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Abstract

In this paper, we consider testing marginal normal distributional assumptions. More precisely,

we propose tests based on moment conditions implied by normality. These moment conditions

are known as the Stein (1972) equations. They coincide with the first class of moment

conditions derived by Hansen and Scheinkman (1995) when the random variable of interest is

a scalar diffusion. Among other examples, Stein equation implies that the mean of Hermite

polynomials is zero. The GMM approach we adopt is well suited for two reasons. It allows

us to study in detail the parameter uncertainty problem, i.e., when the tests depend on

unknown parameters that have to be estimated. In particular, we characterize the moment

conditions that are robust against parameter uncertainty and show that Hermite polynomials

are special examples. This is the main contribution of the paper. The second reason

for using GMM is that our tests are also valid for time series. In this case, we adopt a

Heteroskedastic-Autocorrelation-Consistent approach to estimate the weighting matrix when

the dependence of the data is unspecified. We also make a theoretical comparison of our tests

with Jarque and Bera (1980) and OPG regression tests of Davidson and MacKinnon (1993).

Finite sample properties of our tests are derived through a comprehensive Monte Carlo study.

Finally, two applications to GARCH and realized volatility models are presented.
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1 Introduction

In many econometric models, distributional assumptions play an important role in the

estimation, inference and forecasting procedures. Robust estimation methods against

distributional assumption are available, such as the Quasi-Maximum-Likelihood (White, 1982;

QML) and Generalized Method of Moments (Hansen, 1982; GMM). However, knowing the true

distribution of the considered random variable may be useful for improving inference. Such is

the case in stochastic volatility models where several studies have shown that simulation and

Bayesian methods outperform the QML and GMM methods (Jacquier, Polson and Rossi, 1994;

Kim, Shephard and Chib, 1998; Andersen, Chung and Sorensen, 1999; Gallant and Tauchen,

1999). Moreover, knowing the distribution is also crucial when one forecasts nonlinear variables

like volatility in the EGARCH model of Nelson (1991), or the high frequency realized volatility

model of Andersen, Bollerslev, Diebold and Labys (2001, ABDL). This is also important

when one evaluates density forecasts as in Diebold, Gunther and Tay (1998). In continuous

time modeling, Chen, Hansen and Scheinkman (2000) argue that an interesting approach is

to first specify the unconditional distribution of the process, and then specify the diffusion

term. Therefore, developing test procedures for distributional assumption diagnostics in both

cross-sectional and time-series settings is of particular interest.

The main purpose of our paper is to provide a new approach for testing normality.

We consider normality given its importance in the econometric literature. Moreover,

econometricians are more familiar with testing normality. Finally, any continuous distribution

may be transformed on a normal one.

There is an important literature on testing normality. This includes tests based on

the cumulative distribution function (Kolmogorov, 1933; Smirnov, 1939), the characteristic

function (Koutrouvelis, 1980; Koutrouvelis and Kellermeier, 1981; Epps and Pulley, 1983),

the moment generating function (Epps, Singleton and Pulley, 1982), the third and fourth

moment (Mardia, 1970; Bowman and Shenton, 1975; Jarque and Bera, 1980), and the Hermite

polynomials (Kiefer and Salmon, 1983; Hall, 1990; van der Klaauw and Koning, 2001).1

Our approach is based on testing moment conditions. The conditions we consider are

based on Stein (1972), where it is shown that the marginal distribution of a random variable is

normal with zero mean and unit variance if and only if a particular set of moment conditions

hold. Each moment condition is known as the Stein equation (see for instance Schoutens,

2000). We show that special examples of this equation correspond to the zero mean of any

Hermite polynomial. Interestingly, the Stein equation coincides with the first class of moment

conditions given by Hansen and Scheinkman (1995) for continuous time processes when one

considers a normal process, that is the Ornstein-Uhlenbeck process.2

1Multivariate tests are also based on the third and fourth moments (Mardia, 1970; Bera and John, 1983;
Richardson and Smith, 1993; Kilian and Demiroglu, 2000; Fiorentini, Sentana and Calzolari, 2003a).

2Hansen and Scheinkman (1995) present two classes of moment conditions related respectively to the
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We used the GMM approach for testing the Stein equation. The GMM approach is very

appealing for two reasons. It is well suited for correcting the test statistic distribution when

one uses estimated parameters. Moreover, in the GMM setting, it is easy to take into account

potential dependence in the data when one tests marginal moment conditions.

In general, the normality assumption is made for unobservable variables. Hence, one has

to estimate the model parameters and then test normality on the fitted variables such as the

residuals. As a consequence, one has to take into account the parameter uncertainty, since it

is well-known that in general the distribution of the test statistic is not the same when one

uses the true parameter and an estimator. This problem leads Lilliefors (1967) to tabulate

the Kolmogorov-Smirnov test statistic when one estimates the mean and the variance of the

distribution. In the linear homoskedastic model, White and MacDonald (1980) stated that

various tests are robust against parameter uncertainty, particularly in tests based on moments

that used standardized residuals. Dufour, Farhat, Gardiol and Khalaf (1998) developed Monte

Carlo tests to take into account parameter uncertainty in the linear homoskedastic regression

model in finite samples. More recently, several solutions have been proposed in the literature:

Bai (2002) and Duan (2003) proposed transformations of their test statistics that are robust

against parameter uncertainty; Thompson (2002) proposed upper bound critical values for his

tests; Hong and Li (2002) used separate inference procedure by splitting the sample; while

Corradi and Swanson (2002) used the bootstrap.

It turns out that the GMM setting is well suited for incorporating parameter uncertainty in

testing procedures by using Newey (1985) and Tauchen (1985); see also Gallant (1987), Gallant

and White (1988), and Wooldridge (1990). In this paper, we show that some testing functions

are robust to the parameter uncertainty problem. That is, the asymptotic distribution of the

feasible test statistic based on an estimated parameter is identical to that of the test statistic

based on the true (unknown) parameter. Hermite polynomials are special examples of functions

that have this robustness property. This result is a generalization of Kiefer and Salmon (1983)

who showed that tests using Hermite polynomials are robust to parameter uncertainty when one

considers a nonlinear homoskedastic regression estimated by the maximum likelihood method.

In contrast, our result holds for more general models and for any estimation method. This

property is very important when one uses advanced technical methods as in the stochastic

volatility case. This result is the main contribution of the paper.

The second reason for using GMM is, when the variable of interest is serially correlated,

the GMM setting is also well suited to take into account this dependence by using the

Heteroskedastic-Autocorrelation-Consistent (HAC) method of Newey and West (1987) and

Andrews (1991). Using a HAC procedure in testing marginal distributions was already adopted

by Richardson and Smith (1993) and Bai and Ng (2002) for testing normality, Aı̈t-Sahalia

marginal and conditional distributions of the process. Note, however, that while Hansen and Scheinkman
(1995) derived these moment conditions in a Markovian case, we do not make this assumption.
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(1996) and Conley, Hansen, Luttmer and Scheinkman (1997) for testing marginal distributions

of nonlinear scalar diffusion processes.

The paper is organized as follows. In section 2, we introduce the Stein equation and

characterize its relationships with Hermite polynomials and Hansen and Scheinkman (1995)

moment conditions. In section 3, we derive the test statistics we consider in both cross-sectional

and time series cases. Then, we study the parameter uncertainty problem in section 4. In

section 5, we provide an extensive Monte Carlo study in order to assess the finite sample

properties of the test statistics we consider and to compare them with the most popular

methods, i.e. the Kolmogorov-Smirnov and Jarque-Bera tests. Section 6 applies our theory to

two examples from the volatility literature while the last section concludes the paper. All the

proofs are provided in the Appendix.

2 The Stein equation

In this section, we first introduce the Stein (1972) equation which will be the basis of the test

functions we consider to test normality. Then we specify this equation when one considers

the Hermite polynomials. This is important because the most popular normality test in the

econometric literature, namely the Jarque and Bera (1980) test, is based on moment conditions

on the third and fourth Hermite polynomials. Finally, we relate the Stein equation to the first

moment conditions derived by Hansen and Scheinkman (1995) in the case of a continuous time

process.

2.1 The Stein equation

Stein (1972) shows that a random variable X has a standard normal distribution N (0, 1) if

and only if, for any differentiable function f such that E|f ′(Z)| < +∞ where Z is N (0, 1),3

we have

E[f ′(X)−Xf(X)] = 0. (2.1)

It is straightforward to show that (2.1) holds under normality. Hence, the main result of Stein

(1972) is that (2.1) characterizes the normal distribution. The Stein equation (2.1) has several

implications, like the recursive moment equation E[X i+1] = iE[X i−1], (with f(X) = X i).

It is worth noting that Amemiya (1977) used this equality to show the consistency of the

maximum likelihood estimator for nonlinear simultaneous equation models while Davidson and

MacKinnon (1984) used it when they developed their specification tests based on double-length

artificial linear regressions.

The Stein equation (2.1) is the basic test function we consider for testing normality. This

may be applied to monomials, polynomials and more general functions. An important property

3Observe that in the normal case, we have E|Xf(X)| < +∞ when E|f ′(X)| < +∞.
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of the Stein equation is by construction, the expectation of the considered function is zero.

Therefore, one does not compute the analytic formula of the moment as one would when he

uses, for instance, marginal moments. In other words, if one considers an integrable function g

and wants to check that the empirical counterpart of E[g(X)] is close to the theoretical formula,

then by using the Stein equation, one will get another function (namely XG(X) where G(·)
is any primitive function of g(·)) whose population mean equals E[g(X)]. Therefore, one can

test normality by comparing the empirical counterparts of E[g(X)] and E[XG(X)].4

There are some functions of interest for which the Stein equation becomes simple. This is

the case for the Hermite polynomials we consider below.

2.2 Hermite polynomials

The normalized Hermite polynomial Hi associated with the N (0, 1) distribution is defined by

Hi(x) = exp(
x2

2
)
(−1)i

√
i!

di exp(−x2/2)

dxi
. (2.2)

From (2.2), it is easy to show that the Hermite polynomials are given by the recursive formula

∀i > 1, Hi(x) =
1√
i
{xHi−1(x)−

√
i− 1Hi−2(x)}, H0(x) = 1, H1(x) = x. (2.3)

By applying (2.3), we have

H2(x) =
1√
2
(x2 − 1); H3(x) =

1√
6
(x3 − 3x); H4(x) =

1√
24

(x4 − 6x2 + 3). (2.4)

When a random variable X follows a normal distribution N (0, 1), the transformed random

variables Hi(X), i = 0, 1, ..., have some interesting properties. In particular, they are

orthonormal, that is:

E[Hi(X)Hj(X)] = δij, (2.5)

where δij is the Kronecker symbol. By applying (2.5) to j = 0 and i 6= 0, one gets

∀i > 0, E[Hi(X)] = 0, (2.6)

that is, the Hermite polynomials Hi(X) are centered for i > 0.

In order to characterize the relationships between the Stein equation (2.1) and the Hermite

polynomials, note that (2.2) implies the following restrictions are fulfilled by the derivatives of

the Hermite polynomials:

H
′

i(x) =
√

iHi−1(x) and H
′′

i (x)− xH
′

i(x) + iHi(x) = 0. (2.7)

4Another solution is to define, when it is possible, the function h(X) ≡ g(X)/X. In this case, if one can use
the function h in the Stein equation, then one gets E[g(X)] = E[Xh(X)] = E[h′(X)].
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Let us now apply the Stein equation (2.1) to the function H ′
i(x)/

√
i. This function is clearly

differentiable and integrable. Therefore, we have

1√
i
E[H

′′

i (X)−XH
′

i(X)] = 0,

which implies (2.6) by using the second result in (2.7). As a consequence, the Stein equation

(2.1) implies (2.6). It turns out that the converse also holds:

Proposition 2.1 Let X be a random variable such that ∀i > 0, E[Hi(X)] = 0. Then, the

equation (2.1) holds for any differentiable function f such that E[|f ′(Z)|] < +∞ where Z is

assumed to be N (0, 1). Consequently, a random variable X is N (0, 1) if and only if (2.6) holds.

This result is established by Gallant (1980, Theorem 3, page 192) for any distribution that

admits some polynomials as a basis of the space of the square-integrable functions, which is

the case for the normal distribution. We therefore dropped it from this paper; see however the

previous version, Bontemps and Meddahi (2002), for a proof. This proposition means that for

statistical inference purposes, in particular testing, one could use Hermite polynomials only.

2.3 Continuous time case

Consider a univariate diffusion process Xt assumed to be the stationary solution of

dXt = µ(Xt)dt + σ(Xt)dWt, (2.8)

where Wt is a standard Brownian process. Then, Hansen and Scheinkman (1995) provide

two sets of moment conditions related to the marginal and conditional distributions of Xt

respectively. For the marginal distribution, Hansen and Scheinkman (1995) show that

E[Ag(Xt)] = 0, (2.9)

where g is assumed to be twice differentiable and square-integrable with respect to the marginal

distribution of Xt and A is the infinitesimal generator associated with the diffusion (2.8), that

is:

Ag(x) = µ(x)g′(x) +
σ2(x)

2
g′′(x). (2.10)

A well-known continuous time process for which the marginal distribution is N (0, 1) is the

standardized Ornstein-Uhlenbeck process defined by

dXt = −kXtdt +
√

2kdWt, k > 0, X0 ∼ N (0, 1). (2.11)

For this process, Hansen and Scheinkman (1995) moment condition (2.9) becomes:

E[−kXtg
′(Xt) + kg′′(Xt)] = 0. (2.12)
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Thus, by considering the function f defined by f ≡ g′, we obtain the Stein equation (2.1)

(since k 6= 0). Thus, the Hansen and Scheinkman (1995) moment condition (2.9) coincides

with the Stein equation (2.1).

The continuous time setting provides examples of processes where the marginal distribution

is normal while the conditional distribution is not. A first example may be constructed as

follows. For a given specification of µ(x) and σ(x), the marginal density function of the

process Xt is, up to a scale,5

σ(x)−2 exp(

∫ x

z

2µ(u)

σ(u)2
du).

This density function suggests that two different specifications of µ(x) and σ(x) may give the

same marginal distribution. It turns out that this is the case.6 As a consequence, it is possible

to get a scalar diffusion such that the marginal distribution is N (0, 1) while the conditional

distribution is not normal, that is a non Ornstein-Uhlenbeck process.

A second example may be obtained by subordination. More precisely, assume that we

observe a sample x1, x2, ..., xT of a process Xt with Xt = YSt , where Yt is a stationary scalar

diffusion and St, t = 1, ..., T , is a positive and increasing process with S1 = 1. Under the

assumption that the processes {Yτ , τ ∈ IR+} and {St, t ∈ N∗} are independent, the marginal

distribution of the processes Xt and Yt coincide. Therefore, if the process Yt is a standardized

Ornstein-Uhlenbeck process, the marginal distribution of Xt is N (0, 1) while its conditional

distribution is (in general) not normal.

3 Test statistics

In this section, we provide the test statistics for testing normality. All of them are based on

the Stein equation (2.1). We study in detail the cross-sectional and the time series cases. We

assume that we observe a sample of the random variable of interest, i.e., we do not take into

account the potential problem of parameter uncertainty (studied in the next section).

3.1 The general case

Consider a sample x1, ..., xT , of the variable of interest denoted by X. The observations may

be independent or dependent. We assume that the marginal distribution of X is N (0, 1). Let

f1, ..., fp, be p differentiable functions such that f ′i is integrable. For a real x, define the vector

g(x) ∈ IRp, whose components are (f ′i(x)−xfi(x)) for i = 1, ..., p. Thus, by the Stein equation

(2.1), we have E[g(X)] = 0. Throughout the paper, we assume that any component of the

5For a given z, the scale parameter is chosen so that the density integral equals one.
6See Aı̈t-Sahalia, Hansen and Scheinkman (2001) for a review of all the properties of diffusion processes we

consider in this paper.

6



vector g(X) is square-integrable and that the matrix Σ defined by

Σ ≡ lim
T→+∞

V ar[
1√
T

T∑
t=1

g(xt)] =
+∞∑

h=−∞

E[g(xt)g(xt−h)
>], (3.1)

is finite and positive definite, then we have (see Hansen, 1982)

1√
T

T∑
t=1

g(xt) −→ N (0, Σ) (3.2)

while (
1√
T

T∑
t=1

g(xt)

)>
Σ−1

(
1√
T

T∑
t=1

g(xt)

)
∼ χ2(p). (3.3)

For the feasibility of the test procedure, one needs the matrix Σ or at least a consistent

estimator. It is clear that if one does not specify the dependence between the observations x1,

x2,..., xT , then one needs to estimate Σ.

3.2 The cross-sectional case

Consider the cross-sectional case and assume that the observations are independent and

identically distributed (i.i.d.). In this case, we have

Σ = V ar[g(X)] = E[g(X)g(X)>].

Observe that by applying the Stein equation (2.1) to φ(X) = Xf(X)f(X)>, one can show that

E[g(X)g(X)>] = E[f(X)f(X)> + f ′(X)f ′(X)>]. (3.4)

Two cases may arise. In the first case, one can explicitly compute the matrix Σ and, hence, one

can use the test statistic (3.3). This is the case for the Hermite polynomials that we consider

below. In the second case, computing Σ explicitly is not possible (or difficult), then one can

use any consistent estimator of Σ and denoted by Σ̂T , like

Σ̂1,T =
1

T

T∑
t=1

g(xt)g(xt)
> or Σ̂2,T =

1

T

T∑
t=1

(
f(xt)f(xt)

> + f ′(xt)f
′(xt)

>) . (3.5)

In this case, one can use the following test statistic(
1√
T

T∑
t=1

g(xt)

)>
Σ̂−1

T

(
1√
T

T∑
t=1

g(xt)

)
∼ χ2(p). (3.6)

Assume now that we consider the Hermite polynomials. We have shown in the previous section

that when one applies the Stein equation (2.1) to the function fi(x) = H ′
i+1(x)/

√
i, one gets

E[Hi(X)] = 0. But the unconditional variance of Hi(x) is one. Hence, for i ≥ 0, we have

1√
T

T∑
t=1

Hi(xt) −→ N (0, 1) and

(
1√
T

T∑
t=1

Hi(xt)

)2

∼ χ2(1). (3.7)
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Moreover, the Hermite polynomials are orthogonal. Hence, the test statistic based on different

Hermite polynomials are asymptotically independent. In other words, when one uses a test

statistic based on several Hermite polynomials, the corresponding matrix Σ derived previously

is diagonal. The diagonal matrix Σ is indeed the identity since the variance of each Hermite

polynomial equals one. For instance, if we consider the Hermite polynomials H3, H4, ..., Hp,

then the test statistic is

p∑
i=3

(
1√
T

T∑
t=1

Hi(xt)

)2

∼ χ2(p− 2). (3.8)

It is worth noting that this result is more general than the one obtained by Kiefer and Salmon

(1982). They established (3.8) when the variables xt are estimated residuals in a linear model

when one uses the maximum likelihood method. We will discuss Kiefer and Salmon’s (1982)

results in more detail in the next section where we consider the parameter uncertainty problem.

3.3 The time series case

Assume now that the observations are correlated and represent a sample of a process. Then,

without additional assumptions on the dependence, one can not explicitly compute the matrix

Σ and has to estimate it. A traditional solution is to estimate this matrix by using a

Heteroskedastic-Autocorrelation-Consistent (HAC) method like Newey and West (1987) or

Andrews (1991). This is one of the motivations of using a GMM approach for testing normality.

This has been used by Smith and Richardson (1991), and was more recently and independently

of our work, highlighted by Bai and Ng (2002).

In contrast to the cross-sectional case, one can not show that test statistics based on

two different Hermite polynomials are asymptotically independent. More precisely, consider

a component (i, j), with i 6= j, of the matrix Σ. In this case, E[Hi(xt)Hj(xt)] is zero by

the orthogonality of the Hermite polynomials (2.5). However, without additional restrictions,

E[Hi(xt)Hj(xt−h)] is in general nonzero for h 6= 0 and the matrix Σ will be non-diagonal. This

is probably the case for the following scalar diffusion whose marginal distribution is N (0, 1):

dxt =
1

2
xt(1− x2

t )dt +
√

1 + x2
t dWt.

In contrast, the asymptotic independence of the tests may hold if one makes additional

assumptions on the dependence of the process xt. An important example is when one assumes

that the process xt is a normal autoregressive process of order one, AR(1), that is

xt = γxt−1 +
√

1− γ2 εt, εt is i.i.d. and ∼ N (0, 1), and |γ| < 1. (3.9)

In this case, any Hermite polynomial Hi(xt) is an AR(1) process whose autoregressive coefficient

equals γi, that is

E[Hi(xt+1)|xτ , τ ≤ t] = γiHi(xt). (3.10)
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In this case, it is easy to show that

Σij =
+∞∑

h=−∞

E[Hi(xt)Hj(xt−h)] =
1 + γi

1− γi
δij. (3.11)

As a consequence, the matrix Σ is diagonal and, hence, the test statistics based on different

Hermite polynomials are asymptotically independent.7 Besides, when one tests normality and

ignores the dependence of the Hermite polynomials, one gets a wrong distribution for the

test statistic. For instance, assume that one considers a test based on a particular Hermite

polynomial Hi. Then, the test statistic becomes

1− γi

1 + γi

(
1√
T

T∑
t=1

Hi(xt)

)2

∼ χ2(1). (3.12)

Thus, by ignoring the dependence of the Hermite polynomial Hi(xt), one overrejects the

normality when γ ≥ 0 or i is even and underrejects otherwise. Monte Carlo simulations

in the sixth section will assess this. This is important in practice since many economic time

series are positively autocorrelated.

Allowing for potential serial correlation of unknown form in testing normality is particularly

important when one uses a nonlinear transform to get the variable of interest. For instance, in

the density forecast analysis (e.g., Diebold, Gunther and Tay, 1998), the distribution of interest

is not a Gaussian one, and therefore one uses a transform (through the cumulative distribution

functions of the variable of interest and the Gaussian variable) to get a normal distribution.8

For this example, even if the marginal distribution is Gaussian, there is no reason to assume

that this is also the case for the conditional distribution.

3.4 Skewness and excess kurtosis

A traditional approach for testing normality is to study the skewness and excess kurtosis of

the variable of interest (Mardia, 1970; Bowman and Shenton, 1975; Jarque and Bera, 1980).

More precisely, when a random variable X is distributed as N (0, σ2), we have

E[X3] = 0 and E[X4 − 3σ4] = 0, (3.13)

where the first condition deals with skewness while the second one deals with excess kurtosis.

For simplicity, assume that we observe an i.i.d. sample x1, x2, ..., xT . Then, when the parameter

σ2 is known, the test statistic implied by moment condition in (3.13) is

√
T

 1
T

∑T
t=1 x3

t

1
T

∑T
t=1 x4

t − 3σ4

 n→+∞−→ N

(
0
0

,

(
15σ6 0

0 96σ8

))
. (3.14)

7This result also holds when one assumes that the process {xt} is Gaussian, which implies that (xt, xt−h)
is Gaussian, ∀ t, h. Bai and Ng (2002) used this assumption when they showed the asymptotic independence
of the skewness and excess kurtotis tests.

8Let Y be a continuous random variable with cumulative distribution function F (·); then Φ−1(F (X)) is a
N (0, 1), where Φ(·) is the cumulative distribution function of N (0, 1) random variable.
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Thus, skewness and excess kurtosis test statistics are asymptotically independent. Moreover,

we have the following test statistic

1

15

(
1√
T

T∑
t=1

(xt/σ)3

)2

+
1

96

(
1√
T

T∑
t=1

[(xt/σ)4 − 3]

)2

n→+∞−→ χ2(2). (3.15)

For future reference, observe that this test statistic is different from one that Jarque and

Bera (1980) had given by

1

6

(
1√
T

T∑
t=1

(xt/σ̂)3

)2

+
1

24

(
1√
T

T∑
t=1

[(xt/σ̂)4 − 3]

)2

n→+∞−→ χ2(2), (3.16)

where σ̂ is the MLE of σ in a regression model. This difference is due to parameter uncertainty

that we consider in the following section.

4 Parameter uncertainty

In most empirical examples, the normality assumption is made for an unobservable random

variable. This is the case for a regression, linear or nonlinear, homoskedastic or heteroskedastic,

where the normality assumption is in general made on the (standardized) residuals. This

is also the case for nonlinear time series as volatility models (e.g., GARCH or stochastic

volatility models). Thus, one must first estimate the parameters of the model and then

get fitted residuals. Then, one tests the normality assumption of the residuals by using the

fitted residuals. In other empirical examples, the normality assumption is made on observable

variables but the parameter of the normal distribution, i.e., the mean and the variance, are

unknown. Therefore, one must also estimate these parameters in order to test normality.

It is well-known that the asymptotic distribution of a test statistic that depends on an

unknown parameter, denoted by θ0, may be different from the asymptotic distribution of the

same test statistic applied by using a consistent estimator of θ0, denoted by θ̂T . The main

reason is one has to take into account the uncertainty of θ̂T in the testing procedure. This is

known as the parameter uncertainty problem.

4.1 The traditional approach

The GMM approach is well-suited for this problem, which is the first reason we are using it

in the paper to test normality. Newey (1985) and Tauchen (1985) provided a general theory

for taking into account the parameter uncertainty in testing procedures. Their approach is the

following. Assume that one has to test the following moment condition

E[g(zt, θ
0)] = 0, (4.1)
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where zt is a random variable, potentially multivariate, and θ0 is an unknown (vectorial)

parameter. Under the null hypothesis, we have

1√
T

T∑
t=1

g(zt, θ
0) → N (0, Σg) where Σg = lim

T→+∞
V ar[

1√
T

T∑
t=1

g(zt, θ
0)]. (4.2)

Assume that one has a square-root T consistent estimator of θ0, denoted by θ̂T , i.e.

√
T (θ̂T − θ0) → N (0, Vθ). (4.3)

Then, a natural approach to test (4.1) is by using T−1/2
∑T

t=1 g(zt, θ̂T ). Therefore, one needs

the asymptotic distribution of this test statistic. It is easily obtained by using a Taylor

approximation around the unknown parameter θ0. More precisely, we have:

1√
T

T∑
t=1

g(zt, θ̂T ) =
1√
T

T∑
t=1

g(zt, θ
0) +

[
1

T

T∑
t=1

∂g(zt, θ
0)

∂θ>

]
√

T (θ̂T − θ0) + op(1). (4.4)

Define the matrix Pg by

Pg = lim
T→+∞

1

T

T∑
t=1

∂g(zt, θ
0)

∂θ>
. (4.5)

Then, we can rewrite (4.4) in the following form:

1√
T

T∑
t=1

g(zt, θ̂T ) = [Ip Pg]

 1√
T

T∑
t=1

g(zt, θ
0)

√
T (θ̂T − θ0)

+ op(1), (4.6)

where Ip is the p × p identity matrix and p the dimension of g. From (4.6), it is clear that

the asymptotic distribution of the test statistic in the left hand side of (4.6) depends on the

asymptotic distributions of two random variables, T−1/2
∑T

t=1 g(zt, θ
0) and

√
T (θ̂T − θ0) which

are given respectively in (4.2) and (4.3), and their asymptotic covariance.9 As a consequence,

the parameter uncertainty generally changes the asymptotic distribution of the test statistic

when one uses an estimator instead of the unknown parameter θ0. This is why the Jarque

and Bera (1980) test (3.16) differs from (3.15). Bai and Ng (2002) also adopted the same

approach by including the third and fourth moment conditions in their estimation procedure

by the GMM.

In general, the matrices that appear in the asymptotic distributions (4.2) and (4.3) are

easily estimated. However, it is difficult to estimate the asymptotic covariance matrix between

T−1/2
∑T

t=1 g(zt, θ
0) and

√
T (θ̂T − θ0). This is the case when one uses advanced estimation

methods, especially simulation techniques10 as in the case of stochastic volatility and latent

factor models. Several solutions have been proposed in the literature to solve this problem.

9We assume that the asymptotic distribution of the right hand side of (4.6) is normal.
10See Gouriéroux and Monfort (1996) for a review.
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Bai (2002) as well as Duan (2003) proposed transformations of their test statistics that are

robust against parameter uncertainty; Thompson (2002) proposed upper bound critical values

for his tests; Hong and Li (2002) split their sample and used the first part of the sample to do

the estimation and made the test on the second part of the sample whose sample size, T2, is

assumed to be small with respect to the total sample size T (i.e., T2/T → 0 when T → +∞);

Corradi and Swanson (2002) used the bootstrap to take into account parameter uncertainty

(and serial correlation); finally, Dufour, Farhat, Gardiol and Khalaf (1998) developed Monte

Carlo exact tests in the linear homoskedastic regression model in finite samples.

4.2 Our approach

An alternative method that we adopt in this paper is to consider moment conditions such that

the matrix Pg equals zero, i.e.,

Pg = 0. (4.7)

In this case, the asymptotic distribution of T−1/2
∑T

t=1 g(zt, θ
0) and T−1/2

∑T
t=1 g(zt, θ̂T )

coincide. Hence, the test statistic is robust against the parameter uncertainty.

In the sequel, we need to be more specific about the examples we will consider in order

to characterize the moment conditions that are robust against the parameter uncertainty. We

consider three examples:

Example 1: regression with exogenous variables. Let zt = (yt, x
>
t )> be a vector where yt

is an endogenous variable, xt is a (vectorial) exogenous variable. We assume that there exists

a unique parameter θ0 = (α0>, β0>)> such that

yt = m(xt, β
0) + σ(xt, β

0, α0) ut, and ut ∼ N (0, 1), (4.8)

where α0 and β0 are real vectors and m(x, β) and σ(x, β, α) are two real functions. A special

example is the cross-sectional case where the random variable ut is i.i.d. by assumption.

Another example is the time series case where the variable ut may be serially correlated.

However, it is assumed to be independent from xt.

The model adopted by Jarque and Bera (1980) is the special case where

m(xt, β) = x>t β and σ(xt, β, α) = α, (4.9)

i.e., they considered a linear homoskedastic regression model with potentially correlated

residuals. Kiefer and Salmon (1983) also adopted a special case of (4.8) by assuming

σ(xt, β, α) = α and ut is i.i.d., (4.10)

i.e., a nonlinear regression model with homoskedastic and i.i.d. errors.
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Example 2: time series regression. This example is similar to the first one, but we now

assume that the variables xt are lagged values of yt and ut is i.i.d., i.e.,11

E[yt | yτ , τ ≤ t− 1] = mt(β
0), V ar[yt | yτ , τ ≤ t− 1] = σ2

t (β
0, α0), (4.11)

ut ≡
yt −mt(β

0)

σt(β0, α0)
and ut is i.i.d. and ∼ N (0, 1). (4.12)

Special examples of this case are ARMA models with GARCH errors (Bollerslev, 1986).

Example 3: marginal distribution of a process. In this case, we assume that we observe

a sample y1, ..., yT , of a process whose marginal distribution is assumed to be N (m0, σ02) where

m0 and σ0 are unknown parameters. Hence, the standardized process is N (0, 1), that is

ut ≡
yt −m0

σ0
and ut ∼ N (0, 1). (4.13)

Observe that in all of these examples, the normal variable of interest ut may be written as

ut(θ) =
yt −mt(θ)

σt(θ)
, (4.14)

where the normality assumption holds for ut(θ
0) and denoted by ut. We can now characterize

the test functions g that are robust against parameter uncertainty in Examples 1, 2 or 3.

Proposition 4.1 Consider ut as defined in Examples 1, 2 or 3. Let θ̂T be a square-root T

consistent estimator of θ0 such that (4.3) applies and denote by ût the corresponding estimated

residuals. Define the function g̃(.) by g̃(ut(θ)) = g(zt, θ). Then, a sufficient condition such that

the asymptotic distribution of the test statistics T−1/2
∑T

t=1 g(zt, θ
0) and T−1/2

∑T
t=1 g(zt, θ̂T )

coincide is

E[g̃′(ut)] = 0 and E[utg̃
′(ut)] = 0. (4.15)

This proposition means that a sufficient condition ensuring the robustness of our test

statistic against the parameter uncertainty is the orthogonality of g̃′ with H0 and H1,
12 i.e.,

E[H0(ut)g̃
′(ut)] = 0 and E[H1(ut)g̃

′(ut)] = 0. (4.16)

It is worth noting that we do not assume that the considered test statistic comes from the

Stein equation (2.1). Indeed, this result encompasses the results of White and MacDonald

(1980). Besides, this proposition holds in both cross-sectional and time series cases. Finally,

while (4.15) is a sufficient condition, it is generically necessary. It may not be necessary for

some estimators with very particular asymptotic variances.

11Observe that we adopt a different notation than used in the first example to incorporate non Markovian
models like MA and GARCH.

12Observe that we explicitly use the form (4.14) of ut. If one considers a more general framework like
ut = f(zt, θ

0) as in Davidson and MacKinnon (1984), and want to test E[g̃(ut)] = E[g̃(f(zt, θ
0))] = 0, the

sufficient condition (4.15) becomes E[g̃′(ut)
∂f

∂θ>
(zt, θ

0)] = 0.
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Before further characterizing (4.16) when one considers the Stein equation (2.1), let us

apply this proposition when one considers tests based on excess skewness and kurtosis as did

Jarque and Bera (1980) and Bai and Ng (2002). More precisely, assume that one considers the

moment conditions

E[g̃1(ut)] = 0 and/or E[g̃2(ut)] = 0, where g̃1(ut) = u3
t and g̃2(ut) = u4

t − 3. (4.17)

It is clear that the function g̃1 violates the first condition in (4.15) while g̃2 violates the second

one. Thus, in this case, one must correct the asymptotic distribution of the test statistic by

taking into account the parameter uncertainty as did Jarque and Bera (1980).

When one considers test statistics based on the Stein equation (2.1), that is when one

assumes that

g̃(x) = f ′(x)− xf(x),

the condition (4.15) may be characterized through the function f(x):

Proposition 4.2 Let f(x) be a differentiable function and define g̃(x) by g̃(x) ≡ f ′(x)−xf(x).

Then, the condition (4.16) holds if and only if

E[f(ut)] = 0 and E[f ′(ut)] = 0. (4.18)

This proposition may be easily applied in practice. One has to take any integrable function

denoted by s(x) such that E[|s(Z)|] < +∞ where Z is assumed to be N (0, 1). Then, define

the function s̄(x) by s̄(x) = s(x)−E[s(Z)] and the function f̄(x) as the primitive of s̄(x) which

is centered, that is E[f̄(Z)] = 0. Then, by construction, the condition (4.18) holds for f̄(x).

When on uses the conditions based on the Hermite polynomials (2.6), the conditions (4.15)

and (4.18) hold for any (linear combination of) Hermite polynomial Hi(x) with i ≥ 3. This is

the main result of our paper:

Proposition 4.3 Consider ut as defined in Example 1, 2 or 3. Let θ̂T be a square-root T

consistent estimator of θ0 such that (4.3) applies. Let g be a vectorial function such that

any component is a linear combination of Hermite polynomials Hi(x) with i ≥ 3. Then,

the asymptotic distribution of the test statistics T−1/2
∑T

t=1 g(zt, θ
0) and T−1/2

∑T
t=1 g(zt, θ̂T )

coincide.

This result was already stated in Kiefer and Salmon (1983). However these authors assumed

that the model is a nonlinear regression with homoskedastic and i.i.d. errors, that is under (4.8)

and (4.10). Moreover, they found this result when θ̂T is the maximum likelihood estimator. In

other words, both assumptions are relaxed in the previous proposition. This is very important

in many empirical examples where computing the maximum likelihood estimator is difficult or

unfeasible.
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We now characterize the relationship of the Jarque and Bera (1980) test with the previous

proposition. The test statistic they proposed is, for example, one under (4.9). More precisely,

let ût defined by ût = (yt − x>t β̂)/α̂, where α̂ and β̂ are the MLE of α and β. Then, Jarque

and Bera (1980) found that

JB ≡ 1

6

(
1√
T

T∑
t=1

û3
t

)2

+
1

24

(
1√
T

T∑
t=1

[û4
t − 3]

)2

n→+∞−→ χ2(2). (4.19)

In Jarque and Bera (1980), the constant is in the regressors and α̂2 is given by α̂2 =

T−1
∑T

t=1(yt − x>t β̂)2. Therefore,
∑T

t=1 ût = 0 and T−1
∑T

t=1 û2
t = 1, and the JB test-statistic

(4.19) becomes

JB =
1

6

(
1√
T

T∑
t=1

[û3
t − 3ût]

)2

+
1

24

(
1√
T

T∑
t=1

[û4
t − 6û2

t + 3]

)2

,

=

(
1√
T

T∑
t=1

H3(ût)

)2

+

(
1√
T

T∑
t=1

H4(ût)

)2

.

In other words, the Jarque and Bera (1980) test coincides with the joint test based on third and

fourth Hermite polynomials. However, the setting they considered is less general than ours. In

addition, their estimation method is the ML while in our case we only need a square-root T

consistent estimator.

In summary, when one wants to test normality, N (0, 1), through skewness and excess

kurtosis, one has two methods that are robust against parameter uncertainty.13 One can either

use the third and fourth Hermite polynomials on the fitted residuals whatever the estimation

method, or, use the Jarque and Bera (1980) test on the standardized residuals, i.e., the fitted

residuals minus their empirical mean divided by their standard deviation.14 Note that these two

methods are sufficient only. For instance, Fiorentini, Sentana and Calzolari (2003b) established

that for some symmetric and heteroskedastic models (like GARCH) estimated by the ML

method, the Jarque and Bera (1980) test statistic is still valid.

4.3 The OPG regression approach

Another approach to handle the parameter uncertainty problem is the use of outer-product-

of-the-gradient (OPG) regressions. Indeed, Davidson and MacKinnon (1993) considered the

OPG regression approach for testing normality through skewness and excess kurtosis.

More precisely, as in Davidson and MacKinnon (1993), assume that one is interested in

testing that yt is N (β, σ2) where σ2 is a known parameter and define xt by xt = yt − β. The

13Tests based on OPG regression is a third robust method; see the following subsection.
14Of course, for time series, the second method is not valid while one has to use a HAC method for estimating

the variance-covariance matrix in the first method.
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assumption that the mean and variance of xt are zero and σ2 could be tested by the following

OPG regression

1 = s1xt + s2(x
2
t − σ2) + residual. (4.20)

Assume now that one is interested in testing skewness. Then, Davidson and MacKinnon (1993)

propose to add in (4.20) the regressor x3
t , i.e.,

1 = s1xt + s2(x
2
t − σ2) + ax3

t + residual,

and to test that the coefficient a is zero. The test statistic being the t statistic of the estimator

of a. Given that x3
t is orthogonal with x2

t − σ2 and not with xt, the numerator of the t test is

the mean of x3
t minus the mean of its projection on xt, i.e.,

1

T

T∑
t=1

x3
t −

(∑T
t=1 x4

t∑T
t=1 x2

t

)
1

T

T∑
t=1

xt ≈ 1

T

T∑
t=1

x3
t − 3σ2 1

T

T∑
t=1

xt.

where the last approximation holds under normality and when T is large. Davidson and

MacKinnon (1993) show the variance of x3
t − 3σ2xt is 6σ6. Thus, the t statistic is close to

1
T

∑T
t=1 x3

t − 3σ2 1
T

∑T
t=1 xt√

6σ6
=

1

T

T∑
t=1

H3(xt/σ). (4.21)

Given that the variance of H3(xt/σ) is one, the test statistic (4.21) is also the t-statistic of the

coefficient ã in the two OPG regressions

1 = s1xt + s2(x
2
t − σ2) + ãH3(xt/σ) + residual, and

1 = s̃1H1(xt/σ) + s̃2H2(xt/σ) + ãH3(xt/σ) + residual.

Therefore, testing that the empirical mean of the third Hermite polynomial is numerically the

same as testing that the coefficient ã in the previous regressions is zero if one takes into account

the orthonormality of the Hermite polynomials (in particular the unit variance of the Hermite

polynomials). When one ignores this orthonormality, one gets an asymptotic equivalence.

Similarly, one easily obtains the same results when one tests excess kurtosis by using

the fourth Hermite polynomial. In addition, the orthogonality between the third and fourth

Hermite polynomials implies that the same result holds when one tests jointly the skewness

and excess kurtosis through the third and fourth Hermite polynomials. More generally, the

orthonormality of the Hermite polynomials means that the result holds for any and higher

order Hermite polynomials; for more details, see the previous version, Bontemps and Meddahi

(2002).

5 A Monte Carlo study

This section provides some Monte Carlo experiments to study the finite sample properties of

the tests we proposed. We also compare our tests with the more popular ones, that is the
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Kolmogorov-Smirnov, Jarque-Bera and OPG-type tests. The first two tests are respectively

denoted by KS and JB in the tables. Note that when we consider the parameter uncertainty

problem, we also provide the Lilliefors modified Kolmogorov-Smirnov test and denote these by

M-KS in the tables.

All the test functions we consider are based on Hermite polynomials given their generality

(Proposition 2.1) and their robustness against parameter uncertainty. We consider test

functions based on individual Hermite polynomials Hi for i = 3, ..., 10. We also consider

joint tests based on (H3, H4, ..., Hi), for i = 4, ..., 10. These tests are denoted by H3−i for

i = 4, ..., 10 in the tables.

In all the simulation experiments, we consider four sample sizes: 100, 250, 500 and 1000. All

the results are based on 50000 replications. We report in the tables the empirical probability

of rejecting the null hypothesis when one considers tests at 5% significance level. Tests based

on 10%, 2.5% and 1% produce similar results to that based on 5% and are omitted to save

space.15

Cross-sectional case. We start by simulating an i.i.d. sample from a N (0, 1). We assume

that we know the mean and the variance. Obviously, this is unrealistic in practice. However, it

is a good benchmark for the realistic cases where the parameters are unknown and have to be

estimated. We report the results in Panel A of Table 1. Consider the tests based on individual

Hermite polynomials. Their finite sample properties are clearly good. In particular, they do

not reject the null more than the nominal level, even with the smaller sample size. However,

while the tests based on higher order polynomials Hi for i ≥ 6 underreject the null for the four

sample sizes, this is not problematic given that we are considering the level of the tests. The

tests based on several Hermite polynomials also have very good finite sample properties for

the four sample sizes. Indeed, we do not observe the underrejection when we use high order

Hermite polynomials.

Consider now the popular tests, i.e., KS and JB. The KS test works very well whatever the

sample size. Interestingly, the properties of tests based on the Hermite polynomials are very

close to the KS test and occasionally better for the sample size 100 when one considers a test

based on H4. However the JB test, denoted Naive-JB, does not work well and overreject the

null. The main reason is, when the empirical mean of the sample is not zero, the asymptotic

distribution of the Jarque and Bera (1980) test is not a χ2(2) (which justifies the terminology

Naive-JB).

In Panel B of Table 1, we present the results of the same tests16 on the same samples when

one does not know the mean and the variance and estimates them. Thus, the test statistics

are based on the standardized residuals. By comparing Panel B with Panel A, it is clear that

tests based on Hermite polynomials underreject a little bit the null assumption which again is

15They are available upon request from the authors.
16We do not consider H1 and H2 since these moments are used to estimate the mean and the variance.
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not problematic. However the difference between knowing or not knowing the mean and the

variance, decreases with the sample size and almost vanishes when the sample size is 1000.

This confirms the robustness of these tests against parameter uncertainty. This is in contrast

with the Kolmogorov-Smirnov test that almost never rejects the null. However, the Lilliefors

modified test works well whatever the sample size. This is also the case for the JB test, since

by construction, the empirical mean of the standardized residuals is zero. Indeed, the JB test

coincides with the joint test based on H3 and H4, that is H3−4.
17

We also provide in Panel B results based on OPG regression as discussed in the previous

section. For simplicity, we present three tests that correspond to the hypothesis E[H3(x)] = 0,

E[H4(x)] = 0, and E[H3(x)] = E[H4(x)] = 0, which are respectively denoted OPG3, OPG4,

and OPG3−4. The main conclusion from the results in Table 1 is that tests based on OPG

regression present some important distortions which remain with large sample sizes like 1000

observations. For instance, the probability of rejection of OPG3−4 are 31.5% and 10.9% with

100 and 1000 observations respectively. These distortions are in line with ones reported by

Davidson and MacKinnon (1992) when they considered information matrix-based tests. Due

to these distortions, we will not consider OPG tests in the rest of the paper.18

We now study the power of the considered tests against some interesting alternative

assumptions for the cross-sectional case. In particular, we consider Student, chi-square

and exponential alternatives. We start by simulating i.i.d. random variables from Student

distributions with five different degrees of freedom: a) T (60); b) T (30); c) T (20); d) T (10);

and e) T (6). Recall that for a random variable that follows a T (ν) distribution, the moments

of order higher than ν-1 are not defined. Hence, the moments of Hi are not defined if i > ν−1.

Moreover, the asymptotic distribution of the corresponding test statistics are not chi-square

if 2i > ν − 1 since the variance of the Hermite polynomial Hi is not defined. The results are

presented in Table 2. It is clear that the power of the tests is low when the degree of freedom

ν is high. This is not surprising since a T (ν) distribution tends toward a normal one when

ν → +∞. However, when the degree of freedom decreases, the power of the tests increases

and becomes very good when the degree of freedom is smaller than 10, which is the relevant

case in the volatility literature (see the first example in the empirical section). A surprising

result is that the fourth Hermite polynomial captures much more the non-normality than the

higher polynomials. In contrast, tests based on odd polynomials do not work well. This is not

surprising given that the mean in population of any odd Hermite polynomial is zero (when it

is well defined) for any symmetric distribution and, hence, for a Student one.

17There is a small difference in Panel B between the JB and H3−4 tests since in JB test, the variance is
estimated by T−1

∑T
t=1(xt − X̄)2 while in the Hermite case it is estimated by (T − 1)−1

∑T
t=1(xt − X̄)2 where

T is the sample size and X̄ the empirical mean.
18We also do not consider tests based on double-length artificial linear regressions (Davidson and MacKinnon,

1984) which have better finite sample properties than tests based on OPG regression; see MacKinnon and Magee
(1990).
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In order to understand the behavior of the power of test statistics against Student

distributions, we characterize in the appendix the behavior of those based on the third and

fourth Hermite polynomials. In particular, we show that if one observes an i.i.d. sample

y1, ..., yT , of a random variable Y that follows a T (ν) where ν > 8, then(
1√
T

T∑
t=1

H3(xt)

)2

T→+∞−→ A(ν)χ2(1) and

(
1√
T

T∑
t=1

H4(xt)

)2

T→+∞−→ +∞, (5.1)

where xt = yt

√
(ν − 2)ν−1 and A(ν) = (ν2 − ν + 10)/(ν − 6)(ν − 4). The first result in (5.1)

implies that when one uses the third Hermite polynomial for testing normality while the random

variable is a Student T (ν) at, say, 5% level, one accepts normality with a probability that equals

P (A(ν)χ2(1) > 3.84) if one assumes that the limit distribution of (T−1/2
∑T

t=1 H3(xt))
2 is χ2(1).

In Table 3, we provided for all values of ν we considered in the Monte Carlo experiment, the

value of A(ν) and the probability P (A(ν)χ2(1) > 3.84). These results are compatible with the

Monte Carlo ones; in particular, the theoretical probabilities of rejection are very close to the

Monte Carlo ones for the sample size T = 1000. Given that a test based on the third Hermite

polynomial is not powerful, this is also the case for any joint test that uses this polynomial. In

contrast, the second result in (5.1) explains why a test based on the fourth Hermite polynomial

has a good asymptotic power against Student distribution.

Observe that we do not report results based on Hermite polynomials Hi(·) with i > 7 in

Table 2 and the subsequent tables of the paper, because they do not provide gain in power

with respect to tests based on Hermite polynomials with lower order like the test denoted by

H3−6 in the tables; these simulations are however reported in Bontemps and Meddahi (2002).

Consider now the power of the tests against a χ2(1) and an exponential distribution, exp(1).

The results are reported in Table 4. They clearly imply that tests based on the third and fourth

Hermite polynomials are very powerful whatever the sample size and that they are similar to the

modified Kolmogorov-Smirnov test. However, tests based on individual higher order Hermite

polynomials are less powerful for small sample sizes.

Similarly, we study the power of our tests against heteroskedastic and Gaussian errors. We

follow Bera and Jarque (1981) by considering the model xt ∼ N (0, σ2
t ) with σ2

t = 25+αzt and
√

zt ∼ N (10, 25). We simulate two examples, namely α = .25 and α = 1.25, which respectively

correspond to a weak and strong heterogeneity. The results reported in Table 5 indicate that

our tests work well and these results are in line with those reported in Table 3 when we study

the power of the tests against Student distributions.

The last i.i.d. example we consider is a GARCH(1,1) model:

xt = µ +
√

htut, ht = ω + α(
√

ht−1ut−1)
2 + βht−1,

where µ = 0, ω = 0.2, α = 0.1, and β = 0.8. We take different distributions for ut: N (0, 1) to

study the size of the tests, and standardized T (20), T (10), T (6), χ2(1), and exp(1) to study
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the power of the tests. The parameters µ, ω, α, and β are estimated with a Gaussian-QMLE

method, which is consistent for all models given that we correctly specify the conditional mean

and variance of xt (Bollerslev and Wooldridge, 1992). The results reported in Table 6 confirm

those reported in the other tables.

We did not adjust for small sample size distortions of the tests we considered. This obviously

makes the power comparison less clear. The main reason for not adjusting the size is that our

approach is semiparametric because our testing approach does not specify the complete model.

And, we follow the same approach in the simulation even if we completely know the model.

Of course, one can use the Bootstrap to do this correction, like the parametric bootstrap when

one considers a linear regression model with fixed regressors. It is less clear if one can use it for

the GARCH models and more importantly in the case where the variable of interest is serially

correlated.

Dependent case. Consider now the dependent case, where the variable of interest is

serially correlated. We consider several autoregressive normal processes of order one, AR(1),

i.e., we assume that the conditional distribution of the variable of interest denoted by xt given

its past isN (ρxt−1, 1−ρ2). Observe that the marginal distribution of xt isN (0, 1). We consider

four values for ρ: a) ρ = .1; b) ρ = .5; c) ρ = .7 and d) ρ = 0.9. We did the same tests as for

the independent case by assuming that we do not know the unconditional mean and variance

of xt.

We start by ignoring the dependence of the data, that is we assume that the sample size is

i.i.d.; the results are reported in Table 7a. They clearly state that all the tests, including M-KS

and JB ones, overreject the null when the sample size is higher than 250. This distortion is

problematic. Therefore, we take into account the dependence of the data.

Next, we assume that we know the autoregressive structure. This is not always a realistic

assumption. We do it however in order to get a benchmark. We consider two cases; in the first

one, we assume that we know the autoregressive parameter while we estimate it by OLS in the

second case. Given that the autoregressive feature of the data is known, we assume that the

weighting matrix that appears in the test statistic is diagonal and that the diagonal coefficients

are given by (3.11). The results are provided in Table 7b and Table 7c. These results are clearly

good and similar to the ones provided in Panel B of Table 1 for the independent case. We

observe again an underrejection of normality, in particular when the autoregressive coefficient

increases.

We then test normality by ignoring the autoregressive feature of the data but by taking

into account their dependence. Therefore, we do not assume that the weighting matrix Σ is

diagonal. Instead, we estimate it by a HAC method. The HAC method is developed by using

the quadratic kernel with an automatic lag selection procedure of Andrews (1991). The results

are reported in Table 7d. From this table, it is clear that univariate tests work well. However,

joint tests overreject the normality assumption, especially for small sample sizes and for tests
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that are based on three or more Hermite polynomials. The overrejection is relatively small for

the test based on the third and fourth Hermite polynomials.

We now study the power of these tests against an autoregressive model of order one where

the innovation is a Student one. Again, with the same autoregressive parameters as previously

used, we consider almost the same degree of freedom as in the i.i.d. case, i.e., 30, 20, 10, and

5. We consider the T(5) example for comparison purposes with Bai and Ng (2002). Observe

that the marginal distribution of the processes are (probably) not Student. However, their

tails are clearly fatter than for a normal distribution. The results are reported in Tables 8a,

8b, 8c, and 8d. The main results of the tables can be summarized as follows. The tests based

on univariate polynomials and different from the third one work well; however, their power

decreases when both the degree of freedom of the Student distribution and the autocorrelation

parameter are high. The univariate, bivariate and trivariate tests based on the third Hermite

polynomial (denoted in the tables by H3, H3−4 and H3−5) are not powerful, especially when

the autocorrelation is high. The main reason is symmetry. The second reason, given by Bai

and Ng (2002), is that when the autocorrelation parameter is high, the Central Limit Theorem

suggests that process of interest is close to a normal one. Note however that our results for

H3−4 are different from ones of Bai and Ng (2002) when they test normality (for ν = 5),

which are more powerful then ours. The reason is not clear to us. One potential reason is the

difference in the estimation method: in order to estimate the mean and variance parameters,

we use the first two moments while Bai and Ng (2002) used the first four moments.

6 Empirical examples

This section provides two empirical examples: the first one concerns GARCH models while the

second one deal with high frequency realized volatility.

6.1 First example: GARCH model

A very popular model in the volatility literature is GARCH(1,1) in Bollerslev (1986). More

precisely, Bollerslev (1986) generalizes the ARCH models of Engle (1982) by assuming that

yt =
√

htut with ht = ω + αy2
t−1 + βht−1, where ω ≥ 0, α ≥ 0, β ≥ 0, α + β < 1, (6.1)

and the process ut is assumed to be i.i.d. and N (0, 1). An important characteristic of GARCH

models is that the kurtosis of yt is higher than for a normal variable. It turns out that financial

returns are also leptokurtic, and hence, GARCH models describe financial data well.19

However, some empirical studies found that the implied kurtosis of a GARCH(1,1) is lower

than empirical ones. These studies lead Bollerslev (1987) to assume that the standardized

19The second characteristic that GARCH models share with financial returns is the clustering effect. For a
survey on GARCH models, see for instance Bollerslev, Engle and Nelson (1994).
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process ut may follow a Student distribution. Under this assumption, GARCH(1,1) fit financial

returns very well. Indeed, by using a Bayesian likelihood method, Kim, Shephard and Chib

(1998) proved that a Student GARCH(1,1) outperforms in terms of likelihood another very

popular volatility model, namely the log-normal stochastic volatility model of Taylor (1986)

popularized by Harvey, Ruiz and Shephard (1994) and Jacquier, Polson and Rossi (1994).

The first example we consider in our empirical study is testing normality of the standardized

residual ut. We consider the same data as Harvey, Ruiz and Shephard (1994) and Kim,

Shephard and Chib (1998),20 i.e., observations of weekday close exchange rates from 1/10/81

to 28/6/85. The exchange rates are the U.K. Pound, French Franc, Swiss Franc and Japanese

Yen, all versus the U.S. Dollar. We estimate the model by a Gaussian QML method. The

method is consistent as soon as the variance ht is well specified (Bollerslev and Wooldridge,

1992). We get the fitted residuals ût and test their normality. The results are provided in Table

9. It is clear that normality of the residuals is strongly rejected by all the tests, in particular

those related to the tails (even polynomials). The difference between JB and H3−4 tests is

relatively small; which is in line with the results of Fiorentini, Sentana and Calzolari (2003b)

who found that the test based on the fourth moment for GARCH models is still valid even if

the parameters are estimated.21 Observe that the magnitude of normality rejection is in the

following increasing order: FF-US$, UK-US$, SF-US$, and Yen-US$. Interestingly, this order

is the same as one implied by the Student GARCH models estimated by Kim, Shephard and

Chib (1998), since these authors reported in their Table 13 the following degree of freedom:

12.82, 9.71, 7.57 and 6.86.

6.2 Second example: realized volatility

Several recent studies highlight the advantage of using high-frequency data to measure volatility

of financial returns. These include Andersen and Bollerslev (1998), ABDL (2001) and

Barndorff-Nielsen and Shephard (2001). For a survey of this literature, Andersen, Bollerslev

and Diebold (2002) and Barndorff-Nielsen and Shephard (2002) should be consulted. Typically,

when one is interested in volatility over, say, a day, then these papers propose to study the

estimation of this volatility by the sum of the intra-daily squared returns, such as returns over

five or thirty minutes. This measure of volatility is called the realized volatility.

More precisely, consider St a continuous time process representing the price of an asset or

the exchange rate between two currencies. Assume that it is characterized by the following

stochastic differential equation:

d log(St) = mtdt + σtdWt with dσ2
t = m̃tdt + σ̃tdW̃t, (6.2)

where Wt and W̃t are standard Brownian processes, potentially correlated. Assume that the

20We are grateful to Neil Shephard for providing us with the data.
21Recall that exchange rates returns are symmetric.
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time t is measured in units of one day. Consider a real h such that 1/h is a positive integer.

Then, integrated and realized volatility denoted respectively by IVt and RVt(h) are defined by

IVt ≡
∫ t

t−1

σ2
udu and RVt(h) ≡

1/h∑
i=1

r
(h)2
t−1+ih, (6.3)

where r
(h)
t−1+ih is the return over the period [t − 1 + (i − 1)h; t − 1 + ih], given by r

(h)
t−1+ih ≡

log(St−1+ih)− log(St−1+(i−1)h). It turns out that when h goes to zero, realized volatility RVt(h)

converges (in probability) to integrated volatility IVt.

An assumption made in ABDL (2003) is conditional normality of the log of realized

volatility. Hence, log-realized volatility are also unconditionally normal. This is our second

example. We consider the same data as in ABDL (2003),22 i.e., returns of three exchange rates,

DM-US$, Yen-US$ and Yen-DM, from December 1, 1986 through June 30, 1999. The realized

volatilities are based on observations at five and thirty minutes. Therefore, we have six series.

In Table 10, we provide the results of testing normality of log-realized volatility with

unknown mean and variance. The weighting matrix is estimated by a HAC procedure of

Andrews (1991). It is clear that unconditional normality of log-realized volatility is rejected,

particularly for realized volatility based on five-minute returns.23 Observe that the rejection

is due to the asymmetry of the distribution. Thomakos and Wang (2003) also studied the

log-normality of the realized volatility process by using among other tests, the KS and JB.

They concluded that realized volatility is log-normal. However, these authors used a Monte

Carlo study to correct the size of their tests, which is therefore a model based correction.

We conclude this empirical section by one remark. In our tests, we assumed that the

weighting matrix is well defined. This is not necessarily the case. In particular, ABDL (2003)

reported results that clearly indicate a presence of long memory in log-realized volatility. In this

case, the weighting matrix is not well defined and our test procedures are not valid. However,

this is also the case for the procedures of ABDL (2003) which are based on the skewness,

kurtosis, and nonparametric estimation of density of log-realized volatilities. Actually, some

theoretical results are derived in Beran and Ghosh (1991). Following Taqqu (1979), they

considered an expansion approach of the test statistic of interest onto the Hermite polynomials

and show that its speed of convergence and the asymptotic distribution depends on the long

memory parameter. For instance, the speed of convergence of the third Hermite polynomial

may differ from one of the fourth Hermite polynomial. This is why Thomakos and Wang (2003)

proved in their Monte Carlo study that the correction depends on the sample size and indeed

on the long memory parameter. It is worth noting that Beran and Ghosh (1991) assumed that

the process is Gaussian which means that both unconditional and conditional distributions are

22We are grateful to Ramazan Gençay for providing us the OLSEN data and to Torben Andersen and Paul
Labys for providing us their data.

23In their study, ABDL (2003) used thirty-minute realized volatilities.
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Gaussian, which is not our case. In addition, they did not take into account the parameter

uncertainty problem. Testing normality under long memory in our framework is more difficult

and is left for future research.

7 Conclusion

In this paper, we have considered testing marginal normal distributional assumptions for both

cross-section and time series data. We used the GMM approach to test moment conditions

given by Stein (1972) equations and the first class of moment conditions derived by Hansen

and Scheinkman (1995) when the process of interest is a scalar diffusion. The main advantage

of our approach is that tests based on Hermite polynomials are robust against parameter

uncertainty. In addition, the GMM setting is well suited to take into account serial correlation

by using a HAC procedure. We provided simulation results that clearly show the usefulness of

our approach. We also applied our approach to test for normality in three volatility models.

Three main extensions have to be considered. The first one is to extend our approach to

the multivariate case. The second is to consider other distributions, in particular Pearson

ones. These two extensions are under consideration by using the Hansen and Scheinkman

(1995) moment conditions which are valid in both multivariate normal and non normal cases.

A third important extension will be testing normality under long memory.
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Appendix

Proof of Proposition 4.1. Consider the first example and observe that

g(zt, θ) = g̃(ut(θ)) = g̃

(
yt −m(xt, θ)

σ(xt, θ)

)
.

Then, we have:
∂g

∂θ>
(zt, θ) = g̃′

(
yt −m(xt, θ)

σ(xt, θ)

)
∂m

∂θ>
(xt, θ)− g̃′

(
yt −m(xt, θ)

σ(xt, θ)

)
(yt −m(xt, θ))

σ2(xt, θ)

∂σ

∂θ>
(xt, θ)

= g̃′(ut(θ))
∂m

∂θ>
(xt, θ)− g̃′(ut(θ))ut(θ)

1

σ(xt, θ)

∂σ

∂θ>
(xt, θ).

Hence, we have:

E

[
∂g

∂θ>
(zt, θ

0)

]
= E

[
g̃′(ut(θ

0))
]
E

[
∂m

∂θ>
(xt, θ

0)

]
−E

[
g̃′(ut(θ

0))ut(θ
0)
]
E

[
1

σ(xt, θ)

∂σ

∂θ>
(xt, θ

0)

]
since xt is an exogenous variable. Hence, under (4.15), we have E

[
∂g

∂θ
(zt, θ

0)

]
= 0, i.e., (4.7)

holds. This achieves the proof for the first example. The same proof holds for the second

example since ut is independent of yτ , τ ≤ t− 1.

Consider now the third example. We still have θ = (m, σ). Hence:
∂g

∂θ>
(zt, θ) = g̃′(ut(θ))

[
1
0

]
− g̃′(ut(θ))ut(θ)

1

σ

[
0
1

]
, and E

[
∂g

∂θ
(zt, θ

0)

]
= 0 under (4.15).

This achieves the proof for the third example.�

Proof of Proposition 4.2. Since g̃(x) = f ′ − xf(x), we have g̃′(x) = f ′′(x)− xf ′(x)− f(x)

and xg̃′(x) = (xf ′(x))′ − x(xf ′(x)) + f ′(x) − xf(x) − 2f ′(x). Applying the Stein equation

(2.1) to f ′(x) and xf ′(x) proves the proposition.�
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Proof of Proposition 4.3. The orthogonality property of the Hermite polynomials, i.e.

(2.5), and the first result in (2.7) prove the proposition.�

Lemma. Let y1, y2, ..., yT , an i.i.d. sample of a random variable Y that follows a T (ν) where

ν is assumed to be higher than eight (ν > 8), and define the random variable X by X =

Y
√

(ν − 2)ν−1. Then:

√
T

(
1
T

∑T
t=1 H3(xt)

1
T

∑T
t=1 H4(xt)

−
0√
3
2

1
ν−4

)
T→+∞−→

(
0
0

,

(
A(ν) 0

0 B(ν)

))
, (A.1)

where

A(ν) =
ν2 − ν + 10

(ν − 6)(ν − 4)
and B(ν) =

24ν3 + 1321ν2 + 708ν − 1572

(ν − 8)(ν − 6)(ν − 4)
.

As a consequence: (
1√
T

T∑
t=1

H3(xt)

)2

T→+∞−→ A(ν)χ2(1), and (A.2)

(
1√
T

T∑
t=1

H4(xt)

)2

T→+∞−→ +∞. (A.3)

In addition, when T is large, we have the following approximation result:(
1√
T

T∑
t=1

H4(xt)

)2

∼ 1

T
B(ν)χ2(1, T 2C(ν)) where C(ν) =

3

2

1

(ν − 4)B(ν)
. (A.4)

Proof: Given that Y ∼ T (ν), EY p is well defined when p < ν. In this case, we have

EY p = νp/2Γ
(

p+1
2

)
Γ
(

ν−p
2

)
/
(
Γ
(

1
2

)
Γ
(

ν
2

))
if p is even and EY p = 0 otherwise.

Thus, for ν > 8, we have E[H3(X)] = Cov(H3(X), H4(X)) = 0, E[H4(X)] =

√
3

2

1

ν − 4
.

In addition, we have: V ar(H3(X)) = EH2
3 (X) = 6−1(EX6 − 6EX4 + 9EX2) = A(ν). The

same computations lead to show that V ar(H4(X)) = B(ν). This achieves the proof of (A.1).

The results (A.2), (A.3) and (A.4) are implied by (A.1).�
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Table 1: Size of the tests.
Panel A: Mean and variance are known. Panel B: Mean and variance are estimated.

T 100 250 500 1000

H1 5.1 5.1 5.2 5.0
H2 5.1 4.8 5.0 4.9
H3 5.5 5.4 5.6 5.2
H4 4.8 4.7 4.9 5.0
H5 3.6 4.3 4.8 5.0
H6 2.0 2.7 3.2 3.6
H7 1.3 1.6 2.0 2.4
H8 1.4 1.2 1.3 1.4
H9 1.9 1.7 1.4 1.3
H10 1.2 1.6 1.8 1.6
H3−4 5.8 5.6 5.7 5.3
H3−5 6.0 6.2 6.3 6.0
H3−6 5.4 5.8 6.1 6.1
H3−7 5.0 5.2 5.5 5.6
H3−8 5.0 5.0 5.1 5.1
H3−9 4.8 4.9 5.0 4.9
H3−10 4.5 4.6 4.8 4.7
KS 4.5 4.7 4.9 4.9
Naive-JB 15.0 16.3 17.4 17.4

T 100 250 500 1000

H3 4.3 4.8 4.9 5.0
H4 3.1 3.8 4.3 4.6
H5 2.4 3.6 4.3 4.8
H6 1.2 2.1 2.9 3.4
H7 0.7 1.2 1.7 2.2
H8 0.8 0.9 1.0 1.3
H9 1.2 1.4 1.1 1.1
H10 0.6 1.3 1.7 1.5
H3−4 4.1 4.5 4.6 4.8
H3−5 4.2 5.1 5.3 5.4
H3−6 3.6 4.7 5.3 5.5
H3−7 3.3 4.2 4.7 5.1
H3−8 3.2 4.0 4.3 4.6
H3−9 3.1 3.9 4.2 4.4
H3−10 2.8 3.7 4.1 4.3
KS 0.0 0.0 0.0 0.0
JB 4.3 4.7 4.7 4.8
M-KS 5.2 5.4 5.7 6.0
OPG3 24.9 16.2 11.9 9.2
OPG4 33.6 21.4 15.6 11.6
OPG3−4 31.5 20.1 14.5 10.9

Note: The data are i.i.d. from a N (0, 1) distribution. We tested the normality assumption. Either the mean
and variance are not estimated (Panel A), or they are estimated (Panel B). The results are based on 50000
replications. For each sample size, we provided the percentage of rejection at a 5% level. Hi−j corresponds
to the joint test based on Hk, i ≤ k ≤ j. KS and JB are the Kolmogorov-Smirnov and Jarque-Bera tests; the
Naive-JB statistic equals the JB statistic, but is not valid when the residuals are not standardized. M-KS
is the modified Kolmogorov-Smirnov test. OPG3, OPG4 and OPG3−4 are the results of a normality test
based on a OPG regression and testing respectively the third, fourth moments and both.
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Table 2: Power of the tests against Student distributions.
T H3 H4 H5 H6 H3−4 H3−5 H3−6 KS M-KS JB

ν = 60
100 5.7 4.9 3.7 2.1 6.3 6.4 5.7 0.0 0.0 6.6
250 6.5 7.3 6.1 3.9 8.4 9.1 8.6 0.0 0.0 8.5
500 6.8 9.5 7.8 5.5 10.0 11.3 10.8 0.0 0.0 10.2

1000 6.8 13.0 9.5 7.4 12.6 14.0 13.9 0.0 0.0 12.6

ν = 30
100 7.4 7.8 5.6 3.3 9.3 9.4 8.6 0.0 0.0 9.7
250 8.6 13.3 9.8 6.6 14.0 14.9 14.1 0.0 0.0 14.3
500 9.0 19.4 12.9 9.9 19.1 20.5 19.7 0.0 0.0 19.3

1000 9.4 30.3 16.4 13.7 28.0 29.4 28.7 0.0 0.0 28.1

ν = 20
100 9.6 11.2 7.7 4.9 12.9 12.8 11.9 0.0 0.0 13.4
250 11.7 21.1 14.2 10.3 21.5 22.3 21.3 0.1 0.0 21.8
500 12.3 34.2 19.8 15.8 32.6 33.5 32.3 0.1 0.0 32.8

1000 13.0 54.0 25.3 22.7 50.0 50.0 48.8 0.1 0.0 50.1

ν = 10
100 18.1 26.8 17.1 12.4 28.1 27.5 26.5 0.1 0.0 28.8
250 23.1 52.3 31.6 26.2 51.2 50.6 49.9 0.2 0.0 51.6
500 25.6 77.5 43.7 40.2 74.5 73.5 72.9 0.5 0.0 74.7

1000 27.8 95.6 54.5 56.6 94.1 93.2 93.1 2.1 0.0 94.1

ν = 6

100 31.4 50.6 33.2 27.1 51.2 50.1 49.5 1.1 0.0 51.9
250 40.8 84.5 56.4 52.2 83.0 81.8 82.0 3.4 0.0 83.2
500 46.5 98.0 71.4 72.8 97.4 97.0 97.1 11.5 0.0 97.4

1000 51.8 100.0 82.2 89.4 100.0 100.0 100.0 41.7 0.0 100.0
Note: The data are i.i.d. from a T (ν) distribution. We test the normality assumption. Thus, we estimated
the mean and variance. The results are based on 50000 replications. For each sample size, we provided the
percentage of rejection at a 5% level. Hi−j is the joint test based on Hk, i ≤ k ≤ j. KS, M-KS and JB are
the Kolmogorov-Smirnov, modified KS and Jarque-Bera tests.

Table 3: Probability of rejection for Student distributions.
ν A(ν) P (A(ν)χ2(1) > 3.84)
60 1.17 .071
30 1.41 .099
20 1.74 .137
10 4.16 .337
6 – 1

Table 4: Power of the tests against asymmetric distributions.
T H3 H4 H5 H6 H3−4 H3−5 H3−6 KS M-KS JB

χ2(1)
100 100.0 98.9 84.2 82.1 100.0 100.0 100.0 100.0 100.0 100.0
250 100.0 100.0 97.8 98.6 100.0 100.0 100.0 100.0 100.0 100.0
500 100.0 100.0 99.9 100.0 100.0 100.0 100.0 100.0 100.0 100.0

1000 100.0 100.0 100.0 100.0 100.0 100.0 100.0 100.0 100.0 100.0

exp(1)
100 100.0 89.6 70.0 61.6 100.0 100.0 100.0 91.9 100.0 100.0
250 100.0 99.8 87.5 90.9 100.0 100.0 100.0 100.0 100.0 100.0
500 100.0 100.0 97.0 99.1 100.0 100.0 100.0 100.0 100.0 100.0

1000 100.0 100.0 99.8 100.0 100.0 100.0 100.0 100.0 100.0 100.0
Note: The data are i.i.d. from a χ2(1) and exp(1) distributions. We tested the normality assumption. Thus, we
estimated the mean and variance. The results are based on 50000 replications. For each sample size, we provided
the percentage of rejection at a 5% level. Hi−j is the joint test based on Hk, i ≤ k ≤ j. KS, M-KS and JB are the
Kolmogorov-Smirnov, modified KS and Jarque-Bera tests.
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Table 5: Power of the tests against heteroskedastic and Gaussian errors
T H3 H4 H5 H6 H3−4 H3−5 H3−6 KS M-KS JB

α = 0.25

100 49.8 89.7 55.5 56.4 88.8 87.1 90.3 15.5 79.2 89.3
250 56.5 99.9 77.6 79.1 99.8 99.8 99.9 69.2 99.3 99.8
500 60.6 100.0 86.2 91.8 100.0 100.0 100.0 98.9 100.0 100.0

1000 62.7 100.0 90.5 98.6 100.0 100.0 100.0 100.0 100.0 100.0

α = 1.25

100 55.0 96.0 62.8 68.3 95.3 94.2 97.1 47.5 96.7 95.5
250 61.7 100.0 82.2 84.8 100.0 100.0 100.0 98.3 100.0 100.0
500 64.6 100.0 89.3 94.9 100.0 100.0 100.0 100.0 100.0 100.0

1000 66.9 100.0 92.4 99.3 100.0 100.0 100.0 100.0 100.0 100.0
Note: We considered heteroscedasticity : xt ∼ N (0, σ2

t ) with σ2
t = 25 + αzt and

√
zt ∼ N (10, 25). Two

cases are treated : weak heterogeneity (α = 0.25) and strong heterogeneity (α = 1.25). These simulations
are the same as in Bera and Jarque (1981). We tested the normality assumption. The results are based
on 50000 replications. For each sample size, we provided the percentage of rejection at a 5% level. The
notations Hi−j , KS, M-KS and JB are defined in Table 3.

Table 6: Size and power of the tests with GARCH(1,1) errors.
T H3 H4 H5 H6 H3−4 H3−5 H3−6 KS M-KS JB

ut ∼ N (0, 1)

100 4.5 3.0 2.5 1.3 4.0 4.2 3.7 0.0 7.0 3.7
250 4.5 3.5 3.3 2.1 4.0 4.6 4.3 0.0 7.7 4.3
500 4.7 4.1 4.1 2.6 4.3 5.0 4.7 0.0 7.8 4.9

1000 4.9 4.5 4.5 3.2 4.5 5.0 5.1 0.0 7.8 5.1

ut ∼ T (20)

100 8.6 9.7 6.9 4.4 11.1 11.4 10.5 0.1 8.2 10.9
250 10.4 17.6 12.2 8.5 18.4 19.2 18.1 0.1 11.1 19.0
500 11.3 29.6 17.6 13.7 28.6 29.6 28.5 0.1 13.9 29.7

1000 12.6 51.0 23.8 21.1 47.1 47.0 46.1 0.2 19.4 48.1

ut ∼ T (10)

100 15.4 22.4 14.6 10.5 23.9 23.7 22.9 0.3 13.5 23.8
250 20.0 45.8 27.3 22.1 44.8 44.4 43.5 0.5 22.5 45.9
500 23.7 73.7 40.1 36.7 70.7 69.6 68.9 1.2 36.3 71.9

1000 26.4 94.9 52.6 53.9 93.1 92.1 92.0 4.0 60.0 93.4

ut ∼ T (6)

100 26.9 43.5 28.0 22.9 44.3 43.4 43.1 1.7 25.6 43.9
250 39.4 82.1 54.2 50.8 80.7 79.5 79.9 4.6 49.0 80.9
500 47.5 97.9 72.2 73.8 97.3 96.8 97.0 11.8 72.7 97.2

1000 53.5 100.0 83.2 90.9 100.0 100.0 100.0 33.2 93.0 100.0

ut ∼ χ2(1)
100 100.0 98.4 80.7 77.6 100.0 100.0 100.0 99.9 100.0 100.0
250 100.0 100.0 96.6 97.6 100.0 100.0 100.0 100.0 100.0 100.0
500 100.0 100.0 99.9 100.0 100.0 100.0 100.0 100.0 100.0 100.0

1000 100.0 100.0 100.0 100.0 100.0 100.0 100.0 100.0 100.0 100.0

ut ∼ exp(1)
100 100.0 86.0 67.0 56.1 100.0 100.0 100.0 81.2 99.9 100.0
250 100.0 99.7 84.3 87.7 100.0 100.0 100.0 100.0 100.0 100.0
500 100.0 100.0 95.7 98.7 100.0 100.0 100.0 100.0 100.0 100.0

1000 100.0 100.0 99.7 100.0 100.0 100.0 100.0 100.0 100.0 100.0
Note: The data follow a GARCH(1,1) process : xt = µ+

√
htut with ht = ω+α(

√
ht−1ut−1)2 +βht−1 and µ = 0, ω = 0.2,

α = 0.1, β = 0.8. ut follows a Normal, Student, exponential or chi-square distribution up to some affine transformation
which guarantees that Eut = 0 and V ut = 1. µ, ω, α and β are estimated with a QMLE method. We tested the normality
assumption. The results are based on 50000 replications. For each sample size, we provided the percentage of rejection at
a 5% level. The notations Hi−j , KS, M-KS and JB are defined in Table 3.
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Table 7a: Size of the tests under serial correlation which is ignored.

T H3 H4 H5 H6 H3−4 H3−5 H3−6 KS M-KS JB

ρ = 0.1
100 4.2 3.0 2.3 1.2 3.9 4.1 3.6 0.0 0.0 4.1
250 4.7 3.9 3.5 2.1 4.6 5.2 4.7 0.0 0.0 4.7
500 4.8 4.2 4.2 2.8 4.5 5.3 5.2 0.0 0.0 4.6

1000 5.0 4.5 4.8 3.5 4.7 5.4 5.5 0.0 0.0 4.8

ρ = 0.5
100 5.9 2.7 2.0 0.9 4.7 4.5 3.9 0.0 0.0 4.9
250 7.3 4.2 3.4 1.9 6.1 6.2 5.5 0.0 0.0 6.2
500 7.7 5.0 4.3 2.6 6.9 7.0 6.5 0.0 0.0 7.0

1000 8.1 5.7 4.9 3.3 7.5 7.5 7.1 0.0 0.0 7.5

ρ = 0.7
100 9.7 3.0 2.3 1.2 6.6 6.9 5.8 0.1 0.0 6.9
250 13.5 5.9 3.7 2.0 10.7 10.4 9.1 0.1 0.0 10.9
500 15.0 8.5 5.3 3.0 14.0 13.1 11.6 0.2 0.0 14.1

1000 16.1 9.9 6.5 3.9 15.9 14.9 13.5 0.2 0.0 16.0

ρ = 0.9
100 19.2 7.9 11.3 6.7 15.2 19.8 21.2 3.1 0.0 16.2
250 30.1 19.6 13.7 9.6 34.0 33.5 34.2 5.1 0.0 34.6
500 35.9 26.2 16.0 11.1 44.2 42.1 41.7 6.1 0.0 44.6

1000 39.1 30.3 17.9 12.7 49.8 48.2 46.9 6.3 0.0 50.0
Note: The data follow an AR(1) process: xt | xt−1 ∼ N (ρxt−1, 1−ρ2). We tested the normality assumption.
We did not take into account the serial correlation in the tests. The results are based on 50000 replications.
For each sample size, we provided the percentage of rejection at a 5% level. The notations Hi−j , KS, M-KS
and JB are defined in Table 5.

Table 7b: Size of the tests under serial correlation.
The serial correlation is known and taken into account; ρ is known.

T H3 H4 H5 H6 H3−4 H3−5 H3−6

ρ = 0.1
100 4.1 3.0 2.3 1.2 3.9 4.1 3.5
250 4.6 3.9 3.5 2.1 4.5 5.2 4.7
500 4.8 4.2 4.2 2.8 4.5 5.3 5.2

1000 5.0 4.5 4.8 3.5 4.7 5.4 5.5

ρ = 0.5
100 3.5 2.2 1.7 0.9 3.1 3.2 2.8
250 4.3 3.3 3.1 1.8 4.0 4.5 4.0
500 4.6 3.6 3.8 2.6 4.2 4.8 4.8

1000 4.8 4.3 4.5 3.4 4.7 5.3 5.4

ρ = 0.7
100 2.6 1.4 1.0 0.5 2.4 2.2 1.8
250 3.9 2.6 2.1 1.3 3.5 3.6 3.3
500 4.2 3.5 3.1 2.0 4.0 4.4 4.2

1000 4.4 3.6 3.9 2.7 4.1 4.7 4.5

ρ = 0.9
100 0.9 0.4 0.3 0.1 0.8 0.7 0.6
250 2.1 1.1 0.7 0.4 1.9 1.7 1.4
500 3.2 1.9 1.4 0.8 3.0 2.9 2.5

1000 4.0 2.6 2.2 1.3 3.7 3.8 3.4
Note: The data follow an AR(1) process: xt | xt−1 ∼ N (ρxt−1, 1−ρ2). We tested the normality assumption.
We took into account the serial correlation in the tests. We assume that we knew the AR(1) dynamics and
that we knew ρ. The results are based on 50000 replications. For each sample size, we provided the
percentage of rejection at a 5% level. The notations Hi−j are defined in Table 5.
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Table 7c: Size of the tests under serial correlation.
The serial correlation is known and taken into account; ρ is estimated.

T H3 H4 H5 H6 H3−4 H3−5 H3−6

ρ = 0.1
100 4.1 3.0 2.3 1.2 3.9 4.1 3.6
250 4.6 3.9 3.5 2.1 4.6 5.2 4.7
500 4.8 4.2 4.2 2.8 4.5 5.3 5.2

1000 5.0 4.5 4.8 3.5 4.7 5.4 5.5

ρ = 0.5
100 3.4 2.2 1.7 0.9 3.1 3.2 2.8
250 4.3 3.3 3.1 1.8 4.0 4.4 4.1
500 4.6 3.6 3.8 2.6 4.2 4.9 4.7

1000 4.8 4.3 4.5 3.3 4.7 5.3 5.4

ρ = 0.7
100 2.4 1.3 1.0 0.5 2.0 2.0 1.7
250 3.8 2.4 2.0 1.3 3.4 3.6 3.2
500 4.1 3.4 3.0 2.0 3.8 4.3 4.1

1000 4.4 3.6 3.9 2.7 4.0 4.7 4.6

ρ = 0.9
100 0.2 0.2 0.2 0.1 0.3 0.3 0.2
250 1.6 0.9 0.6 0.3 1.4 1.4 1.1
500 2.9 1.7 1.3 0.8 2.7 2.7 2.3

1000 3.8 2.6 2.1 1.3 3.5 3.7 3.3
Note: The data follow an AR(1) process: xt | xt−1 ∼ N (ρxt−1, 1−ρ2). We tested the normality assumption.
We took into account the serial correlation in the tests. We assumed that we knew the AR(1) dynamics
but not ρ which is estimated by OLS. The results are based on 50000 replications. For each sample size, we
provided the percentage of rejection at a 5% level. The notations Hi−j are defined in Table 5.

Table 7d: Size of the tests under serial correlation.
The serial correlation is unknown; Σ is estimated by a HAC procedure.

T H3 H4 H5 H6 H3−4 H3−5 H3−6

ρ = 0.1
100 3.4 5.6 4.0 4.4 4.2 1.9 1.6
250 4.2 7.6 4.1 4.2 8.2 6.4 3.6
500 4.6 7.5 4.2 4.6 8.9 10.2 13.6

1000 4.8 6.9 4.2 5.0 8.2 10.9 22.2

ρ = 0.5
100 3.3 3.9 4.2 4.5 2.8 1.4 1.3
250 4.2 6.7 4.3 4.4 7.0 4.2 2.3
500 4.6 7.3 4.3 4.6 8.8 8.0 6.5

1000 5.0 7.1 4.3 4.7 8.8 10.2 16.0

ρ = 0.7
100 2.9 2.3 4.8 5.3 1.5 1.1 1.3
250 4.0 5.1 4.8 4.8 4.6 2.4 1.8
500 4.4 7.1 4.7 4.6 7.7 4.8 2.8

1000 4.8 7.5 4.6 4.7 8.7 7.8 6.6

ρ = 0.9
100 1.6 0.7 4.5 4.9 0.5 0.5 0.4
250 2.6 1.8 5.0 6.4 1.2 0.9 1.3
500 3.5 3.8 5.2 5.8 2.8 1.5 1.6

1000 4.0 6.1 5.0 5.2 5.7 2.8 1.9
Note: The data follow an AR(1) process: xt | xt−1 ∼ N (ρxt−1, 1−ρ2). We tested the normality assumption.
We took into account the serial correlation in the tests. We assumed that we do not knew the AR(1)
dynamics. We used a HAC method. The results are based on 50000 replications. For each sample size, we
provided the percentage of rejection at a 5% level. The notations Hi−j are defined in Table 5.
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Table 8a: Power of the tests under serial correlation against T(30)
innovations.

T H3 H4 H5 H6 H3−4 H3−5 H3−6

ρ = 0.1
100 5.0 82.2 84.1 82.8 5.8 0.5 76.7
250 14.0 86.9 85.3 86.2 9.4 1.1 79.5
500 20.6 91.8 85.9 89.6 12.9 3.6 79.3

1000 24.6 94.9 78.5 82.3 7.6 8.9 56.3

ρ = 0.5
100 1.6 88.1 89.8 89.3 2.5 0.2 84.6
250 5.1 90.1 90.7 91.0 4.3 0.3 87.3
500 9.3 91.8 90.8 92.1 6.6 0.7 87.6

1000 16.1 85.1 66.1 71.0 8.8 7.3 41.3

ρ = 0.7
100 0.4 91.2 92.7 92.7 1.2 0.1 86.0
250 1.3 92.7 93.7 93.8 1.7 0.2 91.5
500 3.0 93.5 94.2 94.4 2.9 0.2 92.4

1000 7.0 63.4 50.8 52.4 8.5 5.9 24.2

ρ = 0.9
100 0.0 0.7 0.4 1.5 0.8 0.0 0.2
250 0.1 96.7 97.3 97.4 0.3 0.0 92.4
500 0.1 97.2 97.7 97.7 0.4 0.0 96.7

1000 0.4 4.7 4.9 6.1 9.4 1.6 2.2
Note: The data follow an AR(1) process: xt = ρxt−1 +εt, εt ∼ T(30). We tested the normality assumption.
We took into account the serial correlation in the tests. We assumeed that we do not knew the AR(1)
dynamics. We used a HAC method. The results are based on 50000 replications. For each sample size, we
provided the percentage of rejection at a 5% level. The notations Hi−j are defined in Table 5.

Table 8b: Power of the tests under serial correlation against T(20)
innovations.

T H3 H4 H5 H6 H3−4 H3−5 H3−6

ρ = 0.1
100 7.9 79.1 79.8 78.8 8.1 0.7 69.6
250 19.6 87.6 81.8 84.8 11.6 2.6 72.5
500 27.7 94.9 84.0 90.5 15.2 9.0 73.4

1000 37.3 99.3 87.0 96.2 21.3 23.3 75.8

ρ = 0.5
100 2.6 85.1 87.0 86.4 3.7 0.3 79.4
250 7.8 89.0 88.7 89.6 5.8 0.5 83.7
500 13.2 92.4 88.8 91.6 8.4 1.9 83.5

1000 18.3 96.8 89.7 94.7 11.5 6.6 83.7

ρ = 0.7
100 0.7 88.7 90.5 90.5 1.7 0.1 80.5
250 2.3 91.1 92.3 92.4 2.7 0.2 89.0
500 5.0 92.2 92.6 93.3 4.2 0.3 90.1

1000 8.2 93.7 92.5 94.2 5.9 0.9 90.0

ρ = 0.9
100 0.1 1.4 0.7 2.5 1.1 0.0 0.3
250 0.1 95.6 96.4 96.5 0.5 0.0 89.0
500 0.2 96.6 97.2 97.2 0.5 0.1 95.9

1000 0.5 96.8 97.3 97.4 0.8 0.1 96.4
Note: The data follow an AR(1) process: xt = ρxt−1 +εt, εt ∼ T(20). We tested the normality assumption.
We took into account the serial correlation in the tests. We assumeed that we do not knew the AR(1)
dynamics. We used a HAC method. The results are based on 50000 replications. For each sample size, we
provided the percentage of rejection at a 5% level. The notations Hi−j are defined in Table 5.
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Table 8c: Power of the tests under serial correlation against T(10)
innovations.

T H3 H4 H5 H6 H3−4 H3−5 H3−6

ρ = 0.1
100 15.3 77.1 70.7 71.3 11.7 2.6 54.0
250 31.8 94.2 77.7 86.5 13.0 10.8 60.4
500 47.4 99.5 85.0 95.7 16.8 28.3 68.8

1000 62.1 100.0 92.3 99.6 23.8 47.4 80.8

ρ = 0.5
100 5.8 79.8 78.9 78.9 6.1 0.9 63.5
250 15.0 90.2 81.8 87.3 8.2 3.0 69.4
500 24.0 97.1 84.5 93.5 10.8 10.4 70.8

1000 37.2 99.8 88.4 98.3 15.2 26.1 74.1

ρ = 0.7
100 1.6 81.1 83.8 83.3 3.0 0.4 61.2
250 5.5 87.8 87.4 88.6 4.8 0.6 80.0
500 10.2 92.1 88.1 91.9 6.5 1.8 80.8

1000 16.0 96.9 89.1 95.4 8.7 6.1 80.7

ρ = 0.9
100 0.1 3.0 2.0 4.9 2.1 0.0 0.5
250 0.2 92.8 94.1 94.3 0.8 0.1 73.1
500 0.6 94.4 95.3 95.5 1.1 0.1 92.9

1000 1.4 95.2 95.8 96.0 1.6 0.1 94.2
Note: The data follow an AR(1) process: xt = ρxt−1 +εt, εt ∼ T(10). We tested the normality assumption.
We took into account the serial correlation in the tests. We assumeed that we do not knew the AR(1)
dynamics. We used a HAC method. The results are based on 50000 replications. For each sample size, we
provided the percentage of rejection at a 5% level. The notations Hi−j are defined in Table 5.

Table 8d: Power of the tests under serial correlation against T(5)
innovations.

T H3 H4 H5 H6 H3−4 H3−5 H3−6

ρ = 0.1
100 22.9 85.8 67.5 71.4 11.3 7.6 44.9
250 45.7 99.5 86.7 94.0 9.3 22.3 70.6
500 61.0 100.0 96.1 99.6 8.3 36.4 89.2

1000 72.6 100.0 98.9 100.0 8.2 48.8 95.9

ρ = 0.5
100 11.1 77.8 65.0 68.4 8.8 4.2 41.2
250 26.8 96.8 77.5 89.9 8.2 13.3 56.6
500 45.9 99.9 88.7 98.4 8.8 28.8 73.8

1000 64.0 100.0 95.8 100.0 10.2 44.5 88.3

ρ = 0.7
100 4.0 68.0 65.4 64.9 5.8 2.1 34.1
250 11.3 88.2 74.7 84.5 6.8 4.5 54.3
500 21.6 97.3 79.6 94.3 7.4 12.6 59.3

1000 40.0 99.9 86.0 99.1 8.9 29.0 68.7

ρ = 0.9
100 0.2 4.2 4.0 6.4 5.0 0.3 1.1
250 0.8 83.4 86.2 86.4 1.8 0.3 40.8
500 2.0 90.7 90.5 91.7 2.4 0.4 81.1

1000 4.3 93.7 91.2 94.3 3.1 0.7 84.6
Note: The data follow an AR(1) process: xt = ρxt−1 + εt, εt ∼ T(5). We tested the normality assumption.
We took into account the serial correlation in the tests. We assumeed that we do not knew the AR(1)
dynamics. We used a HAC method. The results are based on 50000 replications. For each sample size, we
provided the percentage of rejection at a 5% level. The notations Hi−j are defined in Table 5.
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Table 9: Testing N (0, 1) of fitted residuals for a GARCH(1,1) model.

UK-US$ FF-US$ SF-US$ Yen-US$
H3 1.9 (0.17) 1.2 (0.26) 51.0 (0.00) 17.5 (0.00)
H4 42.6 (0.00) 38.7 (0.00) 189 (0.00) 577 (0.00)
H5 9.5 (0.00) 15.5 (0.00) 590 (0.00) 3713 (0.00)
H6 46.8 (0.00) 126 (0.00) 2562 (0.00) 28553 (0.00)
H7 26.9 (0.00) 8.7 (0.00) 10956 (0.00) 181020 (0.00)
H8 45.9 (0.00) 8.5 (0.00) 35135 (0.00) 945122 (0.00)
H9 17.2 (0.00) 2.4 (0.12) 88029 (0.00) 4186878 (0.00)
H10 9.1 (0.00) 42.9 (0.00) 177511 (0.00) 15683206 (0.00)
H3−4 44.4 (0.00) 39.9 (0.00) 240 (0.00) 594 (0.00)
H3−5 54.1 (0.00) 55.4 (0.00) 830 (0.00) 4308 (0.00)
H3−6 100 (0.00) 182 (0.00) 3393 (0.00) 32861 (0.00)
H3−7 127 (0.00) 191 (0.00) 14349 (0.00) 213882 (0.00)
H3−8 173 (0.00) 271 (0.00) 49485 (0.00) 1159004 (0.00)
H3−9 191 (0.00) 273 (0.00) 137514 (0.00) 5345882 (0.00)
H3−10 200 (0.00) 316 (0.00) 315026 (0.00) 21029088 (0.00)
KS 1.0 0.8 1.3 1.1
JB 44.6 (0.00) 40.1 (0.00) 240 (0.00) 597 (0.00)

Note: We tested the N (0, 1) assumption of the standardized residuals. The volatility model is a
GARCH(1,1) and is estimated by the Gaussian QML method. We reported the test statistics and
their corresponding p-values in parentheses. The data are daily exchange rate returns used by Harvey,
Ruiz and Shephard (1994) and Kim, Shephard and Chib (1998). Hi−j is the joint test based on Hk,
i ≤ k ≤ j. KS and JB are the Kolmogorov-Smirnov and Jarque-Bera tests. The critical values of
the KS and M-KS (see note of Table 1) are respectively: 1.63 and 1.031 (1%), 1.36 and .886 (5%),
1.22 and .805 (10%).

Table 10: Testing log-normality of realized volatility.
DM-US$-5 DM-US$-30 Yen-US$-5 Yen-US$-30 Yen-DM-5 Yen-DM-30

H3 10.6 (0.00) 8.3 (0.00) 10.2 (0.00) 7.0 (0.01) 8.7 (0.00) 3.6 (0.06)
H4 7.5 (0.01) 5.9 (0.02) 3.6 (0.06) 3.4 (0.06) 5.2 (0.02) 3.4 (0.07)
H5 0.1 (0.70) 2.9 (0.09) 1.1 (0.29) 2.2 (0.14) 0.7 (0.39) 0.02 (0.97)
H6 0.0 (1.00) 0.04 (0.85) 0.7 (0.39) 1.0 (0.32) 1.8 (0.18) 1.0 (0.32)
H7 8.9 (0.00) 0.8 (0.36) 1.0 (0.32) 1.6 (0.20) 0.7 (0.39) 2.7 (0.10)
H8 0.7 (0.40) 0.5 (0.49) 0.9 (0.34) 1.3 (0.26) 1.0 (0.31) 1.7 (0.20)
H9 1.5 (0.23) 0.6 (0.45) 0.07 (0.93) 4.0 (0.05) 8.1 (0.00) 0.9 (0.35)
H10 0.6 (0.45) 1.1 (0.30) 2.2 (0.14) 4.0 (0.04) 1.1 (0.30) 0.4 (0.52)
H3−4 16.9 (0.00) 10.5 (0.01) 16.8 (0.00) 9.6 (0.01) 11.0 (0.00) 7.0 (0.03)
H3−5 17.6 (0.00) 10.5 (0.01) 17.4 (0.00) 9.8 (0.02) 17.3 (0.00) 7.7 (0.05)
H3−6 17.7 (0.00) 15.2 (0.00) 19.2 (0.00) 16.0 (0.00) 17.3 (0.00) 7.8 (0.10)
H3−7 24.0 (0.00) 15.5 (0.01) 26.2 (0.00) 24.5 (0.00) 18.6 (0.00) 10.1 (0.07)
H3−8 25.6 (0.00) 15.5 (0.02) 28.2 (0.00) 25.9 (0.00) 18.9 (0.00) 10.2 (0.12)
H3−9 25.9 (0.00) 17.5 (0.01) 28.3 (0.00) 26.4 (0.00) 25.6 (0.00) 12.1 (0.10)
H3−10 27.0 (0.00) 19.9 (0.01) 28.5 (0.00) 27.9 (0.00) 26.2 (0.00) 12.5 (0.13)
Note: We tested the normality assumption of the log of realized volatility. The realized volatility is computed
with five-minute and thirty-minute returns. We reported the test statistics and their corresponding p-values in
parentheses. We used the same data as ABDL (2003). We used a HAC method of Andrews (1991) to estimate the
weighting matrix. Hi−j is the joint test based on Hk, i ≤ k ≤ j.
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