
T h e  Pr ince  Project  and its Appl icat ions  

Pierre-Joseph Gailly 1 , Wolfgang Krantter 2, Christophe Bisi~re a, Sylvie Bescos 1 

1 BIM, Everberg, Belgium 
2 FAW, Ulm, Germany 

s CEFI, Les Milles, France 

Abstract ,  The Esprit project Prince aims at development of an industrial 
Constraint Logic Programing environment based on the Prolog III language. In 
parallel, the current technology is being validated within the project on repre- 
sentative real-world examples. This paper describes the current status of the 
three application domains which were Selected to demonstrate the applicability 
and usefulness of CLP. These applications deal with industrial systems engineer- 
ing, medium term banking planning and jobshop scheduling as well as multiple 
plants global planning in the chemical industry. 

1 General Goals of the Prince Project 

The main goals of the Esprit II project Prince (P5246) are to develop a Constraint 
Logic Programing (CLP) system based on the Prolog III technology and to bring it 
to high industrial standards as well as to validate the technology by demonstrating 
its applicability and usefulness on real life applications. Prolog III [6] was developed 
by the group of Alain Colmerauer and the company PrologIA within the framework 
of the Esprit I project Pl106. This previous project has demonstrated that CLP is an 
attractive solution for many advanced problems [13]. This paper will focus on applica- 
tion aspects but before that an outline will be given of the CLP system, called Prince 
Prolog, developed in this project. 

Four essential aspects can be seen. First, in terms of expressiveness, it is intended 
not only to include the constraint domains already existing in Prolog III (i.e. infinite 
trees, linear algebra (over both floating point and infinite precision rational numbers), 
boolean algebra and lists; this last one being unique to Prolog III) but also to in- 
troduce new domains based on end-users' requirements (finite domains and interval 
arithmetic are being currently considered). Soundness and effectiveness of constraint 
solving algorithms receive careful attention. As was already the case with Prolog III, 
full integration of constraints into the kernel of the language and clear semantics of 
the interaction of constraints with the rest of the system are considered very impor- 
tant. Second is the efficiency issue: a completely new compiler-based system is being 
developed, drawing on the experience of two major Prolog manufacturers PrologIA and 
BIM and in particular the Prokog by BIM and Prolog II+ technologies. Besides a new 
kernel and improved constraint solvers is the third important aspect: investigation of 
global analysis and precompilation of CLP programs and incorporation of the results 
into the system. This longer term research is being performed by academic partners 
from the Universities of Bristol, Leuven and Madrid. Finally, the software engineering 
environment should provide easy, rapid and reliable development facilities as well as 
communication capabilities with the external world (Windowing, Databases, Network, 
other programming languages). In particular, constraints debugging is a new field which 
still requires much exploration. 
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Designing tools is one thing, putting them to practical use is another issue. This 
is even more true in software engineering. Industrial partners are validating the CLP 
technology by its "mise en oeuvre" to solve real life problems. The manufacturers Bosch 
and MBB companies as well as the research institute FAW are involved in engineering 
applications for technical systems quality assurance. Two examples are under investi- 
gation', satellite attitude control and Failure Mode and Effect Analysis, the latter one 
being discussed in more detail below. The CEFI research center and La Hdnin bank 
are developing a Decision Support System in the field of medium term banking plan- 
ning. BIM is applying CLP technology tojobshop scheduling and multiple plants global 
planning tools in the chemical field. Besides showing the usability of the language, the 
application partners have provided important feedback to the implementors of Prince 
Prolog on the language itself, the selection of constraint domains, methodology and 
tools. 

The different applications do not put forward the properties of CLP languages in 
the same way; however, the presentation will emphasize following characteristics: 

- CLP languages are high level, making development and prototyping easier. 
- Prolog enables the elaboration of reversible symbolic computer based model of 

real-life applications. CLP adds the domains dimension to the scene; in particular, 
Prolog III's linear numerical and boolean domains will be illustrated. 

- Besides the built-in constraints, Prolog III's delayed goals can provide users with 
some facilities to break the linearity limitations. 

- Combinatiorial search can be pruned more efficiently with the help of constraints. 

2 The FMEA Application 

2.1 Objec t ives  

Increasing the quality of technical systems, in particular, identifying weak points, evalu- 
ating the effects of such weaknesses and the associated possible risks as well as determin- 
ing their causes and investigating alternatives and improvements are very important. 
Failure Mode and Effect Analysis (FMEA) is a technique aiming at that. 

In the Promotex project [13], FMEA of single components in stationary states has 
been studied. The project has shown that Prolog III is well suited to serve as a formal 
representation language to describe both the function of the components in the correct 
and faulty states and the structure of the system. In the Promotex system, component 
functions have been expressed in the form of systems of numerical constraints. In this 
project, the type of analysis has been extended at two levels: performing FMEA at the 
system rather than the component level and tackling dynamic aspects. Essentially two 
tasks are to be performed: 

- investigate the consequences of known component failure modes, 
- determine whether some faulty (possibly hazardous) system state can be reached 

as the consequence of failure modes of the components. 

The first point can be addressed by classical simulation tools; the second requires 
more. The '~nultidirectionality" of Prolog III constraints enable reasoning on dynamic 
systems. Possible techniques are: numerical solution of differential equations, Petri 
Nets, methods of  qualitative physics, simulation and process theory. 

Figure 1 shows an example system: a closed loop speed controlled motor. The motor 
drives a sensor tooth wheel that produces 4 interrupts per revolution. The interrupt 
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routine measures the time elapsed between two interrupts and estimates the motor 
speed. Each time a pulse is generated, the proportional controller changes the voltage 
with respect to the nominal speed. This system contains continuous elements (motor) 
as well as discrete events (pulse, interrupt): Possible failures are, for example, sensor 
wheel slip or tooth breakage; these are represented by parameters in the model. Possible 
failure effects are speed oscillations or deviations from the nominal speed. 

t Interrupt- ~ Impulse- 1 routine wheel ~ Motor 

I---- Propo io.e, I I ) I contr~ I Pulse- I generator 
Fig. 1. Closed loop speed-controlled motor 

2.2 Con t inuous  S imula t ion  

In continuous simulation, differential equations are solved numerically. If the solving 
methods are implemented using numerical constraints, the simulation may '(run for- 
ward or backward", choosing to fix the value of some boundary conditions or system 
constants, leaving the others unknown and to be found by the simulation. Values can- 
not be fixed or left unknown arbitrarily as, at runtime, contraints must be linear. In 
addition to the common simulation run, the Prolog III mechanism allows the following 
queries: 

- given the solution at certain time steps or intervals, infer single parameters of the 
differential equations. For this purpose, failure modes were modelled as parameters 
in the system. 

- representation of parameters in input and output values as numerical intervals 4. 

Example: the speed n(t) of the motor can be represented with the differential equation 

dn(t)  _- - n ( t )  + k * v(t) def= f ( t ,  n(t))  
d~ T c  

where n is the speed and t is time; v, the voltage, k, an amplification factor, and Tc a 
time constant are model parameters. The trapezoidal method for solving a differential 
equation numerically is: 

n(ti+l ) n(ti) + ti+l -- tl = - -  �9 (f( t , ,  n(ti)) + f( t ,+l ,  n(ti+l)))  
2 

This can be implemented using Prolog III as follows. The s t ep  predicate has three 
arguments: the first represents the initial state in the form of a tuple <Time, Speed>; 
the second contains the system parameters (with Dt = (ti+z - ti)) and the third is a 
list of the successive states starting from the initial one 5 

4 This  was done using inequality constraints and maximum and minimtm built-in predicates. 
5 The  number of simulation steps being specified via constraints on the size of this list. 
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step(V,  c, <>). 
step(<Ti, .Ni>, <Tc,K,V,Dt>, <<Tipl, Nipl>>.L) :-  

step(<Tipl,  Nip1>, <Tc,K,V,Dt>, 1), 
{T i  - Tipt + Dt, 
Nip1 - Ni + Dt /2  * ( ( -  Ni + K,V))  + (- Nip1 + K * V ) ) / T c ) } .  

Assume that the motor is initially stopped and that it should reach a speed between 
5990 and 6000 during the last five steps of a 500 step simulation. The following query 
determines the range of possible values for the unknown amplification factor under the 
above constraints. 

>step(<O,O>, <0.05, K, 6, 0.001>, L.<<T1,NI>,<T2,N2>,<T3,~I3>,<T4,N4>,<TS,N5>>) 
minimum (K ,MI) maximum(K ,M2) out (<Nl ,M2>) line fail, 
{L: :495, 

5990<~t1<6000, 5990<N2<6000, 5990<113<6000, 5990<N4<6000, 5990<i5<6000}.  

Prolog III yields the answer: K should be in the range <998.387, I000.5>. When 
dealing with more complex systems (e.g. the example system), the computation time 
gets critical because of the large number of choices induced by greater model complexity. 

2.3 Petr i  Nets  

Petri Nets are a method for performing discrete-event simulation, that has also been 
investigated for system safety analysis [10]. In particular, the ability to reverse the 
simulation process is of interest. To represent a system as a Petri Net, the standard 
Place-Token nets (that can be analyzed and reversed using linear algebra) are not 
sufficient. They have to be extended in two ways: addition of delays to the transitions 
to express the duration of  the actions, individual firing conditions, data types and 
functional instructions in the transitions. 

If the firing conditions and functional instructions are restricted to linear expres- 
sions, transition firing can be reversed. This is a limitation, but nevertheless an im- 
portant enhancement over Place-Token Nets. Figure 2 shows the representation of the 
example system. The petri net is described with the help of the t r a n s i t i o n  predicate 

motor 
speed 

speed ~ 
, Impulse 

Wheel 
/ syste~ 
l time 

,~% interrupt r 
J ---t..J 

( • )  motor 
_~.1 speed 

(internal) 
..j~ 
kMotor 

Controller 

I n te r rup t  
, R o u t i n e  

voltage 

nominal 
speed 

measured 
speed 

Fig. 2. The example system represented as Petri Net 

in Prolog III. For example, the controller is defined by the following clause. It indicates 
that the measured and nominal speed are related to the voltage via the linear expres- 
sion below, where R is retrieved from the model via the const  predicate. Furthermore, 
this transition does not add any delay. 
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trails it ion ( "Controller", 
input_places(<<"measured.speed", Ms>, <"nominal_speed", Ns>>), 
output_places (<<"voltage" ,V>>), 
delay(<O,O>)) :- 

const  ("R" ,R), 
{ V " R * ( 2  * Ns - MS)] ' .  

This transition description can be used both forward (computing output places from 
input ones) and backward. One of the drawbacks of Petri Nets is their emphasis on the 
event-oriented aspects of a system, while continuous processes are rather difficult to 
integrate. Furthermore, describing an industrial system in form of places and transitions 
requires a rather high level of abstraction. 

2 .4  Q u a l i t a t i v e  M e t h o d s  

In addition to traditional simulation methods, using qualitative reasoning for syste m 
analysis purposes is being investigated. Qualitative reasoning describes a system and 
predicts its behaviour in qualitative terms, e.g. '~aising", "oscillating" or "constant". 
This requires a higher level of abstraction than for a numerical simulation. Various 
qualitative methods have been proposed; for an overview see [14]. The possible use of 
Prolog III will be described on two examples: 

- Kuiper's QSIM system [7] describes a system in terms of qualitative states, consist- 
ing of a qualitative value and a qualitative direction (one of decreasing, increasing 
and steady) at a time instance or during an interval. The behaviour of the system 
is then simulated by examining possible state transitions. Allowed transitions are 
held in a table. Between the functions the relations addition, multiplication, mi- 
nus ,  proportionality and derivation may hold. QSIM then gives rules constraining 
qualitative values and direction of changes. Expressing these rules using Prolog III 
equality and disequality constraints makes both the programming easy and effi- 
ciently filters out forbidden states or transitions combinations. 

- Allen's Calculus of Time [1] proposes a model based on time intervals. The rela- 
tionship between two intervals can be expressed using 7 base relations and their 
inverses. The goal is to find the transitive relation between more than two intervals. 
In Prolog III, time intervals can be represented as tuples of two variables repre- 
senting the start and end points. Constraints are used to express relations between 
intervals. The modelling of a relation will require to describe explicitly when the re- 
lation holds and when it does not hold. For example, the predicate re la t ion(Name,  
T r u t h _ v a l ,  In t_ l ,  In t .2 )  will succeed whenever the relation called Name between 
intervals Int_l  and In t .2  has truth value Truth_val. The following clauses describe 
the during relationship which is satisfied if and only if the first interval is strictly 
enclosed in the second (where 1' and 0 '  represent the booleans true and false). 

relation(during, I', <S1,EI>, <$2,E2>) :- ( S1 > $2, E1 < E2 }. 
relation(during, 0 ~, <S1,EI>, <$2,E2>) :- ~ SI <ffi $2 }. 
relation(during, 0', <S1,EI>, <$2,E2>) :- { E1 >ffi E2 }. 

With boolean constraints, all propositional logic operators can be used. For exam- 
ple, assume three intervals il, i2, i3; also assume that one of the relations equal ,  
dur ing,  overlapped_by, s t a r t ,  s t a r ted_by ,  f i n i s h  holds between il  and i2. 
The following query determines which relations may hold between il and i3? 
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posi t ive(<II , I2 , I3>) ,  
re la t ion(  equal, BI, 
re la t ion(  during, B2, 
relation( overlapped_by, B3, 
re la t ion(  s t a r t ,  B4, 
relation( started_by, B5, 
relation( finish, B6, 
relation( meet, 1 ' ,  I2, I3),  

7, intervals must have a posi t ive length 
I1, I2) ,  
I1, I2),  
I1, I2),  
I I ,  12), 
I I ,  12), 
I1, I2),  

f indall(R, relation(R, 1' I1 I3) L) , , p , 

{ B1 ] B2 I B3 I B4 I B5 ] Be = 1 ' } .  

The answer is: L = [ f in ished_by,  con ta ins ,  overlaps, before,  meet] 

Prolog III is well suited to implement the methods of qualitative physics. Yet, the loss 
of information as a consequence of abstraction is a problem inherent to qualitative 
methods. It is not yet clear if they can be used for FMEA purposes. 

3 The Banking Application 

3.1 Gene ra l  Overv iew 

The central point in the development of a Decision Support System (DSS) in the field 
of medium term banking planning is reversibility, i.e. to bypass the existing frontier 
between simulation and decision systems in the financial domain. The DSS has been 
specified and a Prolog III prototype is being developed. 

The application relies on a medium term banking model, mainly oriented towards 
interest rate risk management. Interest rate risk comes from a possible mismatch be- 
tween asset and liability structure of the bank's balance sheet: if a loan is refunded 
by a borrowing of a different nature (i.e. short/long maturity, fixed/floating interest 
rate, etc.), the future net income of this production will be affected by fluctuations in 
interest rates. Because such a mismatch usually increases expected earnings and risk at 
the same time, funding decisions wilt be stated according to the bank's global risk pref- 
erence. The model has been built in collaboration with the La ttdnin bank. Basically, 
it can be viewed as a se tof  interconnected modules, each of them dealing in detail with 
a particular aspect of banking activity: outstanding loans evolution, funding policy, 
evaluation of potential risks, expected earnings, environmental constraints, etc. When 
used in simulation, this model is fed with a set of hypotheses and decisions. It then 
works out a medium term forecast for the main banking aggregates, under the form 
of a balance sheet, as well as an evaluation of the risk-return position that has been 
reached. 

Of course, analysis of the consequences induced by alternative decisions (i.e. "what 
if" analysis) is an important step of the banking planning process. Nonetheless, this 
procedure remains limited, because the ultimate goal of decision makers is to choose 
an action which allows them to reach a given objective (i.e. "whai/or ~' analysis). Using 
conventional languages and approaches, two different methods can be used to perform 
this goal-oriented search. The first one is to repeatedly run the simulation algorithm 
with slight variations on the decision variables values (in particular, the funding pol- 
icy), in order to get closer to the expected risk-return position. This method is time 
consuming and, moreimportant,  has little chance to "smoothly converge" to the de- 
sired point, because of the complicated form of a real-life banking model equations. 
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The second approach is to build a "reverse" version of the simulation model, which can 
generate the funding decision according to a given and specific risk-return position. 
The model has then to be rewritten for this particular purpose, and will have to be 
rewritten each time the head management wishes to ask another type of query. Besides 
development and maintenance costs, this solution also implies knowledge duplication. 

In this context, CLP languages are of high interest. Their original features seem 
able to facilitate the development of flexible and powerful DSS in the financial domain 
[4, 5, 9]. Their declarative aspect and reversibility, extended to the numerical domain, 
leads to faster and more straightforward implementation of the model. The resulting 
'knowledge base" remains unique, but can be used for simulations as well as for goal 
seeking queries ([3] for a qualitative reasoning approach). The search space exploration 
algorithm, combined with pruning facilities, helps to efficiently solve complicated cases 
of goal seeking queries (involving piecewise linear, or non-monotonous functions), In 
addition, the goal delaying mechanism provided by Prolog III can be used to improve 
the treatment of non-linear equations; [8] provides a formal treatment of this problem. 

How the linear part of the model is tackled will be explained first; then the treatment 
of nonlinearities will be explained. Because of the application domain involved, focus 
will be on numerical constraints. 

3.2 Using CLP in t he  Linear  Case 

Prolog III cannot deal directly with non-linear constraints and uses a delayed constraint 
mechanism to handle multiplicative non-linearities 6. Assume, for the moment, that the 
banking model is just a set of linear equations and inequalities. Then, this set can be 
directly implemented as a set of numerical constraints (S), which therefore represents 
the structure of the bank's behaviour. In this context, to '~un" the model means to 
add to S another set (Q), which represents the user's query. This last set is mainly 
made of simple equations of the form variable = value.  The resulting set A = S tJ Q 
then represents the "answer" to the user's query. This very simple approach allows to 
integrate simulation and decision model, because of reversibility. The user is therefore 
free to ask any question that make sense to him. 

Furthermore, this approach can be combined with the backtracking mechanism of 
CLP languages in the following way. When the banking application is started, the set 
S is created. From this unique '~root", the software then develops small branches, each 
of them corresponding to a user's query. At each step, the system follows a branch 
in order to solve a query (i.e. to add a set Q and to display the result), and then 
backtracks to the root, ready for the next step. By doing so, it is possible to avoid an 
important part of the computational cost overhead induced by the non-specialisation 
of the decision support system. All this is summarised in Fig. 3. 

3.3 Deal ing wi th  H a r d  Cons t ra in t s  

The actual model also contains non-linear equations. Two classes of non-linear equa- 
tions can be distinguished: those corresponding to disjunctive constraints which can 
therefore induce a whole search process during goal seeking analysis (e.g. non-strictly 
monotonous functions, piecewise linear functions,... ) and the others (e.g. involving 
logarithmic or exponential function or quadratic functions over positive numbers .. . .  ). 

s I.e. when, at runtime, the added constraint involves the product of two unknown variables. 
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Start 

Initialisation phase Running phases 

~Backtrack 

Answer 
A = S U Q  

F i g .  3 .  F u n c t i o n i n g  o f  t h e  a p p l i c a t i o n  i n  t h e  l i n e a r  c a s e  

Consider a model made of linear equations and non-linear equations of the second 
class. During the initialisation phase of the application, only linear equations can be 
introduced in the set S application. The others have to be delayed, hoping that  each 
set Q will bring enough information to introduce them in the whole set A. Consider 
the following non-linear equation: 

C N R -  C 
P = R §  R(1 § R)" 

Depending on the known variables, the following methods can be used: 
- if R and n are known, the equation becomes linear, 
- if all variables except n are known, n can be determined by calculus, 
- if all variables except R are known, it can be iteratively approximated. 

This simple strategy has been programmed in a generic way, using the f r e e z e  mech- 
anism of Prolog III. A set of predicates has been designed, which facilitate the im- 
plementation of these non-linear equations. Using this toolbox, it is only necessary to 
"declare" the methods which can be used to incorporate an equation under the form of 
a linear constraint in A, and the conditions under which each method can be activated. 
Of course, this approach does not transform a CLP language into a general purpose 
mathematical solver, counter-examples (leading to "deadlocks") can be found easily. 
However, because of the particular semantics of the models which must be dealt with, 
these deadlocks can be precisely identified, and then solved according to the previous 
strategy. 

Non-linear equations of the first class are handled in nearly the same way, taking 
care of the virtual combinatorial explosion they could induce in goal seeking mode. 
In the case of a piecewise linear function, this danger is clearly shown by the corre- 
sponding disjunctive writing. For a classical non-monotonous function, the problem 
arises from the fact that its inverse function is not univoque. Obviously, these equa- 
tions cannot be activated during the initialisation phase of the application (see Fig. 3). 
The corresponding goals are therefore delayed, waiting for more information. Then, a 
strategy should be stated to organise for their best handling. In the application, a set 
of heuristics has been designed to achieve this task. This additional feature leads to 
the general structure drawn in Fig. 4. 

The presentation only showed some particular aspects of the financial application. 
Other aspects include temporal shift detection or sensitivity analysis. In the future, 
one of the most ambitious features which will be addressed is the design an interface 
module, aimed at assisting users in their quest for a good decision. To do so, this 
module will have to "interpret" sets of constraints returned by the system. 
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Fig. 4. Functioning of the application in the general case 

4 Scheduling Applications 

Job-shop scheduling of a chemical plant is a real-life example taken from the background 
of the EUREKA project PROTOS [2, 11]. A set of products has to be produced on dif- 
ferent apparatus. A given apparatus can be used in the production of several products 
(multipurpose apparatus environment). Each of the products is produced in a single 
process where each process may have several (1 to 3) production variants (i.e. recipes). 
Each production variant is decomposed into a finite number (from 5 to 20) of steps. 
For each production step, one apparatus will be chosen from a set of alternatives. The 
production steps have to be performed in a specific continuous sequence (production 
cycle). When a larger quantity than the one delivered in one production cycle is re- 
quired, the cycle is repeated. The problem consists in finding a time interval within the 
earliest possible starting date (all inputs have to be available) and the latest possible 
due date (management requirement) for the production process of each product. 

The second example deals with the global planning of several plants. The whole 
production of a large Swiss pharmaceutical company is split over several plants. The,aim 
is to compute a global production plan for all these plants. Up to now, no such global 
plan existed and all the coordination and production process adjustments between the 
different plants are achieved through phone calls between plant managers; there is no 
global control. This scheme works because of the plant managers' experience, but there 
is a high risk of the result not being optimal. If a good global plan could be provided, 
ensuring that no major coordination problem should occur, then each plant could make 
local optimisations as long as the constraints imposed by the global plan are respected; 
also the resulting production process would become much closer to optimality. As a side 
effect, this global plan would also reduce the need for the phon e call based coordination, 
although it is not expected to suppress it totally. 

As it is far too complex to take into account all details of the local data of each 
individual plant, the considered global planning tool is based on an approximation of 
the local reality: the abstraction of individual machines in machine groups (A machine 
group is a set of machines located physically close to each other, and each order can be 
completely executed using only machines within one machine group). Thus, the output 
of this tool is only a "rough" global plan, that will then be further refined at each 
plant, by the local scheduling tool. 

Both examples were implemented; essentially, two types of constraints were used: 
precedence constraints, straightforwardly expressed by numerical inequalities, and non- 
overlapping tasks sharing the same resource, which can only be expressed by choices. 
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5 Conclusions 

The previous examples have shown the interest of Constraint Logic Programming in 
several real life application fields. The experience of the end-users who developed these 
examples is that CLP and Prolog III are good software-engineering tools for dealing 
with such problems, leading to reasonably concise and elegant solutions. In particular, 
the ease to implement, and hence compare, variations of algorithms combining heuristic 
and symbolic computation with constraints, has been appreciated. 

Both the technical systems and banking applications have shown CLP's adequacy to 
define models which encode both structure and functionnality. The possibility of avoid- 
ing as much operational aspects in the model's definition is very important and enables 
to use the same model in several ways: direct execution or simulation and backward 
execution or goal seeking analysis. This form of reversibility extends the knowledge 
representation paradigms and increases their declarativity for non-symbolic domains; 
linear numerical and boolean examples were given. Non linearities raise difficulties but 
some practical, even if not general, methods to deal with them were outlined. 

Applications have also shown the current limitations of the Prolog III interpreter. 
Efficiency, a common concern, is being improved by the development of the Prince 
compiler. Having other or more speciMised constraint domains (such as being able to 
use constraints as choices in scheduling) would increase the expressive power, and hence 
the ease of use of the language. Such topics are currently being intensively studied in 
the framework of the Prince project, but this falls outside the scope of this paper. 

The authors would like to thank the members of the Prince teams and in particular 
Paul A. Massey, for fruitful discussions and comments on earlier drafts of this paper. 
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