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Abstract

The object of this paper is to review the main results obtained
in semi- and non-parametric Bayesian analysis of duration models.
Standard nonparametric Bayesian models for independent and iden-
tically distributed observations are reviewed in line with Ferguson’s
pioneering papers and recent results on the characterization of Dirich-
let processes are also discussed. Next we present recent results on
nonparametric treatment of censoring and of heterogeneity in the con-
text of mixtures of Dirichlet processes. The final section considers a
Bayesian semiparametric version of the proportional hazards model.
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Résumé

L’objectif de cet article est de présenter les résultats principaux obtenus
dans l’analyse bayésienne semi-paramétrique ou non-paramétrique des modèles
de durée. Les résultats fondamentaux du modèle independent identically dis-
tributed de base sont rappelés en suivant les travaux initiaux de Ferguson et
en utilisant des résultats récents relatifs aux représentations du processus de
Dirichlet.

La considération de mélanges de processus de Dirichlet permet d’étudier
l’impact de la présence de données censurées et l’introduction de l’hétérogénéité
non observée. La dernière section examine le traitement bayésien des modèles
semi-paramétriques à risques proportionnels.
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1 Introduction.

Duration models (or more generally their extensions to counting processes)
are widely used in many areas of applied statistics: life table, actuarial statis-
tics, biometrics, clinical trials, labor market econometrics, reliability theory,
and so on.

There exists a vast literature discussing duration models from theoreti-
cal as well as empirical viewpoints within a sampling framework. Surveys
also are available, see e.g., Andersen and Keiding (1995), Florens, Fougère
and Mouchart (1996) and the books of Fleming and Harrington (1991) and
Andersen, Borgan, Gill and Keiding (1993).

Duration models are not only important for the statistical analysis of
data in many fields, they also display characteristic features of particular
interest to the statistician. Among these features, one may mention a promi-
nent interest in nonparametric methods, made possible by the availability
of large data sets. Another specific feature of duration models comes from
the relevance of alternative characterizations of the sampling distributions,
namely their survivor function and their integrated or instantaneous haz-
ard functions. This particular role may be appreciated, for instance, in the
specification of conditional models, a usual class of models in econometrics,
where the proportional hazards model is most naturally written in terms of
a hazard function and displays general properties different from those of the
standard regression models. Although not specific to duration models, the
necessity of taking into account unobservable components of heterogeneity
or censoring problems, actually present in most data sets, emphasizes even
more the particularities of duration models.

The object of this paper is to review the main results obtained in this field
from a Bayesian point of view, with a particular interest in nonparametric and
semiparametric models whose prior specification often involves a Dirichlet
process.

Both parametric and nonparametric Bayesian models are frequently used
in reliability theory. On one hand, they are used to combine expert opinions
that are expressed in the prior distribution and information provided by the
data (see e.g. Kalbfleisch and Prentice (1980)). On the other hand, the
Bayesian approach provides statistical procedures having some nice proper-
ties such as admissibility of the estimators and asymptotic theory based on
martingales. In particular, it is known that the Sursala-Van Ryzin estimator
smooths the Kaplan-Meier estimator, and is everywhere well defined. This
may not be the case for the Kaplan-Meier estimator, and this creates some
difficulties in studying its asymptotic properties.

Nonparametric Bayesian methods have rapidly expanded after Ferguson’s
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(1973, 1974) presentation of the Dirichlet process as a naturel conjugate
prior specification to the empirical process. Soon thereafter, the extension
to mixtures of Dirichlet processes was considered by Antoniak (1974) and
the treatment of censored data was addressed by Suzarla and Van Ryzin
(1976). Additional contributions along these lines appeared later, including
Lahiri and Dong Ho (1988), Phadia and Susarla (1983) and Tsai (1986). A
noticeable extension by Hjort (1990) treats prior specifications based on the
Beta process (see also Rolin (1998)). Florens, Mouchart and Rolin (1990,
ch. VIII) provide general tools of analysis whereas Florens, Mouchart and
Rolin (1992) consider a general model of mixtures for handling problems
of heterogeneity. Rolin (1983, 1992a and b) and Sethuraman (1994) fur-
ther contribute to the analysis of finer properties of the Dirichlet process.
This review also gives credit to the original work of Ruggiero (1989,1994)
and Hakizamungu (1992). Some unpublished references, in the more general
field of non- or semi-parametric Bayesian models, are Erkanli, Müller and
West (1993), McEachern (1992), and West (1990, 1992). In this review we
only concentrate on non- or semi-parametric models used in the analysis of
duration data.

This review is organized in four steps. In the next section, we review
the standard nonparametric Bayesian model for independent identically dis-
tributed observations, in line with the pioneering papers of Ferguson (1973,
1974). This section also includes more recent results giving more precise char-
acteristics of the Dirichlet process from the point of view of random measures.
Section 3 handles the independent identically distributed case with censor-
ing. Section 4 treats the heterogeneity problem in the context of mixtures
of Dirichlet processes.The last section considers recent developments of a
semiparametric version of the proportional hazards model.

The presentation is made simpler by treating separately these topics even
though, in actual applications, heterogeneity, censoring and exogenous vari-
ables all arise together.

2 Nonparametric duration models without cen-

soring.

2.1 A nonparametric Bayesian model.

Even though earlier Bayesian papers had discussed nonparametric methods,
Ferguson’s (1973, 1974) papers have been most influential in motivating new
contributions over the last twenty years. In this section we summarize the
basic results obtained in that direction, limiting the presentation to the par-
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ticular case of duration models, viz models for non-negative observations,
although the basic model is considerably more general.

Whereas a statistical model in sampling theory is a family of sampling
distributions indexed by a parameter, a Bayesian model is characterized by a
unique probability measure on the product space parameter × observation.
This probability is obtained by endowing a sampling theory model with a
probability measure on the parameter space, to be called the prior proba-
bility, and by treating the sampling model as a conditional probability on
the sample space given the parameter. Bayesian methods aim at analysing
posterior and predictive distributions. The former are distributions for pa-
rameters conditionally upon observations, and the latter average sampling
distributions using prior probability as weight function.

In the case of duration models, the sample space is IR+, the positive part
of the real line, endowed with its Borel sets. In the case of nonparametric
models, the parameter space is an appropriate subset of the set of all proba-
bility measures on the sample space or of some of their transformations, such
as the survivor function or the hazard functions.

Thus, the basic nonparametric Bayesian model for analyzing duration
data may be described as follows. The sampling process is I.I.D and the
sample space for a sample of size one is (IR+,B+). For a given sample size n,
the data are therefore t1, · · · , tn where each ti, 1 ≤ i ≤ n, is independently
generated by a common sampling probability, say Φ, an element of the set
of all probability measures on (IR+,B+). For the sake of simplicity, one also
writes Φ(A) instead of P (ti ∈ A|Φ) for any A ∈ B+.

For the prior specification, note that the prior probability makes Φ a ran-
dom probability measure on (IR+,B+) and should therefore be viewed as a
stochastic process whose trajectories are probability measures on (IR+,B+).
Following Ferguson (1973, 1974) a workable choice, which is also natural con-
jugate to the empirical process, is the Dirichlet process. The basic intuition
and the main features of this specification may be approached through the
finite case.

So, let us assume as a first step in the presentation that the sampling
probability Φ is restricted to give positive probabilities to a fixed finite set
say (a1, · · · , ak). Thus Φ is characterized by a point θ of the simplex Sk of
IRk : {θ = (θ1, . . . , θk) ∈ IRk

+ such that θ1+...+θk = 1} with the interpretation
that θj = Φ({aj}), 1 ≤ j ≤ k. An observed duration t may be represented
by a vector of binary variables x = (x1, · · · , xk) with xj = 1I{t=aj} and the
sampling probability may then be written as

p(x|θ) =
∏

1≤j≤k

θ
xj

j (2.1)
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A natural conjugate prior distribution for the sampling process is provided
by the Dirichlet distribution whose density may be written as

p(θ) = fDi(θ|n0, p0)

= Γ(n0)
∏

1≤j≤k

θ
n0p0j−1
j

Γ(n0p0j)
1I{θ∈Sk}

(2.2)

where (n0, p0) ∈ IR+ × Sk are the natural parameters in a Dirichlet distribu-
tion. If we have n I.I.D observations of x i.e. xi = (xi1, · · · , xij, · · · , xik) for
i = 1, · · · , n, the vector of sampling proportions p = (p1, · · · , pj, · · · , pk) with
pj = n−1

∑
1≤i≤n

xij constitutes a sufficient statistics. The latter multiplied by

n has a multinomial distribution. The natural conjugate property implies
that the posterior distribution of θ is again Dirichlet with parameters

n∗ = n0 + n (2.3)

and

p∗ =
n0p0 + np

n0 + n
. (2.4)

Suppose now that instead of restricting Φ to have a fixed finite support
{a1, · · · , ak} we consider a finite fixed partition of IR+, {B1, · · · , Bk} and re-
strict the parameter of interest to be θ = (θj)1≤j≤k with θj = P (ti ∈ Bj|Φ) =
Φ(Bj). It is then natural to retain from an I.I.D sample of durations t1, · · · , tn
the proportions of observations in each Bj , i.e., pj = n−1 ∑

1≤i≤n 1I{ti∈Bj}. If
the prior specification of Φ is such that it implies a Dirichlet distribution on θ,
the analysis of the case of finite support may be exactly repeated without any
change. The transition from the Dirichlet distribution to the Dirichlet process
is achieved by switching from a fixed to an arbitrary partition and by replac-
ing the prior parameter p0 = (p01, · · · , p0k) ∈ Sk by a probability measure P0

on the sample space (IR+,B+). More specifically, the sampling probability
Φ on (IR+,B+) is said to be distributed as a Dirichlet process with param-
eter (n0, P0), denoted by Φ ∼ Di(n0, P0) if, for any measurable partition
(B1, · · · , Bk) of IR+, the random vector (Φ(B1), · · · , Φ(Bk)) is distributed as
a Dirichlet distribution with parameters n0 and (P0(B1), · · · , P0(Bk)). From
the properties of the Dirichlet distribution it may be verified that the system
(Φ(B1), · · · , Φ(Bk)), defined for any finite partition of IR+, induces a projec-
tive system and therefore, by Kolmogorov theorem, uniquely characterizes
the law of the process generating Φ.

Let us write Pn for the empirical process, i.e.,

Pn(B) =
1

n

∑
1≤i≤n

1I{ti∈B} =
1

n

∑
1≤i≤n

δti(B) B ∈ B+ (2.5)
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where δti is the unit mass at ti. The statistic Pn is sufficient for independent
identically distributed sampling and the posterior probability of Φ is again a
Dirichlet process with parameters

n∗ = n0 + n (2.6)

P∗ =
n0P0 + nPn

n0 + n
. (2.7)

In most applications, the location parameter of the prior distribution,
P0, is a continuous probability measure whereas the empirical process, Pn,
is discrete. Thus, P∗, the location parameter of the posterior distribution, is
typically a mixed probability measure on IR+ smoothing Pn.

The description of this Bayesian model is now completed by describing
the predictive process through the following sequence.

(i) the first observation t1 is predictively distributed as P0,
(ii) the observation ti+1 conditionally on (t1, · · · , ti) is predictively dis-

tributed according to
1

n0 + i
(n0P0 + iPi) where Pi is the empirical process of

(t1, · · · , ti), i.e.,

Pi(B) =
1

i

∑
1≤j≤i

1I{tj∈B} B ∈ B+. (2.8)

An important feature of this predictive process is to generate ties. Specif-
ically, one has, for instance

P (t2 = t1) =
1

n0 + 1
(2.9)

when P0 is continuous. As a consequence, the predictive distribution of
t1, · · · , tn, may also be characterized globally in an alternative way based on
the following remark. The information contained in (t1, · · · , tn) is equiva-
lently described by (Cn, (t(j))1≤j≤p) where (t(j))1≤j≤p is the vector of distinct
values taken by (t1, · · · , tn) where the values are ordered according to the
order of appearance in (t1, · · · , tn) and Cn is a partition of {1, 2, · · · , n} into
p non empty elements (1 ≤ p ≤ n), namely Cn = {Ij : 1 ≤ j ≤ p}, Ij is a
non-empty subset of {1, · · · , n} corresponding to the indices i ∈ {1, · · · , n}
for which the ti’s are equal to t(j). Note that p is a function of Cn, namely
p = |Cn| where |Cn| is the cardinality (the number of elements) of Cn.

Therefore the distribution of (t1, · · · , tn) is equivalently described by the
distribution of Cn, running over all partitions of {1, · · · , n} into 1, 2, · · · , n
elements, and the distribution of (t(j))1≤j≤p, conditionally on Cn.
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The marginal distribution of Cn is somewhat involved and is given with
some details in Blackwell and MacQueen (1973), Antoniak (1974), Yamato
(1984) and Rolin (1992b). The distribution of (t(j))1≤j≤p, conditionally on Cn

may be described more easily. It depends essentially on p, the number of dis-
tinct values, and (t(j))1≤j≤p are otherwise independent identically distributed
with distribution P0 when P0 is continuous.

2.2 Some properties of the Dirichlet process.

The previous section suggests that the structure of the nonparametric Ba-
yesian model under a Dirichlet prior specification is simple and provides a
workable approach for the evaluation of the posterior distribution as well as
of the predictive distribution. In this section, some properties of the model
reinforce this idea but other properties shed light on some subtle aspects of
the Dirichlet process and require that it be handled with special care.

2.2.1 Moments.

Let Φ be a random probability on (IR+,B+) distributed as a Dirichlet process
with parameter (a,M). Thus in the context of section 2.1, a may be taken
as n0 or n∗ and M as P0 or P∗. From the definition of the Dirichlet process,
it should be clear that, for any B ∈ B+, the random variable Φ(B) follows a
Beta distribution with parameters (aM(B), aM(Bc)) ; in particular one has

E[Φ(B)] = M(B) (2.10)

and

V [Φ(B)] =
M(B)M(Bc)

a + 1
. (2.11)

Thus, P0 may be interpreted as a ”prior guess” on Φ and n0 as a measure
of prior precision. Similarly, P∗ is the posterior expectation of the process
and n∗ characterizes its posterior precision. Consequently, P∗ may be viewed
as a natural Bayesian estimator of Φ built as a convex combination of the
prior guess P0 and the empirical process Pn and convergent in as far as it has
the same asymptotic behavior as Pn.

2.2.2 The trajectories of the Dirichlet process.

Proper understanding of Bayesian nonparametric models under a Dirichlet
prior specification requires a serious analysis of its trajectories, both their
structure and their support. Furthermore, knowledge of the trajectories is
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crucial for designing efficient numerical procedures of simulation and for an-
alytical derivations. Details on these issues are given in Florens and Rolin
(1994). In particular, it is shown there how to estimate moments under a
Dirichlet prior specification. The relationship between classical bootstrap-
ping and simulation of the posterior distribution under a noninformative
prior specification is also discussed.

When a random probability Φ on (IR+,B+) is distributed as a Dirichlet
process with parameters (a,M), the structure and the support of its trajec-
tories depend crucially on the location parameter M . To show this, let us
decompose M into its purely discrete and continuous parts, i.e., let

S = {x ∈ IR+ : M({x}) > 0} = {aj : j ∈ I}

(where I ⊂ IN is a countable set)

ad = aM(S) ac = aM(Sc)

Md(B) = M(B|S) Mc(B) = M(B|Sc) ∀ B ∈ B+.

Clearly, one has
aM = acMc + adMd (2.12)

Let us now do the same decomposition on Φ, namely let

α = Φ(S)

Φd(B) = Φ(B|S) Φc(B) = Φ(B|Sc)

so that
Φ = (1− α)Φc + αΦd (2.13)

It has been shown in Rolin (1992a) and Sethuraman (1994) that

(i) α, Φc, Φd are independent

(ii) α has a Beta distribution with parameters (ad, ac)

(iii) Φc is distributed as a Dirichlet process with parameters (ac,Mc)

and

(iv) Φd is distributed as a Dirichlet process with parameters (ad,Md).
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Since Md has a countable support S, Φd has the same support with proba-
bility 1 and {Φd({aj}) : j ∈ I} has a Dirichlet distribution with parameters
{aM({aj}) : j ∈ I}. In particular, Φd({aj}) has a Beta distribution with
parameters (aM({aj}), a − aM({aj})). Furthermore, the support of this
Dirichlet process is the set of all probabilities with support S. Now, Fergu-
son (1973) has shown that the trajectories of Φc are almost surely discrete.
In other words, Φc may be represented as

Φc =
∑

1≤j<∞
γjδτj

(2.14)

almost surely (and not only in distribution). A first description of the distri-
bution of (τj)1≤j<∞ and (γj)1≤j<∞ has been provided by Ferguson (1973) :

(i) (τj)1≤j<∞ is an infinite independent identically distributed sample from
Mc,

(ii) the sequence (γj)1≤j<∞ is normalized and decreasing ,i.e., such that∑
j

γj = 1 and 0 < γj+1 < γj with probability one, and may be repre-

sented as follows:

γj = (
∑

1≤l<∞
Jl)

−1Jj (2.15)

where the sequence (Jj)1≤j≤∞ is markovian and decreasing (Jj+1 < Jj)
and its distribution functions are

P [J1 ≤ t] = exp{−ac

∫ ∞

t
u−1e−udu} t ≥ 0 (2.16)

P [Jj+1 ≤ t|J1, · · · , Jj] = exp{−ac

∫ Jj

t
u−1e−udu} 0 ≤ t ≤ Jj, (2.17)

and

(iii) furthermore, the sequences (τj)1≤j<∞ and (Jj)1≤j<∞ are independent
and, eventually, so are also the sequences (τj)1≤j<∞ and (γj)1≤j<∞.

A second description has been obtained in Rolin (1992b) and Sethuraman
(1994) where it is shown that there exists an infinite permutation of IN such
that, keeping the same representation of Φc as in (2.14), (i) and the second
part of (iii) remain valid and (ii) becomes

10



(ii*) the sequence (γj)1≤j<∞ may be represented as follows:

γj = βj

∏
1≤`≤j−1

(1− β`) (2.18)

where (βj)1≤j<∞ is an infinite independent identically distributed sam-
ple of the Beta distribution with parameters (1, ac).

It should be remarked that (i) the distribution of (τj) (of (γj)) depends only
on Mc (on ac), (ii) even though Mc is continuous, the trajectories of Φc are al-
most surely discrete but the infinitely many jumps are randomly located and
the support of Φc is almost surely dense in the support of Mc. In other words,
for any set B such that Mc(B) > 0, Φc(B) is almost surely a strictly positive
random variable. Furthermore, any probability absolutely continuous with
respect to Mc is in the pointwise support of the Dirichlet process (recall that
the pointwise convergence is defined by Mn(B) → M(B) ∀ B ∈ B+).

Let us now consider the consequences of a Dirichlet prior specification to
the Bayesian model.

When P0 is a discrete probability measure with jumps at a fixed set
S = {aj : j ∈ I} ⊂ IR+ with I ⊂ IN, the sampling probabilities Φ will be
almost surely discrete with the same support S, both a priori and a posteriori
for almost any observation t1, · · · , tn because P∗ will have the same support
as P0. Furthermore, the support of the Dirichlet process is the set of all
probabilities on S, both a priori and a posteriori. Also the predictive distri-
butions generating t1 and (ti+1|t1, · · · , ti) will all be probabilities supported
by S. Note that in such a case, the model is unable to handle an observation
falling outside S.

When P0 is continuous, the prior trajectories are characterized as in
(2.14). For the posterior trajectories, let us remark that P∗c = P0 and
P∗d = Pn. Therefore, if (t(j))1≤j≤p is the set of distinct values taken by
(t1, . . . , tn) and if nj is the number of ti’s that are equal to t(j), 1 ≤ j ≤ p,
Pn may be written as

Pn =
∑

1≤j≤p

nj

n
δt(j)

Therefore, according to (2.12), Φ may be represented a posteriori as

Φ = (1− αn)Φc + αnΦd

where
αn =

∑
1≤j≤p

Φ({t(j)})
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and

Φd = α−1
n

∑
1≤j≤p

Φ({t(j)})δt(j)

=
∑

1≤j≤p

Φd({t(j)})δt(j) .

In this representation, conditionally on (t1, . . . , tn),

(i) αn, Φc, Φd are independent.

(ii) αn has a Beta distribution with parameters (n, n0)

(iii) Φc is a Dirichlet process with parameters (n0, P0)

(iv) Φd is a Dirichlet process with parameters (n, Pn)

or equivalently,

(iv*) {Φd({t(j)}) : 1 ≤ j ≤ p} has a Dirichlet distribution with parameters
{nj : 1 ≤ j ≤ p}.

It should be remarked that: (i) the normalized part of Φ outside the
observations, Φc , is not revised by the observations, i.e., is distributed as
Φ a priori, (ii) the normalized part of Φ at the observations, Φd , has a
distribution independent of the prior distribution,i.e., does not depend on
(n0, P0). Finally, Φ is a convex combination of Φc and Φd the coefficient of
which (αn) has a distribution depending only on the prior precision and the
sample size, i.e., (n0, n).

”Non-informative” prior specification raises problems. A natural sugges-
tion has indeed been to consider that n0 → 0. In this latter case, the be-
haviour of the posterior process is rather natural: the posterior process tends
to a Dirichlet process with parameter (n, Pn). Note however the discontinuity
at n0 = 0 where the prior distribution has the pathological representation of
a random jump process: Φ = δt where t is P0-distributed.

2.2.3 Uses and Extensions of Dirichlet process in duration models.

When modeling duration data, it is natural to give structure to one of the
following transformations of the sampling probability Φ: either the survivor
function

Σ(t) = Φ((t,∞)) (2.19)
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or the cumulative hazard function defined in either one of the following two
non equivalent ways:

Λ(t) = − ln Σ(t) (2.20)

Λ̂(t) =
∫
[0,t]

[Φ([u,∞))]−1Φ(du) (2.21)

Historically, Bayesian statistical analysis of duration models has used
definition (2.20) to define neutral to the right processes (Doksum (1974)) and
to modelize proportional hazards models (see section 5). Definition (2.21),
as underlined by a referee, has a better probabilistic meaning in relation with
Doob-Meyer decomposition of 1I{ti≤t} (Λ̂(min(ti, t)) is a previsible process and

1I{ti≤t}−Λ̂(min(ti, t)) is a martingale). It serves as a cornerstone of martingale
estimators (see, e.g., Fleming and Harrington (1991) and Andersen, Borgan,
Gill and Keiding (1993)). Its utility in Bayesian analysis has been shown in
the definition of Beta processes introduced by Hjort (1990). Some confusions
have arisen in the literature despite the fact, as will be seen later on, that they
are both useful. It is therefore interesting to present the relations existing
between the two definitions.

Because Σ(t) is non-increasing and right-continuous such that Σ(0) ≤ 1
and Σ(∞) = 0, Λ(t) and Λ̂(t) are both non-decreasing, right-continuous such
that 0 ≤ Λ̂(0) ≤ Λ(0) and Λ̂(∞) ≤ Λ(∞) = ∞. Therefore, both Λ(t) and
Λ̂(t) can be viewed as cumulative distribution functions of σ-finite measures
on IR+. Let consider the decomposition of Λ and Λ̂ into their discrete and
continuous parts

Λ(t) = Λc(t) + Λd(t) (2.22)

Λ̂(t) = Λ̂c(t) + Λ̂d(t) (2.23)

We note that the continuous parts always coincide

Λc(t) = Λ̂c(t) ∀ t

but the discrete parts are different since

Λd(t) =
∑

0≤s≤t

ln
Σ(s−)

Σ(s)
(2.24)

= − ∑
0≤s≤t

ln[1− {Λ̂(s)− Λ̂(s−)}]

Λ̂d(t) =
∑

0≤s≤t

[
1− Σ(s)

Σ(s−)

]
(2.25)

=
∑

0≤s≤t

[1− exp−{Λ(s)− Λ(s−)}].
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Thus, from the logarithmic inequality lnx ≥ 1 − x−1, we conclude that
Λ(t) ≥ Λ̂(t) for all t. Definition (2.20) has the advantage to be easily inverted;
indeed

Σ(t) = e−Λ(t). (2.26)

But inversion of definition (2.21) is slightly more complicated, since

Σ(t) = e−Λ̂c(t)
∏

0≤s≤t

[1− {Λ̂(s)− Λ̂(s−)}]. (2.27)

Formula (2.27) is a simple expression of the so called product limit integral
in the case of mixed cumulative hazard function.

The process Λ̂(t) has some nicer properties than the process Λ(t). One of
them, as seen in the definition(2.21), relies on the fact that Λ̂(t) has jumps
of size smaller than one. Indeed, Λ̂(t)− Λ̂(t−) = P [ti = t | ti ≥ t].

Once Φ is distributed as a Dirichlet process with parameters (a,M), the
law of the survivor process Σ, which is purely discrete in view of (2.13)
and (2.14), is easily characterized. Indeed for any k and any ordered k-
tuple s1 < s2 < · · · < sk, the joint distribution of the random vector
(Σ(s1), · · · , Σ(sk)) is obtained from the joint distribution of 1 − Σ(s1) =
Φ((0, s1]), Σ(s1) − Σ(s2) = Φ((s1, s2]), · · · , Σ(sk−1) − Σ(sk) = Φ((sk−1, sk]),
Σ(sk) = Φ((sk,∞)), which is a Dirichlet distribution with parameters n0[1−
S0(s1)], n0[S0(s1)−S0(s2)], · · · , n0[S0(sk−1)−S0(sk)], n0S0(sk) where S0 is the
survivor function associated to P0. For the laws of Λ and Λ̂ note first that
both Λ and Λ̂ have independent (non negative) increments. For the case of
Λ, this is a direct consequence of a basic property of the Dirichlet process.
Indeed for any k and any ordered k-tuple s1 < s2 < · · · < sk, the Dirich-
let process makes Σ(sj+1)(Σ(sj))

−1 independent of (Σ(s1), Σ(s2), · · · , Σ(sj))
and consequently of (Σ(si+1))(Σ(si))

−1 ∀i < j); on taking logarithm one
obtains the independence of the increments of Λ in view of definition (2.20).
The same properties hold for Λ̂(t) because, from (2.24) and (2.25), Λ̂(t) is
a bijective transformation of Λ(t) (same locations of jumps and bijective
transformations of jump heights) and eventually keeps the same indepen-
dence properties. Furthermore, as (Σ(sj+1))(Σ(sj))

−1 has a Beta distribution
with parameters (aM((sj+1,∞)), aM((sj, sj+1])) (see e.g. Rolin 1992a), the
distribution of each increment of Λ is log-Beta with the same parameters.

A generalization of the Dirichlet process may be obtained by relaxing
the log-Beta distribution property of the increments of Λ. More specifically,
a positive right-continuous stochastic process indexed by t ≥ 0 with inde-
pendent non negative increments is called a Levy process and the associated
random σ-finite measure is called a purely random measure. From (2.20), as-
suming Λ to be a Levy process is equivalent to assuming that Σ is neutral to
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the right, i.e., for any k and any ordered k-tuple 0 = s0 < s1 < s2 < . . . < sk,
the random variables Σ(sj+1)(Σ(sj))

−1 are mutually independent (for more
details see, e.g., Doksum (1974)). It may be shown (see, e.g., Ferguson and
Klass (1972)) that the continuous part of any Levy process is deterministic
and that its discrete part is also a Levy process. Furthermore, Λ is a Levy
process if and only if Λ̂ is a Levy process, in which case they share the same
deterministic continuous part but have different discrete parts. An example
of such a Levy process, as a tool for modelling neutral to the right processes,
is given by the Beta processes introduced by Hjort (1990).

To describe this extension, let us first assume that M is supported by a
fixed finite ordered set (a1, ..., ak). Then, if a0 = 0, let us define

Λ̂({aj}) = Λ̂(aj)− Λ̂(aj−1) = 1− Σ(aj)

Σ(aj−1)
= P (ti = aj | ti ≥ aj). (2.28)

From the above discussion, Λ̂({aj})1≤j≤k, are independent and have Beta
distributions with parameters (aM((aj−1, aj]), aM((aj,∞))). It follows that

E[Λ̂({aj})] = L̂({aj}) = 1− M((aj,∞))

M([aj−1,∞))
. (2.29)

Therefore,we may write that Λ̂({aj}) has a Beta distribution with parameters

(c(aj)L̂({aj}), c(aj)[1− L̂({aj})]) where c(aj) = aM((aj−1,∞)).

Now, the extension is obtained by saying that Λ̂ is a discrete Beta process
with parameters c and L̂ if Λ̂({aj}) is distributed as above with c an arbitrary
function.

In the general case, if Φ is distributed as a Dirichlet process with parame-
ter (a,M), Λ̂ will be said to be distributed as a Beta process with parameter
(c, L̂) denoted by Λ̂ ∼ Be(c, L̂) where

c(t) = aM([t,∞)) (2.30)

and

L̂(t) =
∫
[0,t]

M([u,∞))−1M(du), (2.31)

i.e., L̂ is a cumulative hazard function of the probability M (see (2.21)).
Therefore, if a priori Φ ∼ Di(n0, P0) or equivalently Λ̂ ∼ Be(c0, L̂0),

then a posteriori, Φ|t1, t2, ..., tn ∼ Di(n∗P∗) or equivalently, Λ̂|t1, t2, ..., tn ∼
Be(c∗, L̂∗).

Now, clearly
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c∗(t) = n∗P∗([t,∞)) = c0(t) + nPn([t,∞)) (2.32)

and since (2.31) entails that n0P0(du) = c0(u)L̂0(du),

L̂∗(t) =
∫
[0,t]

P∗([u,∞))−1P∗(du)

=
∫
[0,t]

c0(u)L̂0(du) + nPn(du)

c0(u) + nPn([u,∞))
.

(2.33)

Hjort (1990) has shown that taking c0 to be an arbitrary positive mea-
surable function on IR+, then Λ̂ ∼ Be(c0, L̂0) is precisely defined as a prior
specification and that a posteriori, Λ̂|t1, t2, ...tn ∼ Be(c∗, L̂∗) where c∗ and Λ̂∗
are defined by the last members of (2.32) and (2.33). Therefore, Beta pro-
cesses form a natural conjugate family larger than Dirichlet processes (n0, a
real number, is replaced by a measurable function c0) and smaller than the
neutral to the right processes or equivalently the Levy processes.

3 Nonparametric duration models with cen-

sored observations.

One of the main features of duration data sets is the presence of censored
observations. In this section, we want to show the extensions of the results
presented in Section 2 to nonstochastically right-censored durations. Let us
first recall that, in this case, the sample is generated as follows: for any
i = 1, · · · , n, ci is a fixed duration, τi is a latent duration independently and
identically distributed from an unknown probability Φ and we observe

ti = min(τi, ci)

di = 1I{τi≤ci}
(3.1)

The unknown functional parameter is endowed with a prior probability
(in this paper, a Dirichlet process) and we want to analyse the posterior
probability of Φ given (ti, di)1≤i≤n.

The main results of this analysis are the following:

i) The family of Dirichlet processes is not closed under such a sampling
scheme. In other words, the posterior probability deduced from a Dirichlet
prior and a censored sample is not a Dirichlet process. However, the class of
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neutral to the right processes is closed for the Bayesian inference as shown
by Fergusson and Phadia (1979).

ii) Elements of this class are not as simple as Dirichlet processes but some
of their characteristics can be obtained analytically. This is in particular the
case for the expectation of the survivor function. An application of this
computation is the posterior expected survivor function constructed through
a Dirichlet prior (see Susarla and Van Ryzin (1976) and (1978), Blum and
Susarla (1977)).

iii) Beta processes that constitute a strict subclass of neutral to the right
processes are still closed for sampling with right-censoring as shown by Hjort
(1990). This implies in particular that the posterior of a Dirichlet process
prior is a Beta process.

In order to point out the essential elements of this inference procedure,
we will start by the treatment of the finite case in which the support of Φ is
finite. If we assume that the values ci are also elements of this set, we may
describe the sample using different counting statistics.

Let {a1, · · · , ak} be the support of Φ (with a1 < a2 < · · · < ak) and let n
be the sample size. For any j = 1, · · · , k we define

ej =
∑

1≤i≤n

1I{ti=aj ,di=1}, (3.2)

the number of non censored durations equal to aj

hj =
∑

1≤i≤n

1I{ti=aj}, (3.3)

the number of censored or non censored durations equal to aj

nj =
∑

j≤`≤k

h` =
∑

1≤i≤n

1I{ti≥aj},

the number of individuals at risk in aj. Note that, in particular, n1 = n =∑
1≤j≤k

hj and hj − ej is the number of censored durations at aj. Furthermore,

the statistic (hj, ej)1≤j≤k is obviously sufficient.
The probability Φ on {a1, · · · , ak} may be described in different ways :

i) the sequence (θj)1≤j≤k , θj > 0,
∑

1≤j≤k

θj = 1, are the probabilities

of the aj’s, i.e, θj = Φ({aj}), from which we can construct the survivor
function

Σ(t−) =
∑
aj≥t

θj =
∑

1≤j≤k

θj1I{aj≥t}. (3.4)
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ii) Φ is also characterized by the hazard rates sequence (λj)1≤j≤k defined
by

λj = Λ̂({aj}) =
θj

Σj

where Σj = Σ(aj−). (3.5)

In particular, the well known product formula connects θj and Σj to λj

θj = λj

∏
1≤`<j

(1− λ`) Σj =
∏

1≤`<j

(1− λ`). (3.6)

The likelihood of the sufficient statistics may be written in terms of the
probabilities or in terms of the hazard rates

`((hj, ej)1≤j≤k | (θj)1≤j≤k) =
∏

1≤j≤k

θ
ej

j Σ
hj−ej

j (3.7)

or

`((hj, ej)1≤j≤k | (λj)1≤j≤k) =
∏

1≤j≤k−1

λ
ej

j (1− λj)
nj−ej . (3.8)

Let us now consider the prior probability. With the same notation as in
Section 2.1, a Dirichlet prior distribution on (θj) has density

m((θj)1≤j≤k) ∝
∏

1≤j≤k

θ
n0p0j−1
j (3.9)

with respect to the uniform density restricted to the simplex in IRk. Under
the change of variables underlying (3.5) and (3.6), the prior density defined
in (3.9) may be rewritten in terms of the (λj)’s as

m((λj)1≤j≤k) ∝
∏

1≤j≤k−1

λ
n0p0j−1
j (1− λj)

n0S0 j+1−1 (3.10)

with respect to the uniform measure restricted to the set of hazard rates in
[0, 1]k−1. In (3.10) S0 is the expected prior survivor function

S0(t−) =
∑

1≤j≤k

p0j1I{aj≥t} and S0j = S0(aj−) (3.11)

Thus the parameters (λ1, · · · , λk−1) are independently Beta distributed
with parameter (n0p0j, n0S0 j+1), 1 ≤ j ≤ k − 1. Note the restrictions among
the parameters of the independent distributions of λj implied by (3.11). Ac-
cording to (2.29), an interesting property is the following:

E(λj) =
n0p0j

n0p0j + n0S0 j+1

=
p0j

S0j

= λ0j. (3.12)
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In other words, the prior expected hazard rates are the hazard rates of the
prior expected distribution.

The posterior probability on the θj’s has the density

m((θj)1≤j≤k|(hj, ej)1≤j≤k) ∝
∏
j

θ
n0p0j+ej−1

j (
∑

aj′≥aj+1

θj)
hj−ej (3.13)

∝ ∏
j

θ
n0p0j+ej−1

j Σ
hj−ej

j+1 , (3.14)

which is clearly not a Dirichlet distribution and the lack of closedness prop-
erty of the class of the Dirichlet distributions is thus demonstrated.

The posterior density on the λj’s is equal to

m((λj)1≤j≤k−1 | (hj, ej)1≤j≤k) ∝ (3.15)

∏
1≤j≤k−1

λ
n0p0j+ej−1
j (1− λj)

n0S0 j+1+nj−ej−1

It follows from (3.15) that, a posteriori, λj’s , 1 ≤ j ≤ k − 1, are still
independent. Any hazard rate λj follows a posteriori a Beta distribution
whose parameters are equal to n0p0j + ej and n0S0 j+1 + nj − ej, but the
previously noted restriction on the parameters of the independent distribu-
tion of λj no longer holds. Thus, the sequence of k − 1 independent Beta
probabilities looks like the prior specification but, apart from the case of non
censored data, these distributions cannot be derived from a Dirichlet poste-
rior on (θj)1≤j≤k. If, however, we compute the survivor function from the
usual product formula (3.6) and exploit the posterior mutual independence
of the λj’s we find that

Snj = E(Σj|(hj, ej), 1 ≤ j ≤ k) = E(
∏

1≤`<j(1− λ`)|(hj, ej), 1 ≤ j ≤ k)

=
∏

1≤`<j(1− E(λ`|(hj, ej), 1 ≤ j ≤ k))

=
∏

1≤`<j(1−
n0p0j + ej

n0S0j + nj

)

(3.16)
The Bayesian estimation Sn(t) is deduced from the Snj using the property
that the survivor function is constant between the jumps and is right contin-
uous at the jumps (and therefore everywhere).

The same computations show that this analysis goes through if, instead
of a Dirichlet prior, we specify Λ̂ to be a discrete Beta process. Indeed, in this
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case, a priori the λj’s are independently and Beta distributed with parameter
(c0jλ0j, c0j(1−λ0j)) where c0j, 1 ≤ j ≤ k−1, are arbitrary constants. Hence
a posteriori the λj’s are independently and Beta distributed with parameter

(c∗jλ∗j, c∗j(1− λ∗j)) where c∗j = c0j + nj and λ∗j =
c0jλ0j + ej

c0j + nj

.

These relations, in the finite case, extend formulas (2.32) and (2.33) in the
case of censoring.

Let us consider the general case in which the functional parameter Φ is
not constrained by a finite support condition and is distributed as a neutral
to the right prior process. Its associated integrated hazard function Λ(t) =
− ln Σ(t) (where Σ(t) = Φ((t,∞)) is a Levy process. Such a process has been
defined in section 2.2.3. Let us recall that a Levy process is increasing with
independent increments. For any sequence s1 < s2 < · · · < sk, the random
variables rj = Λ(sj) − Λ(sj−1) are independently distributed with densities
mj(rj), 1 ≤ j ≤ k. In the case of a Dirichlet prior distribution, we have
seen that the rj are log-Beta distributed. It is sufficient to prove that for
any observation ti (censored or not) the posterior measure given ti is still a
Levy process. In what follows, we give a heuristic argument giving a clue to
a more formal proof.

First let us assume that ti is noncensored. In order to compute the pos-
terior distribution of Λ restricted to any finite family of increments, we just
have to consider the marginalized likelihood given this family. This likelihood
reduces to the probability of the interval (s`, s`+1] to which the observed ti
belongs. Then the posterior probability of (rj)1≤j≤k is proportional to

m((rj) : 1 ≤ j ≤ k | s` < ti ≤ s`+1) ∝

[
∏

1≤j≤k

mj(rj)](Σ(s`)− Σ(s`+1))

= [
∏

1≤j≤k

mj(rj)][exp− ∑
1≤j≤`

rj][1− exp−r`+1]

= [
∏

1≤j≤`

mj(rj) exp−rj][m`+1(r`+1)(1− exp−r`+1)][
∏

`+2≤j≤k

mj(rj)]

(3.17)

Thus, the rj’s are a posteriori independent. The posterior density of the
first ` are proportional to mj(rj) exp(−rj), the posterior density of r`+1 is
proportional to m`+1(r`+1)(1 − exp−r`+1) and the distribution of the last
increments is identical a priori and a posteriori.

An identical computation can be done in the case of a censored obser-
vation ti ∈ (s`, s`+1]. The marginalized likelihood on the finite family of

20



increments is equal to Σ(s`) = exp(− ∑
1≤j≤`

rj) and the posterior distribution

of the rj’s is identical to the previous one excepted for r`+1 which is not
revised by the observation.

Given a prior distribution on Λ(t), one may derive the prior distribution
of any sequence of increments and compute the posterior distribution using
previous arguments sequentially on the sample.

In the special case of a Beta prior specification, i.e., L̂ ∼ Be(c0, L̂0), Hjort
(1990) has shown that a posteriori L̂|(ti, di)1≤i≤n ∼ Be(c∗, L̂∗) as in the case
of no censoring where

c∗(t) = c0(t) +
∑

1≤i≤n

1I{ti≥t} (3.18)

and

L̂∗(t) =
∫
[0,t]

c0(s)L̂0(ds) +
∑

1≤i≤n diδti(ds)

c0(s) +
∑

1≤i≤n 1I{ti≥s}
(3.19)

For a Dirichlet process prior, the posterior is therefore characterized by
(3.18) and (3.19) where c0(t) = n0S0(t−).

In particular (Sursala, Van Ryzin (1976)), the posterior expectation of
the survival function is given by

E(Σ(t)|(ti, di)1≤i≤n) =
n0S0(t) + n(t)

n0 + n

∏
1≤j≤`

n0S0(uj) + n(uj) + fj

n0S0(uj) + n(uj)
t ∈ [u`, u`+1)

(3.20)
where u1, u2, · · · , uk are the distinct observed values of the sample, n(t) is the
number of individuals at risk after t i.e. n(t) =

∑
1≤i≤n

1I{ti>t}, fj is the number

of censored observations at uj and S0 is the prior survivor function. Let us
remark that, in absence of censoring, (3.20) reduces to the usual result given
in section 2.

A more detailed characterization of the posterior distribution for a Dirich-
let process prior with censored observations will be given in a future paper
providing easy simulation to analyze posterior distributions of functionals of
the survival function.

For general Beta processes and more generally Levy processes, no easy to
simulate descriptions of the trajectories are available. Simulation techniques
must rely on more complicated schemes simulating probabilities of intervals
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as in Damien, Laud and Smith (1995) and (1996). However this method does
not lead to simulations of the distributions of functionals. In the case of non
informative priors, Lo (1987) and (1993) provides a Bayesian Bootstrap for
censored durations.

4 Heterogeneity and Mixture of Dirichlet Pro-

cesses.

4.1 Introduction

The last two sections of this paper are devoted to the study of models con-
ditional on a variable or a function of variables describing individual het-
erogeneity. In other words, the first step in the specification consists in de-
scribing the law of the duration ti conditionally on θi, a variable representing
individual characteristics of the ith individual, i.e., one needs to specify

Σ(t|θi) = P (ti > t|θi, Φ)

Two characteristics have to be taken into account: on one hand, whether
θi observable or not, and on the other hand, the class of conditional models
to be considered (usually a proportional hazards or an accelerated lifetime
model).

As a first step, θi may be considered as a function of observed explana-
tory variables zi and of an unknown structural parameter β (the same for
each individual). This is known as observed heterogeneity and the zi’s are
also known as treatment variables or covariates. Econometric literature has
also emphasized the interest in considering θi as an unobserved realization of
a random variable (see e.g., Heckman (1981), Heckman and Singer (1982),
(1984a) and (1984b) and Lancaster (1990)). The main reference for identifi-
cation problems in such models is Elbers and Ridder (1982). A motivation
for this model is the following. Suppose that each individual has a duration
generated by the exponential law of parameter λθi. Given θi, the hazard rate
of the ith individual is time independent but if θi is random, the marginal dis-
tribution of ti has a decreasing hazard rate. This is known as ”spurious time
dependence”. The same argument of heterogeneity is also used to explain
the u-shaped observed hazard rates in reliability theory.

At last, two types of conditional models for duration data are generally
considered: accelerated lifetime models and proportional hazards models. In
the first type of models, the observed lifetime ti is written as θiτi where τi is
a basic lifetime and θi appears as an acceleration factor and therefore,
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Σ(t|θi) = Σ(θ−1
i t)

where Σ is the survival function of τi’s.
In the proportional hazards model, the observed lifetime has, condition-

ally on θi, a survival function given by

Σ(t|θi) = Σ(t)θi

or equivalently has a hazard function given by

Λ(t|θi) = θiΛ(t).

In this paper, we shall only consider two alternative combinations of con-
ditional models and heterogeneity. In this section, we analyse an accelerated
lifetime model with un-observable heterogeneity. In the next section we dis-
cuss proportional hazards model with observable explanatory variables.

The interest in the accelerated lifetime model with unobserved hetero-
geneity lies in the fact that integration of the unobservable variable produces
a ”smoothing” of the trajectories of the Dirichlet process and provides an
estimation of the density and of the hazard rate. This is a Bayesian version
of kernel estimators (see, e.g., Lo and Weng (1989)). In the proportional
hazards model, however, the discrete character of the Dirichlet process is
preserved after integration since the locations of the jumps are unchanged.
Moreover, the neutral to the right property is lost and this makes the com-
putation of the posterior much more difficult. However such a model may
sometimes be useful and may be considered as a byproduct of the computa-
tions sketched in the next section.

In the proportional hazards model with θi = a(β, zi) the marginal likeli-
hood on β is easily obtained and provides an alternative to the well-known
Cox’s partial likelihood model. On the contrary, the semiparametric analysis
of the accelerated lifetime model with θi = a(β, zi) with a Dirichlet process
prior for Φ, i.e. Φ ∼ Di(n0P0) has little interest. Indeed, as far as all the
observations are distinct, the posterior distribution of β is identical to the
posterior distribution obtained in the parametric model where the τi’s are
independent identically distributed. P0 (see e.g. Bunke (1981)).

4.2 A simple model.

Let us consider n observed durations (t1, · · · , ti, · · · , tn) along with the mul-
tiplicative decomposition

ti = θiτi 1 ≤ i ≤ n. (4.1)

23



Both θi’s and τi’s are unobservable and independent identically distributed
For identifiability, we assume that the distribution of the θi’s is known and
is characterized by a density function. In contrast,the distribution of the τi’s
is unknown and assumed to be a priori distributed as a Dirichlet process.

In the context of the heterogeneity problem, model (4.1) may be inter-
preted as follows. The duration τi of each individual i is assumed to be
generated by a same unknown distribution but accelerated by a factor θi

reflecting unobservable individual characteristics. A simple solution to the
standard problem of identification in accelerated time models is provided by
the assumption that the distribution of the factor θi is known.

It is interesting to notice that, because the ti’s can be represented as
the product of two quantities their sampling distribution is a.s. smooth,
i.e. admits a density a.s., in spite of the Dirichlet specification. In other
words, the introduction of θi acts similarly to a smoothing kernel, a main
difference being a multiplicative convolution rather than an additive one.
The multiplicative model is indeed more natural than the additive one when
dealing with non negative random variables. One of the results of this model
is to produce a Bayesian analogue to kernel estimators.

Let us now be more specific about the basic assumptions underlying (4.1).
(A.1) (θi)1≤i≤n are independent identically distributed; their common dis-

tribution, denoted by Q, is known, supported by IR+ and admits a known
density q.

(A.2) (τi)1≤i≤n are independent identically distributed; the common dis-
tribution denoted by Γ, is unknown and distributed a priori as a Dirichlet
process with parameters (n0, G0) where G0 is a probability measure sup-
ported by IR+.

(A.3) The θi’s and the τi’s are jointly independent in the sampling, i.e.,

(θi)1≤i≤n ‖ (τi)1≤i≤n|Γ (4.2)

These assumptions imply that the ti’s are independent identically distributed
with common distribution denoted by Φ, being a multiplicative convolution
between Q and Γ and will be denoted by Q.Γ. More precisely

Φ([0, t]) = Q.Γ([0, t]) =
∫
IR+

Γ([0,
t

θ
])Q(dθ)

=
∫
IR+

Q([0,
t

τ
])Γ(dτ).

(4.3)

Because Q admits a density q, (4.3) may be rewritten as

Φ([0, t]) =
∫ t

0

∫
IR+

1

τ
q(

u

τ
) Γ(dτ)du. (4.4)
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Thus Φ is dominated by Lebesgue measure and admits a density ϕ defined
as

ϕ(t) =
∫
IR+

1

τ
q(

t

τ
) Γ(dτ). (4.5)

When Γ ∼ Di(n0, G0) the distribution of Φ, derived from (4.3), is an example
(a particular case) of a mixture of Dirichlet processes (see, e.g., Antoniak
(1974)). One may easily check that

E[Φ] = Q.E(Γ) = Q.G0 (4.6)

d

dt
E[Φ([0, t])] =

∫
IR+

1

τ
q(

t

τ
) G0(dτ) (4.7)

When G0 is a continuous probability measure, results given in Section
2.2.2 imply that ϕ(t) may be represented as

ϕ(t) =
∑

1≤k<∞
γk

1

σk

q(
t

σk

) (4.8)

and may accordingly be easily simulated using (2.18) and the fact that
(σk)1≤k<∞ is an infinite independent identically distributed sample from G0.

The posterior distribution of Φ is somewhat more involved. Let us have
a look its expectation and first evaluate it conditionally on (τ1, · · · , τn).

E[Φ | t1, · · · , tn, τ1, · · · , τn] =
n0

n0 + n
(Q.G0) +

n

n0 + n
(Q.Gn) (4.9)

where Gn is the empirical distribution of the τi’s, i.e.,

Gn = n−1
∑

1≤i≤n

δτi
. (4.10)

In order to integrate the τi’s out, it is convenient to represent (τ1, · · · , τn)
through three components namely,(1) p, the number of the different values
of the τi’s,(2) a partition Cn of {1, · · · , n} into p elements (Ij)1≤j≤p where
each Ij is a set of indices corresponding to identical values of τi (thus Cn

represents the partition of the configuration of ties in the τi’s), and finally
(3) the p-vector of distinct values of the τi’s: (τ(j))1≤j≤p. Therefore Gn may
also be written as

Gn =
1

n

∑
1≤j≤p

njδτ(j) (4.11)
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where nj = |Ij| and consequently
∑

1≤j≤p

nj = n. Note also that

ti = τ(j)θi ∀i ∈ Ij (4.12)

where this expression is based on the configuration Cn. Let us now denote
by Gj

n the conditional probability of τ(j) conditionally on t1, · · · , tn and Cn.
Thus

Gj
n(A) = E[1IA(τ(j)) | t1, · · · , tn, Cn] (4.13)

It may be shown, and it is intuitively rather natural, that Gj
n depends

only on those ti’s for which i ∈ Ij and may be evaluated easily using standard
techniques for evaluating posterior distributions; this is so, in particular, be-
cause the θi’s are independent identically distributed with known distribution
Q and the τ(j)’s are a priori indepently distributed according to G0. Later
on we give an example for evaluating Gj

n. If we first integrate (τ(j))1≤j≤p out
from (4.9), conditionally on the configuration Cn, we obtain

E[Φ | t1, t2, . . . , tn, Cn] =
n0

n0 + n
(Q ·G0) +

1

n0 + n

∑
1≤j≤p

nj (Q ·Gj
n) (4.14)

Just as above, the properties of the trajectories of the Dirichlet process
may be used to generate the posterior distribution of the density ϕ(t) given
(t1, t2, . . . , tn) and the configuration of ties, Cn, using the representation

ϕ(t) = (1− αn)
∑

1≤k<∞
γk

1

σk

q(
t

σk

) + αn

∑
1≤j≤p

β(j)
1

σ(j)

q(
t

σ(j)

), (4.15)

where αn has a Beta distribution with parameter (n, n0), {β(j) : 1 ≤ j ≤ p}
has a Dirichlet distribution with parameter {nj : 1 ≤ j ≤ p} and σ(j) are
independently generated from Gj

n, 1 ≤ j ≤ p.
Since the configuration Cn is unknown, we may, at least formally, inte-

grate Cn out from (4.14) conditionally on (t1, t2, . . . , tn), to obtain

E[Φ | t1, t2, . . . , tn] =
n0

n0 + n
(Q ·G0) (4.16)

+
1

n0 + n

∑
Cn∈Cn

P (Cn|t1, . . . , tn)
∑

1≤j≤p

nj (Q ·Gj
n)

where Cn is the set of all partitions of {1, 2, . . . , n}. In order to simulate ϕ(t)
conditionally on (t1, t2, . . . , tn) we may use formula (4.15), if we first generate
Cn conditionally on (t1, t2, . . . , tn).

Unfortunately, an exact evaluation of (4.16) is close to impossible for
reasonably large sample size n. Indeed, the evaluation of P (Cn|t1, · · · , tn) is
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rather involved in view of the analysis given in section 2.3 and of the fact
that |Cn| increases dramatically with n.

Different strategies can be envisaged to address this difficulty. Two of
these are the following. The first consists in selecting arbitrarily a config-
uration Cn of ties. This is leaving the strict Bayesian framework as far as
one is conditioning on a non-available information. Although general the-
orems may ensure the convergence of E(Φ | t1, · · · , tn), the convergence of
E(Φ | t1, · · · , tn, Cn) requires specific hypotheses for arbitrary choices of Cn.

Another strategy (proposed and largely used by Escobar (1994) and Es-
cobar and West (1994) relies on simulation methods (post-data sampling).
Here Gibbs sampling is a natural candidate for generating (τi)1≤i≤n condi-
tionally on (ti)1≤i≤n. This distribution is rather complicated and almost un-
manageable if n is large but the conditional distributions are however rather
simple. Indeed, conditionally on (τi′)i′ 6=i and (ti′)i′ 6=i, (see formula (2.24)) the
distribution of τi is given by

Gi
0 =

n0

n0 + n− 1
G0 +

1

n0 + n− 1

∑
i′ 6=i

δτi′ (4.17)

and the conditional distribution of ti given τi has density

h(ti | τi) =
1

τi

q
(

ti
τi

)
(4.18)

Then by Bayes theorem the conditional distribution of τi given ti (and (τi′)i′ 6=i

and (ti′)i′ 6=i) is deduced from (4.18) and (4.19), i.e.,

P [τi ∈ A|τi′ , i
′ 6= i, ; ti, 1 ≤ i ≤ n] =

n0h(ti)G
ti
0 (A) +

∑
i′ 6=i

1

τi′
q

(
ti
τi′

)
δτi′ (A)

n0h(ti) +
∑
i′ 6=i

1

τi′
q

(
ti
τi′

)

(4.19)
where Gti

0 is the conditional distribution of τi given ti computed with G0 as
the prior distribution for τi. The predictive density h(ti) is the density of
Q.G0 (formula (4.7)).

Starting from an initial value of (τi)1≤i≤n, the Gibbs sampling procedure
will generate sequentially τi from (4.20) to finally obtain a draw of (τi)1≤i≤n

conditional on (ti)1≤i≤n. From this, a realization of the posterior distribution
of Γ or of Φ may be computed.

A review of a lot of techniques for estimating smoothly densities in the
Bayesian framework is provided by Hjort (1996).
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4.3 A particular case.

In this section, we give a simple example of the computations suggested
above.

Let Q be the inverse gamma distribution with parameter (θ0, ν0) ∈ IR2
+

the density of which is given by

q(θ) =
θν0
0

Γ(ν0)
θ−(ν0+1)e−θ0/θ, (4.20)

and let G0 be the gamma distribution with parameter (τ0, µ0) ∈ IR2
+ whose

density is given by

g0(τ) =
1

Γ(µ0)
τ−µ0
0 τµ0−1e−τ/τ0 (4.21)

Thus the distribution of ti conditionally on τi is the an inverse-gamma dis-

tribution with parameter (θ0τi, ν0) since its density is given by
1

τi

q
(

t

τi

)
Simple computations show that the distribution of τi conditionally on ti,

denoted above as Gti
0 , is the gamma distribution with parameter

(
1

τ0

+
θ0

ti

)−1

, µ0 + ν0


. Furthermore the distribution of ti, denoted above

as Q · G0 is the Fisher distribution with parameter (θ0τ0, µ0, ν0) the density
of which is given by

g(t) =
Γ(µ0 + ν0)

Γ(µ0)Γ(ν0)

(θ0τ0)
−µ0−ν0−1(

1 + t
θ0τ0

)µ0+ν0
. (4.22)

Now conditionally on τ(j) and Cn, the ti’s for i ∈ Ij are distributed indepen-
dently following the inverse gamma distribution with parameter (θ0τ(j), ν0).
Therefore, the likelihood is proportional to∏

i∈Ij

τ ν0

(j)e
−θ0τ(j)/ti = τ

njν0

(j) e
−θ0τ(j)

∑
i∈Ij

t−1
i .

By Bayes’ theorem, the distribution of τ(j) conditionally on {ti; 1 ≤ i ≤ n}
and Cn denoted before as Gj

n is the gamma distribution with parameter



 1

τ0

+ θ0

∑
i∈Ij

1

ti



−1

, µ0 + njν0


 .

Finally, by the same computation as before, Q ·Gj
n is the Fisher distribution

with parameter 



 1

θ0τ0

+
∑
i∈Ij

1

ti



−1

, µ0 + njν0, ν0


 .
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This implies that the posterior expectation of Γ conditionally on Cn has
a density given by a convex combination of gamma densities and that the
posterior expectation of Φ conditionally on Cn has a density given by a convex
combination of Fisher densities. Notice that, in such a case, (t1, t2, . . . , tn, Cn)
has been reduced, by sufficiency, into yn = ((nj,

∑
i∈Ij

t−1
i ), 1 ≤ j ≤ p). This

reduction has been made possible because the mixed distribution, i.e., the
distribution (ti|τi), is a member of the exponential family.

5 Semiparametric model with proportional haz-

ards

The last section of this article is devoted to a Bayesian treatment of the semi-
parametric analysis of duration models conditional on observed explanatory
variables. We restrict the attention to fixed explanatory variables (i.e., only
dependent on the individuals but not on time) acting through a proportional
hazards model. Moreover we assume for the sake of exposition that the
data are observed without censoring and we do not introduce an unobserved
heterogeneity component.

The sample is now defined by the sequence (ti, zi) , i = 1, · · · , n, where ti
is a duration and zi a vector of explanatory variables. The observations are
assumed to be independent and the sampling process is characterized by the
distribution of ti conditionally on zi. This conditional probability Φi may be
characterized by its survivor function Σi which is assumed to satisfies

Σi(t) = Σ(t)a(β,zi). (5.1)

Here Σ is an unknown survivor function of a baseline probability Φ and
a(β, zi) is a known positive function of an unknown vector of parameters β
and of the explanatory variables zi. A common choice for a is a(β, zi) =
exp β′zi.

The specification (5.1) is equivalent to

Λi(t) = a(β, zi)Λ(t) (5.2)

where Λi(t) is the conditional integrated hazard associated to
∑

i ( i.e.,
Λi(t) = − ln

∑
i(t)) and Λ(t) the integrated hazard associated to the base-

line survivor function
∑

(t). Relation (5.2) justifies the name ” proportional
hazards model”.

The sampling model is then indexed by a functional parameter (the base-
line probability Φ or equivalently

∑
or Λ) and by a vector of parameters β.
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The Bayesian specification is completed by the choice of a prior distribution.
Given β, Φ is endowed with a Dirichlet process with parameters (n0, Φ0) that
are possibly dependent on β. The vector β has a prior density m(β).

Another model has been used by Kalbfleisch (1978), specifying a Gamma
process on Λ, i.e., a Levy process with gamma distributed increments.

This section is essentially devoted to the computation of the posterior
distribution of β. This means that the functional parameter is treated as a
nuisance parameter and integrated out analytically. However the posterior
distribution of β must be treated numerically (in order to compute, for ex-
ample, its moments or its marginal densities). There is no suitable choice of
m(β) that would simplify the posterior computations and this density will
be left unspecified.

In order to simplify the computations we assume that the observed sample
contains no ties and, therefore, has n distinct durations. This assumption
may be easily verified and the following derivations may be extended to
samples with ties (see Ruggiero (1989)). Under the independence property
one may assume without loss of generality that t1 < t2 < · · · < tn.

Let us start with the joint sampling survivor function

∏
1≤i≤n

∑
i(ti) =

∏
1≤i≤n

∑
(ti)

a(β,zi)

= exp{− ∑
1≤i≤n

a(β, zi)Λ(ti)}

= exp{− ∑
1≤i≤n

a(β, zi)
∑

1≤j≤i

γj}

(5.3)

where γj = Λ(tj)− Λ(tj−1) for j > 1 and γ1 = Λ(t1). Therefore,

∏
1≤i≤n

Σi(ti) =
∏

1≤i≤n

exp{−γiAi(β)} (5.4)

where Ai(β) =
∑

i≤j≤n

a(β, zj). Note that the joint sampling survivor func-

tion depends on the functional parameter Λ through the sequence (γi)1≤i≤n

only. As a consequence, integrating out the functional parameter Λ may be
performed by integrating out the γi’s from(5.4). Furthermore, the Dirichlet
prior on Φ implies that the γi are a priori independent with log-Beta prior
density, i.e.,
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m(γi) =
Γ(n0Σ0(ti−1))

Γ(n0Σ0(ti))Γ(n0Σ0(ti−1)− n0Σ0(ti))

× (e−γi)n0Σ0(ti)(1− e−γi)n0(Σ0(ti−1)−Σ0(ti))−1.

(5.5)

After integration of the γi ’s the joint survivor function of the ti ’s is therefore
equal to

S(t1, · · · , tn|β) =
∏

1≤i≤n

∫ ∞

0
m(γi) exp{−γiAi(β)}dγi

=
Γ(n0)

Γ(n0Σ0(tn))

∏
1≤i≤n

Γ(n0Σ0(ti) + Ai(β))

Γ(n0Σ0(ti−1) + Ai(β))

=
Γ(n0)

Γ(n0 + A1(β))

∏
1≤i≤n

Γ(n0Σ0(ti) + Ai(β))

Γ(n0Σ0(ti) + Ai+1(β))
.

(5.6)

The corresponding density is given by

`(t1, · · · , tn|β)

= (−1)n ∂n

∂t1 · · · ∂tn
S(t1, · · · , tn|β)

= (−1)n Γ(n0)

Γ(n0 + A1)

∏
1≤i≤n

n0Σ
′
0i

[Γ′(n0Σ0i + Ai)Γ(n0Σ0i + Ai+1)− Γ′(n0Σ0i + Ai+1)Γ(n0Σ0i + Ai)]

[Γ(n0Σ0i + Ai+1)]
−2

(5.7)

where Γ′ is the derivative of the gamma function and Σ0i = Σ0(ti). The
posterior density of β follows from Bayes rule

m(β|ti, · · · , tn) ∝ m(β)`(t1, · · · , tn|β) (5.8)

A complete analysis of the marginalized density in this case (computation of
score and second derivative) can be found in Hakizamungu (1992).

In (5.6), we have computed the joint marginalized survivor function in
the (open) subset of (IR+)n in which all the durations are different and this
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function is differentiable on this subset. However the marginalized survivor
function is not differentiable on the subsets defined by configurations of ties
and the application of Bayes theorem becomes more complicated if the sample
has ties (see Ruggiero (1989) for a general description of this computation).

A final, natural question concerns the relation between the Bayesian mar-
ginalized likelihood (5.7) and the Cox marginalized likelihood. Note first that
the word ”marginalized” has different signification in the two approaches; in
the Bayesian analysis the marginalization is obtained through an integration
of the nuisance parameter Φ using a prior probability and in Cox analysis the
marginalization is realized on the rank statistic in the sampling distribution.
However some connection between the two results might be expected in the
case of ”non informative” prior measure on Φ (or on Γ). A natural way is to
compute the posterior distribution of β with a uniform prior measure on β,
i.e., m(β) = 1 in (5.8) and to take its limit when n0 → 0. The result becomes

m(β|t1, · · · , tn) ∝ 1

Γ(A1)

n∏
i=1

Γ′(Ai)Γ(Ai+1)− Γ′(Ai+1)Γ(Ai)

[Γ(Ai+1]2
(5.9)

Note that in (5.9) individual durations ti disappear and the rank statistics
become sufficient but this posterior density on β is rather different from the
Cox marginalized likelihood.
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vain, Louvain-la-Neuve, Belgium.
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