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centives of ¯rms to over-estimate their abatement costs. In particular,
depending on ¯rms abatement costs, the optimal policy may involve
over or under-deterrence compared to the full information outcome.
We then investigate the properties of a pollution standard. We show
that this policy is close to an environmental tax once the economic
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1 Introduction

Environmental taxes are an important part of the system for regulating pol-
lution in several European countries. At Member state level, there has been
a continuing increase in the use of environmental taxes over the last decade,
especially in Scandinavia, Austria, Belgium, France, The Netherlands, Ger-
many and United Kingdom (European Environmental Agency, 1996). Fol-
lowing textbook discussions, the main advantages of environmental taxes
are ¯rst to provide polluters with the correct incentives to internalize exter-
nal costs which leads to a better integration of economic and environmental
policies and, second, to raise revenue which may be used to improve envi-
ronmental expenditures and/or to reduce the distortions due to taxation on
labor, capital and savings (the so-called double dividend).
However, a careful design of environmental taxes should also include an

enforcement mechanism to deter non compliance and tax evasion. Monitor-
ing and enforcement may not be the ¯rst things that come in mind in this
¯eld and indeed, these issues are often ignored by both academic and policy
makers when discussing environmental policy reform (Cohen, 1999). This
general lack of attention may have negative consequences for environmen-
tal quality and for social welfare. Trying to implement stricter regulations
than the existing ones may result in increased pollution levels if the agency
cannot control ¯rms activities and enforce compliance. Moreover, ignoring
monitoring and enforcement costs in the case of a new regulation might lead
the public authority to implement costlier policies than the current ones.
Consequently, when investigating the optimal regulation of polluting ¯rms,
the analysis must include the facts that the monitoring of actual polluters'
emissions is costly and, more generally, that the information needed by the
regulator is decentralized in the economy (see Lewis, 1996, for a survey on
these issues). In particular, if it is realistic to assume that the regulator
possesses aggregate information about polluters' abatement costs, it seems
doubtful that she can observe the costs of each individual ¯rm. Moreover,
many systems for enforcing pollution controls are impeded by legislations
that put limitations on the regulator's power to punish non compliance.
In the following, we analyze an environmental taxation when emission lev-

els can be observed through a costly audit, assuming that abatement costs
remain private information even if an audit is performed. Given this infor-
mation structure, we derive and investigate the properties of the optimal tax
and enforcement policy.
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Our analysis brings out the following points. i/ The optimal tax is dif-
ferent from the Pigovian level because of the second dividend of the environ-
mental tax and of the social cost of monitoring. Both e®ects induce greater
allowances to polluting ¯rms (under-deterrence). This phenomenon is easily
understood: With a strictly positive social cost of public funds, due to imper-
fections of existing tax systems on labor or capital, the regulator is tempted to
raise more money using environmental taxes than the Pigovian levels. More-
over, costly enforcement per se entails pollution levels strictly higher than the
Pigovian levels in order to reduce the incentive to evade. ii/ The usual rule
of equalizing private marginal bene¯ts to social marginal damages is violated
further because of complex distortions due to the adverse selection prob-
lem, which give rise to ¯rm speci¯c marginal tax rates. From Baron (1985)
and La®ont (1994), we know that without monitoring cost, the optimal tax
schedule when the agency doesn't know the ¯rms abatement costs induces
lower emission levels the higher the ¯rms abatement costs (over-deterrence
e®ect due to the adverse selection problem). With costly enforcement and
self-reporting, we show that the agency has to take into account another
adverse-selection e®ect: under-deterrence increases the informational rents
of pro¯table ¯rms but allows to decrease the inspection e®ort on less e±cient
¯rms. The regulator has thus to arbitrate between two e®ects when designing
the taxation policy: an increase of the emission levels for a given ¯rm allows
to reduce the inspection e®orts on less pro¯table ¯rms but oblige to decrease
the tax collection on more pro¯table ones. iii/ Since the optimal tax policy
is intimately related to the monitoring capabilities of the agency, monitoring
and tax policies must be designed jointly. In particular, optimal monitoring
e®orts of the agency are inversely related to the amounts of tax paid by the
¯rms (and thus, to their emission levels). iv/ Command-and-control instru-
ments are closer to economic instruments once the economic incentives of
their enforcement policies are considered. We investigate the properties of
a pollution standard, where the ¯rms are allowed to pollute up to a given
level (the emission standard) by paying a lump-sum transfer (the license)
and where the agency veri¯es the ¯rms compliance with an uniform inspec-
tion probability. We show that the optimal standard policy induces the less
e±cient ¯rms up to an intermediate pro¯tability type to pollute at the stan-
dard in accordance to their licence and consequently these ¯rms are not ¯ned
when inspected. But more pro¯table ¯rms pollute over the quota paying the
corresponding penalty when inspected. Consequently, this licence cum ¯ne
schedule resembles a taxation scheme. Malik (1992) already observed that an
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environmental standard policy may be considered as a special case of a tax-
ation policy. A standard policy appears to be a restricted case of a taxation
policy because of the \marginal deterrence" induced by the penalty schedule
of its enforcement policy. Using a increasing ¯ne schedule allows the agency
to introduce e±ciency considerations in an otherwise rather ine±cient policy.
Although there has been a rapid growth in theoretical and empirical stud-

ies on environmental enforcement over the last years (see Cohen, 1999, for
a recent survey), only few papers analyze the case of environmental taxes.
Swierzbinski (1994) analyses the optimal regulation when abatement costs
are private information and when monitoring is costly. The regulator being
allowed to reward compliant ¯rms, he shows that the optimal mechanism
resembles a deposit-refund system. He assumes also that all ¯rms, whatever
their abatement costs, obtain the same pay-o® from evasion. We consider
alternatively that the (reservation) pro¯t obtained from evading depends on
the ¯rm.
In their study on marginal deterrence, Mookherjee and Png (1994) analyse

the optimal enforcement of a standard. Our analysis extends this model
by considering the possibility of raising money through a licence paid by
every active ¯rm. Since they take the opposite point of view that ¯nes are
socially costly, it comes from no surprise that their results di®er from ours. In
particular, they obtain that the marginal expected penalty should be strictly
less than the corresponding marginal social harm while we show that the
marginal expected penalty for violating the standard can be higher or lower
than the marginal damage depending on the e±ciency of the ¯rm.
Applications of principal-agent models with audit have been developped

in various ¯elds like insurance, income taxation or monopoly regulation. The
key di®erences between our problem and these models are that they usually
assume that the maximal penalty depends on the private information of the
agents and/or that the regulator can reward honesty. As a result, the in-
centive constraints of audit models are badly behaved. This fact was ¯rst
recognized by Baron and Besanko (1984) in their analysis of a monopoly
regulation. For example, in most studies on income taxation, the labor sup-
ply is assumed to be given and auditing the income allows to know all the
agent's private information. The maximum ¯ne can thus be set to the entire
bene¯t the agent extracts from evading, which is type-dependent (see Border
and Sobel, 1987 and Chander and Wilde, 1998).1 However, in our problem,

1See Cremer and Gahvari (1996) for a model with endogeneous labor supply where the
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the audit does not allow to apraise ¯rm's bene¯t, which implies that the
maximum penalty cannot depend on the ¯rm. Moreover, as it is often the
case in practice, we forbid tax rebates in case of compliance. Using stan-
dards arguments, we show that the optimal ¯nes are not type-dependent:
the ¯ne is either 0 if the ¯rm do not evade or equal to the maximal penalty
otherwise. This simple penalty scheme allows to handle the two aspects of
the audit problem separately: The inspection/penalty schedule is intended
to solve the evasion problem only, and the tax/emissions schedule to solve
the mimicking problem. Once it is veri¯ed that no ¯rm is induced to evade,
the incentive constraints of the remaining adverse-selection problem are well-
behaved.
The paper proceeds as follows. Section 2 is devoted to notations, as-

sumptions and the derivation of the optimal policy in the perfect information
benchmark case. Section 3 o®ers the main results concerning the optimal tax-
ation and enforcement policy. In section 4, we study the optimal enforcement
of an environmental standard. In section 5, we compare with an example the
relative performances of these policies. The last section concludes. Most of
proofs are relegated into an appendix.

2 The model

Consider an economy consisting of a continuum of ¯rms with mass unity.
Firms di®er in a one-dimensional measure of their private bene¯t of pollution.
The pro¯tability parameter µ is distributed over a non-negative interval £ =
[µ; ¹µ], according to a probability density function g with g(µ) > 0 for all µ 2 £.
Each ¯rm chooses an emission level q (or abatement e®ort) which yields the
pro¯t ¼(q; µ) and we normalize the set £ by assuming that @µ¼ > 0.

2 Without
regulation, the individual emission level q±(µ) satis¯es

q±(µ) 2 argmax
q
¼(q; µ):

We assume that @qq¼(q; µ) · 0 and @qµ¼(q; µ) > 0 for all q < q
±(µ), i.e.,

that the marginal bene¯t of pollution decreases with pollution and increases

agent's income is the result of two unobservable variables, ability and labor supply, the
latter being discovered through a costly audit.

2We denote by @xf the partial derivative of a function f(¢) with respect to the variable
x:
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with the ¯rms' type. This implies that the emissions pattern q±(¢) is a non-
decreasing function of µ. The latter assumption corresponds to the well-
known Spence-Mirrlees single crossing condition that simpli¯es the analysis
of the adverse-selection problems. The pro¯t of the type-µ ¯rm without
regulation is given by

¼±(µ) ´ ¼(q±(µ); µ)
which is an increasing function of µ under the assumption @µ¼ > 0.
The environmental damage D is supposed to depend on aggregate pol-

lution Q =
R ¹µ
µ
q(µ)g(µ)dµ according to the relation D = Qd where d is the

marginal environmental damage3. The regulator's task is thus to design an
environmental tax schedule that induces producers to internalize this dam-
age. More precisely, we assume that the regulator's objective is to maximize
the expected social welfare given byZ ¹µ

µ

f¼(q(µ); µ)¡ dq(µ) + ¸t(µ)gg(µ)dµ (1)

where ¸ ¸ 0 and t(µ) is the tax paid by the type-µ ¯rms. The term

¸
R ¹µ
µ
t(µ)g(µ)dµ corresponds to an indirect social bene¯t of an environmen-

tal taxation, commonly called the \second dividend": Using tax to correct
the externality allows also the government to diminish the tax burden that
weights on the rest of the society. This reduction decreases the deadweight
losses associated to other existing tax systems, like income taxation, that
induce distortions in the economy. ¸ is a per monetary unit measure of these
deadweight losses (1+¸ is commonly called the shadow cost of public funds).
Raising t on a polluting ¯rm with an environmental tax allows the govern-
ment to diminish other taxations by a same amount and thus induces an
indirect social gain equal to ¸t. As a consequence, the governement wants
to raise as much money as possible using an environmental tax to save on
costlier tax systems, and thus will try to capture the entire pro¯t of the pol-
luting ¯rms.4 More precisely, if the regulator were able to observe the ¯rms'

3This assumption is made to simplify the algebra while keeping the main insights of
our analysis. Extensions to more general damage functions is straightforward.

4We implicitly assume that there is no political constraint that impedes the government
latitude in the setting of an environmental taxation. Such political constraints may be
taken into account by requiring that the ¯rms' pro¯ts after the tax be greater than a
given level ¹¼ > 0: Assuming ¹¼ = 0 allows us to save on notation without changing the
qualitative results of the analysis.
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emissions directly, it would be possible to implement the perfect information
outcome via a tax-emissions schedule ft¤(µ); q¤(µ); µ 2 £g satisfying

@q¼(q
¤(µ); µ) = d=(1 + ¸)

and

t¤(µ) = ¼(q¤(µ); µ):

Observe that when ¸ = 0, the optimal emission pattern corresponds
to the ¯rst-best levels, de¯ned by the usual rule of equating the marginal
private bene¯t @q¼(q

¤(µ); µ) to the marginal social damage d. Moreover,
in that case, there is no reason to charge ¯rms per se, and the optimal
policy may be implemented using a Pigovian tax equal to the marginal social
damage without worrying about the private information of ¯rms. This is
no longer the case when there are distortions in the rest of the economy
(¸ > 0). In that case, the regulator desires to raise as much tax revenue as
possible using the environmental tax and she has not only to consider the
environmental objective of the policy but also its incentive aspect. A direct
e®ect of the distortions is that the regulator is induced to allow ¯rms to over-
pollute compared to ¯rst-best levels. This increase of emission levels allows
to raise more revenue, since the entire bene¯t of pollution is captured by
the agency. However, such a capture would be possible only if the regulator
were able to assess the bene¯t that each ¯rm extracts from polluting and
if the ¯rms are not tempted to evade the taxation. Moreover, assuming
that the regulator desires to implement a given tax-emissions schedule, it is
doubtful that she would be able to check without cost the ¯rms' compliance
to the legislation. More generally, the agency has to take into account the
informational aspect of the problem when designing its policy. We assume
the following information structure. First, the individual pro¯tability is the
¯rm's private information while the regulator knows only the distribution of
types. Pollution is not directly observable by the regulator either, but can
be discovered through a costly audit. However, the audit cost increases with
the number of ¯rms audited. The agency has thus to balance the bene¯ts of
an audit with its cost.
Given this information structure, we derive the optimal revelation mech-

anism and investigate the properties of the optimal tax and audit policies.
The process of regulation and inspection is modeled as a three-stage game.
First, the regulator chooses a mechanism. Second, the ¯rm reports its type
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and simultaneously chooses its pollution level. Third, the contract is imple-
mented, that is the ¯rm is monitored with the probability determined by the
type's report. If no audit occurs, the ¯rm pays only the tax corresponding
to its announcement. In the case of audit, it pays the transfer corresponding
to its announcement and to the result of the audit.
More formally, a mechanism for the environmental agency consists of

four functions: q(~µ); ¹(~µ); t(~µ) and f(~µ; q), where ~µ is the reported type and
q is the pollution as revealed by the audit. A ¯rm that has reported an
pro¯tability parameter ~µ is assigned to an emission level q(~µ), pays a tax
t(~µ) and is audited with probability ¹(~µ). In case of audit, it pays a ¯ne
f(~µ; q) ¸ 0 if q 6= q(~µ).5
A ¯rm may cheat along two ways. First, it may misreport its type while

producing the emission level assigned to the reported type. In this case, the
¯rm perfectly mimics another type but does not evade, and the result of the
audit gives q = q(~µ). This mimicking cannot be discovered by auditing the
¯rm, because the inspection reveals only the level of pollution and not the
¯rm's type and pro¯t level. Secondly, it may evade by choosing an emission
level di®erent from the one it is assigned to given its report, i.e., q 6= q(~µ).
This shirking is detected by auditing the ¯rm.
As the revelation principle applies in our context, we can restrict the

search of the optimal mechanism to the set of direct and incentive-compatible
mechanisms without loss of generality. The expected pro¯t of a type-µ ¯rm
that announces to be of type ~µ and that pollutes a level q is given by

U(µ; ~µ; q) = ¼(q; µ)¡ t(~µ)¡ ¹(~µ)f(~µ; q) (2)

Compared to the perfect information situation, a positive expected pro¯t
corresponds to an informational rent for the ¯rm that enjoys it. Let denote
by R(µ) the expected pro¯t of a type-µ ¯rm that truthfully announces its
type and pollutes according to the regulator's requirement. The ¯rst type of
incentive constraints can be written as

R(µ) ´ U(µ; µ; q(µ)) ¸ U(µ; ~µ; q(~µ)) (IC1)

for all µ and ~µ in £, where U(µ; ~µ; q(~µ)) corresponds to the expected pro¯t
of a type-µ ¯rm that perfectly mimics a ¯rm of type ~µ, i.e., that announces

5Since the ¯ne is constrained to be non negative, we forbid tax rebates. Consequently,
in accordance to the general practice, the agency cannot reward ¯rms in case of compliance.
See Swierzbinski (1994) for an analysis of the incentive properties of tax rebates.
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~µ, pays the tax t(~µ) and pollutes q(~µ). The constraints (IC1) insure that the
¯rm doesn't improve its expected pro¯t by choosing the tax-pollution pair
designed for another type. The second type of incentive constraints is given
by

R(µ) ¸ max
~µ;q

U(µ; ~µ; q) (IC2)

for all µ. The di®erence between (IC1) and (IC2) is that with the latter the
¯rm doesn't constraint itself to mimic another existing type by choosing the
pollution level which corresponds to its announcement. Instead, it allows
itself to choose any pollution level. If the regulator's mechanism satis¯es
(IC2), the ¯rm is better o® choosing the tax-pollution pair designed for its
type than producing any other emission level and trying to pay any other
tax amount. Obviously, if the (IC2) constraints are satis¯ed, so are the (IC1)
constraints. Taking into account the (IC2) constraints only is thus su±cient
to pursue the analysis. However, it is useful to distinguish between these two
sets of constraints as shown in the following.
To satisfy (IC2) the regulator must be able to in°ict severe punishments

to the ¯rm. However, the ¯nes that the regulator may in°ict are usually
bounded, i.e.,

f(~µ; q) · ¹F (3)

where ¹F is the exogenous maximum ¯ne due, for example, to limited ¯rms'
liability.6 It is easily seen that the maximum ¯ne should be applied to any
¯rm that is caught shirking. This does not a®ect (IC1) constraints and relax

6This assumption has been largely discussed in the literature and is founded by several
justi¯cations ranging from the limited liability of shareholders (the extension of ¯rms
liability to third parties, such as lenders or contractors, has been recently considered, see
Boyer and La®ont, 1997) to the functioning of the judicial system (even if prescribed
by laws, courts are usually reluctant to enforce penalties that are not reasonably related
to the damage). More technically, unlimited liability gives rise to the improbable result
that using an arbitrarily large penalty in case of fraud, the agency can deter tax evasion
with almost no cost (as pointed out by Border and Sobel, 1987). One possibility often
investigated in the literature is to assume that the maximal penalty is limited by the
additional pro¯t the ¯rms can extract from polluting. However, in our context, the audit
does not allow the agency to appraise the ¯rms' bene¯ts. The maximum ¯ne has thus to
be the same for every ¯rms.
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(IC2) constraints. Hence, we have f(~µ; q) = ¹F whenever q 6= q(~µ).7 The same
reasoning applies if the audit reveals that the ¯rm is compliant with the rule:
We can relax (IC2) constraints by setting f(~µ; q(~µ)) = 0 without changing
(IC1) constraints. Indeed, with risk neutral ¯rms, all incentives to truthfully
report the type can be embedded in the tax level t(µ).8 Consequently, the
penalty schedule f(¢) takes the form

f(µ; q) =

½
0 if q = q(µ)
¹F otherwise

(4)

We thus have a simple penalty scheme: the payment is either 0 if the ¯rm do
not evade or equal to the maximal penalty otherwise. This simplicity allows
us to separate the two aspects of the audit problems: the evasion problem
is taken care of by the inspection-penalty schedule whereas the ine±cient
mimicking problem is deterred by the tax-emissions schedule. Indeed, since
compliance is not rewarded, the expected pro¯t of a type-µ ¯rm with an
incentive-compatible mechanism becomes

R(µ) = ¼(q(µ); µ)¡ t(µ) (5)

which corresponds to the informational rent of a ¯rm when emissions are
observable without cost by the principal.
As mentioned above, the audit of the ¯rms entails a cost that diminishes

the expected social welfare (1). This cost, by expending the public expenses,
diminishes also the indirect bene¯t of the environmental taxation. Assuming
that the cost of auditing a type-µ ¯rm with a probability ¹(µ) is given by
c¹(µ), the social welfare (1) becomes9

W =

Z ¹µ

µ

f¼(q(µ); µ)¡ dq(µ) + ¸t(µ)¡ (1 + ¸)c¹(µ)g g(µ)dµ (6)

This objective is constrained by the participation of the ¯rms, i.e.;

R(µ) ¸ 0 (IR)

7Moreover, we have the so-called Becker's conundrum: Given that the inspection e®ort
is socially costly, it is optimal to increase penalties as far as possible and to minimize the
probability of costly auditing.

8Formally, any scheme q(¢); t(¢); ¹(¢); f(¢) with f(q(µ); µ) ¸ 0 may be replaced by a

schedule q(¢); t̂(¢); ¹(¢); f̂(¢) with t̂(µ) = t(µ) + ¹(µ)f(q(µ); µ) and f̂(q(µ); µ) = 0.
9The assumption of a constant marginal monitoring cost is made for analytical conve-

nience. Extensions to more general cost functions are straightforward.
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which insure that the ¯rms' revenues are at least equal to their pro¯ts is they
choose not to pollute (normalized to 0, see footnote 4). Finally, the audit
probability must satisfy

0 · ¹(µ) · 1 (7)

for all µ 2 £. The agency's program may thus be written as

max
q(¢);t(¢);f(¢);¹(¢);R(¢)

W : (IC1), (IC2), (IR), (5), (7) I

where W is given by (6), and the right hand sides of (IC1) and (IC2) are
deduced from (2) and (4).

3 Analysis

Problem I presents three sets of inequality constraints and cannot be solved
directly. We shall proceed by presenting intermediate results (lemmii 1 and
2) to transform this general problem into a simple (although parametric)
optimal control program (Program III). The following lemma allows us to
simplify the incentive and pro¯t constraints.

Lemma 1 Assuming a non-decreasing emission schedule q(¢) such that q±(µ) ¸
q(µ) for all µ 2 £, the sets of constraints (IC1), (IR) and (IC2) reduce to

_R(µ) = @µ¼(q(µ); µ) (IC1')

R(µ) ¸ 0 (IR')

and

R(¹µ) ¸ ¼±(¹µ)¡K (IC2')

with

¹(µ) ¸ (K ¡ ¼(q(µ); µ) +R(µ))= ¹F (8)

and where

K = min
µ
ft(µ) + ¹(µ) ¹Fg (9)
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Proof. (IR'), (IC1') and the monotonicity constraint on q(¢) are derived
using standard arguments (see, e.g., Guesnerie and La®ont, 1984). From (9),
we can rewrite the (IC2) constraints as

K ¸ ¼±(µ)¡R(µ).
(IC2') follows from the fact that

d

dµ
[¼±(µ)¡R(µ)] = @µ¼(q

±(µ); µ)¡ @µ¼(q(µ); µ) =
Z q±(µ)

q(µ)

@µq¼(u; µ)du

¸ 0

since @µq¼ ¸ 0 when q(µ) · q±(µ). (9) also implies
K · t(µ) + ¹(µ) ¹F

= (¼(q(µ); µ)¡R(µ)) + ¹(µ) ¹F
using (5). Rearranging terms gives (8).
By (IC1'), to deter imitation of low pro¯tability ¯rms by high ones, the

informational rents have to increase according to the (marginal) advantage in
term of pro¯tability at the assigned pollution levels. Condition (IR') states
that it su±ces that the ¯rm with the lowest type enjoys positive rent to
guarantee that all other (more pro¯table) ¯rms will. (IC1') and (IR'), in
addition to a monotonic emission schedule, are reminiscent of the reduced
incentive constraints of standard adverse-selection models, as explained in
Guesnerie and La®ont (1984). In addition to these no-mimicking conditions,
(IC2'), (8) and (9) allow to deter tax evasion. Condition (IC2') states that
it su±ces to deter the more pro¯table ¯rm from evading to insure that all
other (less pro¯table) ¯rms will follow the policy requirements. Condition
(8) recalls that minimal inspection e®orts are necessary to maintain these
incentives, whereas (9) de¯nes the minimal expected cost of evading which
would be incurred by shirking ¯rms. Observe that thanks to a simple ¯ne
schedule, once it is veri¯ed that ¯rms are deterred from evading (by designing
an audit policy that insures that the most pro¯table ¯rms will not), we are
back to the standard problem of designing a contract in an pure adverse-
selection setting: The mimicking incentive constraints are the same as those
of a pure contract problem with perfect observability of the emission levels,
and usual results on second-order conditions of these models hold.10

10However, the conditions to obtained a monotonic emission schedule are more stringent
than in the case of free observability of emissions as explained below.
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Substituting for t(¢) using (5), Lemma 1 allows us to transform program
I as

max
q(¢);¹(¢);R(¢);K

R ¹µ
µ
f(1 + ¸)(¼(q(µ); µ)¡ c¹(µ))¡ dq(µ)¡ ¸R(µ)g g(µ)dµ

s.t.
_R(µ) = @µ¼(q(µ); µ)
R(¹µ) ¸ ¼±(¹µ)¡K
R(µ) ¸ 0
¹(µ) ¸ (K +R(µ)¡ ¼(q(µ); µ))= ¹F
0 · ¹(µ) · 1

II

where the monotonicity condition on the emission schedule q(¢) and the con-
ditions 0 · q(¢) · q±(¢) are neglected. We thus have to verify that these
conditions hold with the emission scheme solution of program II.
This program may be simpli¯ed further by observing that the constraints

(IR') and (8) are binding at the optimum, as stated formally in the following
lemma.

Lemma 2 At the optimum of program II we have

(i) R(µ) = 0

(ii) ¹(µ) = (K +R(µ)¡ ¼(q(µ); µ))= ¹F for all µ 2 £:
(iii) ¹(µ) > 0 whenever q(µ) < q±(µ)

Proof. (i). Assume that R(µ) > 0 at the optimum. Using (IC1'), we have

R(µ) = R(µ) +

Z µ

µ

@µ¼(q(u); u)du:

Since R(¢) a®ects negatively the program's objective, reducing R(µ) allows
to increase the objective while satisfying the constraints, hence a contra-
diction. (ii). Assume that (8) is lenient on a non-negligeable subset £ at
the optimum. We may reduce slightly ¹(µ) on this subset and still satisfy
(8). This diminishes the audit cost and thus increases the objective, hence a
contradiction. (iii). We have

K +R(µ)¡ ¼(q(µ); µ) ¸ K +R(µ)¡ ¼±(µ) ¸ 0
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where the last inequality comes from (IC2). So, unless q(µ) = q±(µ), we have
¹(µ) > 0.
By (i), the tax collected on the lowest pro¯table ¯rm corresponds to the

entire bene¯t it obtains from polluting. Since the informational rents are
increasing, the other (more pro¯table) ¯rms bene¯t from the asymmetric in-
formation. As stated point (ii), at the optimum the expected cost of evading
is the same whatever the announcement, given by K = t(µ) + ¹(µ) ¹F for all
µ. Since this cost is constant, the optimal tax schedule and inspection rate
are negatively related: The lower the tax paid by the ¯rm, the higher the
probability it will be inspected. Since q(¢) and t(¢) are non-decreasing, the
inspection rate is thus a non-increasing function of the ¯rms' type. Conse-
quently, the more a ¯rm announces it pollutes, the less likely it is inspected.
This can be easily understood: One of the agency's tasks is to deter ¯rms
from cheating about their pollution levels. It is tempting for a ¯rm to evade,
announcing a low emission level. The agency has thus to increase the proba-
bility of inspection for ¯rms paying low taxes to deter such shirking. Finally,
by (iii), the agency has to check compliance if it wants to induce lower levels
of emission than the sel¯sh ones. Observe that it may be the case that for
low types we have ¹ = 1:
Using (2), we can substitute the right hand side of (8) for ¹ in program

II to obtain

max
q(¢);R(¢);K

R ¹µ
µ

©
(1 + ¸)(¼(q(µ); µ)¡ c(K +R(µ)¡ ¼(q(µ); µ))= ¹F )¡ dq(µ)¡ ¸R(µ)ª g(µ)dµ

s.t.
_R(µ) = @µ¼(q(µ); µ)
R(µ) = 0
R(¹µ)¡ ¼±(¹µ) +K ¸ 0

III

where we have neglected the constraint ¹ · 1, i.e.

R(µ)¡ ¼(q(µ); µ) +K · ¹F (10)

Program III is a parameterized optimal control problem (the parameter
being K), where the informational rent R(¢) stands for the state variable
and the emission schedule q(¢) for the control variable. Observe that since
K a®ects negatively the objective of program III, the last inequality of this
program is binding at the optimum. The resolution of program III is given
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in appendix. This solution solves the agency problem I if the monotonicity
constraint on q(¢) and the conditions 0 · q(¢) < q±(¢) and (10) are satis-
¯ed. We shall go back to these constraints after having characterized the
unconstrained emission schedule given in the following proposition.

Proposition 1 The emission schedule q̂(¢) solution of program III satis¯es

@q¼(q̂(µ); µ) =
d

1 + ¸
¡ c
¹F
@q¼(q̂(µ); µ) +M(µ)@µq¼(q̂(µ); µ) (11)

where

M(µ) ´ ¸

1 + ¸

1¡G(µ)
g(µ)

¡ c
¹F

G(µ)

g(µ)

Proof. See the appendix.
Compared to perfect information levels, the emission schedule de¯ned by

(11) involves two additional terms that re°ect the incidence of audit costs
and the social cost of ¯rms' informational rents. To interpret (11), it is
useful to consider the two benchmark cases of a costly audit cum perfect
information and a free audit cum asymmetric information. Depicted ¯gure
1 are the emissions schedules corresponding to these di®erent assumptions.
First, assume that the regulator has perfect knowledge of type but that

the agency has to audit the ¯rm to discover its emission level. Denote by e(¢)
the optimal emission schedule in that case. Since it is not worth deterring
imitation, the (IC1) constraints do not matter. We have R(µ) = 0, i.e.; t(µ) =
¼(e(µ); µ). However, the agency has still to deter evasion, i.e.; that ¯rms pay
the tax amounts corresponding to their type and pollute accordingly. Using
(11), the optimal emission schedule satis¯es

@q¼(e(µ); µ) =
d

1 + ¸

1

1 + c= ¹F

and thus e(¢) > q¤(µ), i.e.; we have under-deterrence compared to ¯rst-best
levels. Indeed, to deter any deviation of ¯rms from their assigned emission
levels, the agency has to inspect the type-µ ¯rm at a minimal rate ¹(µ) =
(K ¡ ¼(q(µ); µ))= ¹F . Compared to the perfect information level, an increase
dq of the type-µ emission level induces a decrease of the inspection cost of
(d=dq)[c¹] = ¡@q¼(q¤(µ); µ)c= ¹F . The corresponding marginal social loss is
(1 + ¸)@q¼(q

¤(µ); µ) ¡ d = 0. The agency will thus increase the emission
schedule above the perfect information one.
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Second, assume that audit is free (c= ¹F is negligeable) but does not reveal
the ¯rms' types. We would have the usual adverse-selection quantity schedule
(µa la Baron and Myerson, 1982, B-M hereafter), given by

@q¼(q
BM(µ); µ) =

d

1 + ¸
+

¸

1 + ¸

1¡G(µ)
g(µ)

@µq¼(q
BM(µ); µ)

which states that, due to asymmetric information, the optimal emission
schedule is lower than the perfect information one except for the higher
type of ¯rms ¹µ as depicted ¯gure 1. Indeed, in that case, compared to
the perfect information level, the principal has to trade-o® the social wel-
fare gain of an increase dq of emissions for the g(µ) type-µ ¯rms, equal to
(1 + ¸)@q¼(q

¤(µ); µ) ¡ d = 0, to the social losses of decreased tax collec-
tions (increased informational rents) on all ¯rms of type higher than µ, that
amount to (1 ¡ G(µ))¸@µq¼(q¤(µ); µ) > 0. The optimal schedule solution of
this trade-o® qBM(¢) allows the agency to deter ¯rms of type higher than
a given µ to mimic the type-µ ¯rm. Observe that this adverse-selection ef-
fect induces marginal tax rates that decrease with the ¯rms' type and that
the most e±cient ¯rms only has a marginal tax rate equal to the perfect
information level.
Back to the general case where the audit is costly and reveals only ¯rm's

emission levels, there is an additional distortion that a®ects the emission
schedule, equal to

¡(1 + ¸)c= ¹FG(µ)@µq¼(q(µ); µ): (12)

The interpretation of this term is the following. First, in addition to
the usual mimicking adverse-selection e®ects produced by an increase dq of
the emission level of the type-µ ¯rm, this increase changes indirectly the
inspection e®orts on higher types. Indeed, to maintain the same expected
penalty when reporting a type greater than µ, the agency has to increase the
inspection e®orts on these ¯rms, since the increase dq induces an increase dR
for all ¯rms with type greater than µ and that we have d¹=dR = 1= ¹F for all
µ (recall that increased rents correspond to lower tax burdens). This induces
an additional marginal social cost equal to

(1 + ¸)c= ¹F (1¡G(µ))@µq¼(q(µ); µ):
However, the increase of the type-¹µ informational rent allows the agency

to reduce the expected cost of evading K, since we have R(¹µ) = ¼±(¹µ) ¡K
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at the optimum, i.e.; these ¯rms must be indi®erent between evading and
paying their taxes at the optimum. This decrease induces in turn a lower
inspection rate for all ¯rms, since d¹=dK = 1= ¹F , that amounts to a marginal
saving of inspection costs given by

(1 + ¸)c= ¹F@µq¼(q(µ); µ):

Consequently, the inspection e®orts are una®ected for the ¯rms with type
higher than µ (the increase of their rents R(¢) and the decrease of K let ¹(¢)
unchanged), but they are reduced for types lower than µ (the decrease of
K is not compensated by an increase of their informational rents). To sum
up, with costly enforcement and self-reporting, the agency has to take into
account two opposite adverse-selection e®ects: under-deterrence increases the
informational rents of the most pro¯table ¯rms, but greater informational
rents allow to decrease the inspection e®ort on less e±cient ¯rms. The result
of the agency's tradeo® is an emission schedule that is steeper than the
previous ones, as depicted ¯gure 1. Observe that mimicking and shirking
adverse-selection e®ects distort the emission schedule in opposite directions
around the emission levels e(µ) that the regulator would implement if he
knew the ¯rms' type taking into account the audit costs. As depicted, there
is a unique ¯rm's type µs such that these adverse-selection e®ects annihilate
each other, i.e.; M(µs) = 0 which implies q̂(µs) = e(µs). More generally, we
have the following results:

Corollary 1 The emission schedule q̂(¢) solution of program III satis¯es

(i) For all µ < µs, q̂(µ) < e(µ) and for all µ > µs, q̂(µ) > e(µ), where µs is
given by

µs = G
¡1
µ

¸

¸+ (1 + ¸)c= ¹F

¶
and we have µ < µs < ¹µ, dµs=d¸ > 0 and dµs=d[c= ¹F ] < 0:

(ii) q̂(µ) < q¤(µ) if @µq¼(q¤(µ); µ) > c= ¹Fg(µ)=¸:

(iii) q̂(¹µ) = q±(¹µ) if @µq¼(q±(¹µ); ¹µ) ¸ g(µ)=((1 + ¸)c= ¹F ):

Proof. See the appendix.
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As explained point (i), the mimicking e®ect dominates the evasion one
for the most ine±cient ¯rms. The agency thus designs a tax schedule that
induces these ¯rms to under-pollute compared to the schedule e(¢). If the
marginal pro¯t of pollution increases rapidly with the type at the perfect
information emission levels q¤(¢), this mimicking e®ect may induce the agency
to enforce pollutions levels below perfect information emission levels for low
types as stated point (ii). This is the case ¯gure 1 for all types lower than
µ2, with all ¯rms bellow µ1 having their emissions reduced to zero. For
more pro¯table ¯rms, the shirking e®ects is the dominant one, leading the
agency to induce higher emission levels than e(¢) and even to give up pollution
reduction for the higher types if the marginal pro¯t of pollution increases
rapidly as revealed point (iii). This case is also depicted ¯gure 1 with all
¯rms with types greater than µ3 having their emission levels equal to their
private optimum q±(µ).
Finally, if (10) does not bind, that is if the inspection rate ¹ is inferior

to 1 everywhere, the emission schedule e¤(¢) solution of program I is given
by e¤(µ) = q̂(µ) for all µ 2 £ (whenever 0 · q̂(µ) · q±(µ)). To complete the
analysis, the last proposition characterizes the opposite case of an inspection
rate ¹ equal to 1 for the low types ¯rms. As stated formally, the entire
regulation schedule is a®ected, with emission levels of every ¯rm larger than
in the unconstrained case.

Proposition 2 If (10) binds on a subset of £, the emission schedule e¤(¢)
solution of program I is such that e¤(µ) > q̂(µ) for all µ 2 £ (whenever
q̂(µ) < q±(µ)).

Proof. See the appendix.
It remains to verify that the second-order conditions for an incentive-

compatible policy are satis¯ed. Di®erentiating (11) gives

0 =
£
(1 + c= ¹F )@qq¼(q̂(µ); µ)¡M(µ)@µqq¼(q̂(µ); µ)

¤
q̂0(µ) (13)

¡M(µ)@µµq¼(q̂(µ); µ)¡
£
M 0(µ)¡ (1 + c= ¹F )¤ @µq¼(q̂(µ); µ)

Assuming monotonic inverse hazard rates, i.e.; d=dµ[G(µ)=g(µ)] > 0 and
d=dµ[(1¡G(µ))=g(µ)], M(¢) is non-increasing. However, since M(µ) > 0 and
M(¹µ) < 0, the sign of q̂0(µ) is ambiguous, even under the usual assumptions
on third derivatives of agent's pro¯t function commonly made in standard
adverse selection problems. Consequently, the second-order conditions on
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the emission schedule are more likely to be binding when the emissions are
costly to observe than assuming perfect observation of pollution levels.11

However, in the particular case of pro¯t functions linear in µ, e.g.; ¼(q; µ) =
µB(q) where B is an increasing and concave function of q satisfying B0(0) =
+1, monotonic hazard rates are su±cient to insure an increasing emission
schedule. Indeed, in that case we have q̂(µ) > 0 for all µ only if

1 +
c
¹F
> M(µ)=µ (14)

or equivalently

µg(µ) >
¸

1 + ¸

1

1 + c= ¹F

that also implies q̂0(µ) > 0 using (13). If (14) is not satis¯ed, ¯rms with type
µ < µ1 will choose not to pollute (i.e.; we have q̂(µ) = 0 for all µ · µ1) , with
µ1 satisfying

(1 + c= ¹F )µ1 ¡M(µ1) = 0

and the second-order condition is trivially satis¯ed for all µ < µ1.

4 Environmental standard policy

In this section, we investigate the properties of the typical command-and-
control policy of a pollution standard enlarged to its enforcement aspects.
As we will show, using a increasing ¯ne schedule allows the agency to intro-
duce e±ciency considerations in an otherwise rather ine±cient policy. The
standard policy then appears to be a restricted case of a taxation policy
because of the \marginal deterrence" induced by the penalty schedule of its
enforcement policy. To make this point more striking, we consider the sim-
plest case of a standard policy where the ¯rms do not report their emission
levels to the agency: They simply pay a licence k that allows them to pollute
up to an uniform quota z. Since the ¯rms' pollution levels q are not reported
to the agency and because the agency cannot distinguish between ¯rms, it

11When the monotonicity constraints on the emission schedule bind, the optimal so-
lution entails the bunching of individuals (see Guesnerie and La®ont, 1984, for a formal
treatment).
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audits all ¯rms with the same inspection rate ¹. The task of the agency is
thus to decide on a quota level z, a licence k and a ¯ne schedule f(q) (along
with a monitoring rate ¹) such that f(q) ¸ 0 whenever the audit reveals
an emission level q greater than z. In the following, the standard z will be
implicitly de¯ned as the maximal emission level such that the ¯ne is null.
Thanks to the taxation principle, we can use the mechanism-design ap-

proach and consider that a uniform standard policy is given by fz; k; ¹; F (~µ); q(~µ) :
~µ 2 £g where ~µ is the ¯rm's announcement, q(~µ) and F (~µ) = f(q(~µ)) two
functions of this announcement, and z, k, ¹ are three constants. The in-
terpretation of this mechanism is the following: The ¯rm reports truthfully
its type µ, and pollutes q(µ) that may be greater or lower than the quota z.
Whenever q(µ) is lower than z, it pays only a lump sum licence k, whereas it
is charged an expected amount k+¹F (µ) for levels greater than z. The mon-
itoring rate is constrained to be the same for all ¯rms, and we have F (~µ) = 0
for all ~µ such that q(~µ) · z.
Observe that in°icting the maximum ¯ne whenever the ¯rms exceed the

quota is no longer socially e±cient. Indeed, ¯nes proportional to the fraud
may induce the more pro¯table ¯rms to pollute over the standard and thus
restore the e±ciency of the environmental policy. In that case, the expected
¯ne ¹F (~µ) for a pollution q(~µ) > z is close to an environmental tax as
discussed in the previous section.12

The type-µ ¯rm's expected pro¯t with a quota policy is given by

u(µ; ~µ) = ¼(q(~µ); µ)¡ k ¡ ¹F (~µ) (15)

and the schedule is incentive-compatible if, for all µ 2 £,

R(µ) ´ u(µ; µ) ¸ u(µ; ~µ)

and

R(µ) ¸ max
q
¼(q; µ)¡ k ¡ ¹ ¹F (16)

12A standard corresponds to a particular (and constrained) case of a taxation policy.
The mechanism proposed is truly stochastic, since the payment depends on the probability
of inspection ¹. In the unconstrained taxation case, the payment structure is p(µ) =
t(µ) + ¹(µ)f(µ; q(µ)) = t(µ), whereas it is given by p(µ) = k + ¹F (µ) (for all µ such that
q(µ) > 0) in the case of a standard. The mechanism is thus constrained by t(µ) = k and
¹(µ) = ¹, and economic incentives are given through the expected penalty ¹F (µ) only.
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We also have to take into account the (IR) constraints. However, it may
be worthwhile when de¯ning the quota policy to exclude (implicitly) the
lower pro¯tability ¯rms by charging a large fee. Indeed, there is an obvious
trade-o® between the licence charged and the number of ¯rms that are able
to pay it. As a consequence, for a given licence k, only ¯rms with type greater
than a threshold level µ0 ¸ µ bene¯t from polluting, and we have R(µ0) = 0.
Taking into account the licence and the ¯ne schedule, the social welfare

becomes

W =

Z ¹µ

µ0

f¼(q(µ); µ)¡ dq(µ) + ¸(k + ¹F (µ))g g(µ)dµ ¡ (1 + ¸)c¹

Using previous arguments (see lemma 1), an incentive mechanism must
satisfy

_R(µ) = @µ¼(q(µ); µ) (17)

along with a non-decreasing emission schedule q(¢) and
R(¹µ) ¸ ¼±(¹µ)¡ k ¡ ¹ ¹F (18)

which is binding at the optimum of the agency's program and de¯nes ¹. The
¯ne is deduced from (15) according to the relation

¹F (µ) = ¼(q(µ); µ)¡R(µ)¡ k
and since 0 · F (¢) · ¹F , we must have

0 · ¼(q(µ); µ)¡R(µ)¡ k · ¹ ¹F (19)

for all µ, where the rightmost inequality is satis¯ed whenever (16) holds (and
thus whenever (18) holds).
The agency's program is thus given by

max
q(¢);R(¢);k;µ0

R ¹µ
µ0
f(1 + ¸)¼(q(µ); µ)¡ dq(µ)¡ ¸R(µ)gg(µ)dµ ¡ (1 + ¸) c¹F (¼

±(¹µ)¡R(¹µ)¡ k)
s.t.
_R(µ) = @µ¼(q(µ); µ)
R(µ0) = 0
¼(q(µ); µ)¡R(µ)¡ k ¸ 0
¼±(¹µ)¡R(¹µ)¡ k · ¹F

IV
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where µ0 ¸ µ and where the monotonicity condition on the emission schedule
q(¢) is neglected and thus must be veri¯ed afterward.
Program IV is a simple parametrized optimal control problem, where

R(¢) stands for the state variable, q(¢) for the control variable and k for the
parameter. The solution of this program is characterized in the following
proposition, assuming that the last constraint is lenient (i.e. ¹ < 1).

Proposition 3 Assuming an interior solution in ¹, the solution of program
IV satis¯es

(i) k = ¼(z; µ0) > 0:

(ii) F (µ) = 0 and q(µ) = z < q±(µ0) for all µ0 · µ · µ̂ with µ̂ > µ0.
(iii) z and µ̂ satisfy

0 = ¡¸(1¡G(µ0))@q¼(z; µ0)
@q¼(z; µ̂)

+ d
G(µ̂)¡G(µ0)
@q¼(z; µ̂)

¡
Z µ̂

µ0

@q¼(z; x)

@q¼(z; µ̂)
g(x)dx

¡(1 + ¸) c¹F + ¸(1¡G(µ̂))
0 = ((1 + ¸)@q¼(z; µ̂)¡ d)g(µ̂) + ((1 + ¸) c¹F ¡ ¸(1¡G(µ̂)))@µq¼(z; µ̂)

with µ0 ¸ µ, and if µ0 > µ we have

0 = (1 + ¸)¼(z; µ0)¡ dz:

(iv) For all µ > µ̂, q(µ) satis¯es

@q¼(q(µ); µ) =
d

1 + ¸
¡ c
¹F

1

g(µ)
@µq¼(q(µ); µ) (20)

+
¸

1 + ¸

1¡G(µ)
g(µ)

@µq¼(q(µ); µ)

Proof. See the appendix.
By (i), the licence corresponds to the bene¯t that the last pro¯table ¯rms

obtains from polluting at the standard. These ¯rms thus don't bene¯t from
the policy. As revealed by (ii), low pro¯table ¯rms up to an intermediate
pro¯tability type µ̂ pollute at the standard in accordance to their licence
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and consequently are not ¯ned when inspected. For these ¯rms the quota
corresponds to a real constraint compared to the levels they would have
chosen without regulation. More pro¯table ¯rms exceed the standard, the
emission levels they choose being given by (20). These levels result from the
agency trade-o®s between adverse selection costs and audit costs. Indeed, as
observed previously, if ¸ = 0, the inspection cost induces an increase in the
emission levels compared to perfect information ones. On the other hand, if
c= ¹F is negligeable, the adverse selection e®ect is the predominant one, and
the emission schedule is lower than the perfect information scheme for all
but the more pro¯table ¯rms.
Again, one can easily verify by di®erentiating (20) that usual assump-

tions on third derivatives of the pro¯t function and on hazard rates are not
su±cient to guarantee an increasing pollution level. The optimal policy may
thus involve a bunching of individuals on the subset [µ̂; ¹µ].

5 An illustrative example

As noted above, a standard policy may be considered as a particular and con-
strained case of a taxation policy. However, these policies are quite di®erent
in practice, and it is useful to illustrate these di®erences through a simple ex-
ample. This example will also allows us to assess the value of self-reporting.
Let us assume that the ¯rms' types are distributed evenly over [¹µ ¡ 1; ¹µ];
with ¹µ ¸ 1, and that the pro¯t function is given by ¼(q; µ) = µB(q) with
B(q) =

p
q.13 Under these assumptions, the perfect information emission

schedule is

q¤(µ) = [(1 + ¸)=(2d)]2µ2:

As explained above, with an environmental tax the optimal level of pol-
lution is strictly positive only if µ > µ1 given by

µ1 =
¸¹µ + µ(1 + ¸)c= ¹F

(1 + ¸)(1 + 2c= ¹F ) + ¸

and every ¯rms with type µ · µ1 will choose not to pollute. Using (11), the
optimal emission schedule for the more pro¯table ¯rms is given by

q̂(µ) = [(1 + ¸)=(2d)]2fµ(1 + c= ¹F ) +M(µ)g2.
13Absent a governmental regulation, we would have to assume that there is a maximum

level of pollution which would be chosen by all ¯rms.
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It is shown in appendix that no ¯rm is excluded under the standard policy
(i.e. µ0 = µ) which means that every ¯rm with type µ less than the threshold
type µ̂ given by

µ̂ = µ +
q
2µ(1 + ¸)(c= ¹F )=(1 + 2¸)

pollutes at the standard given by

z = [(1 + 2¸)µ̂ + (1 + ¸)c= ¹F ¡ ¸¹µ)]2=(4d2):

For the more pro¯table ¯rms, the emission schedule given by (20) reduces
to

q(µ) = [(1 + 2¸)µ + (1 + ¸)c= ¹F ¡ ¸¹µ)]2=(4d2):

Let us take the following value for the parameters: d = 1; µ = 1; c = 1,
¹F = 10 and ¸ = 0:2.14 Figure 2 depicts the emission levels for the di®erent
situations (¯rst best, audit cum perfect information, optimal environmental
tax, optimal standard). It is shown that the pollution scheme of the optimal
tax is mostly above the ¯rst best level except for the lowest types. It crosses
the pollution scheme e (audit cum perfect information on type) at µs '
1:625, i.e.; there is over-deterrence for 62.5 percents of the ¯rms and under-
deterrence for 37.5 percents. The pollution quota z is equal to 0:722, the
licence to 0:849 and µ̂ to 1.43, which means that 43 percents of the ¯rms
are compliant with the standard policy. Compared to the optimal tax, the
standard policy implies more (less) pollution for the lowest (highest) types.
The corresponding rents are depicted Fig.3. One can observe that the

standard policy leads to the larger extraction of rents by the ¯rms (except
for the lowest type). In particular, ¯rms' rents are rapidly increasing with
the type under the standard policy, particularly for ¯rms polluting over the
quota, even if they have to pay a ¯ne when audited. Optimal inspection
probabilities are depicted Fig.4. The lower the type, the higher the inspection
probability in the environmental tax case. Indeed, 13 percents of the lowest
type ¯rms are inspected, for only 0.5 percent of the highest type. For the
standard policy, 5 percents of the total set of ¯rms are inspected. These
inspections result in a total cost of audit cEµ[¹(µ)] approximately equal to
14For these parameters, the emission level for the optimal environmental tax is always

strictly positive (µ1 < µ):
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0.075 for the tax policy, while it is only 0.051 for the standard policy. A tax
policy thus appears to be more costly than a standard policy to administrate,
with 50 percents larger budget devoted to inspection
Social welfare for each type of ¯rms is depicted Fig.5. The total social

welfare corresponding to the environmental tax is evaluated to 0:657 while
it is 0:650 for the optimal quota. The ¯rst best level is about 0:84 and
under the Baron-Myerson setting we would obtain 0:763. Note that if the
environmental tax policy leads to a higher total welfare than the optimal
standard policy, a quota performs better than a tax for the lowest types.
Both curves cross at µ ' 1:55. Note also that the di®erence between the
social welfare under the tax policy and the social welfare under the standard
policy is equal to 0.007, which is approximately 1 percent of the total welfare.
Finally, the taxes and ¯nes under the di®erent policies are depicted Fig.6

and Fig.7. The expected payment for pollution is about 1.11 for the envi-
ronmental tax policy while it is only 0.89 for the standard policy. One can
also observe Fig.7 that we have the largest range of pollution levels under the
optimal tax. On the contrary, for the standard policy, the range of pollution
levels above the quota is relatively limited. For a given level of pollution,
the largest tax levels are the ¯rst best levels, and are increasing the more
rapidly. Asymmetric information thus contributes to °atten the tax and ¯nes
schemes under the di®erent settings. Finally, when audit is either costless
(the B-M setting) or costly, the environmental tax is concave with regard to
the level of pollution, that is the tax is regressive. On the contrary, with the
optimal standard policy, the ¯ne scheme may be convex or progressive.

6 Conclusion

We have studied the optimal environmental taxation and standard policies
under asymmetric information with an imperfect and costly audit. Compared
to the results of Baron (1985) and La®ont (1994), we have shown that the
threat of being audited alter the usual incentives of ¯rms to over-estimate
their abatement costs. In particular, depending on ¯rms abatement costs,
the optimal policy may involve over or under-deterrence compared to perfect
information levels. We also showed that a pollution standard is close to an
environmental tax once the economic incentives of the enforcement policy of
the standard are considered.
The main policy implications of our analysis are the following. We ¯rst
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showed that environmental quality and ¯scal considerations are con°icting
objectives. A Pigouvian tax allows to raise some revenues while reducing pol-
lution to its e±cient levels. Assuming that the ¯rms do not evade, the agency
does not have to be worried about the private information of ¯rms to obtain
the double dividend of the policy. However, the e±ciency of the environmen-
tal policy is severely reduced if the regulator wants primarily to raise tax
revenues using an environmental tax. The environmental quality is reduced
since the agency gives more allowances to pollute in order to increase the tax
base. Moreover, the environmental policy su®ers from the usual woes of the
other tax systems: Tax evasion and ine±cient uses of plants or production
facilities to reduce the tax burden. The administration has thus to design an
incentive tax schedule to enhance economic e±ciency and to perfom costly
monitoring activities to enforce the policy. We also demonstrated that mon-
itoring pollution to deter evasion and screening heterogenous ¯rms through
taxation are intimately related. From a ¯scal viewpoint, environmental taxes
are more e±cient than standards. Informational rents left to ¯rms are larger
under an environmental standard than a taxation policy. Whether this result
extends to the case of tradable pollution permits remains an open question
and needs further research. However, from an environmental viewpoint, stan-
dards appear more e±cient. Indeed, as shown in our illustrative example,
total pollution may be lower under the optimal standard than under the op-
timal tax. Moreover, our computations showed that the administrative costs
may be greater with a taxation policy than with a standard.
Finally, as usual in most models of audit with commitment, the tax policy

analyzed here su®ers from a time inconsistency problem. Indeed, no audit is
needed ex-post as all ¯rms are compliant with the optimal pollution scheme.
In the case where the inspection e®ort of the agency is not readily veri¯able
by ¯rms, such a commitment seems unrealistic (for more on this problem, see
Khalil, 1997). This is not the case for the command-and-control policy of a
pollution standard. Indeed, the monitoring of the ¯rms allows the regulator
to raise some revenues in addition to the licences in case of quota violations.
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Figure 1: Optimal emission schedule and asymmetric information.
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Appendix

A Proof of proposition 1

Denoting by º(¢) the Lagrange multipliers corresponding to (IC1') and by
¿ ¸ 0 the multiplier corresponding (IC2'), the Lagrangian of program III is
given by

L =

Z ¹µ

µ

n
(1 + ¸)(1 +

c
¹F
)¼(q(µ); µ)¡ dq(µ)¡ (¸+ (1 + ¸) c¹F )R(µ)

o
g(µ)dµ

¡(1 + ¸)K c
¹F
+

Z ¹µ

µ

º(µ)(@µ¼(q(µ); µ)¡ _R(µ))dµ + ¿ (R(¹µ)¡ ¼±(¹µ) +K)

Integrating by parts givesZ ¹µ

µ

º(µ) _R(µ)dµ = º(¹µ)R(¹µ)¡ º(µ)R(µ)¡
Z ¹µ

µ

_º(µ)R(µ)dµ

and the Lagrangian reduces to

L =
Z ¹µ

µ

H(µ)dµ ¡ ((1 + ¸) c¹F ¡ ¿ )K ¡R(
¹µ)(º(¹µ)¡ ¿ )¡ ¿¼±(¹µ)

where

H ´ ((1 + ¸)(1 + c= ¹F )¼(q(µ); µ)¡ dq(µ))g(µ)
+R(µ)f _º(µ)¡ (¸+ (1 + ¸)c= ¹F )g(µ)g+ º(µ)@µ¼(q(µ); µ)

Assuming an interior solution, pointwise maximizations give

@H

@q
= 0 = g(µ)((1 + ¸)(1 + c= ¹F )@q¼(q(µ); µ)¡ d) (21)

+º(µ)@µq¼(q(µ); µ)

@H

@R
= _º(µ)¡ (¸+ (1 + ¸)c= ¹F )g(µ) = 0 (22)

with the transversality condition

@L
@R(¹µ)

= ¿ ¡ º(¹µ) = 0 (23)
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and the ¯rst-order condition for K is given by

@L
@K

= ¿ ¡ (1 + ¸) c¹F = 0: (24)

Integrating (22) gives

º(¹µ)¡ º(µ) = (¸+ (1 + ¸)c= ¹F )(1¡G(µ))

where

º(¹µ) = (1 + ¸)c= ¹F

using (23) and (24). We thus have

º(µ) = (1 + ¸)c= ¹F ¡ (¸+ (1 + ¸)c= ¹F )(1¡G(µ))
= (1 + ¸)c= ¹FG(µ)¡ ¸(1¡G(µ)) (25)

Plugging this expression in (21) and rearranging terms gives (11).

B Proof of corollary 1

Point (i) is straightforward. We have q̂(µ) < q¤(µ) if (@H=@q)jµ=µ;q=q¤ < 0
and q̂(¹µ) = q±(¹µ) if (@H=@q)jµ=¹µ;q=q± ¸ 0. Using (25) and (21),

@H

@q

¯̄̄̄
µ=µ;q=q¤

= g(µ)((1 + ¸)(1 + c= ¹F )@q¼(q
¤(µ); µ)¡ d)¡ ¸@µq¼(q¤(µ); µ)

and

@H

@q

¯̄̄̄
µ=¹µ;q=q±

= g(¹µ)((1 + ¸)(1 + c= ¹F )@q¼(q
±(¹µ); ¹µ)¡ d) + (1 + ¸)c= ¹F@µq¼(q±(¹µ); µ)

where @q¼(q
¤(µ); µ) = d=(1 + ¸) and @q¼(q

±(¹µ); ¹µ) = 0 by de¯nition, which
gives (ii) and (iii).
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C Proof of proposition 2

Denoting by °(µ) ¸ 0 the lagrange multiplier corresponding to the constraints
(10), the ¯rst-order conditions (21)-(24) become

@H

@q
= 0 = g(µ)((1 + ¸)(1 + c= ¹F )@q¼(q(µ); µ)¡ d) (26)

+½(µ)@µq¼(q(µ); µ) + °(µ)@q¼(q(µ); µ) ¸ 0 (q · q±)
@H

@R
= _½(µ)¡ (¸+ (1 + ¸)c= ¹F )g(µ)¡ °(µ) = 0 (27)

@L
@R(¹µ)

= ¿ ¡ ½(¹µ) = 0 (28)

@L
@K

= ¿ ¡ (1 + ¸) c¹F ¡
Z
£

°(µ)dµ = 0: (29)

where ½(¢) is the costate variable. Integrating (27) gives

½(¹µ)¡ ½(µ) = ¸+ (1 + ¸)c= ¹F +

Z
£

°(µ)dµ

= ¸+ ¿

= ¸+ ½(¹µ)

using (29) and (28). Consequently, using (25), ½(µ) = ¡¸ = º(µ) and since
_½(µ) = (¸+ (1 + ¸)c= ¹F )g(µ) + °(µ)

¸ (¸+ (1 + ¸)c= ¹F )g(µ)

= _º(µ)

by (22), we thus have ½(µ) ¸ º(µ). Moreover, since ¹(¢) is non-increasing,
if the constraints (8) bind on a subset of £, they bind on an interval [µ; µ1]
which implies ½(µ) > º(µ) for all µ > µ. In that case, whenever e¤(µ) < q±(µ),
(26) gives

@q¼(e
¤(µ); µ) =

d¡ ½(µ)=g(µ)@µq¼(e¤(µ); µ)
(1 + ¸)(1 + c= ¹F )@q¼(e¤(µ); µ) + °(µ)

<
d¡ º(µ)=g(µ)@µq¼(e¤(µ); µ)
(1 + ¸)(1 + c= ¹F )@q¼(e¤(µ); µ)

and thus e¤(µ) > q̂(µ) whenever e¤(µ) < q±(µ).
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D Proof of proposition 3

Denoting by º(¢) and ¿(¢) the multipliers corresponding to (17) and (19)
respectively (with ¿(¢) ¸ 0), the Lagrangian of program IV is given by

L =
Z ¹µ

µ0

H(µ)dµ ¡ (1 + ¸) c¹F (¼
±(¹µ)¡R(¹µ)¡ k)¡ º(¹µ)R(¹µ) + º(µ0)R(µ0)

where

H ´ ((1 + ¸)¼(q(µ); µ)¡ dq(µ))g(µ) + º(µ)@µ¼(q(µ); µ)
+R(µ)f _º(µ)¡ ¸g(µ)g+ ¿ (µ)(¼(q(µ); µ)¡R(µ)¡ k)

Pointwise maximizations give

@H

@q
= ((1 + ¸)@q¼(q(µ); µ)¡ d)g(µ) + º(µ)@µq¼(q(µ); µ) (30)

+¿ (µ)@q¼(q(µ); µ) ¸ 0 (= 0 if q(µ) < q±(µ))
@H

@R
= _º(µ)¡ ¸g(µ)¡ ¿(µ) = 0 (31)

The ¯rst-order conditions for k and µ0 are given by

@L
@k

= ¡
Z ¹µ

µ0

¿(µ)dµ + (1 + ¸)c= ¹F · 0 (= 0 if k > 0) (32)

@L
@µ0

= ¡H(µ0) + _º(µ0)R(µ0) + º(µ0) _R(µ0) · 0 (= 0 if µ0 > µ): (33)

and the transversality conditions by

@L
@R(¹µ)

= ¡º(¹µ) + (1 + ¸)c= ¹F = 0 (34)

and

@L
@R(µ0)

= º(µ0) · 0 (= 0 if R(µ0) > 0): (35)
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(i) and (ii). Since c= ¹F > 0 we have, using (32), k > 0 and ¿(µ) >
0 for all µ in a non-negligeable subset £1 of £. Over £1, we thus have
R(µ) = ¼(q(µ); µ) ¡ k which gives F (µ) = 0. Since F (¢) is non-decreasing,
we must have £1 = [µ0; µ̂] with µ̂ > µ0. Moreover, using (17), we must have
(d=dµ)¼(q(µ); µ) = @µ¼(q(µ); µ) which implies @q¼(q(µ); µ) _q(µ) = 0 and thus

either q(µ) = q±(µ) (we then have @q¼(q±(µ); µ) = 0) or q(µ) = z for all µ · µ̂.
Assume q(µ) = q±(µ). (30) implies

º(µ)@µq¼(q
±(µ); µ) > g(µ) > 0

for all µ 2 [µ0; µ̂). Integrating (31) over [µ; ¹µ] and using (34) gives

º(µ) = (1 + ¸)c= ¹F ¡ ¸(1¡G(µ))¡
Z ¹µ

µ

¿ (x)dx (36)

and thus, using (32),

º(µ0)@µq¼(q
±(µ0); µ0) =

Ã
(1 + ¸)c= ¹F ¡ ¸(1¡G(µ0))¡

Z ¹µ

µ0

¿ (µ)dµ

!
@µq¼(q

±(µ0); µ0)

= ¡¸(1¡G(µ0))@µq¼(q±(µ0); µ0) · 0
hence a contradiction. We thus have q(µ) = z < q±(µ0) for all µ 2 [µ0; µ̂].
Using (32) and (36), k > 0 implies º(µ0) = ¡¸(1 ¡ G(µ0)) < 0 and thus
R(µ0) = ¼(z; µ0)¡ k = 0. (33) simpli¯es to

¡((1 + ¸)¼(z; µ0)¡ dz)g(µ0) · 0 ( = 0 if µ0 > µ)
and we have µ0 > µ if (1 + ¸)¼(z; µ)¡ dz > 0.
(iii). Plugging (31) in (30) gives, for all µ 2 [µ0; µ̂),

_º(µ) + º(µ)@µq¼(z; µ)=@q¼(z; µ) + (1¡ d=@q¼(z; µ))g(µ) = 0
which is a linear ¯rst-order di®erential equation in º(¢). The solution is given
by º(µ) = h(µ)r(µ) where

_r(µ) + r(µ)@µq¼(z; µ)=@q¼(z; µ) = 0
_h(µ)r(µ) + (1¡ d=@q¼(z; µ))g(µ) = 0

which gives r(µ) = 1=@q¼(z; µ) and

h(µ) = h(µ0) + d[G(µ)¡G(µ0)]¡
Z µ

µ0

@q¼(z; x)g(x)dx
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Using º(µ0) = ¡¸(1¡G(µ0)) we have

º(µ) = ¡¸(1¡G(µ0))@q¼(z; µ0)
@q¼(z; µ)

+ d
G(µ)¡G(µ0)
@q¼(z; µ)

¡
Z µ

µ0

@q¼(z; x)

@q¼(z; µ)
g(x)dx

for all µ < µ̂. By continuity of º(¢), we have º(µ̂¡) = º(µ̂+) hence

¡¸(1¡G(µ0))@q¼(z; µ0)
@q¼(z; µ̂)

+ d
G(µ̂)¡G(µ0)
@q¼(z; µ̂)

¡
Z µ̂

µ0

@q¼(z; x)

@q¼(z; µ̂)
g(x)dx = (1 + ¸)

c
¹F
¡ ¸(1¡G(µ̂))

Using (30) and (36), we also have

((1 + ¸)@q¼(z; µ̂)¡ d)g(µ̂) + ((1 + ¸)c= ¹F ¡ ¸(1¡G(µ̂)))@µq¼(z; µ̂) = 0

(iv) For all µ > µ̂, (36) gives

º(µ) = (1 + ¸)c= ¹F ¡ ¸(1¡G(µ)):
Plugging this expression in (30) gives (20).

E Deriving the illustrative example

To determine µ̂ and z we have to solve the following system

0 = ¡¸(¹µ ¡ µ0)µ0=µ̂ + d(µ̂ ¡ µ0)=µ̂B0(z)¡
Z µ̂

µ0

x=µ̂dx¡ (1 + ¸) c¹F + ¸(
¹µ ¡ µ̂)

0 = ((1 + ¸)µ̂B0(z)¡ d) + ((1 + ¸) c¹F ¡ ¸(
¹µ ¡ µ̂))B0(z)

The second equation gives

B0(z) =
d

(1 + 2¸)µ̂ + (1 + ¸)c= ¹F ¡ ¸¹µ
while the ¯rst one reduces to

B0(z) =
2dµ0

(1 + 2¸)(µ̂
2
+ µ20)¡ 2¸¹µµ0
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Equalizing both expressions yields the following second order polynomial
in µ̂

(1 + 2¸)µ̂
2 ¡ 2(1 + 2¸)µ̂µ0 + (1 + 2¸)µ20 ¡ 2µ0(1 + ¸)c= ¹F = 0

which gives

µ̂ = µ0 +
q
2µ0(1 + ¸)c= ¹F=(1 + 2¸)

Assuming an interior solution for µ0, we must have (1+¸)µ0B(z) = dz or

B0(z) =
d

1 + ¸

1

2µ0

assuming B = p . Equalizing with the ¯rst equation gives

2µ0(1 + ¸) = (1 + 2¸)µ̂ + (1 + ¸)c= ¹F ¡ ¸¹µ

Replacing µ̂ by its expression and collecting terms, we have to solve

µ20 + 2¸µ0
£
¹µ + 2(1 + ¸)c= ¹F

¤
+
£
(1 + ¸)c= ¹F ¡ ¸¹µ¤2 = 0

which admits no positive solution for µ0. Consequently, µ0 = µ.
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