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Abstract

This paper investigates the reliability of SVARs to identify the dynamic effects of news shocks.
We show analytically that the dynamics implied by SVARs, using both long–run and short–run
restrictions, are biased. However, the bias vanishes as long as news shocks account for most of the
variability of the endogenous variable and the economy exhibits strong forward–looking behavior.
Our simulation experiments confirm these findings and further suggest that the number of lags is a
key ingredient for the success of the VAR setup. Furthermore, a simple correlation diagnostic test
shows that news shocks identified using both restrictions are found to exhibit a correlation close to
unity, provided that news shocks drive an overwhelming part of aggregate fluctuations.

Keywords: News shocks, SVARs, Identification, Diagnostic Test, Non–fundamentalness

JEL Class.: C32, C52, E32

Introduction

This paper contributes to the expanding literature towards the empirical relevance of anticipated

shocks, labeled as news shocks. Using a structural vector error correction model for total factor

productivity (TFP) and stock prices, Beaudry and Portier (2005, 2006) suggest an identification

procedure allowing to uncover anticipated shocks. They find out that innovations in the growth rate

of TFP are largely anticipated. Furthermore, these news shocks on TFP account for more than half

of the forecast error variance of consumption, output and hours. In a similar framework, Beaudry and
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Lucke (2009) provide a complete assessment of the leading forces of aggregate fluctuations and show

that news shocks unveil to be the main drivers of business cycle.1

The objective of this paper is to answer to the following question: under which conditions are Structural

Vector AutoRegressions (SVARs) successful at identifying news shocks and their dynamic effects?

Two arguments motivate this question. The first is that SVARs are widely used as useful tools for the

validation and estimation of DSGE models. Accordingly, failures of SVARs to provide reliable results

transmit into wrong model selection and erroneous policy prescriptions (see Christiano et al., 2006).

Second and more importantly, identifying news shocks in the SVAR setup happens to be a tedious

task.2 Indeed, the presence of news shocks in the economy may induce a non–fundamental time series

representation of the data (see Fève, Matheron and Sahuc, 2009 and Leeper, Walker and Yang, 2009).

Such non fundamentalness corrupts the identification of structural shocks from past and current data,

an assumption taken as given in the VAR analysis.3

To identify and understand the implications of news shocks, we use a SVAR setup with two observable

variables under the solution of a simple linear forward-looking model with rational expectations. The

first observable variable can be interpreted in several ways: growth rate of TFP (as in Beaudry and

Portier, 2006), fiscal policy (see Leeper, Walker and Yang, 2009), dividend growth rate or any stochas-

tic forcing variable that can be subjected to news shocks. The second observable variable represents

an endogenous decision variable that heavily depends in a forward looking fashion on the anticipated

and unexpected shocks. In spite of its abusive simplicity, the structural model considered here as the

Data Generating Process (DGP) allows us to understand the implications of news shocks in a SVAR

framework given its analytical tractability. Furthermore, we adopt the approach proposed by Beaudry

and Portier (2005, 2006). Their empirical analysis consists in two steps. First, they apply sequentially

long–run and short–run restrictions on the VAR model to identify the news shocks. Second, they

compute the correlation between the two news shocks recovered from the two identification strategies.

Such an indicator is intended to show the power of the two identification approaches to uncover the

relevance of the identified news shocks.4 In Beaudry and Portier (2005, 2006), this procedure is actu-

ally shown to identify correctly the structural shocks in that the empirical correlation is found to be

positive and close to one, suggesting that positive news shocks in productivity are preceded by stock

market booms.

1A large part of the business cycle literature tackles also the issue of news shocks using Dynamic Stochastic General
Equilibrium (DSGE) models among which Davis (2007), Fujiwara and Shintani (2008), Schmitt–Grohé and Uribe (2008)
and Khan and Tsoukalas (2009). For example, Schmitt–Grohé and Uribe (2008) show that standard RBC models
augmented with real rigidities (habits formation in consumption and leisure, investment adjustment costs and variable
capacity utilization) generate news driven business cycles and anticipated shocks explain more than two thirds of the
predicted aggregate fluctuations.

2See Beaudry and Portier (2005) and (2006) and Beaudry and Lucke (2009) for the estimation of news TFP shocks
from SVARs. See also, e.g., Ramey (2009) and Mertens and Ravn (2009a) for quantitative investigations about the
usefulness of SVARs for the identification tax policy shocks.

3See the references in Leeper, Walker and Yang (2009) about non–fundamentalness issues in rational expectation
econometrics.

4Other empirical strategies have been implemented in a VAR setup. Barsky and Sims (2010) identify news shocks as
those explaining the overwhelming fluctuations in TFP. Mertens and Ravn (2009b) propose an augmented fiscal SVAR
estimator which is robust to the presence of anticipation effects.
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A number of key results arise from our paper. First, we find that the estimated impulse responses

function (IRF) using either a long–run or a short–run restriction are biased. This is particularly true

when the news contains longer anticipation horizon. Second, a short–run restriction performs better

than a long–run restriction. In particular, a SVAR model with a long–run restriction yields biased

estimated responses even in the case where the VAR model does not display non–fundamentalness.

Third, the estimated bias is strongly reduced when the fraction of fluctuations in the economy driven

by news shocks is substantial and the VAR model is estimated using a sufficient number of lags.

Indeed, estimating a VAR model with a number of lags smaller than the length of news implies a lag

truncation–bias. Finally, performing the simple correlation diagnostic test of Beaudry and Portier, we

obtain that the correlation between the innovations identified using long run restrictions and those

obtained with short–run restrictions is almost equal to one when anticipated shocks mostly drive

the fluctuations in the model and the economy is subject to strong forward–looking dynamic. These

findings are both obtained from analytical results and simulation experiments.

The paper is organized as follows. In a first section, we expound our reference setup and we discuss

non fundamentalness issues. The second section reports the identified dynamic responses using both

long–run and short–run restrictions. The third section assesses the reliability of SVARs from different

simulation experiments. The last section concludes.

1 The Setup

We use a simple model as the DGP and investigate under which conditions VAR models admit a

non–fundamental representation.

1.1 The Model

The model economy takes the following form5

yt = aEtyt+1 + bEt∆xt+1, (1)

∆xt = σεεt−q + σuut σε, σu > 0 , (2)

where yt denotes a single endogenous variable and xt is a single exogenous variable, specified in first–

difference. Et denotes the expectation operator conditional on the information set in period t, i.e.

when agents must take their decisions about yt. The parameters a and b in the behavioral equation (1)

are assumed to be non-zero. For simplicity, hereafter, we normalize b to unity.6 Equation (1) naturally

emerges from any optimization problem in stochastic equilibrium models. Typically, equations (1)–(2)

define the log–linear equilibrium conditions for an asset–pricing model where yt denotes the log of the

5We have also investigated another model economy of the form yt = aEtyt+1 + b∆xt. Our quantitative findings are
almost identical. The results are available from the authors upon request.

6Our main findings are unaffected by this normalization. The results are also available from the authors upon request.
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price–dividend ratio and ∆xt the growth rate of exogenous dividends. Equation (2) is the backbone

of our analysis. It states that, at any point in time t, private agents observe the two components

of ∆xt: an anticipated component observed q ≥ 1 periods in advance, εt−q and an unanticipated

component, ut. Furthermore, these shocks are assumed to be serially uncorrelated with zero mean

and unit variance and are mutually uncorrelated at all leads and lags.

Excluding sunspots (i.e. we impose |a| < 1) and bubbles (i.e. we restrict the solution to satisfy

limT→∞Eta
T yt+T = 0) and using the process (2), we obtain the solution (or reduced form) for yt

yt = σε

q−1∑
i=0

aq−1−iεt−i (3)

Equation (3) together with equation (2) represent the DGP. We assume that the variables ∆xt and yt

are observed by the econometrician but she cannot distinguish between the two shocks driving ∆xt.

This observability problem is made more pernicious as the econometrician is faced with two permanent

shocks.7 In a more compact way our DGP writes as

Zt = H(L)vt, (4)

where Zt = (∆xt, yt)
′ , vt = (εt, ut)

′ and the matrix H(L) is given by

H(L) =

(
σεL

q σu
σε
∑q−1

i=0 a
q−1−iLi 0

)
.

1.2 Non–fundamentalness issues

The issue of this paper is to investigate under which conditions, SVARs can properly uncover the true

dynamic responses of a DGP that does not admit a fundamental times series representation. A formal

definition of fundamentalness is the following (see Alessi, Barigozzi, and Capasso, 2008)

Definition 1. Consider a covariance stationary process Zt. Then the representation Zt = H(L)vt is

fundamental if: i) vt is a white noise vector; ii) H(L) has no poles of modulus less or equal than unity,

i.e. it has no poles inside the unit disc; iii) detH(z) has no roots of modulus less than unity, i.e. it

has no poles outside the unit disc detH(z) ̸= 0, ∀z ∈ C s.t. |z| < 1.

Given H(.) in (4), we deduce

H(z) =

(
σεz

q σu
σε
∑q−1

i=0 a
q−1−izi 0

)
.

It follows that detH(z) = −σuσε
∑q−1

i=0 a
q−1−izi. When q = 1, the determinant is given by σuσε ̸= 0

for non-zero values of σu and σε. The system is accordingly fundamental. However for any anticipation

7Notice that we follow the empirical strategy adopted by Beaudry and Portier (2005), (2006) by assuming that the
variable subject to news shocks is observed, together with yt. In their paper, the observed forcing variable xt is the log
of TFP and yt is defined as the excess return on stock prices.
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horizon beyond two periods (q ≥ 2), the roots µi of detH(z) are such that |
∏q−1

i=0 µi| = |aq−1| < 1.

This implies that at least one root lies within the unit circle. Consequently the system (4) is non

fundamental as long as q ≥ 2. For example, when q = 2, we obtain |z| = 1/|a| > 1.

2 Estimation and Identification

The above results show that when q ≥ 2, the DGP does not admit a fundamental bi–variate repre-

sentation. Then, we restrict our analytical calculations to q = 1, 2. We consider an econometrician

whose objective is to identify news shocks using SVARs. For such a purpose, the econometrician first

estimates an appropriate VAR(p) model from the observed variables ∆xt and yt, where p denotes the

number of lags. Then she applies structural restrictions on the estimated VAR model to identify the

relevant shocks.

We consider a VAR(1) model as a simple way to statistically represent the solution of our structural

model.8 The estimated VAR model is given by(
∆xt
yt

)
= A

(
∆xt−1

yt−1

)
+

(
υ1t
υ2t

)
, (5)

where υt = (υ1,t, υ2,t)
′ is the vector of canonical errors and

A =

(
a11 a12
a21 a22

)
.

The elements of the matrix A are estimated using linear projections of ∆xt and yt on their own lagged

values.

2.1 The Fundamental Case

When q = 1, the DGP admits a VAR(1) representation(
∆xt
yt

)
=

(
0 1
0 0

)(
∆xt−1

yt−1

)
+

(
σuut
σεεt

)
(6)

This VAR(1) representation suggests that the econometrician will find that current values of the

endogenous variable yt may convey information useful to forecast the future values of the exogenous

shock ∆xt+1. The estimated VAR model under our DGP thus implies that the endogenous variable

yt Granger causes the exogenous variable ∆xt. This represents an additional illustration of pitfalls in

the use of causality test (see Hamilton, 1994, for another example).

Before proceeding with SVARs, we compute two matrices that are useful for the identification of news

shocks. The VAR(1) model admits a VMA(∞) representation, Zt = B(L)υt, with Zt = (∆xt, yt)
′ and

8Analytical and tractable solutions are available only for p = 1. We provide simulation results for a higher number of
lags and show that they are in line with the theoretical ones.
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B(L) = (I −AL)−1. The covariance matrix of the canonical innovations is thus given by

Ωυ = σ2ε

(
θ 0
0 1

)
,

where θ = σ2u/σ
2
ε . This parameter accounts for the relative variance of standard unexpected shocks

to news shocks. As we will show latter, this parameter will play a central role in the ability of the

econometrician to consistently identify the news shock. We define the long–run covariance matrix (the

spectral density of the vector Zt at zero frequency) as ΣLR = B(1)ΩυB(1)′, where Ωυ is the covariance

matrix of the canonical innovations and B(1) = (I−A)−1. We deduce the long–run covariance matrix

ΣLR = σ2ε

(
1 + θ 1
0 1

)

Long–Run Restriction Let ηt = (η1,t, η2,t)
′ be the vector of structural shocks. We have the struc-

tural representation Zt = B(L)υt ≡ C(L)ηt, where C(L) = B(L)S and S is a non-singular matrix

constructing the innovations υt as linear combinations of structural disturbances ηt. As usual, we

impose an orthogonality assumption on the structural shocks, which combined with a scale normal-

ization implies V ar(ηt) = I2. However, this is not enough to identify S and following Blanchard

and Quah (1989), we impose a long–run restriction. The news shock is then identified as the only

shock with a long–run effect of the level of xt (see Beaudry and Portier, 2006). Given the ordering

of Zt, C(1) must be lower triangular. This amounts to imposing that C(1) be the Cholesky de-

composition of ΣLR = C(1)C(1)′. Given this identity, we can easily recover C(1) and accordingly

S = B(1)−1C(1) ≡ (I −A)C(1).

C(1) = σε

( √
1 + θ 0
1√
1+θ

√
θ

1+θ

)
, S =

σε√
1 + θ

(
θ −

√
θ

1
√
θ

)
We assess this SVAR at identifying news shocks through the dynamic responses of ∆xt and yt. These

IRFs are given by (in parentheses, we report the true responses)

∂∆xt
∂η1t

= θ√
1+θ

σε (≥ 0) ,

∂∆xt+1

∂η1t
= 1√

1+θ
σε (≤ σε) ,

∂yt
∂η1t

= 1√
1+θ

σε (≤ σε)

∂yt+1

∂η1t
= 0 (= 0).

These dynamic responses are driven by θ (the relative size of standard surprise shocks with respect to

news shocks) and are thus biased, if we except the response of yt at one lag. Although private agents

receive news about future value of x in the DGP, the econometrician mistakenly rejects the presence

of news as the variable ∆xt contemporaneously responds to η1t. Interestingly, the smaller is θ, the

smaller the bias. Hence, as the fraction of fluctuations driven by news shocks gets larger (θ → 0), the

SVAR consistently identifies news shocks.

To provide an intuition for such a result, we recover the identified shock using long–run restrictions

6



as a function of the structural shocks, εt and ut:

η1,t =
1

σε
√
1 + θ

{σuut + σεεt}

=

√
θ

1 + θ
ut +

1√
1 + θ

εt

The econometrician does not identify the true news shocks but rather a weighted average of the antic-

ipated and the unanticipated shocks. Only when the relative volatility of news shocks is substantial

(σε >> σu or θ → 0) in the economy, will the identified shock be the true one.

Short–Run restrictions In this setup, the econometrician uses some prior information to restrict

the impact response of xt. The restriction is imposed now on the matrix C̃(0) = B(0)S̃ ≡ S̃, the

matrix of contemporaneous responses (see, Sims, 1980). Notice that we use again an orthogonality

assumption on the structural shocks and a scale normalization. News shocks are assumed to have

a zero impact on ∆xt. This corresponds to s11 = 0 or to the following restriction on the canonical

disturbance υ1,t = s12η̃2,t, where the vector of innovations is now η̃t = (η̃1,t, η̃2,t)
′. The previous system

rewrites as Zt = B(L)υt ≡ C̃(L)η̃t and

S̃ =

(
0 s12
s21 s22

)
.

In this SVAR model, the short–run variance covariance matrix of the system is given C̃(0)C̃(0)′ =

B(0)ΩυB(0)′. This implies that S̃S̃′ = Ωυ, i.e. S̃ is a Cholesky decomposition of the variance

covariance matrix Ωυ of the canonical residuals. Using this decomposition, we obtain

S̃ = σε

(
0

√
θ

1 0

)
.

The IRFs at zero and one lag are given by (in parentheses, we report the true responses)

∂∆xt
∂η̃1t

= 0 (= 0) ,

∂∆xt+1

∂η̃1t
= σε (= σε) ,

∂yt
∂η̃1t

= σε (= σε) ,

∂yt+1

∂η̃1t
= 0 (= 0) .

These responses are exactly those implied by the DGP of the underlying economy. Thus, the estimated

dynamics implied by a short–run restriction are independent from θ. No matter, how these forces are

allocated, the econometrician does perfectly identify the news shock. This is because the news shock

is perfectly uncovered under this identification scheme (η̃1t = εt).

The Correlation Diagnostic Test Beaudry and Portier (2006) have performed a test allowing

to assess the empirical plausibility of the news shock hypothesis. Formally speaking, this simple

diagnostic test consists in computing the correlation between the identified news shocks recovered

from long–run and short–run restrictions (η1,t and η̃1,t in our previous notations) and see how this
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correlation evolves. Beaudry and Portier (2006) obtain a correlation close to one and conclude that

this result strongly supports their empirical findings about the relevance of news shocks.

Using the identified news shocks from the long–run and short–run restrictions, we get

corr(η1t, η̃1t) =
1√
1 + θ

This result shows when news shocks are the dominant source of fluctuations (θ → 0), the long–run

identification strategy provides accurate estimates and the correlation then tends to unity.

2.2 The Non–Fundamental Case

When q = 2, the DGP is now defined by

∆xt = σuut + σεεt−2 (7)

yt = aσεεt + σεεt−1 (8)

Using these two equations as the DGP, we assume that the econometrician seeks to estimate a VAR(1)

model.9 The resulting matrix A in (5) is given by

A =

(
0 ϕ
0 aϕ

)
.

where ϕ = 1/(1+a2). Notice that the previous remarks about the Granger causality still apply. Given

the DGP and the matrix A of the VAR model, the canonical innovations υ1,t and υ2,t can be expressed

in terms of the structural shocks(
υ1,t
υ2,t

)
=

(
σuut − aϕσεεt−1 + (1− ϕ)σεεt−2

aσεεt + (1− a2ϕ)εt−1 − aϕεt−2

)
. (9)

We then deduce var(υ1,t) = (θ + 1 − ϕ)σ2ε , var(υ2,t) = (ϕ + a2)σ2ε and cov(υ1,t, υ2,t) = −aϕσ2ε . The

covariance matrix of the canonical innovations is thus given by:

Ωυ = σ2ε

(
θ + 1− ϕ −aϕ

−aϕ ϕ+ a2

)
From Ωυ, B(1) = (I −A)−1 and ΣLR = B(1)ΩυB(1)′, we obtain the long–run covariance matrix

ΣLR = B(1)ΩυB(1)
′
=

σ2ε
1− aϕ

(
(1 + θ)(1− aϕ) 1

1 ϕ+a2

1−aϕ

)
.

9Obviously, fitting a VAR(1) model to these data will lack information about the relevant dynamics. See Section 3
for various illustrations using simulated data.
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Long–Run Restriction Applying a long–run restriction on the estimated VAR(1) model yields

C(1) =
σε

1− aϕ
κ

(
(1− aϕ)

√
1 + θ 0

1√
1+θ

√
(ϕ+ a2)(1 + θ)− 1

)
,

S =
σε

1− aϕ

(
(1− aϕ)

√
1 + θ − ϕ√

1+θ
−ϕ
√

(ϕ+ a2)(1 + θ)− 1
1−aϕ√
1+θ

(1− aϕ)
√

(ϕ+ a2)(1 + θ)− 1

)
.

Furthermore we have C(L) = B(L)S = B(L)B(1)−1C(1). The structural model is given by(
∆xt
yt

)
=

(
0 ϕ
0 aϕ

)(
∆xt−1

yt−1

)
+

σε
1− aϕ

(
(1− aϕ)

√
1 + θ − ϕ√

1+θ
−ϕ
√

(ϕ+ a2)(1 + θ)− 1
1−aϕ√
1+θ

(1− aϕ)
√

(ϕ+ a2)(1 + θ)− 1

)(
η1,t
η2,t

)
.

The moving–average representation is obtained by computing B(L) =
∑∞

i=0A
iLi. The form of A

implies that Ai = (aϕ)i−1A for i = 1, 2, . . .. The IRF at horizon i ≥ 1 is therefore given by the

product AiS = (aϕ)i−1AS. We concentrate our analysis on the dynamics implied by news 0, 1 and 2

periods after the shock.

On impact, we have (in parentheses, we report the true responses)

∂∆xt
∂η1,t

=
σε

1− aϕ

[
(1− aϕ)

√
1 + θ − ϕ√

1 + θ

]
(≶ 0) ,

∂yt
∂η1,t

=
σε√
1 + θ

(≶ aσε).

The estimated responses are biased. However the size of this bias is essentially determined by how

much news shocks are relevant in the economy (the value of θ) and the strength of the forward–

looking behavior of the economy (the value of a). To see this, assume that θ → 0 and a → 1. Then

the estimated responses become

lim
θ→0,a→1

∂∆xt
∂η1,t

= 0 , lim
θ→0,a→1

∂yt
∂η1,t

= σε.

Under these two restrictions, the estimated IRFs are unbiased. The intuition of this result is the

following. First, the parameter a controls the severity of the non–fundamentalness problem as shown

in section 1.2. The closer is a to unity, the less severe is the non–invertibility problem raised by

news shocks (see Sims, 2009, for a similar statement). Second, news shocks must represent most of

fluctuations in the underlying economy, as in the fundamental case. Similar results follow when we

consider IRF at one and two lags.

Let us now consider the responses of x and y one period after the shock

∂∆xt+1

∂η1,t
=

ϕσε√
1 + θ

(> 0) ,
∂yt+1

∂η1,t
=

aϕσε√
1 + θ

(< σε).

Notice that the estimated responses are biased, even if we impose θ → 0 and a → 1. A possible

explanation of this result is that the VAR model does not include enough lags. Indeed, inspecting

the time series properties of υ1,t and υ2,t in (9) shows that these two errors terms display a sizeable
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degree of serial correlation. This will be shown in our simulation experiments in section 3. Finally,

two periods after the shock, we obtain

∂∆xt+2

∂η1,t
=

ϕ2σε√
1 + θ

(< σε) ,
∂yt+2

∂η1,t
=

(aϕ)2σε√
1 + θ

(> 0).

When θ → 0 and a→ 1 , the SVAR model yields biased estimates. Our previous statement about lag

truncation prevails as we will show in the next section.

Short–Run restrictions Applying now a short–run restriction on the estimated VAR(1) model

yields

S̃ =
σε√

1 + θ − ϕ

(
0 1 + θ − ϕ√

(ϕ+ a2)θ + a2(1− ϕ) −aϕ

)
.

The IRFs are given by the elements of the matrix AiS̃ = (aϕ)i−1AS̃ for i = 1, 2, . . .. The identification

strategy imposes a zero response of x on impact, by construction equal to the true one. The response

of y on impact is (in parentheses, we report the true responses)

∂yt
∂η̃1,t

= σεψ (> aσε) and lim
θ→0

∂yt
∂η̃1,t

= |a|σε .

where ψ =
√

((ϕ+ a2)θ + a2(1− ϕ))/(1 + θ − ϕ). When θ → 0 and a > 0, a short–run restriction

allows to perfectly uncover the true impact responses of x and y to a news shock. This is in contrast

with the long–run identification scheme.

One period after the shock, we obtain the following IRFs

∂∆xt+1

∂η̃1,t
= ϕσεψ (> 0) ,

∂yt+1

∂η̃1,t
= aϕσεψ (≶ σε).

As in the long–run restriction case, the estimated response with a short–run restriction is biased and

polluted by the two key parameters θ and a. Finally, two periods after the shock, ∆x and y respond

as follow
∂∆xt+2

∂η̃1,t
= aϕ2σεψ (≶ σε) ,

∂yt+2

∂η̃1,t
= a2ϕ2σεψ (> 0).

When θ → 0 and a→ 1 , the estimated responses are biased, as in the case with a long–run restriction.

The Correlation Diagnostic Test Using the two previous SVARs, we can determine the relation

between the two identified shocks η1,t and η̃1,t and the structural shocks of the DGP:

η1,t =
1

σε(1 + θ)

{
ut +

aϕ

1− aϕ
εt−1 +

1− ϕ

1− aϕ
εt−2

}
η̃1,t =

aϕ

σε

√
1 + θ − ϕ

(ϕ+ a2)(1 + θ)− 1

{
1

1 + θ − ϕ
ut − εt−1 + (1− ϕ)εt−2

}
Direct calculations yield

corr(η1t, η̃1t) =
γ

λ
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where
γ = [aϕ+ (1− ϕ)2]θ + (1− ϕ)2

λ = (1 + θ)(1− aϕ)
√

(θ + 1− ϕ)[(ϕ+ a2)(1 + θ)− 1]

Taking limits at relevant values shows that

lim
θ→0,a→1

γ =
1

4
, lim

θ→0,a→1
λ =

1

4
,

which leads to

lim
θ→0,a→1

corr(η1t, η̃1t) = 1.

The condition θ → 0 (σε ≫ σu) is necessary to get a correlation diagnostic test close to unity.

Interestingly, this corresponds to a situation where the two identification schemes yield dynamic

responses close to the true ones. However, the ability of these two restrictions to properly uncover

the true responses hinges also on the strength of the forward–looking behavior of the endogenous

variable y. Higher forward–looking dimension (a → 1) allows to dilute the negative effects of non–

fundamentalness on the estimated dynamics.

3 Simulation Experiments

We now use the model (4) to simulate artificial data, over which we estimate SVARs with long–run

and short–run restrictions. To compute artificial time–series of the variables of interest, we draw

N = 1000 independent random realizations of the innovations ut and εt−q. For given values of a, σu

and σε, we compute N = 1000 equilibrium paths for ∆xt and yt. These simulations are conducted for

different values of q, i.e q = [1, 2, 4]. In all experiments, the sample size is equal to 250 time periods,

as it is usually the case with actual data. In order to reduce the influence of initial conditions, the

simulated sample includes 1000 initial points which are subsequently discarded before the estimation

of VAR models. For each draw, the number of lags in VAR models is set to p = [1, 2, 4, 8], a range

of values typically used in empirical studies. In order to evaluate the relative performance of the

different approaches, we compute the equally weighted (over horizons) cumulative Mean Absolute

Error (MAE) and Root Mean Square Error (MSE).10 A summary of simulation results is reported in

Table 1. This table contains the MAE and the RMSE for different values of q, σu/σε ≡
√
θ, a and

p. It also includes the correlation between the two news shocks, identified using either a long–run

restriction or a short–run restriction. Figures 1–10 illustrates the results included in Table 1.

We investigate several issues previously raised in the analytical part of the analysis: long–run versus

short–run restrictions, the relative size of shocks, the number in lags in VARs, the correlation diagnostic

test and the forward–looking dimension.

10The equally weighted cumulative MAE and RMSE at horizon h is defined as (1/h)
∑h

i=0 maei and (1/h)
∑h

i=0 mesi,

respectively, where maei = (1/N)
∑N

j=1 |irfi(model) − irfi(svar)
j | and msei = ((1/N)

∑N
j=1(irfi(model) −

irfi(svar)
j)2)2 represent the MAE and the MSE at horizon i, respectively. irfi(model) denotes the model’s impulse

response and irfi(svar) = (1/N)
∑N

j=1 irfi(svar)
j the mean of impulse responses over the N simulation experiments

obtained from SVARs.
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Long–run versus Short–run restrictions The SVAR model with a short–run restriction performs

better than the one with a long–run restriction. The MAE and the RMSE for both x and y are always

smaller. This is especially verified when the standard–error of the expected and unexpected shock

are equal (σu/σε = 1). In this case, the identification assumption with a long–run restriction is

strongly violated since two shocks have a long run effect of the same size on the variable x. This result

holds, even if the DGP does not raise any non–fondamentalness issue. To see this, consider the case

where q = 1. In this situation, the DGP is invertible and admits an exact VAR(1) representation,

independent from the value of a. The first part of Table 1 includes the simulation results with q = 1

for different values of p and σu/σε and Figures 1 and 2 report the dynamic responses of x and y. When

σu = σε, a SVAR model with long–run restriction over–estimates the contribution of the news shock to

x since this identification scheme cannot separate the two permanent shocks while it under–estimates

the response of y (see the first panel of Figure 2). At the same time, the short–run restriction almost

perfectly uncovers the news shock and its dynamic effect of x and y. These results are consistent with

our theoretical findings in the fundamental case. Indeed, using long–run restriction the econometrician

identifies a weighted average of the two permanent shocks

η1,t =
σu√
σ2u + σ2ε

ut +
σε√

σ2u + σ2ε
εt .

When a short–run restriction is applied to SVAR, the news shock is correctly identified since η̃1,t = εt.

This can be easily seen from Figures 1 and 2: the IRFs obtained using a short–run restriction mimic

very well those of the DGP while IRFs obtained from a long–run restriction entail a bias. Consequently,

the MAE et RMSE are smaller with a short–run restriction. When σu << σε, the discrepancy between

the two approaches is strongly reduced because the weight allocated to the news shocks is higher and

then a SVAR with long–run restriction is able to properly identify the news shock.

The relative size of shocks When σu decreases (relative to σε), the MAE and RMSE of the two

SVARs decrease. This is especially true when we consider non–fundamental cases (q > 1) and the

SVAR model with a long–run restriction. However, this is the case only when the VAR model includes

a sufficient number of lags (see Table 1 and more specifically figures 8 and 9). Indeed, when q = 1,

the error (MAE and RMSE) increase with σu/σε for any selected lags p ∈ [1, 8]. Conversely, when q

takes larger values (say, 2 and 4), a small number of lags (p < q) does not imply a decrease in the

estimation error. For example, when q = 4, selected p = 1 or p = 2, small ratio σu/σε is not associated

with small estimation errors. However as the number of lags in the VAR model is such that p ≥ q

the error monotonically decreases with the ratio σu/σε. In such a case, the correlation between the

two identified news shocks increases and tends to unity for small σu/σε. These results confirm our

previous analytical findings that a small value of σu/σε (or equivalently θ → 0) is not sufficient to

obtain consistent estimated of the true dynamic responses.

The number of lags in VARs Our previous analytical results are obtained under the strong

assumption that a VAR(1) model accurately represents the dynamics of x and y as implied by the

12



DGP. So, we remain silent about the lag–truncation bias in VAR models. Simulation experiments

bring insightful information on this issue. Increasing the number of lags in the VAR model allows

to reduce the error (MAE and RMSE). This is especially true when q takes larger value. The first

panel of Figures 3 and 4 reports the dynamic responses of x and y when q = 2 for σu/σε = 1. When

a VAR model with p = 1 is estimated under this DGP, SVARs (either with long–run and short–run

restrictions) face some troubles in reproducing the true IRFs. The problem is more pronounced when

these dynamic responses are identified from a SVAR model with a long run restriction, which implies

a biased response of x on impact. Estimating a VAR with a number of lags p < q induces a lag–

truncation bias (see Ravenna, 2007). Given that the VAR(p) model does not well approximate the

true DGP, the econometrician will face a sizeable bias when omitting lags. Increasing the number of

lags helps at reducing the bias essentially when a short–run restriction is used, whereas the accuracy

of the SVAR with a long–run restriction slightly improves. This finding is reinforced when we consider

q = 4. The estimated dynamic responses of x and y are reported in the first panel of Figures 5 and

6. Again, the two SVARs poorly mimic the true IRFs when p < q. For p = 1, the two SVAR models

behaves similarly, except on impact. As p increases, the SVAR model with a short–run restriction

more accurately reproduces the true IRFs than the SVAR model with a long–run restriction. The

latter still implies an immediate response of x. However, for q small, i.e. q = 1, increasing p does not

improve the accuracy of SVARs, since the DGP admits a VAR(1) representation. In this situation

only, including a larger number of lags leads to an over–parametrization of the VAR model and affects

the precision (RMSE) of the estimated responses. Furthermore, gains from increasing the number of

lags in a VAR model are more substantial for small ratios of σu/σε as witnessed by the second panels

of Figures 3–6.

The correlation diagnostic test An interesting result emerging from these simulations is that the

correlation diagnostic test can lead to spurious conclusions. Such misleading conclusions are drawn

when the number of lags p is too small regarding the length of expected shock q. To see this, let us

consider again the case where q = 2 and σu = σε. When p = 1, the correlation is 0.7079, whereas it is

equal to 0.6009 when p = 2 (see Table 1). This finding is illustrated in Figure 7. This figure reports

the value of the correlation between the two identified news shock, when σu/σε varies on the [0.01, 1]

interval. When q = 1, the correlation unambiguously decreases with σu/σε. However, when q = 2 or

q = 4, this correlation is not monotonic with σu/σε for p too small regarding the selected value of q.

Let us consider the case where q = 4. The last panel of Figure 7 shows that the correlation displays an

hump–shaped pattern when p = 1 and p = 2. This finding is explained by Figures 8 and 9, that report

the RMSE of x for different values of σu/σε and the two identification schemes. When p = q = 1,

increasing σu/σε unambiguously implies larger errors in the estimated responses (see the first panel

of this figure). However, when q = 2 or q = 4, this is not the case when p < q. The RMSE is only

monotonic with σu/σε when the VAR model includes a sufficient number of lags. These results mean

that the correlation diagnostic test is meaningful only when the VAR(p) model is properly specified

with respect to anticipation horizon of news shock.
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The forward–looking dimension The effect of a on the reliability of SVARs is rather small when

the number of lags is appropriately chosen. Conversely, when p < q, the value of a can deeply affect the

correlation between the innovations (see the Table 1). This finding is illustrated by Figure 10. When

p = 1 and q = 4, increasing a leads to a larger correlation between the two innovations. Conversely,

when p = q = 4, the effect of a on this correlation is very small. Similar findings also hold for the

errors (MAE, RMSE) of the estimated responses. Notice that these findings with q = 4 echo those

obtained from our analytical results with q = 1. Indeed, we have shown that when q = 1, all the

results are independent from the values of a. Moreover, our simulation experiments confirm these

asymptotic results in finite sample11

4 Conclusion

This paper inspects under which conditions, SVARs can be used to properly identify news shocks.

Indeed, the presence of news shocks in the economy may induce a non–fundamental time series repre-

sentation of the data. Such non fundamentalness corrupts the identification of shocks using SVARs.

Then the estimated IRFs obtained from long–run and short–run restrictions entail a sizeable bias.

Both analytical and simulation based results shows that the anticipation horizon, the forward–looking

dimension, the number of lags in VARs and the relative size of news shocks in the economy matter

for the reliability of SVARs in identifying news shocks and their dynamic effects.

11This is why we do not report simulation results for different values of a when q = 1 in Table 1.
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Table 1: Simulation Results

MAE RMSE
Long–Run Short–Run Long–Run Short–Run

q σu/σε a p x y x y x y x y Corr

1 1 0.90 1 0.6552 0.2743 0.0941 0.0677 0.4489 0.1033 0.0360 0.0146 0.4978
2 0.6500 0.3050 0.1234 0.0980 0.4498 0.1276 0.0431 0.0212 0.4990
4 0.6398 0.3305 0.1766 0.1519 0.4461 0.1511 0.0575 0.0352 0.5007
8 0.6154 0.3593 0.2389 0.2104 0.4257 0.1822 0.0817 0.0562 0.4913

1 0.1 0.90 1 0.2530 0.2442 0.0748 0.0747 0.0835 0.0827 0.0167 0.0166 0.9859
2 0.2722 0.2643 0.1051 0.1050 0.0968 0.0967 0.0233 0.0233 0.9824
4 0.2928 0.2846 0.1584 0.1579 0.1132 0.1136 0.0375 0.0372 0.9750
8 0.3154 0.3062 0.2155 0.2134 0.1319 0.1329 0.0591 0.0577 0.9569

2 1 0.90 1 0.6561 0.4045 0.2401 0.2549 0.4666 0.2238 0.0579 0.0556 0.7079
2 0.6674 0.3665 0.2484 0.2354 0.4801 0.1830 0.1017 0.0844 0.6009
4 0.6569 0.3542 0.2646 0.2357 0.4724 0.1707 0.1047 0.0751 0.5685
8 0.6353 0.3554 0.3089 0.2617 0.4525 0.1757 0.1283 0.0860 0.5433

0.99 1 0.6630 0.3889 0.2494 0.2543 0.4766 0.2081 0.1242 0.1088 0.6611
2 0.6648 0.3610 0.2501 0.2289 0.4765 0.1768 0.1027 0.0799 0.5951
4 0.6554 0.3441 0.2690 0.2306 0.4703 0.1620 0.1078 0.0724 0.5523
8 0.6347 0.3481 0.3159 0.2617 0.4516 0.1713 0.1337 0.0863 0.5193

0.1 0.90 1 0.3612 0.3354 0.2412 0.2264 0.1605 0.1534 0.1049 0.0985 0.9797
2 0.2655 0.2571 0.1635 0.1632 0.6648 0.3610 0.2501 0.2289 0.9914
4 0.2766 0.2656 0.2082 0.2073 0.1055 0.1049 0.0595 0.0591 0.9819
8 0.2912 0.2774 0.2559 0.2532 0.1162 0.1155 0.0823 0.0804 0.9631

0.99 1 0.3527 0.3353 0.2375 0.2320 0.1572 0.1537 0.1028 0.0993 0.9927
2 0.2646 0.2559 0.1669 0.1667 0.0959 0.0952 0.0454 0.0453 0.9909
4 0.2764 0.2651 0.2129 0.2121 0.1054 0.1048 0.0622 0.0618 0.9810
8 0.2911 0.2772 0.2622 0.2594 0.1162 0.1157 0.0863 0.0844 0.9621

4 1 0.90 1 0.6545 0.4588 0.4173 0.4274 0.4880 0.2852 0.2278 0.2163 0.8221
2 0.6698 0.4545 0.3677 0.3752 0.5057 0.2823 0.1972 0.1876 0.7840
4 0.7045 0.4743 0.4250 0.4005 0.5467 0.2904 0.2144 0.1889 0.6720
8 0.6686 0.4072 0.3920 0.3331 0.5010 0.2193 0.1949 0.1367 0.6257

0.99 1 0.6900 0.4414 0.4602 0.4473 0.5379 0.2614 0.2735 0.2273 0.7061
2 0.6832 0.4255 0.4066 0.3794 0.5259 0.2485 0.2323 0.1864 0.6972
4 0.6932 0.4522 0.4414 0.3990 0.5302 0.2633 0.2280 0.1877 0.6534
8 0.6613 0.3620 0.4134 0.3236 0.4906 0.1786 0.2143 0.1312 0.5701

0.1 0.90 1 0.4657 0.4587 0.4282 0.3991 0.2449 0.2531 0.2200 0.2083 0.8937
2 0.4309 0.3960 0.3780 0.3452 0.2161 0.2055 0.1875 0.1701 0.9417
4 0.2412 0.2320 0.2703 0.2697 0.0828 0.0820 0.0930 0.0928 0.9941
8 0.2465 0.2289 0.2801 0.2773 0.0870 0.0842 0.0993 0.0977 0.9746

0.99 1 0.4630 0.4401 0.4428 0.4293 0.2476 0.2408 0.2365 0.2226 0.9843
2 0.4129 0.3885 0.3764 0.3642 0.2078 0.2004 0.1886 0.1793 0.9878
4 0.2354 0.2257 0.2888 0.2884 0.0810 0.0800 0.1058 0.1056 0.9932
8 0.2447 0.2257 0.3015 0.2991 0.0864 0.0836 0.1145 0.1129 0.9722

Note: MAE: equally weighted (over horizons) cumulative Mean Absolute Error; RMSE: equally weighted (over horizons)
cumulative Root Mean Square Error. Long–Run: SVAR with a long–run restriction; Short–Run: SVAR with a short–run
restriction; the sample size is equal to 250 time periods; The simulated sample includes 1000 initial points which are
subsequently discarded before the estimation of VAR models; The selected horizon for IRFs is 11. 1000 Monte-Carlo
experiments.
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Figure 1: IRFs of the variable xt (q = 1)
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(b) σu = 0.1
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Note: The solid line corresponds to the true IRF. The dashed line corresponds
to the IRF with a long–run restriction. The dotted line corresponds to the IRF
with a short–run restriction. The results are obtained from our benchmark
calibration. The selected horizon for IRFs is 11. The size of the sample is
equal to 250. The average values for IRFs are obtained from 1000 Monte-Carlo
experiments.
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Figure 2: IRFs of the variable yt (q = 1)
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(b) σu = 0.1
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Note: The solid line corresponds to the true IRF. The dashed line corresponds to
the IRF with a long–run restriction. The dotted line corresponds to the IRF with a
short–run restriction. The results are obtained from our benchmark calibration. The
selected horizon for IRFs is 11. The size of the sample is equal to 250. The average
values for IRFs are obtained from 1000 Monte-Carlo experiments.
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Figure 3: IRFs of the variable xt (q = 2)
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(b) σu = 0.1
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Note: The solid line corresponds to the true IRF. The dashed line corresponds to
the IRF with a long–run restriction. The dotted line corresponds to the IRF with a
short–run restriction. The results are obtained from our benchmark calibration. The
selected horizon for IRFs is 11. The size of the sample is equal to 250. The average
values for IRFs are obtained from 1000 Monte-Carlo experiments.
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Figure 4: IRFs of the variable yt (q = 2)
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(b) σu = 0.1
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Note: The solid line corresponds to the true IRF. The dashed line corresponds to
the IRF with a long–run restriction. The dotted line corresponds to the IRF with a
short–run restriction. The results are obtained from our benchmark calibration. The
selected horizon for IRFs is 11. The size of the sample is equal to 250. The average
values for IRFs are obtained from 1000 Monte-Carlo experiments.
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Figure 5: IRFs of the variable xt (q = 4)
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(b) σu = 0.1
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Note: The solid line corresponds to the true IRF. The dashed line corresponds to
the IRF with a long–run restriction. The dotted line corresponds to the IRF with a
short–run restriction. The results are obtained from our benchmark calibration. The
selected horizon for IRFs is 11. The size of the sample is equal to 250. The average
values for IRFs are obtained from 1000 Monte-Carlo experiments.

22



Figure 6: IRFs of the variable yt (q = 4)
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Note: The solid line corresponds to the true IRF. The dashed line corresponds to
the IRF with a long–run restriction. The dotted line corresponds to the IRF with a
short–run restriction. The results are obtained from our benchmark calibration. The
selected horizon for IRFs is 11. The size of the sample is equal to 250. The average
values for IRFs are obtained from 1000 Monte-Carlo experiments.
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Figure 7: Sensitivity of the Correlation to σu/σε
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(c) q = 4
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Figure 8: Sensitivity of the RMSE on x (Long–Run Restriction) to σu/σε
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(b) q = 2
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(c) q = 4
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Figure 9: Sensitivity of the RMSE on x (Short–Run Restriction) to σu/σε
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(b) q = 2
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(c) q = 4
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Figure 10: Sensitivity of the Correlation to a

(a) p = 1, q = 4

0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1
0.7

0.75

0.8

0.85

0.9

0.95

1

σ
u
/σ

ε

C
or

re
la

tio
n

 

 

a=0.90
a=0.925
0.95
0.99

(b) p = 4, q = 4
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