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1. Introduction

The recent years have witnessed an explosive development in empirical applica-
tions of game theory with special emphasis on auctions (see e.g. La¤ont (1997)
for a recent survey). Games of incomplete information have two key character-
istics: …rstly, strategy functions transform unobserved random private ’types’ or
’signals’ into observed actions; secondly the strategic nature of the game implies
that strategies depends upon the underlying probability distribution function of
the types. Consequently, one cannot estimate jointly the functional form of play-
ers’ strategies and the distribution of types from the sole observation of actions.
This speci…cation problem is traditionally solved by imposing that strategies are
a ’solution’ of the game.1 This solution concept is assumed to represent ade-
quately agents’ behavior. The most commonly used theoretical solution concept
is that of Nash Equilibrium.2 However, the concept of NE strategies assumes
an exceptionally high level of rationality from the participants who need to have
access to all relevant information (distribution of types, ...) and must be able to
apply sophisticated mathematical tools. Actually, it turns out that, except under
fairly restrictive assumptions whose empirical validity often is questionable, many
games cannot be solved for NE solutions. So, not only the NE concept may no
t represent actual behavior, but also we may not be able to derive the strategy
functions which is an essential requirement for any inference method.

As an alternative to NE we introduce in this paper the concept of Constrained
Strategic Equilibrium (hereafter CSE). Essentially, we propose to restrict our
attention to appropriate subsets of strategies, typically indexed by an auxiliary
parameter vector, and to search for an equilibrium solution within such subsets.
CSE o¤er a major computational advantage, which turns out to be critical for
empirical work, in that they can be solved at a high level of generality by strategic
form analysis of the game based upon auxiliary Monte Carlo (hereafter MC)
simulations. The CSE appeared to be relevant under at least two scenarios: the
…rst one is directly related to the general notion of ’bounded rationality’ and more
speci…cally to the concept of Rules of Thumb ; in the second scenario, one would
use the computational advantage of the CSE with the intent to approximate an
analytically or a numerically untractable NE solution.

Our paper is organized as follows: In section 2, we de…ne the model, section
3 introduces the CSE as an alternative to the NE concept to be used in empirical
application, in section 4 we combine Monte Carlo simulations and Kernel esti-

1See La¤ont, Ossard, Vuong (1995), as well as Hendricks and Paarsh (1995).
2Depending on the information available to players we shall consider Nash Equilibrium or

Bayesian Nash Equilibrium. Hereafter both concepts are denoted NE.
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mates to produce an operational numerical algorithm to calculate CSE, section 5
presents potential applications of the CSE, we illustrate our approach in section6
with an example from the French aerospace industry, …nally, section 7 concludes.

2. The Model

For the ease of exposition as well as notation, CSE’s will be presented here in
the context of a single play of a strategic form game of incomplete information
with a pure strategy solution. It ought to become obvious that the methodology
developed below applies to a broader class of games (repeated games, mixed
strategies, learning, ...).

There are N players each of which is endowed with a privately known ’type’
or ’signal’ »i²i with i ½ <p: The types » = (»1; :::; »N) are drawn from a joint
distribution with cumulative distribution function (hereafter c.d.f.) F (» j µ) and
density f (» j µ), where µ 2 £ denotes a vector of parameters (known to the
players but not to the observer).3 Let Fi (»i j µ) denote the marginal c.d.f. of
»i and fi (»i j µ) the corresponding density. This general framework includes as
special cases of interest i.i.d. types, a¢liated types and asymmetric independently
distributed types.

Unobserved signals are transformed into action by means of a transformation
'i : i ! Xi (µ) which depends upon µ,

xi = 'i (»i; µ) ; i : 1 ! N : (2.1)

When dealing with empirical applications we shall require that these decision
rules or strategies be invertible4 in »i for any given µ 2 £.

Player i is endowed with an individual utility function Ui (' (»; µ) ; »).5 The
rules of the game serve to de…ne the set of admissible strategies Hi for player
i. The number of players N (depending upon the situation, the decision to
participate may be endogenous or exogenous), the joint distribution F , the utility
functions fUigi=1;:::n and the sets of admissible strategies fHigi=1;:::n are common
knowledge to all players. Symmetry assumes that the joint distribution F is
exchangeable (i.e. F is invariant under a permutations of players), (Ui; Hi; i) =
(Uj ;Hj; i) and the equilibrium strategies (subject to existence) are such that

3We do not assume here that µ is of …nite dimmension. In particular, µ could represent the
actual density of the types.

4See Florens, Protopopescu and Richard (1997) for a discussion of potential violations of that
condition in …nite sample inference.

5For the ease of exposition we adopt the usual notation: » =
¡
»i; »¡i

¢
= (»1; :::; »N) and

' (»; µ) =
¡
'i (»i; µ) ; '¡i

¡
»¡i; µ

¢¢
= ('1 (»1; µ) ; :::; 'N (»N ; µ)) :
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'i = 'j ;8i 6= j. Note that exchangeability reduces to the equality of marginal
distributions when types are univariate or independent.

The strategic form of the game is based upon the set of individual expected
utility functions

eUi ('; µ) = E»jµ [Ui (' (»; µ) ; »)] : (2.2)

The extensive form of the game is based upon the set of conditional individual
expected utility functions

bUi ('; »i; µ) = E»¡ij»i;µ
£
Ui

¡
xi; '¡i

¡
»¡i; µ

¢
; »i; »¡i

¢¤
: (2.3)

3. Solution Concepts

3.1. Unconstrained NE solutions

For any given µ 2 £; and subject to existence, a Bayesian Nash Equilibrium in

pure strategy in the set of strategies H =
NQ
i=1

Hi is de…ned by Harsanyi (1967)

as a strategy pro…le
¡
'NE1 ; :::; 'NEN

¢
of mutually best responses strategies in the

extensive form game:

bUi
¡
'NEi (»i; µ) ; 'NE¡i ; »i; µ

¢
¸ bUi

¡
xi; '

NE
¡i ; »i; µ

¢
;

8xi 2 Xi (µ) ; 8»i 2 i and 8i : 1 ! n : (3.1)

The set H is assumed to be such that it is equivalent to consider the extensive
or the strategic form of the game to derive the NE solution. Therefore, 'NE also
veri…es

eUi
¡
'NEi ; 'NE¡i ; µ

¢
¸ eUi

¡
'i; '

NE
¡i ; µ

¢
;

8'i 2 Hi and 8i : 1 ! n : (3.2)

Note that no general theorem insures the existence of a NE solution in a game
of incomplete information with continuous types and actions. In practice, the
problems of existence and uniqueness are solved by the direct determination of
an analytical equilibrium solution. This solution obtains from the following opti-
mization and …xed point problems,

'NEi (»i) =ArgMax
xi2Xi(µ)

bUi
¡
xi; '

NE
¡i ; »i; µ

¢
; 8»i 2 i and 8i : 1 ! n : (3.3)

The corresponding First Order Conditions (FOCs) often are reformulated as

d

dxi
bUi

¡
xi; '

NE
¡i ; »i; µ

¢
jxi='NEi (»i;µ)

= 0 8»i 2 i and 8i : 1 ! n; (3.4)
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which typically produce a set of di¤erential equations in the 'i’s whose solution
depends on µ. Except under fairly restrictive assumptions (such as symmetry,
risk neutrality, ...) it is often impossible to …nd an analytical or even numerical
solution to such problems. Noticeable exceptions to that statement are simple,
mostly single item, auction games. Again, the complexity of unconstrained NE
solutions raises obvious questions as to their empirical relevance.

3.2. Constrained Strategic Equilibrium

Constrained sets of strategies are implicitly de…ned here as subsets H
(k)
i ½ Hi:

The de…nition of CSE now parallels that of a NE in strategic form, except that
strategies are now restricted to H

(k)
i :

De…nition 3.1. A CSE in the set of strategies H(k) =
NQ
i=1

H
(k)
i is a strategic

implementation of the game '
(k)
CSE =

³
'
(k)
1;CSE ; :::; '

(k)
N;CSE

´
, whereby the '

(k)
i;CSE ’s

are mutually best responses in the strategic form game

eUi
³
'
(k)
i;CSE (µ) ; '

(k)
¡i;CSE (µ) ; µ

´
¸ eUi

³
'
(k)
i ; '

(k)
¡i;CSE (µ) ; µ

´
; 8'

(k)
i 2 H

(k)
i ;8i : 1 ! N:

(3.5)

The game of incomplete information ¡ = (N;U;H; F;) can be interpreted as

an equivalent game of complete information e¡ =
³
N; eU;H

´
since eUi

¡
'i; '¡i; µ

¢
=

E»jµ [Ui (' (»; µ) ; »)] is not function of a random variable. Then, the existence
theorem of Nash Equilibrium in in…nite games of complete information with con-
tinuous utility function (see Debreu, 1952) can be applied to e¡: Consider the
following assumptions:

i) H
(k)
i is compact and convex 8i = 1; :::;N .

ii) the function eUi
¡
'i; '¡i; µ

¢
is continuous in ', 8i : 1 ! N; 8' 2 H.

iii) the function eUi
¡
'i; '¡i; µ

¢
is quasi concave in 'i, 8i : 1 ! N;

8'i 2 Hi.

Under assumptions i) to iii) the game e¡(k) =
³
N; eU;H(k)

´
satis…es the con-

ditions for the existence of a NE in pure strategy, and there exists a CSE in
H(k): Assumption i) is easy to satisfy since it depends only upon the selec-
tion of an appropriate constrained set H

(k)
i : The continuity of eUi

¡
'i; '¡i; µ

¢
in

' is guaranteed when Ui (:) is Hölder continuous in ' (see Appendix 1): Fi-
nally, eUi

¡
'i; '¡i; µ

¢
is quasi concave in 'i if Ui (:) or any conditional expec-
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tation E»¡(s)j»(s);µ
h
Ui

³
'(s)

³
»(s); µ

´
; '¡(s)

³
»¡(s); µ

´
; »(s); »¡(s)

´i
(8s : 1 ! N;

8»(s) = »1; :::; »(s)) is concave (see Appendix 2).
In the remainder we consider that assumptions i) to iii) are veri…ed. Then,

the CSE can be de…ned as a …xed point of the constrained best response corre-
spondence

'
(k)
i;CSE (µ) =ArgMax

'
(k)
i 2H(k)

i

eUi
³
'
(k)
i ; '

(k)
¡i;CSE (µ) ; µ

´
8i : 1 ! n : (3.6)

The determination of this …xed point is greatly simpli…ed with a parametrization
of the strategies in H

(k)
i by a vector of d

(k)
i 2 <k. Such parametrization is always

possible since H
(k)
i is compact. This approach provides a major computational

advantage since it requires to optimize over a …nite set of parameters rather than
an in…nite set of functions as it is the case with NE.

4. The CSE in practice

We motivate the practical use of the CSE concept under two non exclusive sce-
nario: as ”Rule of Thumb” and as potential approximation of NE.

4.1. CSE as Rules of Thumb

Some authors have criticized the empirical relevance of ’perfect rationality’ (e.g.
Binmore (1987) or Simon (1987)). As an alternative, the notion of ’bounded ra-
tionality’ has been developed and the ensuing literature has rapidly expanded in
recent years (see e.g. Lipman (1994) for a survey). Among the models proposed,
we are particularly interested in the concept of Rules of Thumb, as recently devel-
oped by Rosenthal (1993 a,b). In this model agents are assumed to have limited
knowledge of their strategic sets and/or limited computational capabilities which
prevent them from making perfectly rational choices. Instead they develop simple
decision rules, based on intuition or on previous plays of the game, which hap-
pen to perform well for them. The relation between CSE’s and Rules of Thumb
equilibrium is then obvious since, by selecting simple Rules of Thumb agents are
actually constraining their strategic sets. The practical relevance of the Rules
of Thumb …nds additional support in recent contributions in experimental eco-
nomics. For example, Levin et al. (1996) and Kagel and Richard (1997) …nd that
players use simple decision rules instead of more sophisticated NE bid strategies.
Interestingly enough, these simpler rules produce payo¤s that are (potentially)
quite close to those that would obtain under NE strategies. Note that we do not
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intend to develop a ’theory’ meant to rationalize agents’ actual choices of con-
strained strategic sets. Actually very few authors have attempted to address this
speci…c issue in the literature on bounded rationality. Our paper being primar-
ily application oriented we can think of at least two ways to select appropriate
constrained strategy sets in the context of speci…c real-life applications. Ideally,
one would like to interview players as to their actual choice of decision rules and
to use such ’revealed’ rules as the central components of the inference procedure.
Note, however, that in view of fairly obvious strategic considerations, the play-
ers might not be willing to participate to such interviews, neither would they
necessarily accurately describe their actual strategic behavior. Alternatively, one
might consider selecting constrained (Rules of Thumb) strategies that appear
to be ’sensible’ or ’common sense’ on heuristic grounds, estimate an empirical
model based upon these rules and then construct an ex-post ’speci…cation test’
aimed at validating that model. Such tests are by no means trivial to construct
since the choice of a speci…c functional form for the strategies partially serves
to ’identify’ the empirical model and, therefore, is not fully empirically testable.
There remain, nevertheless, aspects of the model speci…cation that are ’overiden-
tifying’ and could serve as the basis for a speci…cation test. The search for such
speci…cation tests belongs to our immediate research agenda.

4.2. CSE as approximation of NE

NE in games of incomplete informations typically have complex analytical forms,
however, those few cases where NE strategies can be computed, their ’smooth’
graphs clearly suggest that it ought to be possible to approximate them by simpler
functional forms, such as low degree polynomials, piecewise linear and/or expo-
nential functions (see e.g. some of the graphs of NE strategies found in Marshall
et al. (1994)). Di¤erent approximation techniques can be considered when the
NE cannot be calculated. For instance, assume that the union of a sequence of
increasing constrained sets

©
H(k)

ª
k=1!1

¡
H(k) ½ H(k+1) 8k 2 N¤¢ is dense in H

with respect to an appropriate topology. The intuitive idea of an approximation
theorem is that a sequence of CSE

n
'
(k)
CSE

o
k=1!1

converges toward a NE under

some regularity conditions. Such approximation have the double advantage not
to rely on the FOC’s of the NE, and the approximation '

(k)
CSE has a direct game

theoretic interpretation in …nite distance. Armantier et al. (2000) show that

when a sequence of CSE
n
'
(k)
CSE

o
k=1!1

has an accumulation point M , then M

is a NE in H. Consequently, if H is a compact set, such as the set of functions
of uniformly bounded variation on [a; b] and bounded at a, then any sequence of
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simple analytical structures and it is possible to derive an analytical expression
for @

@di
Ui (di; d¡i; »; µ), which reduces considerably the computational burden. Fi-

nally, we can use standard numerical techniques to solve the system

1

S

SX

s=1

@

@di
Ui

µ
di; d¡i;e»

µ

s; µ

¶
= 0 8i : 1 ! n : (5.1)

Note that some of these techniques might use second order derivatives which
would require Ui (di; d¡i; »; µ) to be C2 in di: A critical remark applies to this
MC implementation: the strategic nature of the game is fundamentally captured
by its strategic implementation functional (di (µ) ; i : 1 ! N). In many problems
and, in particular, to apply an inference procedure we need to produce smooth
estimates of the di’s themselves as functions of µ. Readers familiar with the MC
estimation of functional - see. e.g. Richard (1997, section 23.2.3) - know that,
in order to do so, one has to rely upon a technique known as that of Common
Random Numbers (CRN’s). Therefore, we have to generate initially a single set

of CRN’s, say (euis; i : 1 ! N ; ; s : 1 ! S) which will be transformed into e»
µ

s for
any µ considered.

Case 2 : Ui (di; d¡i; »; µ) is not continuous in di but bUi (di; d¡i; µ) is C1 in di:
This situation arises with games of the type ’winner takes all’ such as auction.
Such games are characterized by the fact that actions are ranked according to a
scalar rule º (xi), the highest score wins and takes all and

Ui (di; d¡i; »; µ) = Vi (di; »i; µ)1
h
º

³
'
(k)
i (»i; di)

´
� b¡i

¡
»¡i; d¡i

¢i
8i : 1 ! n ;

(5.2)
where

b¡i
¡
»¡i; d¡i

¢
=Max

j 6=i
º

³
'
(k)
j

¡
»j; dj

¢´
; (5.3)

1
£
: � b¡i

¡
»¡i; d¡i

¢¤
is the characteristic function and Vi (:) is the utility function

of player i when she wins the game. In this game, an in…nitesimal variation of
the di may produce a change in the identity of the winner and a discrete ”jump”
in the utility function. However, the conditional expectation

eUi (di; d¡i; »i; µ) = E [Ui (di; d¡i; »; µ) =»i] = Vi (di; »i; µ)Gi

³
º

³
'
(k)
i (»i; di)

´
; d¡i=»i

´
;

(5.4)
where Gi (:) is the conditional c.d.f of the highest score among player i rivals, is C1
in di otherwise the problem would be ill de…ned from the start. The computational
problem arises from the fact that the c.d.f Gi (:) can be expressed analytically only
in the simplest games. To solve this problem numerically, we propose to produce a

9



smooth estimate of the joint distribution of
¡
»i; b¡i

¡
»¡i; d¡i

¢¢
, Gi (t; b j d¡i; µ) =

P
¡
»i < t; b¡i

¡
»¡i; d¡i

¢
< b

¢
. The empirical distribution is not a good candidate

since it will produce some discontinuities. Instead we propose for any given
strategic choice d¡i

bGi (t; b j d¡i; µ) =
1

S

SX

s=1

1

�
e»
µ

i;s � t

¸
Kh

µ
b ¡eb¾¡i

µ
e»
µ

¡i;s; d¡i

¶¶
; (5.5)

where eb¾¡i
µ

e»
µ

¡i;s; d¡i

¶
=Max

j 6=i
º

µ
'
(k)
j

µ
e»
µ

j;s; dj

¶¶
6; e»

µ

s =

µ
e»
µ

1;s; :::;
e»
µ

N;s

¶
is a vec-

tor of random numbers generated from F (: j µ), Kh denotes an arbitrary c.d.f.,
labeled ’kernel’ and h a ’bandwidth’ which controls the smoothness of the kernel
estimate.7 It has been well established that when h tends toward 0 bGi (:; : j d¡i; µ)
converges asymptotically in S toward Gi (:; : j d¡i; µ) : Then we can write

bUi (di; d¡i; µ) =

Z
Vi (di; d¡i; »i; µ)1

h
º

³
'
(k)
i (»i; di)

´
� b¡i

¡
»¡i; d¡i

¢i
(5.6)

dGi

¡
»i; b¡i

¡
»¡i; d¡i

¢
j d¡i; µ

¢
i : 1 ! N (5.7)

' 1

S

SX

s=1

Vi

µ
di; d¡i;e»

µ

i;s; µ

¶
Kh

µ
º

µ
'
(k)
i

µ
e»
µ

i;s; di

¶¶
¡eb¾¡i

µ
e»
µ

¡i;s; d¡i

¶¶
:

(5.8)
Note that this smoothing technique preserve the continuity of Gi (:; : j d¡i; µ) in
di and considerably reduces the dimensionality of integration. Finally, we have
to solve the system of N equations

1

S

sX

l=1

@

@di

�
Vi

µ
di; d¡i;e»

µ

i;s; µ

¶
Kh

µ
º

µ
'
(k)
i

µ
e»
µ

i;s; di

¶¶
¡eb¾¡i

µ
e»
µ

¡i;s; d¡i

¶¶¸
= 0 :

(5.9)

6By construction '(k)j (:) is continuous in dj and º (:) is typically continuous, therefore, eb¾¡i (:)
is also continuous in d¡i. If however, eb¾¡i (:) had to be C1 in d¡i then one might use a di¤erential

approximation of the Max such as

"
P
j 6=i

º

µ
'
(k)
j

µ
e»

µ

j;s; dj

¶¶1=¾
#¾

for su¢ciently small values of

¾: The authors would like to thank the referee who suggested this smoothing technique.
7The choice of a bandwidth is extensively discussed in the literature on nonparametric esti-

mation - see e.g. Hardle (1990). One can select such optimal bandwith. Here however we control
the MC size and optimality considerations are less crucial. Visual inspection to determine an
appropriate combination of h and S proves extremely useful in that respect.
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Provided that analytical derivatives of K (:) ; Vi (di; d¡i; »; µ) and '
(k)
i

µ
e»
µ

i;l; di

¶

with respect to d1 are available we can derive an analytical expression for (5.5)
and considerably reduce computational time.

It ought to be emphasized here that, although …nding solution(s) to a set
of non linear equations is a well known problem for which there exist several
methods, it is by no means a trivial numerical problem. In other words, even
though our CSE-MC methodology enables us to analyze empirical game theoretic
models that would otherwise be analytically and numerically intractable, there is
no free lunch! We refer our reader to the discussion in Press et al. (1986, chap.
9) from which the following highly relevant quote is extracted:

”Once, however, you identify the neighborhood of a root, or a place where
there might be a root, then the problem …rms up considerably: It is time to
turn to Newton-Raphson, which readily generalizes to multiple dimensions. This
method gives you a very e¢cient means of converging to the root, if it exists,
or of spectacularly failing to converge, indicating (though not proving) that your
putative root does not exist nearby.”

Actually, the situation might not be as bad as it sounds. There are many
empirical applications of game theory, such as auctions, for which theory as well
as institutional features of the game under consideration provide much insight
as to reasonable values for the parameters of assumed Rules of Thumb decision
rules. As we shall illustrate next, it is critical that such information be incorpo-
rated in the numerical search for CSE’s in the form of explicit restrictions upon
admissible parameter values. See Armantier et al. (1997) for detailed algorithms
and additional numerical considerations.

6. An application from the French aerospace industry

In this section we introduce an application which will be used in the sequel of our
paper to illustrate the solution concepts we propose. This application exploits a
data set relative to tenders in the French aerospace industry. A detailed descrip-
tion of that industry together with earlier empirical results are found in Florens et
al. (1997) and Armantier et al. (1997). We derive here a previously unavailable
analytical expression for the unconstrained NE solution under a scenario whereby
participants are ranked according to a quality/price ratio criterion. That expres-
sion will be used as a benchmark to evaluate the alternative CSE solutions which
are computed below.

In a nutshell the organization of the French aerospace industry can be de-
scribed as follows: in order to subcontract a piece of equipment the project
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manager selects a number of …rms and provides them with a list of technical
speci…cations. The number of consulted …rms N is small (between 2 and 7) and
known. Tenders consist of technical proposals together with …nancial plans. After
evaluation by an independent committee, the tender of …rm i (i = 1; :::;N) is sum-
marized into a quality grade Qi (Qi 2 [0; 1]) and a price Pi, standardized across
tenders. Tenders with a quality below a threshold Q0 are eliminated. Among the
quali…ed …rms (Qi ¸ Q0) the one with the highest quality/price ratio is awarded
the subcontract. Our model is based upon the following set of assumptions:

A.1 The Independent Private Value (IPV) paradigm applies, whereby
participants’ cost (Ci) and quality (Qi) pairs are privately known to them and the
random variables (Ci; Qi) are (jointly) independently and identically distributed,
with a c.d.f. F (c; q)8 with support

£
0; C

¤
£ [0; 1];

A.2 Q0 is common knowledge and only quali…ed …rms submit bids since
preparation of a tender is costly;9

A.3 If only one …rm quali…es, then it receives a pre-negotiated amount
P .10 Therefore, the strategic analysis which follows is conditional upon two or
more …rms qualifying;

A.4 Firms bid their true quality.11 Furthermore, …rms being ex-ante
symmetric by assumption (A.1), we restrict our attention to symmetric solutions.
Therefore, a bid by …rm i consists of a pair (Pi; Qi) = (¼ (Ci; Qi) ; Qi);

A.5 The boundary condition ¼
¡
C;Q0

¢
= C applies. For the ease of

derivation we also assume that ¼ (C;Q) is continuous and strictly increasing in
both arguments and that ¼ (C;Q) ¸ C.

In terms of the notation introduced in Section 5.1, …rm i draws a private signal
»i = (Ci; Qi) from the c.d.f. F and transforms it into an observable action xi =
' (»i) = (¼ (Ci; Qi) ; Qi). Firms are ranked according to the selection criterion
¹ (xi) = Qi=Pi and their utility function coincide with their actual payo¤. The
unconstrained set of admissible strategies HN is implicitly de…ned by assumption
(A.5).

A unique unconstrained NE solution obtains under assumptions (A.1) to
(A.5). Its derivation is given in Appendix 3. Though it follows from a stan-

8This distinguishes our model from Yeon-Koo Che (1993). Yeon-Koo Che assumes that the
…rms can select any level of quality and that the cost of production is a function of the quality
and a unique random variable representing the heterogeneity between …rms. Here, we assume
two types of heterogeneities: in cost and in quality.

9Note that our econometric model has to account for this censoring phenomenon.
10 If …rms stood a su¢ciently high probability of being sole quali…er, then they might have an

incentive to submit arbitrarily large prices.
11We are implicitly assuming that if a …rm chooses to misrepresent its quality and wins the

procurement, then it would be detected and banned from subsequent procurements.
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dard line of argumentation it is signi…cantly complicated by the following issues:
…rstly, participants know the number of …rms being consulted but, at the time
of submitting their bids, do not know how many …rms will actually qualify ;
secondly, tenders are bivariate and the selection criterion takes the form of a ra-
tio of random variables. The unconstrained (symmetric) NE bid function for a
qualifying …rm (Qi ¸ Q0) may be written as

Pi = ¼(Ci;Qi) = Qi:!(
Ci
Qi

) ; (6.1)

with

!(x) = x +
1

¢(x;Q0)

C=Q0Z

x

¢(u;Q0)du ; (6.2)

and

¢(u;Q0) =

2
641 ¡

1Z

Q0

fQ(v)FC=Q(uv=v)dv

3
75

n

¡ [FQ(Q0)]
n ; (6.3)

where n = N ¡ 1, FQ denotes the marginal c.d.f. of Qi and FC=Q (¢ j Q) the
c.d.f. of Ci conditional on Qi = Q. This NE bid function cle arly is a non-trivial
function of Ci and Qi (graphs for the application under consideration are provided
below). The econometric speci…cation of the model is completed by the following
assumptions:

A.6 The marginal distribution of the quality index Q is a beta distribution
with density function

fQ (Q j aQ; bQ) _ QaQ¡1 ¢ (1 ¡ Q)bQ¡1 (6.4)

with aQ > 0 and bQ > 0 ;
A.7 The marginal distribution of C is a Weibull distribution12 with c.d.f.

FC (C j aC ; bC) = 1 ¡ exp
³
¡aCCbc

´
; (6.5)

with ac > 0 and bc > 0 ;
A.8 The joint distribution of (C; Q) is a member of the Morgenstern class

of bivariate distributions with preset marginals - see Johnson and Kotz (1972,
chap. 34) - and is given by

F (C;Q) = FC (C) ¢ FQ (Q) ¢ [1 + ° (1 ¡ FC (C)) (1 ¡ FQ (Q))] ; (6.6)

12Actually we truncate Fc at a value C far in the tail. We choose C = 2:5 which in practice
correspond at minimum to the fractile 0:983.
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with ° 2 ]¡1; 1[. For ° = 0, C and Q are mutually independent.
We note that the regression functions associated F are non linear. All together,

we have to estimate parameter vector µ0 = (aC ; bC ; aQ; bQ;°) 2 <4 £ ]¡1; 1[.
We apply the inference method developed by Florens and al. (1997) with the
unfeasible estimator, being given by the censored ML estimator associated with
the c.d.f. (6.6). We have a sample corresponding to 15 procurements where a total
of 87 …rms were consulted but only 50 …rms quali…ed. For each procurements we
observe the number of consulted …rms and the tenders (Pi; Qi) for the quali…ed
…rms. The quality threshold is the same across procurements Q0 = :45. The
main empirical results are summarized in Table 6.1:13

Parameter aC bC aQ bQ °

Estimated Value 2.185 0.953 5.265 5.259 0.109
Standard deviation (0.101) (0.112) (0.134) (0.148) (0.429)

Table 6.1: Parameter estimates in the model with NE strategies

Corresponding moments for C, Q and the pro…t margin
¡
P¡C
C

¢
are reported

in Table 6.2. The most directly interpretable …gure is the expectation of the
pro…t margin. Interestingly enough, it is about twice as large as the correspond-
ing …gures reported by Armantier et al. (1997) for similar procurements where
participants were ranked according to price only. This di¤erence does not ap-
pear to originate from model misspeci…cation since, in particular, the estimates
in Table 6.1 are quite similar to those obtained by Armantier et al. (1997). It
actually raises an interesting problem in the design of these tenders. By using a
quality/price criterion instead of just price, the project manager does not appear
to gain much in quality but might be more signi…cantly penalized in terms of
price.

Variable C Q Pro…t Margin
Expectation 0.905 0.500 0.494

Standard deviation 0.437 0.147 0.195

Table 6.2: Moments in the model with NE strategies

Graphs of the corresponding NE bid functions for 2 to 5 participants are found
in …gure 1. Note that in sharp contrast with its complex analytical form, the NE
bid function has a very smooth graph.

13The standard deviations in Table 1 are calculated based on Monte Carlo simulations. See
Florens et al. (1997) for general results regarding the asymptotic distribution of the estimator.
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6.1. CSE’s for the French aerospace industry

In view of the quality/price scoring rule, it appears reasonable to assume the
following functional form for the constrained strategies,

¼ = q ¢ !k and !k

µ
c

q
j d

¶
=

kX

`=0

d`+1

µ
c

q

¶`
: (6.7)

In order to make sure that the corresponding bidding rule remains sensible, which
is essential for numerical reasons, we impose the following restrictions on ¼:

@¼

@c
> 0 ;

@¼

@q
> 0 ; ¼ (c; q) ¸ c; ; (6.8)

¼
¡
C; Q0

¢
= C ;

@¼

@c
j(C;Q0)= 1 8 (c; q) 2 [0; c] £ [Q0; 1] : (6.9)

The two equality constraints in (6.9) are used to eliminate d1 and d2 from equa-
tion (6.7). The inequalities in (6.8) are then resolved in the form of inequality
constraints on the remaining coe¢cients.

To illustrate a possible Rule of Thumb, we consider k = 2 which is the simplest
case allowing for an ’interaction’ between cost and quality. The bid function is
then given by

¼ (c; q) = d1q + d2c + d3
c2

q
: (6.10)

The constraints in equations (6.8) and (6.9) imply that the CSE solution operates
on a single coe¢cient d3 within a narrow band [0; 0:09]. The general method
(inference and CSE evaluations) takes of the order of 17 minutes of CPU time for
a MC size S = 10000 versus 160 minutes under the NE solution (See Armantier
and Richard (1997) for details regarding computation). Point estimates of the
parameter of the model are found in Table 6.3 and the corresponding moments
for C, Q and pro…t margin in Table 6.4. In Table 6.5 we reproduce the estimated
coe¢cients d¤i

³
bµ; N

´
of the CSE bid function (6.10) for number of participants

from 2 to 7. Graphs of the corresponding bid functions for 2 to 5 participants are
reproduced in …gure 2. Comparison of these results with those obtained under NE
solutions in Tables 6.1 and 6.2 and …gure 1 indicate that estimated cost, quality
and pro…t margin are very similar, and that the graphs of the Rule of Thumb
and NE are close to each other on the interval where players are likely to draw
costs (roughly [0:5; 1:4]). The largest di¤erence (which, nevertheless, remains
within one standard deviation) is found in the estimates of °; a parameter which
is notoriously di¢cult to estimate in small samples.
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Parameter aC bC aQ bQ °

Estimated Value 2.133 0.970 5.268 5.263 0.301
Standard deviation 0.188 0.179 0.237 0.256 0.531

Table 6.3: Parameter estimates with CSE solution (k=2)

Variable C Q Pro…t Margin
Expectation 0.921 0.500 0.478

Standard deviation 0.454 0.147 0.202

Table 6.4: Moments with CSE solution (k=2)

To illustrate the possible use of CSE to approximate NE, we consider also the
case where k = 4. The constraints implied by (6.8) and (6.9) are signi…cantly
more tedious to elicit and program and the numerical search for a CSE solution
now operates on the three coe¢cients d3, d4, and d5. Computing time is of the
order of 64 minutes of CPU time, still 2.5 times faster than for NE solutions.
Results are reproduced in Table 6.6 to 6.8 and in …gure 3. The CSE solution for
k = 4 clearly provides a very close approximation to the actual NE solution.

It is quite obvious that, in the context of the French aerospace industry at
least, CSE solutions not only provide excellent approximations to an existing NE
solution but, in addition, are computationally more tractable as well as easier to
interpret (whence their potential usefulness as Rules of Thumb strategies).

6.2. Asymmetry and collusion

CSE o¤ers the key advantage that it can be computed in situations where NE
solutions are analytically intractable. Important examples of such situations are
auctions where bidders are asymmetric and/or where (subgroups of) bidders col-
lude. There are very few such cases for which there currently exist operational
numerical algorithms to compute NE solutions. See, for example, Marshall et al.

N 2 3 4 5 6 7

d¤1
³
bµ; N

´
1.266 1.088 0.941 0.823 0.728 0.652

d¤2
³
bµ; N

´
0.544 0.608 0.661 0.704 0.738 0.765

d¤3
³
bµ; N

´
0.0410 0.0352 0.0304 0.0267 0.0236 0.0211

Table 6.5: Coe¢cients of the CSE solution (k=2)
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Parameter aC bC aQ bQ °

Estimated Value 2.181 0.950 5.266 5.260 0.210
Standard deviation 0.114 0.121 0.137 0.150 0.433

Table 6.6: Parameter estimates with CSE solutions (k=4)

Variable C Q Pro…t Margin
Expectation 0.902 0.497 0.491

Standard deviation 0.438 0.147 0.197

Table 6.7: Moments with CSE solutions (k=4)

N d¤1
³
bµ; N

´
d¤2

³
bµ;N

´
d¤3

³
bµ;N

´
d¤4

³
bµ; N

´
d¤5

³
bµ;N

´

2 1.380 0.0297 0.470 -0.107 0.0083
3 1.201 0.0564 0.509 -0.119 0.0093
4 1.059 0.0721 0.539 -0.128 0.0100
5 0.950 0.0824 0.560 -0.137 0.0105
6 0.865 0.0924 0.571 -0.137 0.0107
7 0.798 0.1050 0.574 -0.138 0.0107

Table 6.8: Coe¢cients of the CSE solutions (k=4)
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(1994) for numerical solutions to the case of …rst price IPV auctions with two
subgroups of bidders who are symmetric within groups but asymmetric across.
In the present section we provide two examples for which, as far as we know,
the NE solutions cannot (presently) be computed and for which, nevertheless,
our MC algorithm produces CSE solutions with no di¢culties. For the sake of
illustration, we rely upon the institutional framework of the French aerospace
industry as described earlier but limit ourselves to computing CSE solutions for
arti…cial choices of parameter values.14

6.2.1. Example 1: Coalition

We consider here the case where a single player faces a coalition of N ¡ 1 play-
ers. We assume that the coalition is represented at the main auction by a sole
bidder who submits a bid corresponding to the type with highest score within the
coalition.15 All players draw their (private) type from the bivariate distribution
characterized by assumptions A.6 to A.8. The parameter vector µ is set equal to
µ0 =(2.0 1.0 5.0 5.0 0.3) implying expected cost 0.886 with standard devi-
ation 0.463 and expected quality 0.5 with standard deviation 0.15. The quality
threshold Q0 is set equal to 0.4. The bid function of player 1 and that of the
coalition sole bidder are both assumed to be of the form given in equation (6.10).
The CSE coe¢cients d¤i (µ0;N) for each of the two bidders are found in Tables 6.9
and 10 together with expected pro…ts and probabilities of winning16 (the latter
…gures are per capita under the implicit assumption that the coalition allocation
mechanism is symmetric). Symmetric expected pro…t is also included for refer-
ence. The corresponding bid functions are illustrated in …gure 4. In addition to
demonstrating the feasibility of a CSE solution, the numbers in Tables 6.9 and
6.10 con…rm earlier …ndings by Marshall et al. (1994) in a simpler model: the very
existence of a coalition bene…ts the outsider signi…cantly more than the insiders.
This …nding, to be con…rmed by a larger scale study, raises obvious questions as
to the viability of coalitions in the procurement environment discussed here. A

14We have no particular reasons to suspect major asymmetries and/or collusive behavior
among participants to the procurement analyzed earlier and, moreover, it would be vain to
attempt estimating a more complex model than the one we already estimated in view of the
small sample size.

15We do not attempt to model here an ’incentive compatible’ collusive mechanism, neither do
we address the fundamental issue of the viability of a non-inclusive coalition. A complete study
of the problem goes beyond the objectives of our paper but the results presented below raise
obvious questions as to the viability of the coalition under consideration.

16The numbers in the …rst column (N = 2) of tables 9 and 10 ought to be the same. The fact
that the actual …gures are very close to one another illustrates the excellent numerical accuracy
of our simulation algorithm.
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full scale study of this important issue goes beyond the objectives of the present
paper but belongs to our current research agenda.

N 2 3 4 5 6 7

d¤1 (µ0; N) 1.981 1.541 1.413 1.317 1.259 1.213
d¤2 (µ0; N) 0.366 0.440 0.548 0.579 0.597 0.612
d¤3 (µ0; N) 0.0507 0.0407 0.0362 0.0337 0.0323 0.0311

Expected pro…t 0.360 0.263 0.222 0.199 0.186 0.176
Winning probability 0.502 0.414 0.372 0.350 0.336 0.326

Symmetric Expected pro…t 0.361 0.206 0.140 0.104 0.080 0.067

Table 6.9: CSE solution and outcome for player 1 (coalition)

N 2 3 4 5 6 7

d¤1 (µ0; N) 1.979 1.803 1.742 1.716 1.704 1.689
d¤2 (µ0; N) 0.369 0.423 0.443 0.451 0.454 0.459
d¤3 (µ0; N) 0.0507 0.0462 0.0446 0.0440 0.0436 0.0433

Expected pro…t 0.361 0.211 0.157 0.127 0.106 0.091
Winning probability 0.498 0.586 0.627 0.651 0.665 0.673

Symmetric Expected pro…t 0.361 0.206 0.140 0.104 0.080 0.067

Table 6.10: CSE solution and per capita outcome for coalition of N-1 players

6.2.2. Example 2: Asymmetry

In this example player 1 draws her type from a di¤erent distribution from that
of players 2 to N . Actually we assume that only the marginal distribution for
cost di¤er among the two groups. The mean and standard deviation of cost for
player 1 are 1.0 and 0.2, respectively. Players 2 to N draw cost from a more
favorable distribution with mean 0.8 and standard deviation 0.2. The quality
threshold stays …xed at 0.4. Here again both bid functions are assumed to be
of the form given in equation (6.10). The CSE coe¢cients d¤i (µ0;N) for both
classes of players are found in Tables 6.11 and 6.12 together with (per capita)
expected pro…t and probability of winning. The corresponding bid functions are
illustrated in …gure 5 (the symmetric bid function correspond to the case where
all bidders are similar to player 1). We note that a relatively modest increase
in expected cost (one standard deviation) signi…cantly penalizes player 1. Note
also that player 1 tries to (partially) make up for an unfavorable cost distribution

19



N d¤1 (µ0; N) d¤2 (µ0;N) d¤3 (µ0;N) expected pro…t winning probability
2 1.540 0.507 0.0394 0.223 0.462
3 0.934 0.701 0.0239 0.091 0.267
4 0.684 0.781 0.0175 0.047 0.172
5 0.563 0.820 0.0144 0.028 0.120
6 0.486 0.845 0.0124 0.019 0.091
7 0.439 0.859 0.0113 0.014 0.071

Table 6.11: CSE solution and outcome for player 1

N d¤1 (µ0; N) d¤2 (µ0;N) d¤3 (µ0;N) expected pro…t winning probability
2 1.744 0.442 0.0447 0.324 0.538
3 1.125 0.640 0.0288 0.163 0.369
4 0.844 0.730 0.0216 0.098 0.278
5 0.694 0.777 0.0178 0.066 0.221
6 0.604 0.806 0.0155 0.049 0.181
7 0.539 0.827 0.0138 0.038 0.158

Table 6.12: CSE solution and outcome for player j (j=2,...N)

by decreasing the cost coe¢cient and increasing the quality coe¢cient in her bid
function.

7. Conclusion

First and foremost, the MC simulation algorithm we have developed for com-
puting CSE solutions and embedding these calculations within a general esti-
mation algorithm appears to work extremely well. It outperforms standard NE
calculations in those few cases where NE solutions might be available and, more
importantly, provides operational solutions when NE solutions are analytically
and numerically intractable. Non trivial examples of such cases were analyzed
in our paper. The combination of our CSE algorithm with the general inference
principle developed by Florens et al. (1997) produces an operational integrated
methodology applicable to a broad range of empirical game theoretic models, of-
fering a number of exciting avenues for research. In conclusion of our paper, we
brie‡y discuss a few such issues that belong to our immediate research agenda.

(1) As we are facing a broad range of alternative strategic and econo-
metric speci…cations, we critically need to develop speci…cation tests for empirical
game theoretic models. Moreover, in an approximation framework speci…cation
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tests are also essential to evaluate how closely the CSE have converged toward
the NE. We brie‡y evoked in the paper the possibility to overidentify the model
to serve as the basis of a speci…cation test.

(2) We are currently working on a formal approximation theorem
of NE solutions by CSE’s. Preliminary convergence results have been obtained
for speci…c classes of game, such as auctions or games for which the strategies
are of bounded variation. In addition, we also intend to develop mathematical
guidelines for selecting appropriate classes of restricted strategies.

(3) The CSE algorithm we developed provides us with an operational
procedure for investigating the empirical relevance of recently developed theoret-
ical concepts of ’bounded rationality’. Therefore, we intend to extend the use of
our algorithm to produce real-life economic applications of bounded rationality, of
which very few currently exist. In particular, it ought to be possible to explicitly
model ’complexity’ to validate functionally simple CSE solutions.

(4) Finally, we do intend to apply the concept of CSE to broader
classes of games than that discussed here. Obvious areas of interest are repeated
games, learning or mixed strategies equilibriums, among others. We also propose
to apply our algorithm to other applied micro or Industrial Organization economic
problems, such as principal-agent, non linear pricing, adverse selection or moral
hazard, all problems for which NE solutions can at best be obtained under strong
simplifying assumptions, whose empirical validity often is highly questionable.
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8. Appendix 1: Continuity of eUi ('; µ) in ':

Consider Ui (x; ») an Hölder continuous function in x 2 <p0 (8»² and  compact)
with an exponent ® ¸ 1 independent of »; and a constant k (») : Then, 8

©
'1; '2

ª
2

H2 and 8»² we have
¯̄
Ui

¡
'1 (»; µ) ; »

¢
¡ Ui

¡
'2 (»; µ) ; »

¢¯̄
� k (»)

£
d

¡
'1 (»; µ) ; '2 (»; µ)

¢¤®
; (A.1.1)

where d (:) is an usual metric on <p0 : Consider two conjugate numbers q1 and
q2 (q1 > 0, q2 > 0 and 1=q1 + 1=q2 = 1, or q1 = 1 and q2 = 1). We assume
that k 2 Lq1F

¡R
 jk (»)jq1 F (@») < 1

¢
and H ½ Lq2F (in particular, when q2 = 1

strategies are bounded). Then, the function eUi ('; µ) = E»jµ [Ui (' (»; µ) ; »)] is
continuous in ': Indeed, 8

©
'1; '2

ª
2 H2

¯̄
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¡
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¡
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¡
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(A.1.2)

The last inequality follows from the Hölder inequality: Therefore, eUi ('; µ) is
continuous in ' with respect to the Lq2F metric:

9. Appendix 2: Quasi concavity of eUi
¡
'i; '¡i; µ

¢
in 'i:

If Ui
¡
'i (»; µ) ; '¡i (»; µ) ; »

¢
is concave in 'i then, 8

©
'1i ; '

2
i

ª
2 H2
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all 0 < ¸ < 1;
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¡
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¢
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Let us multiply both side of the inequality by f (») and integrate over ; we have
Z
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or, equivalently,

eUi
¡
¸'1i + (1 ¡ ¸)'2i ; '¡i

¢
¸ ¸eUi

¡
'1i ; '¡i

¢
+ (1 ¡ ¸) eUi

¡
'2i ; '¡i
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: (A.2.3)

and eUi
¡
'i; '¡i; µ

¢
is concave in 'i:

Similarly, if the conditional expectation E»¡(s)j»(s);µ
h
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where f¡(s)=»(s) (:) is the marginal p.d.f of »¡(s) conditionally on »(s): If we multiply

both side of the inequality by f(s)

³
»(s)

´
and integrate over (s) we obtain the

same results as in and eUi
¡
'i; '¡i; µ

¢
is concave in 'i:

10. Appendix 3: Derivation of formula (6.1)-(6.3)

We proceed under the working assumption that the bid function is of the form

p = q:!

µ
c

q

¶
; (A.3.1)

where  is monotone increasing (actually, we can run our proof without that
condition at the cost of added complications, and verify in the end that condition
(A.1) obtains). Let h = !¡1. The boundary condition in assumption (6) is
rewritten as !

¡
C=Q0

¢
= C=Q0. Let Y = Q=P denote the (random) quality-

price ratio. The derivation of the (symmetric) bid function for a quali…ed …rm
proceeds in several steps.

(1) Elementary probability calculations produce the following results

Pr

µ
Y � 1

a
j Q = q

¶
= 1 ¡ FCjQ (qh (a) j q) ; (A.3.2)
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for a ¸ ! (0) (which is the only case relevant for the equilibrium condition derived
below), whence

Pr

µ
Y � 1

a
j Q ¸ Q0

¶
= 1 ¡ B (a; !;Q0)

1 ¡ FQ (Q0)
; (A.3.3)

with

B (a;!; Q0) =

1Z

Q0

fQ (u) ¢ FCjQ (uh (a) j u)du : (A.3.4)

(2) Let Y(n;Q0) denote the highest quality-price ratio among n = N ¡ 1
quali…ed rival …rms, conditionally on there being at least one. We have

Pr

µ
Y(n;Q0) � 1

a

¶
=

nX

k=1

Pk

�
Pr

µ
Y � 1

a
j Q ¸ Q0

¶¸k
; (A.3.5)

where Pk, which denotes the probability that k …rms qualify conditionally on
there being at least one, is given by

Pk =

¡
n
k

¢
¢ [1 ¡ FQ (Q0)]

k ¢ [FQ (Q0)]
n¡k

1 ¡ [FQ (Q0)]
n ; k : 1 ! n : (A.3.6)

Hence

Pr

µ
Y(n;Q0) � 1

a

¶
=

D (a;!; Q0)

1 ¡ [FQ (Q0)]
n ; (A.3.7)

with
D (a; !;Q0) = [1 ¡ B (a;!; Q0)]

n ¡ [FQ (Q0)]
n : (A.3.8)

(3) The payo¤ of a …rm with type (c; q) which faces Y(n;Q0) and bids
q ¢ (x) is given by

U
¡
x; Y(n;Q0); c; q

¢
= q

�
! (x) ¡ c

q

¸
; if

1

! (x)
¸ Y(n;Q0) ; (A.3.9)

and equals zero, otherwise. Its expected pro…t is

U¤ (x; c; q) =
q

1 ¡ [FQ (Q0)]
n ¢ R

µ
x;
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q

¶
; (A.3.10)
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24



Since ! (x) ¸ ! (0), we also have

B (! (x) ;!; Q0) =

Z 1

Q0

fQ (u) ¢ FCjQ (ux j u) du ; (A.3.12)

which actually does not depend upon !. Whence
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µ
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c

q

¶
=

�
! (x) ¡ c

q

¸
¢ 4 (x; Q0) ; (A.3.13)

where 4 (x; Q0) has been de…ned in equation (2.16). The equilibrium condition
is given by

@

@x
R

µ
x;

c

q

¶
= 0; at x =

c

q
; (A.3.14)

or, equivalently,

!0 (x) ¢ 4 (x; Q0) + [! (x) ¡ x] ¢ 40 (x;Q0) = 0 : (A.3.15)

The solution of this di¤erential equation is given by

! (x) = x +

K ¡
xR
0

4 (u;Q0)du

4 (x;Q0)
: (A.3.16)

The boundary condition implies that

K =

C=Q0Z

0

4 (u;Q0)du ; (A.3.17)

which completes the proof. It is fairly straightforward to demonstrate that condi-
tion (A.15) implies that the bid function ¼ (c; q) is monotone in both arguments.

25



References
Armantier O., and J-F. Richard, 1997, ”Inference and Constrained Equilib-

rium in Game Theoretic Models: Numerical Aspects”, invited by the Journal of
Computational Economics for a special issue based on the 1997 Conference on
Computing in Economics and Finance.

Armantier O., Florens J-P. and J-F. Richard, 1997, ”Equilibre Approximatif
et Regle Intuitive: une Application aux Appels d’O¤res dans l’Industrie Spatiale”,
forthcoming in Economie et Prevision.

Armantier O., Florens J-P. and J-F. Richard, 2000, ”Nash Equilibrium Ap-
proximation in Games of Incomplete Information”, Mimeo.

Athey S.,1997, ”Single Crossing Properties and the Existence of Pure Strategy
Equilibria in Games with Incomplete Information”, discussion paper 97-11,MIT.

Bernheim B., 1984, ”Rationalizable Strategic Behavior ”, Econometrica 52,
1007-1028.

Binmore K., 1987, ”Modeling Rational Players: Part 1 and 2”, Economics
and Philosophy 3; 4.

Debreu G., 1952, ”A Social Equilibrium Existence Theorem”, Proceding of
the National Academy of Sciences, 38, 886-893.

Dyer D. and J. Kagel, 1995, ”Bidding in Common Value Auction: A Case
Study of the Commercial Construction Industry, University of Pittsburgh Mimeo.

Florens J-P., Protopopescu C. and J-F. Richard, 1997, ”Inference in a Class
of Game Theoretic Models”, Unversity of Pittsburgh Mimeo.

Florens J-P., Hugo M-A. and J-F. Richard, 1997, ”Game Theory Econometric
Model: Application to Procurements in the Space Industry”, European Economic
Review, 951-959.

Fudenberg D. and D. Levine, 1986, ”Limit Games and Limit Equilibria”,
Journal of Economic Theory, 38, 261-279.

Hardle W., 1990, ”Applied Non Parametric Regression”, Econometric Society
Monographs 19.

Harsanyi, J. !967, ”Games with Incomplete Information played by Bayesian
Players”, Managements Science, 14.

Hendricks K. and H. Paarsch, 1995, ”A Survey of Recent Empirical Work
Concerning Auctions”, Canadian Journal of Economics, 403-426.

Jonston N.L and S. Kotz, 1972, ”Distribution in Statistic: Continuous Mul-
tivariate Distribution”, New York: Wiley J & Sons.

Kagel J. and J-F. Richard, 1997, ”Rules of Thumb: some Experimental Evi-
dence”, Mimeo, University of Pittsburgh.

La¤ont J-J., Ossard O. and Q. Vuong, 1995, ”Econometrics of First Price
Auctions”, Econometrica, 63, No. 4, 953-980.

26



La¤ont J-J., (1997), ”Game Theory and Empirical Economics: the Case of
Auction Data”, European Economic Review, 41, 1-36.

Levin D., Kagel J. and J-F. Richard, 1996, ”Revenue E¤ects and Information
Processingin English Common Value Auction”, American Economic Review, Vol.
86, 3, 442-460.

Lipman B., 1994, ”Information Processing and Bounded Rationality: a Sur-
vey”, Canadian Journal of Economics, XXVIII, 1, 42-67.

Marshall R., Meurer M., Richard J-F. and W. Stromquist, 1994, ”Numerical
Analysis of Asymmetric First Price Auction”, Game and Economic Behavior, 7,
193-220.

Maskin F. and J.Riley, 1996, ”Equilibrium in Sealed High Bid Auctions”,
Discussion Paper DR96, Harvard University.

McA¤ee P. and J. Mc Millan, 1987, ”Auctions and Bidding”, Journal of Eco-
nomic Literature, 699-738.

Milgrom P and R. Weber, 1982, ”A Theory of Auction and Competitive Bid-
ding”, Econometrica 50, 1089-1122.

Myerson R., 1981, ”Optimal Auction Design”, Mathematics of Operations
Research,6,58-73.

Press W., Flannery B., Teukolsky S. and W. Vetterling, 1986, ”Numerical
Recipies: the Art of Scienti…c Computing”, Cambridge University Press.

Richard J-F. (1997), ”Simulation Techniques”, ch 23 in the Econometrics of
Panel Data, a Handbook of the Theory with Applications”, edited by L. Matyas
and P. Sevrestre, 2nd Edition, Kluiver, Boston.

Richard J-F and W. Zhang. (1998), ”E¢cient High-Dimensional Monte Carlo
Important Sampling”, Mimeo, University of Pittsburgh.

Riley J. and W.F..Samuelson,1981, ”Optimal Auctions”, American Economic
Review, 71, 381-92.

Rosenthal R., 1993 a, ”Rules of Thumb in Games”, Journal of Economic
Behavior and Organization, 22, 1-13.

Rosenthal R., 1993 b, ”Bargaining Rules of Thumb”, Journal of Economic
Behavior and Organization, 22, 15-24.

Simon H., 1987, ”Bounded Rationality”, in The New Palgrave, Edited by J.
Eatwell, M. Milgate and P. Newman, W.W Norton, New York.

Vickrey W., 1961, ”Counterspeculation, Auctions and Competitive Sealed
Tenders”, Journal of Finance, 16, 8-37.

Wilson R., 1992, ”Strategic Analysis of Auctions”, Handbook of Game Theory,
227-277.

Yeon-Koo C., 1993, ”Design Competition through Multidimensional Auc-
tions”, RAND Journal of Economics, Vol. 24, 4, 668-680.

27












