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The most commonly used solution concept in game theory is that of Nash
Equilibrium.! However, except under fairly restrictive assumptions whose empiri-
cal validity often is questionable, many games cannot be solved analytically for NE
solutions. As an alternative to NE Armantier, Florens and Richard (2000) (here-
after AFR) introduce the concept of Constrained Strategic Equilibrium (hereafter
CSE). Essentially, they propose to restrict attention to appropriate subsets of
strategies, typically indexed by an auxiliary parameter vector, and to search for
an equilibrium solution within such subsets. The authors show that CSE offer
a major computational advantage, and they provide a powerful algorithm based
upon Monte Carlo simulations to determine the CSE numerically. The concept of
CSE appeared to be relevant under two scenarios: the first one is directly related
to the general notion of "bounded rationality’ and more specifically to the concept
of Rules of Thumb ; in the second scenario, one would use the computational
advantage of the CSE with the intent to approximate an analytically untractable
NE solution. The objective of the present essay is to establish conditions under
which a sequence of CSE approximates a NE, in the context of games of incom-
plete information. We also provide three criteria to document in practice whether
the CSE is a good approximation of the NE and how far the CSE is from a NE.

It appears natural to approximate NEs since they often are analytically un-
tractable and/or too complex to calculate. This suggestion finds additional heuris-
tic support in the common observation that in those few cases where NE strategies
can be computed, their 'smooth’ graphs clearly suggest that it ought to be possible
to approximate them by simpler functional forms, such as low degree polynomials,
piecewise linear and/or exponential functions. See e.g. some of the graphs of NE
strategies found in Marshall et al. (1994) or AFR (2000).

Several approaches may be considered to approximate numerically the NE.
One can attempt to find the closest solution to the first order conditions (hereafter
FOC) within a constraint set. For instance, in an auction problem Bajari (1996)
propose to solve the system of differential equation resulting from the FOC by
finite elements techniques. However this approach requires to explicit the FOC
in the extensive form game which might next to impossible when the conditional
individual expected utility functions are not differentiable or when actions are
not continuous. Alternatively, one could approximate the NE by a CSE. This
approach offers the advantages that it relies on ”primitive” elements of the game
(utility, distribution and strategy functions), it has a game theoretic interpretation

Depending on the information available to players we shall consider Nash Equilibrium or
Bayesian Nash Equilibrium. Hereafter both concepts in pure statregy are denoted NE.



in finite distance and finally, CSE can easily be computed with a flexible algorithm.

1. The general Model of incomplete Information

There are N players each of which is endowed with a privately known ’type’ or
N

'signal’ ¢, € =; with Z; C R and = = [] Z;. The types £ = (£, ...,£) are drawn
i=1

from a joint distribution with cumulative distribution function (hereafter c.d.f.)

F (§) and density f (£) (known to the players but not to the observer). Let F; (§;)

denote the marginal c.d.f. of §; and f; (§;) the corresponding density. This general

framework includes as special cases of interest:

1. ii.d. types,

f@:ﬂﬁ@>; (1.1)

2. exchangeable (affiliated) types,
N

1O = [TLh 18 folds (1.2)
g =t

where £, € = denotes a ’linkage’ random variable (e.g. the unknown value
of an item being sold through a 'Common Value’ auction) drawn from a
distribution with p.d.f fo (.) ;

3. asymmetric independently distributed types,
N
FO=11r¢ - (1.3)
i=1

Let us denote X; € R? the set of possible actions x; that player ¢ can take.
Players are endowed with individual Von Neuman-Morgenstern utility functions
Ui (z,€) where z = (21, ..., xN)-

Consider ©; the set of all measurable functions ¢, : =; — X, such that
U; (p; (&) ,€)? is integrable with respect to F'(.). ©; can be interpreted as the

2For the ease of exposition we adopt the usual notation: ¢ = (gi,g_i) = (&,..,&n) and

@(f) = (%’ (51) yP—i (f—i)) = (901 (51) yoen PN (fN))-
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set of all possible strategies transforming unobserved signals into actions,

§ — =9 (&), i:1—=N . (1.5)

An important characteristic of games of incomplete information is that ¢, (.) typ-
ically depends upon F'(.). As we shall see in section 2, we can often reduce the
search for a NE to a more amenable set H; C O, consisting in the admissible
strategies only. In the remainder we assume that ¢, (.) € H;. The number of
players N (depending upon the situation, the decision to participate may be en-
dogenous or exogenous), the joint distribution F, the utility functions {U;},_;
and the sets of admissible strategies {H;},_, , are common knowledge to all
players. Symmetry assumes that the joint distribution F' is exchangeable (i.e. F
is invariant under a permutations of players), (U;, H;,Z;) = (U;, H;,E;) and the
equilibrium strategies (subject to existence) are such that ¢; = ¢, Vi # j. Note
that exchangeability reduces to the equality of marginal distributions when types
are univariate or independent.

The strategic form of the game is based upon the set of individual expected
utility functions

Ui (¢) = E¢[Us (0 (€),8)] - (1.6)
The extensive form of the game is based upon the set of conditional individual
expected utility functions

sz’ (p;&;) = Ee_ e [Uz’ (902' (&), (672) inafﬂ')} . (1.7)

2. Unconstrained NE solutions

Subject to existence, a Bayesian Nash Equilibrium in pure strategy in the set

N

H = [] H; is defined as a strategy profile oV# = (o7, ..., oNF) with ¢VF €
i=1

® y5* of mutually best responses strategies. We provide two definitions of the NE

depending upon the form of the game.

Definition 2.1. Nash Equilibrium in extensive form. A strategy profile oV¥ =
(Y7, ..., oNF) is a NE in the extensive form game (¥ € ®yp) if and only if

Ui (NP (€,), NP €) > Us (w3, 08F3€))

3Note that we do not assume that the NE is unique.
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\V/l’i € X’i: ‘V’EZ € EZ andVi:1— N . (21)

Definition 2.2. Nash Equilibrium in strategic form. A strategy profile """ =
(’gbiVE, ceny &%E) is a NE in the strategic form game (Z,ENE € fIDNE> if and only if

U @, YF) > Ui (1, 8Y7)

(2

Vo, € HiandVi:1 — N

Following the original definition of Harsanyi (1967) the NE is typically defined
in extensive form. The equivalence between the two equilibrium concept is widely
known in Game theory and Decision theory (e.g. Schlaifer (1959)). Nevertheless,
we feel it is important to provide a precise statement of this result since the CSE
do not verify the equivalence.

Proposition 2.3. ®V7 = ®NF under the following assumption

Al: Vo_, € H_; and Vi, € O, there exists ¢, € H; such that

[71' (902' (&) 7@4951) > [71 (1/% (&), 04 fz) )
V¢, €eZiandVi:1 — N . (2.2)

Proof: TO BE COMPLETED

that if players i opponent restrict their strategy space to H_;, then any strategy
in ©; — H; is dominated by a strategy in

Al implies that a strategy ¢, is admissible in the set H; if it is not strictly
dominated for all ¢, € H_;. In the remainder A1l is assumed to hold and we will
consider either the extensive or the strategic form of the game to derive the NE
solution.

Note that no general theorem ensures the existence of a NE solution in a
game of incomplete information with continuous types and actions. In practice,
the problems of existence and uniqueness are solved by the direct determination
of an analytical equilibrium solution. This solution obtains from the following
optimization and fixed point problems,

oNP (¢;) eArgMaz U, (z;, oVF;€)), V6, € Ziand Vi1 — N (2.3)

z; €X;



The corresponding First Order Conditions (FOC) often are reformulated as

d
dl’i

Ui (21, 0"F1 &) |ooneey=0 V& €ZiandVi:1— N, (2.4)

which typically produce a set of equations (differential equations in the case of

auctions) leading to the solution (provided that j—;ﬁi (i, oNF; fi)

EiZ@ZNE(&) S 0

Vi : 1 — N). Note that this approach requires U; (.) to be twice continuously
differentiable in x;. If we define the operator

Ai[] (&) =

d ~ .
. U, (%’7 Spfi;fi)‘%:%(gi) ) 1:1—>N |
then a NE verifies A; [¢VF] (&) =0V¢, € Z; and Vi : 1 — N.

Except under fairly restrictive assumptions (such as symmetry, risk neutrality,
...) it is often impossible to find an analytical solution to (2.3). Numerical methods
may be applied when the FOC (2.4) have an explicit expression (e.g. Bajari 1996).
Howevert in many complex games the FOC cannot be derived and we cannot
applied usual numerical techniques.

3. Constrained Strategic Equilibrium

Constrained sets of strategies are implicitly defined here as subsets HZ»UC) C H,.
The definition of CSE now parallels that of a NE in strategic form, except that
strategies are now restricted to Hi(k):

N
Definition 3.1. A CSE in the set of strategies H® = I Hi(k) is a strategic
i=1

implementation of the game go((/’%E = (gpgl%SE, ...,gog\];?CSE) with goggE € @g%E,

whereby the gpz(fgs g s are mutually best responses in the strategic form game

~ k k ~ k) (k
Ui (QOE,C)’SE790(—2'),CSE> > U; (<Pz( )a 90(—2'),CSE> )
Vgol(.k) € Hi(k),Vi :1— N

AFR (2000) show that there exists a CSE in H*) under the following assump-
tions,



A2 H( is compact and convex Vi = 1,..., N,
A3 the function U (902, l) is continuous in ¢, Vi: 1 — N, Vp € H,
A4 the function U ((pl, ) is quasi concave in @,, Vi : 1 — N, Vo, € H;.
AFR (2000) provide also primitive conditions on the utility function U; (¢ (€) , £)
so that A3 and A4 are verified. In the remainder we assume that assumptions A2
to A4 are verified.
Provided that Uj (i, ;) is twice continuously differentiable in ;, the CSE
can be defined as a fixed point of the constrained best response correspondence

o\sp EArgMaz U, (sof g 90(_30515> Vi:l—> N . (3.1)
B e ® ’

The determination of this fixed point is %reatly simplified with a parametrization
of the strategies in HZ( ) by a vector of a;;’ € R¥. Such parametrization is always
possible since Hi(k) is compact. This approach provides a major computational
advantage since it requires to optimize over a finite set of parameters rather than
an infinite set of functions as it is the case with NE (see AFR (2000) for numerical

considerations).
The optimization problem in (3.1) leads to the FOC

k
8U (902 CSEagO(—z'),CSE> _ g [8902 ,CSE

k k
8042(»775) 80453
(3.2)
If we decompose gol(k) € Hl.(k) in
k
o =3"au i1 N (3.3)
=1
where {\II( )} is a basis in H* then (3.2) can be written
R
<\I/§k),A [%(kc)'SE} >=0, i:1—>N,t:1—>k (3.4)

where < .,. > is the inner product defined with respect to F'(.). The operator

A; [go(k)} is then orthogonal to every elements of the basis of HZ»(k). As k gets larger
the CSE has to verify more orthogonality conditions which intuitively suggests

that hm A; [(,02 CSE} = 0. In other words the CSE should verify at the limit the

FOC of a NE. This observations motivates the next section where we provides
explicit conditions under which a sequence of CSE is an approximation of the NE.

7
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4. General Approximation Theorem

In this section we assume that there exists a topology 7' such that kL>Jl H® ig

dense in H with respect to T and H® < H*+Y) Vi € N*. The first p;Oposition
show that a limit point of a sequence of CSE is a NE.

" (k) (k) (k)
Proposition 4.1. If the sequence § ¢rsp where oo € Prgp has an
k=1—o00

accumulation point M € H with respect toI' then there exists a NE in strategic
form in H and M € ®ypg. Besides, if H verifies A1 then M is a NE in extensive
form in H.

Proof:

Consider any strategy ¢ € H. Since [ H™ is dense in H, then there exists
E>1

{go(k)}kzl_m ((p(k) € H(k)) such that o®) kg . Then, since goé’%E € @g%E we
have Vi: 1 — N and Vk: 1 — o0

= (k k o (k) (k
Ui (901(,C)’SE7(pgi),CSE) > U; (902( )7(p£z>,CSE) . (4.1)
If the sequence {gog%E}k has an accumulation point M = (M;, M_;) such
=]l—o0
(m) ™)\ oo
that M € H then there exists {k(m)}m=1_>oo such that (%(kCSE) , 90(12705)E> —
(M;, M_;) and we still have, Vi : 1 — N and Vk: 1 — oo
~ E(m) k(m) ~ E(m) F(m)
Ui (SDZ(,OSJﬂ)vSOSi,cs)E> > U; <90£ )790<—z’,CS>E> . (4.2)

Finally, since (71 (.) is continuous in ¢ Vi : 1 — N, we can write the previous
equation as m tends toward infinity,

U; (M;, M) > U; (g;, M_;) Vi:1— N (4.3)
Therefore M € ®p. 1

Proposition 4.2. if H is compact with respect to the topology T then there ex-

ists a NE in H and any sequence {gp(ck ; E}k has a subsequence that converges
=1—00

towards a NE.



Proof:

If H is compact any sequence {gpl} 10 € I H, has at least an accumulation
= L

point in H. Since {%O(CI%E}k ) € [ H it has an accumulation point M € H.
Then, from the previous propositionk]\/} isa NE.l

The compactness of the strategy space is typically assumed in game of complete
information to insure the existence of a NE. In games of incomplete information
the exact structure of H is more delicate to determine and it may not be compact.
Typically, H is a bounded subset of an infinite dimensional Banach space and
therefore it cannot be compact with respect to the strong topology defined by the
norm of the space (c.f. Brezis (1977)). However, H can be compact with respect
to the weak* topology. An example of such cases is provided in proposition 4.3.

Definition 4.3. H; is the set of uniformly bounded variation on |a;, b;] if Vo, € H;
there exists W; > 0 such that Wé’ (p;) < W; where

T

Wé’j (¢;) = sup Z

@i =€ <. <1 =bi oy

©; (§1) — (£t+1>| (4.4)

is called the variation of the ;.

Consider the following assumptions
A5 El = [ai,bi] Vi:l— N,
A6 X; eRVi:1— N,
A7 H; is the set of functions bounded at a; (|p; (a;)| < @; Yo, € H;) and
of uniformly bounded variation on [a;,b;], (Vi: 1 — N).

Proposition 4.4. Under assumptions Al to A7 there exists a NE in H and any

sequence {(P(CI%E}]C : has a subsequence that converges towards a NE.
=1—00

Proof:

It suffices to show that the set H defined in proposition 4.3 is weakly compact.
Consider ¢; € H;. Tt can be shown (e.g. Lojasciewics 777) that |, (£;)] < @ +W;
, V¢, € [a;,b;] . Consider W; = sup (a;, W;) and a sequence in H; {¢§}1:1—>oo , then

< 2W;. By Jordan’s canonical decomposition ¢! = @} — ﬂ where ! and



gﬁ are increasing and jointly bounded over [a, b] :

B = 5 W () + el (6] (1.5

T
o 2‘Wai((pi)

L

Helly’s first theorem guarantees that any sequence of increasing and bounded
functions over [a;, b;] has a subsequence that converges at all continuity points
over [a;,b;]. Now let us apply twice Helly’s first theorem, first to the sequence
{g@l} to obtain a convergent subsequence { ﬁ'ﬁ(l)} and then to the

=) =150 Bl)=1—00

IN

=

.

—~
Iy
.
~
IN

(4.6)

sequence {@f (l)} 0 . This way we obtain two convergent subsequences:
Bl)=1—00

O (&) = o (&) and BV (&) T (&) V€ € [a,]

R L

Hence,
iV (€)= 0 (€) =B (€) — ¢, (&) V& €a,l]

Therefore, any sequence {(p }l 1 .o, In H; has a subsequence that converges weakly
to a function ¢, of bounded variation.

Now, let us show that the variation of ¢, is smaller or equal to W;. Consider
any subdivision a; = §; < .... < {p,; = b; we know that

T
Z\% (&) — ¢k (Eur)| S Wi VI=1— 00 (4.7)

Now, take the limit as [ =1 — o0,
T
=1

Hence, taking the supremum of the left hand side, W2 (¢;) < W..
Every sequence {90§}z=1_>oo in H; has a subsequence that weakly converges in
H; Vi:1— N. Therefore H is compact with respect to the weak topology.ll
The assumption in proposition 4.3 is less restrictive than the compactness of
the strategy space. Indeed, functions of bounded variation include most well de-
fined bounded functions such as the continuous monotonic functions on [a, b], the

©; (&) — @ (£t+1)| < W; (4.8)
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bounded functions with a countable number of discontinuity points, and the dif-
ferentiable bounded function with derivatives changing signs a countable number
of time.

Since we consider weak convergence, we can obtain a sequence {H (k)}k:1—>oo

such that k:L>J1 H® is dense in H, by usual approximation techniques (e.g. projec-

tion on the first elements of a given basis such as polynomials or piecewise linear
functions). Note that if H includes discontinuous functions of bounded variation
the sequence of CSE may not converge at the discontinuity points.

We show in proposition 4.3 that the CSEs converge toward the NE in strategic
form in H. Using proposition 2.3 it is then sufficient to verify that H verifies A1, to
obtain the convergence toward the NE in extensive form. In this case A! is equiv-
alent to the following properties. First, the best response to a bounded variation
function is a bounded variation function; second, the best response to a function
of variation smaller than W is of variation smaller than W. Such conditions are
verified in particular in the Independent Private Value model with support [a, b]
where H can be chosen as the set of non-decreasing functions bounded by the
bisector. More generally, it has been shown (see Athey 1998) that in many games
of incomplete information the utility function verifies the single crossing property
which ensures that H is of bounded variation.

Finally, if the NE is not of bounded variation then two question arise: first,
can we expect real agents to determine a NE which is a rather "wild” function?
Second, will any numerical techniques be able to approximate this NE?

5. Criteria of convergence

In many games the set of admissible strategies is not clearly defined and it is
not always possible to apply theoretic restrictions to eliminate strictly dominated
strategies. In these cases it might be impossible to verify the conditions of an
approximation theorem. Moreover, even when the approximation theorem can be
applied, it would be useful to know for any given constraint set H® how distant

the CSE go((/’%E is from the NE solution. In this section a sequence {go(c’%E}k
=]l—o0

is said to approximate a NE V¥ if lim go(Ck;E = ¢ME. We consider a sequence

k=1—00

of constraint set {H (k)} P such that kL>J1 H® is dense in H where H is a

set of admissible strategy verifying Al. We provide three criteria to document
in practice whether the CSE is a good approximation of the NE and how far the

11



CSE is from a NE.

5.1. Convergence of the CSE sequence

Consider the criteria
k ket
Cr (k) = |k — lid?
where ||.|| is a norm defined over H. Proposition 3.1 states that when a se-
quence of CSE converges it converges toward a NE. In other words, the sequence

{(p(cl% E} is an approximation of the NE if and only if
k=1—0c0

lim  C; (k,t) =0

k— oo t—o00

In practice, we want to monitor the convergence of a CSE sequence by verifying
that the criteria C; (k, 1) converges toward 0. However, there is no result regarding
the rate of convergence. Therefore, even when the criteria C; (k, 1) is close to 0 this
does not provide any explicit information about the quality of the approximation.

5.2. The best response to a CSE

N
Let us denote ®pr (p) = [[ Ppr,i (p) where ®pp; is player ¢ best response cor-
i=1

respondence defined as

®pri : H— H; (5.1)
¢ — Pprilp) = {(pBR,i € Hz/ﬁz (QOBR,Z'? SO_i) > T, (902'; SO_i)}

Note that ®pg (¢) is a subset of F. Let us assume that this best response
correspondence is upper semicontinuous.

Consider a set H® and a constraint strategy profile go(C]% 5 € QD(C’% 5 PBR (gpé’% E)

represents the set of best response strategies of player ¢ in H; when his opponents
play the CSE strategy (p(ck ; g0 H (¥) Then, we can measure the distance between
the CSE and its best response which leads to a second criteria:

Cy (k) = HSO(CI%E — ®pr ((P(CI%E> H .

12



Proposition 5.1. Every sequence of CSE {@C;E} that approximates a
k=1—00

NE verifies
k— oo
Proof:
The proof is trivial: If gpg%E is an approximation of a NE equilibrium then
. k
lim g, = o
This NE verifies, ¢™¥ € ®pg (¢™F). From the upper semicontinuity of ®pp (.)
we have
lim gpé’%E € lim ®pp ((pg%E)
k=1—oc0 k=1—o00
which implies

k=1—o00

|

One can monitor the quality of the approximation by looking at the distance
between the CSE and its best responses in H. When C5 (k) is sufficiently close to
0 then the CSE is a good approximation of the NE.

Note that gpr(k) the best responses in H to gp(Ck;EZ is tremendously easier
to calculate than the actual NE. Indeed, oP#*) is determined by N independent
maximization problems, while the NE requires to solve N maximizations combined
with a system of NV differential equations associated with the fixed point problem.
Besides, the strategies of player ¢ opponents are known and fixed to gogfg g,; Which
eliminates the uncertainty about other players actions. This, typically reduces
considerably the dimension of the integral in the derivation of the (conditional)
expected utility.

Finally, it might not be possible in some games to determined explicitly the
function (pr(k). In this case the criteria C (k) can be approximated by CE (k)

defined as
N L
=D D |4

i=1 [=1

o k) @g;Ez (fi) .

where gol R(k) (f ) is the best response to 90(0; z,—; when player ¢ receives the private

signal fi. The points &' (VI : 1 — L) are determined exogenously and we suggest
to use some fractiles of the private signal distribution f(.).

13



5.3. The CSE as NE of a neighboring game

Consider the function O (.)

F— H
f = O(f)=¢f" |

where F is a set of distributions and gp}v E is the NE of the game where private
signals are drawn from f. Note that the element of F are assumed to be defined
almost everywhere. For the ease of exposition assume that O (.) is an homeomor-
phism® with an invert function O~ (¢) = f, (.) where f, (.) is a distribution such
that if the private signals where drawn from f, (.) then ¢ would be a NE. This as-
sumption should be interpreted as : neighboring distributions define neighboring
games and they should have neighboring NE solution. Conversely, neighboring
strategies should be the NE solution of neighboring games. Note that this as-
sumption is necessary to anyone conducting empirical work and it is verified in
common games such as the Independent Private values auction.

Then, a strategy ¢ is assumed to be admissible (¢ € H) if there exists a
distribution f, (.) in F for which ¢ is a NE.

Consider now a game where private signals are drawn from a given distribution

f(). Consider also a set H*) and a constraint strategy profile gp(C;E € @g%E

f(p(cﬁ)gE ()=0"" (go(ogE> is then such that
U ((p(C’%E'L (61) (pC’SE 176 /f (k) ) (1/}1 (g ) QOOSE 176 /f (k) ) 5
Y, € H; V¢, €5, (5.2)
or equivalently in the strategic form game,
k k
U; ((p(Cg'Ez’ QO(C’L%'E,fi/-ﬁpggE) (1/127 <PCSE /f &) >

Vi, € H; . (5.3)

where the conditional and unconditional expected utility are calculated with
the density f ) (.).
CSE

4Note that the result should generalized to the more realistic case where O (.) associates a
subset of strategies to a subset of distributions.
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This leads to a different measure of the distance between the CSE and an the
NE,

Cs (k’) = Hf = fm

Yese

Proposition 5.2. The sequence of CSE {gpgg;E}k approximates a NE if
=1—o0

and only if

k— oo
Proof: The proof essentially relies on the continuity of O (.) and its inverse.
Consider a sequence of CSE {gpé’% E} such that
k=1—o00

. k
lim Pk = NP

Then, since O~ (.) is continuous

lim 07 (plly) =07 (™)

k— oo

= lim f

K
@%;E

=/

k— oo

k— oo

Conversely,
k—oo
implies
I}im 0 (%O(CI%E> =0 (¢"") )

which by continuity of O (.) reduces to

. k
lim Sp(c*;E = gpNE

k—o0

If a sequence of CSE {gp(ckg E} verifies proposition 5.2 then gp(ckg g can be

k=1—o00
interpreted as a NE in a slightly perturbed game where private signals are drawn

from a distribution neighboring the original f. In other words, the CSEs are NE
of games that become closer to the original game as k increases.
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One can monitor the accuracy of the approximation by verifying that Cs (k)
is close enough to zero. In practice the determination of f &) requires to apply
usual econometric techniques. For instance one can utlhze Swhen available, the
FOC associated with the determination of the NE as a moment condition.

Ailpl(€) =0 V& €=, and Vi: 1 — N. (5.4)

Provided identification we can apply the Method of Simulated Moment and esti-
mate f(p(k) by
CSE

f ¢ =Argmin ) Z [Ai [o] (€))7 Vi:1— N. (5.5)

YeosSE fEF

where [/]\2 (xz,goCSE l,f / f) is the conditional expected utility calculated with

the distribution f(.) and & (VI:1 — L) are private signals simulated from the
distribution f (.).

In most applications we assume that the private signals distribution belongs
to a parametric family of distributions indexed by ¢ € ®*. In such cases, we have
to estimate only the parameter 6 :

L 2
ngrgminZZ [ d'f]\ (s, o™ ,5/9) | —pNE (el Vi:1— N. (5.6)

where ¢ (VI : 1 — L) are simulated from f (./6).

To conclude this section let us remind the reader that in empirical applications,
which is our primary interest, the distribution of private signals is not known and
needs to be estimated. In other words the game is not perfectly defined and
the actual NE strategy will vary slightly depending upon the estimation of the
distribution. In this context is seems reasonable to consider the concept of CSE
that can be interpreted as NE of a game with a slightly different distribution.

6. Conclusion

[To be completed]
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