
Inverse Problems and Structural
Econometrics : The Example of Instrumental

Variables1

Jean-Pierre Florens2

February 2002

1Invited Lecture to the World Congress of the Econometric Society, Seattle
2000.
Acknowlegements : This paper is strongly related to researches with M. Carrasco,
S. Darolles and E. Renault. I also want to acknowledge C. Gouriéroux, L.P. Hansen,
J. Heckman, C. Meghir, C. Protopopescu, J.F. Richard, E. Sbäı, A. Vanhems and
E. Vytlacil for useful discussions on this topic. The reduction of this paper had
benefited of numerous remarks and comments of L.P. Hansen

2University of Toulouse (IDEI-GREMAQ), Manufacture des Tabacs, 21, allée
de Brienne, F-31000 Toulouse, France, e-mail : florens@cict.fr



Abstract

A structural functional model is characterized by a functional equation
relating the infinite-dimensional parameter of interest ϕ and the distribution
F of the sample. In linear cases this equation can be written KF ϕ = ψF

where KF is a linear operator. This inverse problem is said to be ill posed
if the inverse of KF does not exist or is not continuous. In that case an
approximated continuous solution of this equation may be computing using
a Tikhonov regularization (ϕ = (αI + K∗

F KF )−1K∗
F ψF ). We analyze this

procedure where F is estimated non parametrically and where α decreases
to zero. Applications to instrumental variable estimation are developed.

JEL Classification : C14, C30.

Keywords : Inverse problem, Tikhonov regularization, Instrumental variables,
Spectral decomposition, Nonparametric estimation.
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1 Introduction

The development of nonparametric estimation in econometrics has been
extremely important in the last fifteen years. Inference was first concentra-
ted on the data’s distribution, described for example by its density or by its
hazard function, or by some characteristics of the conditional distributions,
such as the conditional expectations. This approach is typically a reduced
form analysis oriented to sophisticated data description, even if the selec-
tion of conditioning variables may depend on a theoretical model. On the
other side, the structural econometric analysis is focused on the estimation
of the (possibly functional) parameters which describe the economic agent’s
behavior and which are not, in general, ”simple” transformations of the sam-
pling distribution. An excellent state of the art discussion of nonparametric
econometrics is given by Pagan and Ullah (1999).

A first objective of this paper is to introduce a general framework for
structural functional inference in connection with the inverse problems lite-
rature. An inverse problem is the resolution of a functional equation with a
particular attention to the sensitivity of the solution to possible errors in the
specification of the equation due for instance to an estimation procedure (see
e.g. for recent surveys of the literature Colton et al (2000)).

We analyse more specifically linear inverse problems where the parameter
of interest is a function ϕ solution of a linear equation KF ϕ = ψF in which
both the linear operator KF and the r.h.s. depend on the (unknown) dis-
tribution F of the sample. This linear problem may be ill posed if KF does
not admit a continuous inverse and this problem must be regularized (see
Tikhonov and Arsenin (1977) or Wahba (1973)).

One of the fundamental question of structural econometrics is the treat-
ment of endogeneity. This question is addressed in terms different from the
definition of exogeneity based on the notion of cut (see Engle et al (1983)
and Florens and Mouchart (1985)). The problem is to define a relation (such
as Y = ϕ(Z) + U) in absence of the ”exogeneity assumption” (E(U |Z) = 0).
Different possible definitions are given in the paper and the instrumental va-
riable definition is featured (E(U |W ) = 0 where W is a set of instruments).
This presentation is more in the tradition of Frisch (1934) and (1938), Reier-
sol (1941 and 1945), Sargan (1958), Basman (1959) or Theil (1953).

Pratical implementation of the solution of a linear inverse problem is
developed and we finally present a synthesis of some of our previous works
on the asymptotic properties of the Tikhonov regularization of the solution
of an ill posed linear inverse problem.
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2 Functional structural econometrics and in-

verse problems

A structural analysis in nonparametric (i.e. with functional parameters)
econometrics can be introduced by considering the following elements.

i) The functional parameter of interest is denoted by ϕ and this unknown
function is an element of a Banach space Φ.

ii) The observation mechanism is characterized by a random element S,
which is in general a random vector in R

m but S could be also infinite
dimensional. The probability measure of S is defined by a cumulative
distribution function F . This c.d.f. is an element of a topological space
F . The econometrician observes a sample s1, ..., sN of S. In the last
sections of this paper we essentially consider i.i.d. samples but the ex-
tension to weakly dependent observations (e.g. strong mixing stationary
processes) does not deeply modify our analysis.

iii) The economic model defines the parameter of interest ϕ and connects
this parameter to the probability distribution F of the sample by a
functional equation :

A(ϕ, F ) = 0, (1)

where A is an operator defined on Φ×F and valued in a Banach space
E . The main feature of this presentation is that ϕ is implicitely related
to F which allows to set fundamental questions of structural econo-
metrics as identification (unicity of the solution of (1) for given F ) or
overidentification (existence of the solution). Statistical nonparametric
inference or reduced form analysis are in general concerned by explicit
definitions of the parameter of interest, like the regression function or
the cumulative hazard function for example.

In this paper we call Structural Functional Model the three elements Φ,F
and A. This definition will be illustrated by the following examples. In this
section, only nonlinear examples are given. Linear examples will be conside-
red in section 2. ¥
Example 2.1 (Conditional moment condition)
This example covers a large class of particular cases. It gives a natural way to
specify a relation between ϕ and F . Let assume S = (Y, Z) ∈ R

m a random
vector and h is an operator defined on R

m ×Φ and valued in R
r. We assume

that h is integrable for any ϕ and we defined A by :
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A(ϕ, F ) = EF (h(S, ϕ)|Z = z).

The usual (conditional) moment condition is obtained where ϕ is finite di-
mensional (Φ ⊂ R

k) and this example also covers the marginal moment
condition EF (h(S, ϕ)) = 0. Following the Hansen (1982) paper, a huge li-
terature examines this conditions (see e.g. Hall (1993)).

Most of this literature considers finite dimensional parameters and finite
number of moment conditions but infinite dimensional extensions are given
by Carrasco and Florens (2000a).

Moment or conditional moment conditions are in general derived from
economic models by assuming that the first order conditions of optimisation
programs which characterized the behavior of economic agents are satisfied in
average(see e.g. Ogaki (1993)).

¥
Example 2.2 (Surplus analysis and non linear differential operators)
Let us assume S = (Y, Z,W ) ∈ R

3 and define

mF (z, w) = E(Y [Z = z,W = w).

This conditional expectation function is assumed to be smooth and the
parameter of interest ϕ is a differentiable function from R to R. This function
is assumed to be solution of a Cauchy-Lipschitz differential equation

ϕ′(z) = mF (z, ϕ(z)),

under a boundary condition ϕ(z0) = a0. In that case

A(ϕ, F ) = ϕ′ − mF (., ϕ),

and E is the set of real variable real valued functions.
Nonparametric estimation of the surplus function of a consumer gives an

example of this functional equation. Following Hausman (1981 and 1985),
Hausman and Newey (1995) the surplus function ϕ satisfies the equation

ϕ′(z) = mF (z, w0 − ϕ(z)),

where Y is the consumption of a good, Z the price, W the revenue of the
consumer, mF the demand function and (z0, w0) an initial value of the price
and the revenu. The boundary condition assumes that ϕ(z0) = 0. A general
treatment of functional parameters solutions of Cauchy-Lipschitz differential
equations and others applications are given by Vanhems (2000).

4



¥
Example 2.3 (Game theoretic model)
We consider here incomplete information symmetric games which can be sim-
plified in the following way. A player of a game receives a private signal ξ ∈ R

and plays an action S ∈ R. We consider cases where the ξ are i.i.d. generated
for all the players and all the games and the distribution of any ξ, characte-
rized by its c.d.f. ϕ, is common knowledge for the players. Actions are related
to signals by a strategy function

S = σϕ(ξ),

which is obtained, for example, as a Nash equilibrium and depends on the
c.d.f. ϕ. For simplicity σϕ is supposed to be one to one and increasing. The
econometrician observes a sample of the action S but ignores the signals and
the parameter of interest is ϕ. The strategy function (as a function of ξ and
ϕ) is known. Let F be the c.d.f. of the actions. This distribution satisfies
F = ϕ ◦ σ−1

ϕ and the operator A can be defined by :

A(ϕ, F ) = ϕ − F ◦ σϕ.

The private value first price auction model gives a particular case of this
class of examples. In this case, the strategy function verifies :

σϕ(ξ) = ξ −
∫ ξ

ξ0
ϕ(u)Kdu

ϕ(ξ)K
,

where the number of bidders is K + 1 and ξ ∈ [ξ0, ξ1] ⊂ R. This example was
treated in numerous papers (see Guerre et al (2000)) for a recent nonparame-
tric analysis). A general treatment of the game theoretic models (including
several extensions) is given by Florens et al (1997).

¥
For a given F , ϕ is identified if two solutions of (1) are necessarily equal

and ϕ is locally identified if, for any solution, there exists a neighborhood in
which no other solution exists. Local identification is a useful concept on non
linear cases. If A is differentiable in the Frechet sense, the implicit function
theorem (for a discussion of several differentiability concepts in relation with
the implicit function theorem see Van der Vaart and Wellner (1996)) gives
a sufficient condition for local identifiability. If (ϕ, F ) satisfies A(ϕ, F ) = 0
let us compute the Frechet derivative of A with respect to ϕ at (ϕ, F ). This
derivative is a linear operator from Φ to E and if this linear operator is one to
one, local identification in a neighborhood of ϕ is warranted ( For application
at the game theoretic models Florens et al (1997) of Florens and Sbai (2000)).
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Identifiability or local identifiability is typically a property of F . Its ana-
lysis in specific models should exhibit conditions on F that imply identifi-
cation. It is natural to construct models such that identification is satisfied
for the true c.d.f. (i.e. the Data Generating Process). However in numerous
particular cases, identification is not verified for the estimated F̂N (which
is in general the empirical c.d.f. or a smooth regularization of the empirical
c.d.f.). Linear models will provide examples of this lack of identification and
solutions will be given Section 4.

Existence of a solution to equation (1) is also a property of F . If a solution
exists for F in a strict subset of F only, the model will be said overidentified.
In that case, it is natural to assume that the true D.G.P. F0 satisfies the
existence condition but in general the equation A(ϕ, F̂N) = 0 has no solution
where F̂N is an usual unconstrained estimator.

If there exists a neighborhoud of the true F0 such that a solution of
A(ϕ, F ) = 0 exists for any F∗ in this neighborhoud and if F̂N converges to
F0 (relatively to the same topology) then overidentification will necessarily
disappear for finite (possibly large) sample size and is not a major issue
(this is for example the case in the private value first price auction model).
However, in general, a solution does not exist for any sample size. Two types
of treatments to this problem are adopted (see Manski (1988)). The first
one consist in a modification of the original definition of the parameter of
interest (e.g. ϕ becomes the argmin of ||A(ϕ, F )|| instead of the solution of
A(ϕ, F ) = 0 or is the solution of a new functional equation A∗(ϕ, F ) = 0
which extend the original one). This solution is essentially adopted in the
GMM estimation and our analysis belongs to this methodology. A second
way to beat overidentification is to constrain the estimation of F in order
to satisfy existence conditions. This is done in finite dimensional parameter
estimation by using unequal weights to the observations (see Owen (1990)
Quin and Lawless (1994) and Kitamura and Stutzer (1997)).

3 Linear inverse problems

We analyse in this section particular models where the equation A(ϕ, F ) =
0 is linear (up to an additive term) in ϕ.

The presentation will be simplified by assuming that Φ is an Hilbert
space. Let us consider an other Hilbert space Ψ. A linear structural model is
defined by an equation :

A(ϕ, F ) = KF ϕ − ψF = 0, (2)
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where ψF ∈ Ψ and KF is a linear operator from Φ to Ψ. Both the linear
operator and the constant term depend in general on F ∈ F .

Linear operators constitue a very large class of transformations of ϕ. Im-
portant families of operators are integral operators and differential operators
and the properties of equation (2) will depend on topological properties of
KF (continuity, compactness...). This diversity will be illustrated by the fol-
lowing examples.

Example 3.1 (Density)
As noticed by Hardle and Linton (1994) density estimation may seen as a
linear inverse problem defined, in the real case (S ∈ R), by

∫ s

−∞
ϕ(u)du = F (s).

In that case ϕ is the density of F w.r.t. the Lebesgue measure and KF is
an integral operator. This presentation is interesting because it will be used
to point out that density estimation is an ill posed problem (in a sense which
will be defined later on).

¥
Example 3.2 (Differential operators)
Let us assume that ϕ is a continuously differentiable function from R to R

and that the model is characterized by :

ϕ(p) + α1F ϕ(p−1) + ... + αPF
ϕ = ψF ,

where ϕ(k) is the k-th derivative of ϕ and αJF are functions dependent on
F . The solution is constrained to a set of limit conditions. Extensions to
partial differential operators in case of functions of several variables can
also be consider. This case covers estimation of integral of the regression
(S = (Y, Z,W ) ∈ R

z ψF = (z, w) = E(Y |Z = z,W = w) ϕ : R
2 → R

solution of ∂
∂z

ϕ = ψF with ϕ(z0, w0) = y0 see Florens and Vanhems (2000)
for an application). Extension to some partial differential equations is given
in dynamic models by Banon (1978) and Aı̈t-Sahalia (1996).

¥
Example 3.3 (Backfitting estimation in additive nonparametric regression)
Let S = (Y,X1, X2) ∈ R×R

p ×R
q. The parameter of interest ϕ is (ϕ1, ϕ2) ∈

L2(X1) × L2(X2)(L
2(X1) and L2(X2) are the Hilbert spaces of square inte-

grable functions of X1 and X2 respectively). The underlying probability mea-
sure used for the definition of these space is the D.G.P. The functions ϕ1 and
ϕ2 are defined as the functions which minimize E(Y −ϕ1(X1)−ϕ2(X2))

2 or
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equivalently which are solution of the linear inverse problem (see e.g. Hastie
and Tibshirani (1990)).




ϕ1(x1) + E(ϕ2(X2)|X1 = x1) = E(Y |X1 = x1)

E(ϕ1(X1)|X2 = x2) + ϕ2(x2) = E(Y |X2 = x2)
.

¥
Example 3.4 (Repeated measurement model)
This example is very closed of the previous one. Suppose we have two ways
to measure an unobserved value η. The measurement equation are given by
Yj = η + ϕ(Xj) + uj(j = 1, 2) where uj is a zero mean (given the Xj’s) er-
ror term and ϕ is a bias function depending on observable variables Xj. The
order of the measurements is not relevant ((Y1, X1, Y2, X2) is distributed as
(Y2, X2, Y1, X1)). We observe an i.i.d. sample of (Y1, X1, Y2, X1) correspon-
ding to an i.i.d. sample of η. The unknown value η is eliminated by difference
and if Y = Y2 − Y1, it follows that E(Y |X1 = x1, X2 = x2) = ϕ(x2) − ϕ(x1)
(where ϕ is a square integrable function). This relation implies that ϕ is
solution of :

ϕ(x) − E(ϕ(X1)|X2 = x) = E(Y |X2 = x),

which is a particular case of (2). The function ϕ is then used to forecast η
by Yj − ϕ(Xj). See for details and applications Gaspar and Florens (1998)).

Note that if the joint distribution of (X1, X2) has a density f(x1, x2) w.r.t.
the Lebesgue measures the previous equation may rewrite :

ϕ(x) −
∫

ϕ(u)
f(u, x)

f(x)
du = rF (x),

where rF (x) = E(Y |X1 = x). This equation is a Fredholm type II equation
(see e.g. Tricomi (1985), Debrath and Mikusinski (1999)). The system of
equations which characterize ϕ1 and ϕ2 in example III-3 is also a Fredholm
type II integral equation.

¥
Example 3.5 The following example is motivated by the extension of GMM
to a continuous number of moment conditions. It also apply to regressions
with a continuous number of regressors.

Let us consider u(S, t) a function of t ∈ [0, 1] dependent on the random
element S and h(S, τ, t) a function of (τ, t) ∈ [0, 1]× [0, 1] also S dependent.
The parameter of interest is a function ϕ(t) defined on [0, 1], real valued and
solution of :
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∫
EF (h(S, τ, t))ϕ(τ)dτ = EF (u(S, t)).

This equation is a Fredholm type I integral equation. It is the natural ex-
tension of a linear equation system from finite dimension to infinite dimen-
sion. Despite this simplicity this type of equation rises complex question as
we will see in section 4. This equation is motivated by models with continuous
numbers of regressors. Consider for example the model

Y =

∫ 1

0

X(t)β(t)dt + U,

where the regressors are indexed by t ∈ [0, 1]. In this model the random
elements is equal to (Y,X(.)) where Y is real and X is a random element of
the set L2

[0,1] of square integrable function defined on [0, 1] provided with the

uniform measure. The model assume E(Y |X) = 〈X, β〉 where β is a element
of L2

[0,1]. This moment condition implies

∫
E(X(τ)X(t))β(t)dt = E(Y X(τ)),

and may be treated on a particular case of the previous relation.
The GMM with a continuous number of moments conditions also gives a

motivation for this kind of equation. Let us consider a moment condition

E(h(S, θ, t)) = 0,

where S is a random element, θ a vector of parameter and t ∈ [0, 1] indexes
the moment conditions.

The overidentification issue is solved by replacing this equation hj by the
minimisation of

∫
E(h(S, θ, t))E(h(S, θ, τ))k(t, τ)dsdτ,

where k is a weighting linear operator. Optimal GMM are considered by Car-
rasco and Florens (2000a) and are shown to be the solution of the minimisa-
tion of

∫
E(h(S, θ, t))ϕ(θ, t)dt,

where ϕ(θ, t) is solution of

∫
E(h(S, θ, t)u(S, θ, τ))ϕ(θ, t)dt = E(h(S, θ, τ)).
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The formalisation of the inversion of the variance of the moment condi-
tions then lead to a linear integral equation which is a part of the implemen-
tation of Optimal GMM.

¥
The class of linear inverse problem is very large, it covers cases with very

different statistical properties.
Identification and overidentification can be reformulated in the linear

case. The function ϕ is identified if KF is one to one and this property
is equivalent to N (KF ) = {0} where N (KF ) is the nullset of KF . A solution
of equation (2) exists if ψF belongs to the range of KF (denoted R(KF )).

The main question raised by a linear equation is the existence of the
inverse of KF and if its continuity. Intuitively we want to estimate ϕ by
ϕ̂N = K−1

F̂N
ψF̂N

. This computation requires an inversion of KF̂N
and the

continuity of K−1

F̂N
because even if ψF̂N

and KF̂N
converge to ψF0 and KF0 ,

this continuity is necessary for the consistency of ϕ̂F̂N
. This continuity is not

always satisfied because a linear operator is not necessarily continuous in the
infinite dimension case.

A linear inverse problem is said well posed if K−1
F exists and is continuous

(This notion is due to Hadamard (see e.g. Nashed and Wahba (1974) and
Tikhonov and Arsenin (1977)). ). This problem is ill posed otherwise. As
we will see later on, some of important econometric issues, like instrumental
variables estimation, define ill posed inverse problems.

4 Ill Posed Linear Inverse Problems

Let two Hilbert spaces Φ and Ψ and F a family of c.d.f. of a random
element S. We simplify our presentation by considering Hilbert spaces and
not Banach spaces. Hilbert spaces are self adjoint and we can used orthonor-
mal basis and spectral decomposition of operators. On a statistical viewpoint
convergences will be obtained in norm and normal distributions in Hilbert
spaces are more easy to deal with than in Banach spaces. In many examples
Φ and Ψ are L2 type functions spaces and their topological structure is de-
pendent on a probability measure. Suppose that the definition of the sets Φ
and Ψ is construct in such a way that these sets do not depend on the pro-
bability F in F (for example all the F have a support included in a compact
set of R

m and Φ and Ψ are spaces of continuous functions) but the scalar
product is relative to the true DGP F0 in F .

We consider a linear inverse problem KF ϕ = ψF where KF is a linear
operator from Φ to Ψ and ψF is an element of Ψ.
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We restrict our analysis to an important but specific case of operators.

Hypothesis 4.1 ∀F ∈ F KF is a compact operator.

¥
Recall that KF is compact if the closure of the image of the closed unit

sphere is compact. We give in the application to instrumental variables an
interpretable sufficient condition which implies compactness of an operator.

A compact operator is bounded (sup||ϕ||≤1 ||KF ϕ|| finite) or equivalently
continuous. Its dual operator K∗

F (from Ψ to Φ) (characterized by 〈KF ϕ, ψ〉 =
〈ϕ,K∗

F ψ〉) is also compact and the two self adjoint operators K∗
F KF (from Φ

to Φ) and KF K∗
F : (from Ψ to Ψ) are also compact.

Compact operators have only a discrete spectrum. More precisely their
exits two orthonormal families (ϕjF )j=0,1,2,... and (ψjF )j=0,1,2,... of Φ and Ψ
and a sequence of decreasing positive numbers λ0F ≥ λ1F ≥ ... > 0 such that

K∗
F KF ϕjF = λ2

jF ϕjF KF K∗
F ψjF = λ2

JF ψjF

KF ϕjF = λjF ψjF K∗
F ψjF = λjF ϕjF

∀ϕ ∈ Φ ϕ =
∞∑

j=0

〈ϕ, ϕjF 〉ϕjF + ϕ̄F where KF ϕ̄F = 0

∀ψ ∈ Ψ Ψ =
∞∑

j=0

〈ψ, ψjF 〉ψjF + ψ̄F where K∗
F ψ̄F = 0.

(3)

The spectrums of K∗
F KF and if KF K∗

F are discrete and included in
{λ2

0F , λ2
1F , ...} ∪ {0}. If KF is one to one the spectrum of K∗

F KF reduces
to the family of λ2

jF but 0 may be an eigenvalue of KF K∗
F .

Let us come back to the equation KF ϕ = ψF . A unique solution exists if
KF is one to one. Compact operators have a range in general strictly smaller
than the space Ψ (in particular if Φ = Ψ a compact operator can be onto Φ
only if Φ has a finite dimension (See Wahba (1973)) and then a solution to
KF ϕ = ψF does not exist in general. We denote as before F0 the set of F
such that a unique solution exists and the true c.d.f. F0 is assumed to be an
element of F0. If F ∈ F0 0 is not an eigenvalue of K∗

F KF . In that case we
can compute the solution using the decompositions given in (3).

First, let us write :

KF ϕF =
∞∑

j=0

λjF 〈ϕ, ϕjF 〉ψjF ,
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because as ψF is an element of the range of KF , ψ̄F must be 0. Then using
the unicity of decomposition on the ϕjF , we have :

λjF 〈ϕ, ϕjF 〉 = 〈ψ, ψjF 〉,

and

ϕF =
∞∑

j=0

1

λj

〈ψF , ψjF 〉ϕiF . (4)

A solution exists if and only if this series converges.
If KF is not one to one and/or ψF does not belong to the range of KF

inversion of KF may be replaced by generalized inversion. Equivalently, it
can be proved (see e.g. Luenberger (1969)) that if ψF belongs to R(KF ) +
N (K∗

F ) their exists a unique function ϕ of minimal norm which minimizes
||KF ϕ − ψF ||. This solution may be decomposed into

ϕF =
∑

j/λj 6=0

1

λj

〈ψF , ψjF 〉ϕjF . (5)

This series converges under the assumption ψF ∈ R(KF ) + N (K∗
F ). Let

F∗ the set of F such that ψF ∈ R(KF ) + N (K∗
F ). F∗ contains F0 because if

F ∈ F0 ψF ∈ R(KF ). However the condition ψF ∈ R(KF ) + N (K∗
F ) is not

always satisfied. It is always true that Ψ = R(KF ) + N (K∗
F ) but R(KF ) is

not closed in general.
As we will see in the examples, usual estimators of F define operators

KF̂N
with a finite dimensional range. This range is then closed and F̂N is an

element of F∗.
The inverse of a compact operator or the generalized inverse are not

continuous operators. A small perturbation of ψF in the direction of a ψjF

corresponding to a small λjF will generate a large perturbation of ϕ. Then
even if KF is know and if ψF only is estimated, the estimation of ϕ obtained
by replacing ψF by ψF̂n

is in general not consistent. Examples later on will
illustrate this problem.

A regularization is then necessary to obtain consistent estimation. In this
paper we privilege the so called Tikhonov regularization methods. Others
approaches play similar roles, like the spectral cut off regularization or the
Landweber-Fridman iterations which will be define but not studied on a
statistical viewpoint.
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Tikhonov regularization (see Tikhonov and Arsenin (1977), Groetsch (1984),
Kress (1999)) generalizes to infinite dimension the well known ridge regression
method used to deal with colinearity problems.1 The initial linear equation
KF ϕ = ψF is replaced by a modified equation

(αI + K∗
F KF )ϕ = K∗

F ψF ,

where α is a strictly positif number and I the identity operator on Φ. If α is
not an eigenvalue of K∗

F KF the linear operator αI +K∗
F KF has a continuous

inverse on the range of K∗
F and the solution of this equation has the following

Fourier decomposition :

ϕα
F =

∞∑
j=0

λjF

α + λ2
jF

〈ψF , ψjF 〉ϕjF .

If F is estimated by F̂N , previous formulae defined ϕα
F̂N

and we will see

that the norm of ϕF0 − ϕα
F̂N

decreases to zero if α goes to zero at a suitable

speed.
An equivalent interpretation of Tikhonov regularization is the following :

the minimisation of ‖KF ϕ − ψF‖2 which defines the generalized inverse is
replaced by the minimisation of ‖KF ϕ − ψF‖2 + α‖ϕ‖2 and α can be in-
terpreted as a penalization parameter. This approach is extensively used in
spline estimation for example (see Wahba (1990)). More efficient estimation
may be found out of the L2-norm analysis. The Tikhonov method uses all
the eigenvalues of K∗

F KF but prevent their convergence to zero by adding
the positive value α. A spectral cutoff method controls the decrease of the
λjF ’s by retaining only the eigenvalues greater to a given ρ :

ϕρ
F =

∑
λjF >ρ

1

λjF

〈ψF , ψjF 〉ϕjF . (6)

The Tikhonov regularization requires the inversion of αI + K∗K and
the spectral cut off regularization requires the computation of the spectrum.
These two computations may be difficult. An other regularization scheme
only involves successive applications of an operator and may be implemented
recursively.

1Using standard notations, the ridge regression estimator of a linear model y = Xβ +u
is defined by β̂α = (αNI + X ′X)−1X ′y where α is a positive number and I the identity
matrix. This estimator is used when X ′X is singular or quasi singular. Bayesian analysis
of linear models provides a natural interpretation of this estimator as a posterior mean of
β.
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Let us a positive number that a < 1/‖K‖2. We call the Landweber-
Fridman regularization the value

ϕm
F =

m∑
j=0

(I − aK∗
F KF )jK∗ψF .

This function may be computed through the following recursive relation :

ϕ`
F = (I − aK∗

F KF )ϕ`−1
F + aK∗ψF ,

starting by ϕ0
F = 0 and used until ` = m.

Most compact operators are integral operators operating on functions of
real variables. In those cases KF is characterized by its kernel kF (s, t) ((s, t
are vectors of real numbers) and

KF ϕ =

∫
kF (τ, t)ϕ(τ)dτ. (7)

The compactness of KF is equivalent in that case to a more interpretable
condition on kF (k2

F must integrable w.r.t. z and t). Operator like I − KF

i.e. :

(I − KF )ϕ = ϕ(t) −
∫

kF (τ, t)ϕ(τ)dτ,

are not compact operators and their inverses are continuous. Then, inverse
problems presented in examples 3.3 (backfitting) and 3.4 (measurement) are
not ill posed and may be solved without regularization. We illustrate by
developing previous example 3.5 a case of ill posed problem.

Example 4.1 Let us assume that (s1, ..., sN ) is an i.i.d. sample of S ∈ R
m

and the parameter of interest is a real valued continuous function ϕ(t)(t ∈
[0, 1]) solution of :

∫ 1

0

EF (v(S, τ)v(S, t))ϕ(τ)dτ = EF (u(S, t)).

The function h of example 3.5. has now the product form h(S, τ, t) =
v(S, τ)v(S, t). If v is a zero mean process, the KF operator is the covariance
operator of v. As we have seen, this example covers the case of a continuous
number of regressors.

If kF (τ, t) = EF (v(S, τ)v(S, t)) is a continuous function of (τ, t) ∈ [0, 1]×
[0, 1] it is square integrable and the operator KF is an Hilbert Schmith opera-
tor and then is compact (see Dunford and Schwartz (1963)). The kernel kF

is symmetric. Then KF is self adjoint (KF = K∗
F ).
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Take for example v(S, t) = S − t where S is a zero mean square inte-
grable random variable. Then kF (τ, t) = EF ((S − τ)(S − t)) = τt + V (V =
V ar(S)). This operator is not one to one (two functions ϕ1 and ϕ2 such that∫

τϕ1(τ)dτ =
∫

τϕ2(τ)dτ and
∫

ϕ1(τ)dτ =
∫

ϕ2(τ)dτ have the same image).
The range of KF is the set of affine functions. A one to one example is given
by the covariance operator of a Brownian motion : let S = (Wt)t∈[0,1] be a
Brownian motion. Assume that v(S, t) = Wt. Then kp(s, t) = s∧ t whose null
set is {0} and

RF (KF ) = {ψ/ψ ∈ C1[0, 1]ψ(0) = 0 and ψ′(1) = 0}.

A natural estimator of kF is obtained by estimating F by the empirical
probability measure, i.e.,

kF̂N
(τ, s) =

1

N

N∑
n=1

v(sn, τ)v(sn, t).

This kernel defines a socalled Pincherle-Goursat integral operator (or de-
generated kernel (see Tricomi (1985)). This operator maps a function ϕ into
a linear combination of the v(sn, t) :

KF̂N
ϕ =

1

N

N∑
n=1

v(sn, t)

∫ 1

0

v(sn, τ)ϕ(τ)dτ,

and his range is the N-dimensional space spanned by the v(sn, t) (assumed to
be linearly independent). Then, even if KF is one to one for the true value
F0, the estimated operator KF̂N

is not one to one and only N eigen values
of KF̂N

KF̂N
are not equal to zero. Moreover the estimator of the right hand

side of the equation is equal to :

ψF̂N
=

1

N

N∑
n=1

u(sn, t),

and is not in general in the range of KF̂N
. The generalized inverse solution

reduces in that case to solve the linear system Aϕ = b where A is the N ×N

matrix of general element 1
N

∫ 1

0
v(sj, ξ)v(sn, ξ)dξ, b is the vector of general

element 1
N

∑
n

∫
v(sj, ξ)u(sn, ξ)dξ and ϕ is the vector of

∫
ϕ(τ)v(sn, τ)dτ .

This procedure is analogous to estimation of a model with incidental pa-
rameters (i.e. a model where a new parameter appears with each new obser-
vation) and the solution of the equation Aϕ = b cannot provided a consistent
estimator.
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A Tikhonov regularization of this inverse problem leads to solve the follo-
wing functional equation :

αϕ(t) +
1

N2

n∑
j=1

v(sj, t)
N∑

n=1

∫
v(sj, ξ)v(sn, ξ)dξ ×

∫
ϕ(τ)v(sn, τ)dτ

=
1

N2

n∑
j=1

v(sj, t)
N∑

n=1

∫
v(sj, ξ)u(sn, ξ)dξ.

This functional equation can be solved in two steps. First multiplying by
v(s`, t) and integrating w.r.t. t gives a linear N × N system where unknown
variables are the

∫
ϕ(τ)v(sn, τ)dτ . This system can be solved and ϕ(t) is then

obtained from the above expression. This example shows that even if expres-
sion in term of Fourier decomposition are useful for analyzing the properties
of the estimator, practical computations may be realized by inversion of finite
dimensional linears systems.

¥

5 Relation between endogenous variables

Let us assume that the observed random vector S can be decomposed into
(Y, Z,X,W ) ∈ R×R

p×R
k×R

q. The assumptions derived from the economic
models are the following. First X and W are exogenous. This means that no
information on the parameter of interest is carried by the marginal distribu-
tion generating X and W or equivalently that the parameter of interest may
be deduced without loss of information from the conditional distribution of
Y and Z given X and W . The second economic assumption says that the
parameter of interest is a function of ϕ (or a transformation of this function)
and X which satisfies a relation of Z

Y = ϕ(Z,X) + U. (8)

Equation (2) involves a normalization (a general function would be
ν(Y, Z,X, U) = 0), an additive structure for the residuals and an exclusion
of W variables.

These assumptions are not sufficient to characterize ϕ in an unambiguous
way and they need to be completed by an assumption on the residual. This
assumption must preserve the endogeneity of both Y and Z. Three different
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hypothesis have been used in the literature. All these hypothesis define ϕ as
the solution of a linear inverse problem and we call respectively the three
possible characterizations of ϕ Instrumental Variables (IV) definition, Local
Instrumental Variable (LIV) definition or Control Function (CF) definition.

i) IV assumption :

This assumption is written :2

EF (Y − ϕ(Z,X)|X,W ) = EF (Y − ϕ(Z,X)|X). (9)

Usual assumption on IV regression assumed that the conditional expecta-
tion of U given all the exogenous variables (X,W ) is zero. Following Heckman
and Vytlacil (1999) we relax this condition and E(U |X,W ) may be function
of X.

The main interest of this assumption is to consider a case where (W,X)
is not exogeneous if ϕ is the parameter interest (because E(U |X,W ) 6= 0)
but (X,W ) becomes exogeneous if the derivatives of ϕ with respect to Z are
the parameters of interest (See for an application Dearden et al (2002)).

The function ϕ is solution of a linear inverse problem

KIV
F ϕ = ψIV

F ,

where

KIV
F ϕ = E(ϕ(Z,X)|X,W ) − E(ϕ(Z,X)|X),

and
ψIV

F = E(Y |X,W ) − E(Y |X).

Using conventional notations for the densities of probability measures
KIV

F ϕ may be write :

(KIV
F ϕ)(x,w) =

∫
ϕ(z, x){f(z|x,w) − f(z|x)}dz,

and is an integral operator whose kernel is equal to f(z|x,w) − f(z|x).
This linear operator is not one to one because functions of X only are

elements of the null space of KIV
F . If the econometrician is interested by

2In order to simplify our presentation we can assume that all c.d.f. we consider have
the same compact support in R

1+p+k+q and are all equivalent (i.e. have the same null sets)
to the Lebesgue measure on this compact. The functions of Random vectors we consider
are continuous functions of their arguments. Then all the a.s. equalities becomes equalities
everywhere.
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the relation between Z and Y it is sufficient to know ϕ up to functions of
X (see the literature on ”Average treatment effect” (ATE) : Imbens and
Angrist (1994), Heckman and Vytlacil (1999). Under regularity assumptions
this means that the partial derivatives of ϕ w.r.t. z are identified.

Identification issue is then to describe models in which N (KIV
F ) reduces to

L2(X). This condition is equivalent to the property ”any function of (Z,X)
whose expectation given (X,W ) is zero is in L2(X)”. This kind of condition
was introduced in the analysis of relations between sufficient and ancilary
statistics. Connection with identification of IV models and interpretation of
this condition is a rank condition were pointed out by Newey and Powell
(1989) and Darolles, Florens and Renault (2000). Extensive analysis of this
concept, under the name ”Strong identification” can be found in Mouchart,
Rolin (1984) and in Florens et al (1990).

ii) LIV assumption

If we assume differentiability of ϕ and of conditional expectations we
consider, ϕ satisfies LIV hypothesis if :

E

(
∂ϕ

∂zj

(z, x)|X = x,W = w

)
=

∂
∂w`

E(Y |X = x,W = w)
∂

∂W`
E(Zj|X = x,W = w)

(10)

∀j = 1, ..., p ` = 1, ..., q.
This definition extends naturally the linear case and can be interpreted

easily. Discrete z was considered originally by Heckman and Vytlacil (1999)
and discrete z and variations of w (instead of derivatives) was introduced
by Imbens and Angrist (1994) and called LATE (Local Average Treatment
Effect).

This equation introduces an overidentification constraint because the r.h.s.
must be identical for any l = 1, ..., q. This condition is satisfied if E(Y |X,W ) =
E(Y |X,m(X,W )).

The function ϕ is the solution of a linear inverse problem where KF =
TF D with Dϕ is the vector of partial derivatives of ϕ w.r.t the coordinates
of Z and TF is the conditional expectation operator (λ(Z,X) → TF λ =
E(λ(Z,X)|X,W )).

This operator KF cannot be one to one and under a regularity condition3,
it contains all the function of X. Conversely if Z is strongly identified by
Wgiven X,TF is one to one and the null set of KF reduces to L2(X).

3The distribution of (Z,X) must be such that the derivative w.r.t. zj of a function a.s.
equal to a function of X must be 0, or equivalently if a function of Z is a.s. equal to a
function of X if and only it is a.s. constant : this define Z and X measurably separated.
(see Florens et al (1990))
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iii) CF assumption

We assume there exists a function V (Z,X,W ) such that the information
contained by Z,X,W and by V,X,W are identical (e.g. V = Z −m(X,Z)))

and
E(U |Z,X,W ) = E(U |V,X).

Consequently if h(V,X) = E(U |V,X) one has :

E(Y |Z,X,W ) = ϕ(Z,X) + h(V,X). (11)

This assumption was used in several parametric contexts (see Heckman
(1979)) and was systematically analyzed by Newey, Powell and Vella (1999).

This model is an additive regression model which implies that ϕ is a
solution of the set of equations :

ϕ(Z,X) + E(h(V,X)|Z,X) = E(Y |Z,X)

E(ϕ(Z,X)|V,X) + h(V,X) = E(Y |V,X).

Then ϕ is solution of :

ϕ(Z,X) − E(E(ϕ(V,X)|Z,X)
= E(Y |Z,X) − E(E(Y |V,X)|Z,X).

(12)

Equation (12) can be rewritten KF ϕ = ψF where KF = I − A∗
F AF (AF :

L2(Z,X) 3 λ → E(λ|V,X) ∈ L2(V,X) and A∗
F : L2(V,X) 3 µ →

E(µ|Z,X) ∈ L2(Z,X))
The operator KF cannot be one to one because here also its null space

contains the functions of X.
A pointed out by Newey, Powell and Vella (1999) N (KF ) contains only

function of X if V and Z are measurably separated given X (see Florens et
al (1990)), i.e. if any function of V and X a.s. equal to a function of Z and
X is a.s. equal to a function of X. This condition is not always satisfied and
can also be interpreted as a rank condition.

Remark : If F is dominated by the Lebesgue measure we have seen that IV
assumption implies that ϕ satisfies a Fredholm type I equation. In the LIV
case Dϕ is also solution of this type of equations :

∫
∂ϕ

∂zj

(z, x)f(z, x|x,w)dz = ψF (x,w),
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where ψF is the r.h.s. of (10).
In the CF approach ϕ is solution of Fredholm type II equation :

ϕ(z, x) −
∫

ϕ(z, x)k(ξ, z, x) = ψF ,

where now ψF is the r.h.s. of (12) and

k(ξ, z, x) =

∫
f(z, x|v, x)f(v, x|z, x)dξ.

As we will see in the next section the properties of the solution are very
different in this last case then in the first two cases.

It is easy to verify that if (Y, Z,W ) are jointly normal this three problems
give identical (linear) solutions. In non linear models this equivalence is no
longer true and one can easily construct a model where the solutions are
different (see Florens et al (2000) for example and equalities conditions)

6 Instrumental variables estimation

In order to simplify the argument we concentrate our analysis to the
specific case where no exogenous variables appear in the function ϕ. Then,
I.V. assumption becomes E(U |W ) = constant and ϕ can only be identified
up to constant term. It is natural in this context to assume that E(U) = 0 in
order to eliminate this identification problem and the case we consider now
assumes :

E(Y − ϕ(Z)|W ) = 0. (13)

We complete this assumption by the following hypothesis on the joint pro-
bability measure on (Z,W ). This hypothesis is fundamental for our spectral
decomposition approach (see for a different point of view of spectral decom-
position of the conditional expectation operator see Chen et al (2000)).

Assumption 6.1 The joint distribution of (Z,W ) is dominated by the pro-
duct of its marginal probabilities and its density is square integrable w.r.t. the
product measure.

In the case of a probability measure dominated by the Lebesgue measure
this condition is equivalent to

∫
f 2(z, w)

f(z)f(w)
dzdw < ∞.
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¥
Let us now denote by TF and T ∗

F its dual operator, the two conditional
expectation operators :

TF : L2(Z) → L2(W ) TF ϕ = E(ϕ|W ) ϕ ∈ L2(Z)

T ∗
F L2(W ) → L2(Z) T ∗ψ = E(ψ|Z) ψ ∈ L2(W ).

The original problem may be denoted TF ϕ = rF where rF = E(Y |W ) ∈
L2(W ).

Under the assumption 6.1, TF is a compact operator (see Breiman and
Friedman (1985)) and the analysis developed in section 4 applied. I.V. esti-
mation is an ill posed inverse problem and need a regularization procedure.

The same argument applied to LIV estimation. Take as parameter of
interest the vector of partial derivatives Dϕ. This vector of functions is also
solution to an ill posed inverse problem, TF Dϕ = ψF where ψF is defined in
equation (10) and where the linear operator is compact.

Under an assumption m(Z, V ) analogous to the assumption on (Z,W ),
CF estimation leads to a well posed inverse problem and don’t need a regu-
larization. Indeed ϕ is solution of (I −A∗

F AF )ϕ = ψF (see 12). The function
ψF is in the domain of (I − A∗

F AF ) and the inverse operator is bounded
and then continuous. This can be seen by using a spectral decomposition of
A∗

F AF whose eigen values are denoted µ2
j and eigen vecteurs εj. Then

ϕ =
∞∑

j=1

1

1 − µ2
j

< ψF , εj > εj.

The sum start at j = 1 because ε0 is the constant function equal to 1 and
〈ψF , εF 〉 = 0 because ψF is a zero mean vector.

This serie converges in norm L2 because

∞∑
j=1

(
1

1 − µ2
j

)2

〈ψF , εj〉2 ≤
(

1

1 − µ2
1

)2 ∞∑
j=1

〈ψF , εj〉2 ≤
(

1

1 − µ2
1

)2

||ψF ||2.

Finally the Sup||(I−A∗
F A∗

F )−1ψF || (where ||ψ|| ≤ 1 and ψ ∈ Domain (I−
A∗

F A∗
F )−1 = set of zero mean vector) is smaller than

∣∣∣ 1
1−µ1

∣∣∣ which means that

the inverse operator is continuous.
We conclude this section by a short description of the practical imple-

mentation of the estimation of ϕ in the case of I.V. assumption. The sample
is (yn, zn, wn)n=1,...,N and the equation (αNI + T ∗

F̂N
TF̂N

)ϕ = T ∗
F̂N

rF̂N
may be

simplified into :
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αNϕ(z) +
1

N∑
`=1

HN(z − z`)

N∑
`=1

N∑
n=1

ϕ(zn)HN(w` − wn)

N∑
n=1

HN(w` − wn)

HN(z − z`)

=
1

N∑
`=1

HN(z − z`)

N∑
`=1

N∑
n=1

ynHN(w` − wn)

N∑
n=1

HN(w` − wn)

HN(z − z`),

(14)

where HN are usual smoothing kernel (conventionally the same letter is used
for different kernels applied to the w’s or the z’s). This functional equation
gives ϕ(z) for any z knowing ϕ(zn)n = 1, ..., N . Then in a first step rewrite
equation (14) for z = z1, ...zN . This provides a N × N linear system which
can be solved in order to obtain the ϕ(zn). The choice of αN parameter is
very important and we will see in the next section what are the contraints
on its speed of convergence and how can be a choice of this parameter.

This approach avoids any computation of eigen values or eigen vectors
but they are implicitely present in the resolution of the linear system. Using
the same methodology than in Darolles, et al (2002) one can check that the
estimator we have defined may rewrite :

ϕαN
F̂N

=
N−1∑
j=0

λ̂jF̂N

αN + λ̂2
F̂N

(
1

N

N∑
n=1

ynϕjF̂N
(zn))ϕjF̂N

(z), (15)

where λ2
jF̂N

are the N non null eigenvalues of T ∗
F̂N

TF̂N
and ϕjF̂N

their corres-

ponding eigenvectors.

7 Asymptotic theory for Tikhonov regulari-

zation of ill posed linear inverse problems

In this section, we concentrate our presentation on new questions raised
by the linear inverse problem KF ϕ = ψF where KF is a compact operator.
We will then assumed asymptotic behavior of the elements of the equation
(which can be difficult to verify in particular models) and we will show how
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their are transformed by the resolution. As announced before, we will develop
an Hilbert space approach, both on consistency and on asymptotic normality.

Let ϕF0 be the unique solution of KF0ϕ = ψF0 where F0 is the true DGP
which is an element of F0.

We denoted by ϕα
F0

the solution of :

(αI + K∗
F0

KF0)ϕ = K∗
F0

ψF0 = K∗
F0

KF0ϕ0,

for any α > 0. Given a sample (s1, ..., sN) F̂N is a estimator of F and KF̂N

and ψF̂N
the corresponding estimation of KF and ψF .

The properties of this estimation mechanism are given by the following
assumptions :

Assumption 7.1 ∃aN sequence in R an → ∞ such that

‖K∗
F̂N

KF̂N
− K∗

F KF‖ ∼ O

(
1

aN

)
. 4

¥
In this assumption the norm of an operator A from Φ to Φ is defined by

sup‖ϕ‖≤1‖Aϕ‖ and the norm on Φ is the Hilbert norm possibly dependent on
F0.

Assumption 7.2 ∃bN sequence in R bN → ∞ such that

‖K∗
F̂N

ψF̂N
− K∗

F̂N
KF̂N

ϕ0‖ ∼ O(
1

bN

).

¥
This assumption replace assumption on ψF̂N

. Intuitively ψF̂N
converges

to ψF0 equal to KF0ϕ0 but as K∗
F is a compact operator taking the image of

ψF̂N
−KF̂N

ϕ0 by K∗
F̂N

regularizes the estimation and may improve the speed

of convergence.

Assumption 7.3 αN → 0, 1
αNaN

∼ O(1) and αNbN → ∞.

¥
Theorem 7.1 Under assumptions 7.1, 7.2 and 7.3 ‖ϕαN

F̂N
− ϕ‖ → 0 in pro-

bability.

4All the equivalence are in probability w.r.t. the DGP. Almost sure equivalences will
give a.s. convergence in theorem 7.1.
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¥
Proof : This proof is standard if the operator KF is known and where the
only error is on ψF (see Groetsch (1984) or Kress (1999)). Extension to
estimation error on KF generalizes the arguments developed in Carrasco and
Florens (2002) and in Darolles et al (2000). The main steps of the proofs are
the following :

i)
‖ϕαN

F̂N
− ϕF0‖ ≤ ‖ϕαN

F̂N
− ϕαN

F0
‖ + ‖ϕαN

F0
− ϕF0‖,

and ‖ϕαN
F0

− ϕF0‖ → 0 if αN → 0 (see any of the above reference).

ii)
ϕαN

F̂N
− ϕαN

F0
= (αNI + K∗

F̂F
KF̂N

)−1KF̂N
ψF̂N

−(αNI + K∗
F0

KF0)
−1K∗

F0
KF0ϕ0

= (αNI + K∗
F̂N

KF̂N
)−1(K∗

F̂N
ψF̂N

− K∗
F̂N

KF̂N
ϕF0)

+αN

[
(αNI + K∗

F̂N
KF̂N

)−1) − (αNI + K∗
F0

KF0)
−1

]
ϕF0 .

The last equality follows from the identity

(αI + A)−1A = I − α(αI + A)−1.

Then ‖ϕαN

F̂N
− ϕαN

0 ‖ ≤ I + II where I and II are defined and analyzed

separately.

iii)
I = ‖(αNI + K∗

F̂N
KF̂N

)−1(K∗
F̂N

ψF̂N
− K∗

F̂N
KF̂N

ϕF0)‖ ≤

‖(αNI + K∗
F̂N

KF̂N
)−1‖‖K∗

F̂N
ψF̂N

− K∗
F̂N

KF̂N
ϕF0‖.

The first term is majored by 1
αN

(see Groetsch (1984)) and the second

is 0( 1
bN

) by assumption 7.2. By assumption 7.3 αNbN → ∞ and I → 0

iv)

II = αN‖
[
(αNI + K∗

F̂N
KF̂N

)−1 − (αNI + K∗
F0

KF0)
−1

]
ϕF0‖

= ‖αN(αNI + K∗
F0

K∗
F0

)−1ϕF0‖ × ‖K∗
F̂N

KF̂N
− K∗

F0
KF0‖ × ‖(αI + K∗

F0
KF0)

−1‖.
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The first term is equal to ‖ϕ − ϕαN‖ and has a zero limit. The second
term is by assumption 7.1 is equivalent to 1

aN
and the last term is

smaller than 1
αN

. As 1
αNaN

∼ O(1), II → 0.

¥
Example 7.1 Consider example 4.1. Following e.g. Carrasco and Florens
(2000) a). We have ‖KF̂N

−KF0‖ ∼ O( 1√
N

). Using the property K∗
F = K∗

F and

a first order approximation, its follows that ‖K2
F̂N

− K2
F0
‖ is also equivalent

to 1√
N

. Moreover

‖KF̂N
ψF̂N

− K2
F̂N

ϕ0‖ ≤ ‖KF̂N
‖

{
‖ψF̂N

− KF0ϕ0‖ + ‖K̂F̂n
− KF0‖‖ϕF0‖

}
which implies bn =

√
N because ‖ψF̂N

− KF0ϕ0‖ ∼ O
(

1√
N

)
.

Then the two conditions are satisfied if αn

√
N → ∞.

¥
Example 7.2 Consider the case of IV estimation. It is proved in Darolles
et al (2002) that 1

aN
= 1√

Nhp
N

+ hρ
N where hN is the bandwith of the kernel

smoothing, p the dimension of z and ρ is the minimum between the order of
the kernel and the degree of smoothness of the density of the DGP. Moreover
1

bN
= 1√

N
+ hρ

N . Then the estimator is consistent if
h2ρ

N

α2
N

→ 0 and 1
α2

NNhp
N

∼
O(1).

¥
The decomposition of ϕα̂N

P̂N
− ϕF0 considered in the proof of theorem 7.1

can be used to determine an optimal speed of convergence to 0 of αN and
to give a bound on the speed of convergence of ‖ϕαN

F̂N
− ϕF0‖. This analyse

requires an assumption of the behavior of the regularization bias ‖ϕαN
F0

−ϕF0‖
which satisfies :

‖ϕαN
F0

− ϕF0‖ = αN(αNI + K∗
F0

KF0)
−1ϕF0 (16)

= α2
N

∞∑
j=0

1

(αN + λjF0)
2
〈ϕF0 , ϕjF 〉ϕjF0 . (17)

We will assume that ϕF0 is such that ‖ϕαn
F0

− ϕF0‖2 ∼ O(αβ).
This condition associate ϕF0 and KF0 and is basically a condition on

the relative rate of decline of the Fourrier coefficients of ϕF0 in the basis
ϕjF (〈ϕF0 , ϕjF0〉) and of the eigenvalues λ2

jF0
of the operator.

Darolles et al (2002) shows that β ∈]0, 2] and gives characteristics of
particular cases of β. In case of instrumental variables the β coefficient may be
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interpreted as a measure of the strength or of the weakness of the instruments.
Then :

‖ϕαN

F̂N
− ϕF0‖2 = 0

(
1

α2
NaN

+
1

α2
NbN

αβ
N + αβ

N

)
,

and an optimal choice of αn will egalises the behavior of the first and last
term and gives :

αN = a
− 1

β+2

N .

We need to verify that under this choice, the second term converges to 0.

If it is the case a
β

β+2

N gives a lower bound of the speed of convergence. In the

applications given above this bound is n
β

β+2 (under a suitable choice of the
bandwith if a kernel estimation is necessary).

The last element to be consider is the asymptotic normality of our esti-
mator. This normality follows from the next hypothesis :

Assumption 7.4

bN(K∗
F̂N

ψF̂N
− K∗

F̂N
KF̂N

ϕF0) ⇒ N(0, Ω).

This convergence is assumed to be a functional convergence in the Hilbert
space Φ and Ω is a covariance operator is this space.

¥
Let assume first that KF0 is known and that the parameter α is kept

constant. Under this two conditions one has :

bn(ϕF̂N
− ϕα

F0
) = (αI + K∗

F0
)−1(bn(K∗

F0
ψF̂N

− K∗
F KF0ϕ)),

converges in Φ to a zero mean normal probability whose covariance operator
is equal to

(αI + K∗
F0

KF0)
−1Ω(αI + K∗

F0
KF0)

−1.

Indeed, standard matrix computation can be extended to continuous ope-
rators.

The extension of this result to the case of an unknown operator KF , with
α constant modifies this result in the following way :

Let Bα
N = α

[
(αI + Kα

F̂N
KF̂N

)−1 − (αI + Kα
F0

KF0)
]
ϕ.

We have obviously (see part ii) of the proof of theorem 7.1)

bN(ϕα
F̂N

− ϕα
F0

− Bα
N) = (αI + K∗

F̂N
KF̂N

)−1bN(K∗
F̂N

ψF̂N
ψF̂N

− K∗
F̂N

KF̂N
ϕ0),
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and this term converges to the same normal probability measure in Φ as if
KF is known. However a bias term has been introduced in the l.h.s. term.
In the proof of theorem 7.1 we have check that in the case of α fixed ‖Bα

N‖
converges to zero at speed 1

an
. The bias term can be neglected if bn

an
has a

zero limit, i.e. if the operator converges at a higher speed than the r.h.s. of
the equation.

If αN → 0 we cannot expected asymptotic normality in a functional sense.
In particular the limit when αN decreases to 0 of the covariance operator Ω
is not bounded and is not a covariance operator of an Hilbert valued normal
element. Then we will look for pointwise normality instead of functional
normality in the following sense. Let ζ be an element of φ. We will analyse
asymptotic normality of

νN(ζ)〈ϕαN

F̂N
− ϕ̃, ζ〉,

where ϕ̃ is a suitable function and νN(ζ) → ∞.
This class of results is obtained using the following methodology.

1) Let us denoted by ξN the random element bN(K∗
F̂N

ψF̂N
−K∗

F̂N
ϕF0) and

by ξ its limit (ξ ∼ N(0, Ω)). For a given N , MN = (αNI + K∗
F0

K∗
F0

)−1 and

ε =
〈MNξ, ζ〉

〈ζ,MNΩMNζ〉 1
2

∼ N(0, 1) ∀N,

because MN is bounded and MNξ ∼ N(0,MNΩMN).

2) Let us first assume that KF0 is known. Then

bN〈ϕαN

F̂N
− ϕαN

F0
, ζ〉

〈ζ,MNΩMNζ〉 1
2

= ε +
〈ξN − ξ,MNζ〉
〈ζ,MNΩMNζ〉 .

Moreover

〈ξN − ξ,MN〉2
〈ζ,MNΩMNζ〉 ≤ ‖ξN − ξ‖2 ‖MNζ‖2

〈ζ,MNΩMNζ〉 1
2

.

This term converges to zero if ‖MN ζ‖2

〈ζ,MNΩMN ζ〉 is bounded because ‖ξN − ξ‖ → 0
in probability. We introduce this condition as an hypothesis.

Assumption 7.5 ζ ∈ Φ is such that ‖MN ζ‖2

〈ζ,MNΩMnζ〉 ∼ 0(1)

¥
Remark that if ζ belongs to the finite dimensional subspace generated by

ϕ0, ...ϕN0 (where λj 6= 0∀j = 0, ..., N0) the assumption 7.5 is satisfied.
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We note by

νN(ζ) =
b2
N

〈ζ,MNΩMNζ〉 ,
the speed of convergence. And we may conclude that√

νN(ζ)〈ϕ̂αN

F̂N
− ϕαN

F0
, ζ〉 ⇒ N(0, 1).

3) If KF0 is not known let us consider :

√
νN(ζ)〈ϕαN

F̂N
− ϕαN

F0
− BαN

N , ζ〉 = ε + A1 + A2, +A3,

where

A1 =
〈ξN − ξ,MNζ〉
〈ζ,MNΩMNζ〉 1

2

, A2 =
〈ξ, (M̂N − MN)ζ〉
〈ζ,MNΩMNζ〉 1

2

,

(where M̂N = (αNI + K∗
F̂N

KF̂N
)−1) and

A3 =
〈ξN − ξ, (M̂N − MN)ζ〉

〈ζ,MNΩMNζ〉 1
2

.

We have shown in the previous case that under Assumption 7.5 A1 converges
to zero. The term A2 verifies has the same behavior than

‖ξ‖ ‖MN‖ ‖K∗
F̂N

KF̂N
− K∗

F0
KF0‖ ‖MNζ‖

〈ζ,MNΩMN〉 1
2

≤ ‖MNζ‖
〈ζ,MNΩMN〉 1

2

1

αNaN

‖ζ‖,

because ‖MN‖ ≤ 1
αN

and hypothesis 7.1
We then renforce the hypothesis 7.3 :

Assumption 7.6 αNaN → ∞.

¥
This assumption implies that A2 → 0 and an analogous proof shows that

A3 → 0.
Then under the previous assumptions

√
νN(ζ)〈ϕ̂F̂N

− ϕαN
F0

− BαN
N , ζ〉 ⇒ N(0, 1).

4) The next step consists to find assumptions which transform the cente-
ring function. First we look for an elimination of the bias term BαN

N .
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∣∣∣√νN(ζ)BαN
N

∣∣∣ =
bNαN

〈ζ,MNΩMN〉 1
2

〈(M̂N − MN)ϕF0 , ζ〉

≤ bN‖αNMNϕ‖‖K∗
F̂N

K̂F̂N
− K∗

F0
KF0‖

‖MNζ‖
〈ζ,MNΩMNζ〉 1

2

‖αNMNϕ‖ = ‖ϕαN
F0

− ϕF0‖ → 0.

We have just to impose that the product of the others terms is bounded.
Using assumption 7.2 a general assumption is the following.

Assumption 7.7 bN

aN

‖MN ζ‖
〈ζ,MnΩMN ζ〉 1

2
∼ 0(1).

¥
This assumption is satisfied under 7.5 if bN

aN
∼ 0(1) but this hypothesis

could be too strong. If bN

aN
→ ∞, more assumptions are needed in order to

eliminate the bias term.
Then under 7.1 to 7.7 we get :

νN(ζ)〈ϕ̂F̂N
− ϕαN

F0
, ζ〉 ⇒ N(0, 1).

5) Finally we want to replace ϕαN
F0

by ϕF0 in the previous convergence.
Recalling that ‖ϕϕN

F0
− ϕF0‖ ∼ 0(αN) the following assumption is required.

Assumption 7.8 α2
NνN(ζ) → 0.

¥
Under 7.1 to 7.6 and 7.8 we obtain :√

νN(ζ)〈ϕαN

F̂N
− ϕF0 , ζ〉 ⇒ N(0, 1),

if KF0 is known and

√
νN(ζ)〈ϕαN

F̂N
− ϕF0 ,−BαN

F0
ζ〉 ⇒ N(0, 1),

in the general case.
If moreover 7.7 is satisfied pointwise asymptotic normality without bias

is satisfied :

√
νN(ζ)〈ϕαN

F̂N
− ϕF0 , ζ〉 ⇒ N(0, 1).

In the case developed in Example 4.1 and 7.1, all the Assumptions can
be satisfied and this last pointwise normality is verified. In the case of instru-
mental variable estimation (example 7.2), assumption 7.7 is not true and a
bias correction term must be introduced in order to get asymptotic normality.
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8 Conclusion

This paper proposed a general framework for structural functional estima-
tion and some results related to the linear compact case are given. Applica-
tion to instrumental variable estimations motivates this analysis. Numerous
questions are not considered. In particular, the choice of the regularization
αN in relation to optimal speed of convergence and to minimax estimation
is not treated in this paper (some steps in that direction are made in Car-
rasco and Florens (2000)). Non linear inverse problems, some well posed
linear problems, extension to dynamic models define natural extensions of
this methodology. A deep discussion about the different definitions of rela-
tions between endogeneous variables is necessary for getting unambiguous
non parametric estimations (see Blundell and Powell (1999) and Florens et
al (2000)).

References

Aı̈t-Sahalia, Y., (1995), “The Delta and Bootstrap Methods for Nonparame-
tric Kernel Functionals”, Discussion Paper, MIT.

Aı̈t-Sahalia, Y. (1996), “Nonparametric Pricing of Interest Rate Derivative
Securities”, Econometrica, Vol. 64, 527-560.

Banon, G., (1978), “Nonparametric Identification for Diffusion Processes”,
SIAM Journal of Control and Optimization, 16, 380-395.
Basmann, R.L., (1959), “A Generalized Classical Method of Linear Estima-
tion of Coefficients in a Structural Equations”, Econometrica, 25, 77-83.

Blundell, R. and J., Powell,(1999), ”Endogeneity in Single Index Models”,
Manuscript, UCL.

Breiman, L. and J.H. Friedman, (1985), “Estimating Optimal Transforma-
tions for Multiple Regression and Correlation”, Journal of the American Sta-
tistical Association, 80 (391), 580-619.

Carrasco, M. and J.P. Florens, (2000a), “Generalization of GMM to A Conti-
nuum of Moments Conditions”, Econometric Theory, 16, 797-834.

Carrasco, M. and J.P. Florens (2000b) “Efficient GMM Estimation using the
Empirical Characteristic Function”, GREMAQ-University of Toulouse.

Chen, X., Hansen L.P. and J. Scheinkman, (2000), “Principal Components
and the Long Run”, Discussion paper, University of Chicago.

Colton, D., Engle H.W. McLaughin J.R. and W. Rundell (eds), (2000) Sur-
veys on Solution Methods for Inverse Problems, Springer, Wien, New York.

30



Darolles, S., Florens J.P. and C. Gouriéroux, (1998), “Kernel Based Nonlinear
Canonical Analysis”, Discussion Paper, CREST 9858.

Darolles, S., Florens J.P. and E. Renault, (1998), “Nonlinear Principal Com-
ponents and Inference on a Conditional Expectation Operator”, Discussion
Paper CREST.

Dearden, L. Ferri J. and C. Meghir, (2002), “The Effect of School Quality on
Educational Attainment and Wages” forthcoming in Review of Economics
and Statistics.
Debrath, L. and P. Mikusinski, (1999), Hilbert Spaces with Applications, Aca-
demic Press, London.

Dunford, N. and J. Schwartz, (1963), Linear Operators 2, Wiley, New York.

Engle, R.H., Hendry D.F. and J.F. Richard, (1983), “Exogeneity”, Econo-
metrica, 51 (2) 277-304.

Florens, J.P., Heckman, J., Meghir C. and E. Vytlacil (2000), “ Instrumental
Variables, Local Instrumental Variables and Control Functions”, Manuscript,
University of Toulouse.

Florens, J.P. and M. Mouchart (1985), “Conditioning in Dynamic Models”,
Journal of Time Series Analysis, 53 (1), 15-35.

Florens, J.P., Mouchart M. and J.M. Rolin (1990), Elements of Bayesian
Statistics, Dekker, New York.
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