following formula:

θ̂n(x, y) = min
i|yi≥y

{
max
j=1,...,p

(xji
xj

)}
.
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The corresponding estimated input-efficient level of inputs is given by:

x̂∂n(y) = x θ̂n(x, y). (5.19)

The asymptotic developed in Section 3 for p = 1 remains valid, in particular, by Theorem

3.1, we still achieve the
√

n-consistency of x̂∂m,n(y) to x∂m(y) for m fixed as n→∞.

Note also, by (5.15), that

θ̂m,n(x, y) = θ̂n(x, y) +
∫ ∞

θ̂n(x,y)
(1− F̂X,n(ux | y))mdu ,

so that θ̂m,n(x, y)→ θ̂n(x, y) as m→∞ for n fixed, or equivalently, the estimated minimum

input level of order m, x̂∂m,n(y) converges to the FDH efficient input level x̂∂n(y) when m→∞.

However, for a finite m our estimator does not envelop all the data points and is more robust

to extreme values, noise or outliers.

From Park, Simar and Weiner (2000) we know that the rate of convergence of the FDH

efficiency measures θ̂n(x, y) to θ(x, y) is n1/(p+q), so Theorem 3.2 as to be adapted accordingly.

6 Conclusions

In this paper, we define a statistical concept of a production frontier and we propose a

nonparametric estimation of it. The concept is the expected minimum input level (or output

level) of order m. It can be applied in very general settings with multiple inputs and multiple

outputs. It is related to the usual FDH/DEA nonparametric envelopment estimators but

is more robust to extreme values, noise or outliers, in the sense that it does not envelop

all the data points. The estimator is easy to implement and the asymptotic properties

have been developed. In particular our estimator converges at a rate of
√

n to its population

counterparts. By choosing mn appropriately as a function of the sample size n, our estimator,

as an estimator of the frontier itself, recovers the asymptotic properties of the FDH estimator.
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Appendix

A The Expected Maximal Production Function

We follow here, without any proofs, the development of Section 2 in the case we have one

output y and p inputs x. Here the production process is defined by the joint distribution

of the random vector (X, Y ) on IRp
+ × IR+. We will concentrate here on the conditional

distribution of Y given X ≤ x. Let the joint distribution be

F (x, y) = Prob(X ≤ x, Y ≤ y), (A.1)

the conditional distribution on Y given X ≤ y is described by

Fc(y | x) = Prob(Y ≤ x | X ≤ x) (A.2)

=
F (x, y)

FX(x)
, (A.3)

where FX(x) = Prob(X ≤ x).

The upper boundary of the support of Fc(y | x) is given by the function:

ψ(x) = sup{y | Fc(y | x) < 1}. (A.4)

This function is monotone nondecreasing in x. It is the smallest monotone nondecreasing

function which is greater or equal to the output-efficient frontier ∂P (x) as defined in Section

1. It is clear that if the attainable set Ψ is free disposal, the two functions coincide.

Consider now an integer m ≥ 1 and let (Y 1, . . . , Y m) be m independent identically

distributed random variables generated by the distribution of Y given X ≤ x.

Definition A.1 The expected maximum production function of order m denoted by ψm(x)

is the real function defined on IRp
+ as

ψm(x) = E(max(Y 1, . . . , Y m) | X ≤ x), (A.5)

where we assume the existence of this expectation.

The function ψm(x) can be computed as follows.

Theorem A.1 If ψm(x) exists, it is given by

ψm(y) =
∫ ∞

0
(1− [Fc(u | x)]m) du. (A.6)
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From its definition, it is clear that for any y fixed, the function is a increasing function of

m. The limiting case when m→∞ is of particular interest. It achieves the output efficient

frontier:

Theorem A.2 For any fixed value of x we have

lim
m→∞ψm(x) = ψ(x). (A.7)

In particular we have:

ψm(x) = ψ(x)−
∫ ψ(x)

0
[Fc(u | x)]m du. (A.8)

Assumption A.1 The conditional distribution of Y given X ≤ x has the following property

For all x′ ≥ x, Fc(y | x′) ≤ Fc(y | x). (A.9)

This assumption says that the chance of producing less than a value y decreases if a firm

utilizes more inputs. If F (x, y) represent a production process, this hypothesis is natural.

Theorem A.3 Under Assumption A.1, ψm(x) is monotone nondecreasing in x.

From an economic point of view, the expected maximal production function of order m,

ψm(x) has its own interest: it is not the efficient frontier of the production set but it might

be useful in term of practical efficiency analysis. Suppose a production unit uses a quantity

of input x0, ψm(x0) gives the expected maximum production among a fixed number of m

firms using less than x0. For this particular unit, it is certainly worth to know this value

because it gives a clear indication of how efficient it is compared with these m units. This

is achieved by comparing its level y0 with the value of ψm(x0).

The nonparametric estimator of ψm(x) is given by replacing the conditional distribution

Fc(y | x) by its empirical version:

F̂c,n(y | x) =
F̂n(x, y)

F̂X,n(x)
, (A.10)

where F̂n(x, y) = 1
n

∑n
i=1 1I(xi ≤ x, yi ≤ y) and F̂X,n(y) = (1/n)

∑n
i=1 1I(xi ≤ x).

The estimated FDH output-efficient frontier of the production set is given by:

ψ̂n(x) = sup{y | F̂c,n(y | x) < 1}. (A.11)
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The estimator of the expected maximum output function of order m is defined by:

ψ̂m,n(x) = Ê(max(Y 1, . . . , Y m) | X ≤ x). (A.12)

It is computed through

ψ̂m,n(x) =
∫ ∞

0
(1− [F̂c,n(u | x)]m) du. (A.13)

We have:

ψ̂m,n(x) = ψ̂n(x)−
∫ ψ̂n(x)

0
[F̂c,n(u | x)]m du, (A.14)

from which we obtain again that for all x,

lim
m→∞ ψ̂m,n(x) = ψ̂n(x). (A.15)

The asymptotic theory given by Theorems 3.1 and 3.2 can easily be adapted.

B A Functional Convergence Theorem

Coming back to Theorem 3.1, the asymptotic is developped for n → ∞ for a fixed value of

m and for a fixed value of y. It is a pointwise convergence result. In fact we can obtain a

more general result by using convergence properties of functionals.

We know that the process
√

n(Ŝn − S) indexed by elements (x, y) ∈ IR1+q
+ converges in

distribution to G, a 1 + q dimensional S-brownian bridge. G is a gaussian process with zero

mean and covariance function Cov(f1, f2) = E(f1, f2)−E(f1)E(f2) where f1(u) = 1I(u ≥ t1)

and f2(u) = 1I(u ≥ t2), u, t1, t2 ∈ IR1+q and the expectation is relative to the distribution

characterized by the survivor function S (see van der Vaard and Wellner, 1996, Chapter 2,

section 1).

Then the continuous mapping theorem implies that
√

n(ϕ̂m,n−ϕm) converges in distribu-

tion to DTS(G) where DTS is the continuous linear operator defined in (3.10). This process

DTS(G) is then a q dimensional zero mean gaussian process indexed by y where covariance

function is given by (3.12).
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