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Abstract

This paper presents a critical review of the role of the Costly State
Verification framework in financial contracting.

1 Introduction

These notes provide an analysis of the most classical environment used to
account for the widespread use of debt contracts in loan relationships. The
basic feature of a standard debt contract relies on the borrower’s promise
to offer a repayment constant over states, with the bank being allowed to
seize the whole cash flow when the repayment cannot be guaranteed. The
empirical relevance of such a contractual form is widely accepted: Harris and
Raviv (1992) provide a very detailed exposition of the most relevant findings.
Now, when the lender and the borrower have symmetric information over
projects (i.e. cash flows are observable), risk sharing alone cannot predict the
prevalence of debt contracts1. Asymmetric information has been introduced
in the lender borrower relationship in several ways, from the pure adverse
selection case in the seminal Stiglitz and Weiss (1981) paper to the classic
hidden action moral hazard (Innes, 1990).

We’ll develop the so-called Costly State Verification (CSV) paradigm,
since according to our view it offers the most clear and articulated basis to
understand the role of both debt and intermediaries in financial contracting2.

∗E-mail addresses: attar@ires.ucl.ac.be, campioni@ires.ucl.ac.be.
1See, among many others, Freixas and Rochet (1997) pp. 93 - 96.
2Actually, the standard moral hazard framework (Holmstrom, 1979) cannot support

per se the optimality of debt contracts unless an external monotonicity constraint on the
repayment structure is imposed. This argument has been clarified in several recent studies
(Innes, 1990, 1993, Dionne and Viala, 1994) whose basic result turns out to be that without
imposing any sort of monotonicity constraint, the optimal repayment function R can be
characterized as follows, :

R(y) = 0 for y ≥ y ∗ y ∈ [A, B] ⊆ R+

R(y) = y for y < y∗
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As a starting point, it is useful to remark that the CSV structure deals with
situations where it is assumed symmetric information at the time of contract-
ing : inside this environment CSV identifies the case where agent’s actions can
be observed but the contingencies under which they were taken cannot. In the
particular terminology introduced by Arrow and used in the popular Hart and
Holmstrom (1987) resume we’ve a moral hazard with hidden information,
or in other words an ex − post private information (Hart and Holmstrom,
1987, pp. 75-77). Of course, the focus on this structure will restrict both the
solution techniques and the nature of the implementation problem.

In the CSV framework a precise need for banking activity emerges: banks
turn out to be essential in reducing monitoring costs (using the famous Dia-
mond’s expression they perform a delegated monitoring activity). Hence, the
discussion will be organized as follows: Sec.2 will present the basic scheme,
as it was developed in the classical Gale and Hellwig (1985) paper3; Sect.
3 and 4 will examine two relevant extensions of the one period contracting
problem, namely the introduction of stochastic auditing rules and of ex ante
private information. Sect. 5 will deal with repeated interaction, while Sect.
6 will present the recent work of Krasa and Villamil attempting to generalize
the contracting problem when commitment itself is a strategic variable. Sect.
7 will examine the role of collateral as a potential alternative to verification
costs. The last section will come back to the basic scheme focusing on the
role of financial intermediaries.

2 The Basic Scheme

The context is very simple: an entrepreneur who is running a firm owns a
project which requires an initial investment l at time zero and gives random
return at time one. The borrower wants to undertake the project but he has
to rely on the lender to get external finance; both agents are conceived as
risk neutral and their interaction takes place in a competitive capital market.
Therefore, i > 0 will be the given return that should be guaranteed to the
lender.

Once the project is undertaken, only the borrower can observe the returns
at no cost, that is we have ex post private information. Borrowers are assumed
to report their private information through a message. Returns can be verified
once auditing is performed and verification costs are a function of the current
firm’s assets.

where y is the random return of the project. This is clearly different from a debt-like
contract, since it provides incentives for efforts giving to the agent maximal payoff (R(y) = 0)
when the result is good and maximal penalty (R(y) = y) when it’s bad: we have a live-or-die
contract. Debt can be obtained if we require the repayment to be a nondecreasing function
of the return (Innes, 1990, p.33).

3It is well known that Gale and Hellwig paper is in fact just a reformulation of the
Townsend (1979) work.
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2.1 Agents and Technology

There is a single investment project with a fixed outlay K. The realizations
from the project are uncertain: the set of states of nature is taken to be R+

and H : R+ → [0, 1] is the relevant distribution function. Letting l ∈ R+ to
be the investment in the risky project, the returns from investment l in state
s will be defined by f(s, l).

Assumption 1: f : R+ × R+ → R+ is a twice continuously differen-
tiable function on the interior of its domain and continuous at the boundary.
Moreover:

- f(0, l) = f(s, 0) = 0;

-
∂

∂l
f(s, l) > 0

∂2

∂l2
f(s, l) < 0

∂2

∂l∂s
f(s, l) > 0

Auditing costs are defined by the function c(s, l).

Assumption 2: c : R+ × R+ → R+ is a twice continuously differen-
tiable function on the interior of its domain and continuous at the boundary.
Moreover:

∂

∂l
c(s, l) ≥ 0

∂2

∂l2
c(s, l) ≥ 0

∂

∂s
c(s, l) ≥ 0.

2.2 The Contractual Problem

The total amount to be financed is assumed to be l. The principal has all the
bargaining power and she commits to a particular mechanism involving the
agent.

In the Gale-Hellwig (GH) framework the general mechanism is given by
(l,M, C0, C1,W, B) where M ⊆ R+ is the borrower’s message space, C0 ≥ 0 is
the investor’s contribution (that is usually interpreted as the amount of equity
issued by the borrower), C1(m), and W (s,m) are respectively the repayment
to the lender and the borrower’s wealth expressed as a function of the declared
state m. Finally, B(m) : M → {0, 1} is the function defining the auditing
region, with B = 1 identifying the set of states where auditing is actually
taking place4. Given the structure of such a mechanism with precommitment,
Bayes-Nash equilibrium is chosen as a suitable solution concept.

The first best analysis is straightforward: the efficient level of investment,
say l∗, solves the following:

l∗ = arg max
l≥0

E[f(s, l)− (i + 1)l] (1)

4It should be noted that we’re not including in the description of the general mechanism
the principal’s strategies “accept or refuse the mechanism”, just for the sake of simplicity.
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Unicity of the solution is guaranteed by Assumption 1. Now, if A0 ≥ 0
defines the borrower’s initial assets, in order to eliminate trivial solutions
(that is, focusing on non-autarkic allocations) we should also have:

Assumption 3: l∗ ∈ (0,∞) and W = A0 < l∗

We can write down the entrepreneur’s wealth W (s,m): for any m such
that B(m) = 0, we have:

W (s,m) = f(s, l) + (1 + i)(A0 − C0)− C1(m) (2)

Considering the asymmetric information case, we will properly define the
optimal contracting problem5. It can be stated as follows: find an array
(l, C0, C1,W, B) maximizing borrower’s expected utility under lender’s zero
profit (Individual Rationality constraint) and Incentive Compatibility con-
straints6. We can drop out W from the definition of the optimal contract
with easy manipulations. Then, the principal-agent problem would look like:

max
l,C0,C1,B

E[f − (i + 1)l − cB] (3i)

s.t.

EC1 = (1 + i)(l + R0 − C0) (3ii)

C1 ≤ f − cB + (1 + i)(A0 − C0) (3iii)

l ≥ 0 C0 ∈ [0, A0] (3iv)

(l, C0, C1, B) is IC (3v)

The role of constraints (3ii) and (3iii) is such that the former stays for a
zero profit condition for the lender (written as an inequality) while the latter
is a feasibility condition. We can now introduce the notion of Standard Debt
Contract (SDC henceforth):

Definition 1 A contract (l, C0, C1, B) is a SDC iff:
5From now on, we’ll simplify notation omitting to specify the state dependence of the

relevant variables.
6A contract is defined Incentive Compatible in the present framework iff:

- there exists a constant R1 such that C1(m) = R1 whenever B(m) = 0
- for all (s, m) s.t. B(m) = 0, B(s) = 1 and W (s, m) ≥ 0, then R1 − C1(m) ≥ c(s, l)
In other words, if the true state is observable and the borrower has an incentive to

misreport, then the repayment to the lender should be higher under auditing. Also notice
that incentive compatibility is forcing repayment under no-auditing to be constant.

A more formal argument is provided in Townsend (1979).
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for some R1, (1−B)(C1 −R1) = 0 (fixed repayment)
B = 1 ⇔ f < R1 (bankruptcy decision)
BC1 = B(f − c) (maximum recovery)

It should be noted that in the definition above the set of states such that
B = 1 is identified with bankruptcy, while f − c is the part of revenues that
is recoverable from the investor under bankruptcy.

In what follows we’ll sketch the necessary steps to show how the SDC
contract emerges as the optimal mechanism in the class of feasible contracts,
that is contracts satisfying (3ii)− (3v)

step I: Maximum equity participation
Without loss of generality we can set C0 = A0

Assume (l, C0, C1, B) is an optimal contract that solves the principal-agent
problem set up in P2. If we replace it with a new contract (l, C

′
0, C

′
1, B) where

C ′
0 = A0 C ′

1 = C1 − (1 + i)(C0 −A0)
the objective function and the relevant constraints are unchanged. In fact:
E(C ′

1) = (1 + i)(l−C ′
0) ⇔ E(C1)− (1 + i)(C0−A0) = (1 + i)(l−A0) and

C ′
1 ≤ f − cB + (1 + i)(C ′

0 −A0) ⇔ C1 − (1 + i)(C0 −A0) ≤ f − cB

Notice that, as a byproduct of step I, the degree of equity participation
turns out to be indeterminate at equilibrium7.

step II: Uniform repayment
C1(s, l) = C1(s′, l) = R1 for all s, s′ /∈ B is guaranteed by IC

step III: Bankruptcy rule
If (l, C1, B) solves the principal-agent problem, then B = {s : f(s, l) < R1}

where R1 = C1(s) for s /∈ B.
If f(s, l) < R1 then C1(s, l) ≤ f(s, l) − cB ≤ f(s, l) < R1 and therefore

C1(s, l) < R1.
But, if C1(s, l) < R1, is it that s ∈ B : f(s, l) < R1?
Assume by contradiction that C1(s, l) ≥ R1 could be compatible with

s ∈ B : f(s, l) < R1. The IC constraint will imply C1(s, l) ≤ R1. There can
be two cases:

a) if C1(s, l) = R1, it is possible to define a new contract B′ = B\ {s} that
will be strictly preferred to the initial one, generating a contradiction.

b) if C1(s, l) < R1, then we can define a new array
[
C

′
1(.), B

′
]

with B′ =

B\ {s} and C ′
1 =

{
R1 − d for s = s′

C1(s′)− d for s = s′

}
where d is a linear function of [R1 − C1(s.l)] that increases the objective

function and satisfies the IR and IC constraints.
7Gale and Hellwig, 1985, p. 654.
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Therefore, the so called bankruptcy rule implies that if the array
[
l, C

′
1(.), B

′
]

solves the pricipal-agent problem, then B = {s : f(s, l) < R1} defines the re-
gion where verification will take place as the one where bankruptcy will occurr.

step IV: Maximum recovery
C1(s, l) = f(s, l)− c for all s ∈ B

We obtain this result solving the Kuhn Tucker program. We won’t report
here the whole derivation. It suffices to notice that if C1(s, l) < f(s, l)− c on
some subset of B, then it would be possible to raise C1(s.l) in that subset and
to reduce R1 so to keep unaltered feasibility conditions and to give an higher
payoff to borrowers. Thus, IR and LL are binding and the lender appropriates
all the available assets of the firm in bankruptcy states.

step V: Characterization of R

If (l, C1B) is an optimal contract, then ∃R1 s.t. C1(s.l) = min {f(s, l), R1},
B = {s : f(s, l) < R1} and (l, R1) solves

max
l,R1

Es {max [f(s, l)−R1] , 0} −
∫
B cdH(s)

s.t.
Es {min [f(s, l), R1]} = ū

Thus, any optimal contract can be meaningfully represented by a SDC
with maximum equity participation, that is by the array (l, R1). Now, by
previous assumptions we can write R1 ≥ 08 and, without loss of generality,
we can also assume R1 ≤ sup{f(s, l) | H(s) < 1} for any optimal contract.
The existence of upper and lower bounds for R1 together with Assumption 2
ensure us about the existence of a state γ s.t. f(γ, l) = R1. It follows that we
can alternatively identify a contract with the pair (l, γ), where γ is defined
to be the bankruptcy point, in the sense that bankruptcy occurs if and only if
s < γ9.

It’s important to remark that we didn’t introduce here any sort of risk
sharing consideration, given that we dealt with risk neutral agents. Now,
allowing for a risk averse borrower together with a risk neutral lender still
enables us to find a sort of SDC at equilibrium. GH can show that under
these conditions bankruptcy states are associated to borrower’s detention of a
positive and constant amount of the asset, that constitutes a form of insurance

8Assume not: then incentive compatibility implies that C1 < 0 and the zero-profit
condition implies l −W < 0. It would follow that l = l∗ contradicting Assumption 3.

9Notice that γ is unique whenever l > 0, while if l = 0 (implying W = 0) by Assumption
1 such a γ does not exist.

6



(risk sharing) against non favorable states10. Hence the present notes won’t
deal explicitly with the issue of borrower’s risk sharing and we’ll refer both
to risk averse and risk neutral borrowers.

In this brief resume of the GH incentive problem, we did not discuss the
features of the second best level of investment l∗∗: the authors show that with
a positive probability of bankruptcy and an increasing cost of bankruptcy with
respect to investment, the Pareto constrained level of investment is strictly
lower than l∗11.

3 Stochastic auditing rules

The first relevant extension of the basic CSV framework we’ll consider is the
allowance for random auditing, following Mookherjee and Png (MP) (1989).
The basic finding we will show is that under stochastic verification the optimal
contract may not exhibit the SDC feature, since in any nontrivial optimal
incentive scheme is not possible to identify a bankruptcy point. Moreover,
when auditing is not performed, repayments turn out not to be constant over
states. We’ll just slightly modify our previous setting: in order to focus on
the optimal contracts properties, we will consider a fixed investment level that
generates n possible levels of realized income Y1...Yn with the correspondent
probabilities λ1...λn. As before transfers Ci (i = 1, 2, ...n) from the agent to
the principal depend on the agent’s report on the realized state Yi, but now
the report Yi is audited with probability pi at the cost ci; if there has been
untruthful report of state l when i occurred, the agent must pay a penalty
Fli. Finally, the analysis introduced here will deal with a risk-neutral principal
and a risk-averse agent, whose preferences have a V NM representation with
underlying concave and strictly increasing Bernoulli utility functions U(.).
We leave aside the additional decision on the optimal level of investment in
the risky project in order to isolate the problem of designing the optimal
mechanism.

Therefore, the relevant direct mechanism is here represented by the array
(pi, Ci, Fii) and the contractual problem can be written as:

10A very precise analysis of this framework is developed in Garino and Simmons (1995).
Their main finding is that at equilibrium the marginal utility of resources held by the
borrower under bankruptcy should be equal to the expected marginal utility of consumption
in non bankruptcy states.

Introducing an additional incentive constraint that the borrower doesn’t destroy resources
before verification takes place (like in Innes, 1990) they are able to figure out that the optimal
level of detention under bankruptcy is equal to the lowest borrower’s consumption under
B = 0.

11It’s also important to mention that GH characterize their result as a form of credit
rationing, where the size of the loan is the rationed variable. In such a perspective, credit
rationing is no more originated by indivisibility of investment projects, as in the classical
Stigliz and Weiss (1981) work.
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Problem 2

max
pi,Ci,Fii

n∑
i=1

λi[piU(Yi − Ci − Fii) + (1− pi)U(Yi − Ci)]

s.t.

Vi ≡ piU(Yi−Ci−Fii)+(1−pi)U(Yi−Ci) ≥ (1−ph)U(Yi−Ch) ∀i, h (4)
n∑

i=1

λi[Ci − pi(ci − Fii)] ≥ R (5)

Yi − Ci − Fii ≥ 0, Yi − Ci ≥ 0, 1 ≥ pi ≥ 0 ∀i (6)

where the objective of the principal is to choose a probability structure, a
transfer and a penalty maximizing agent’s expected utility under the incen-
tive constraint (4) that guarantees agent’s truthful report, the participation
constraint (5) that gives the principal a minimum payoff (R) and the usual
limited liability (6) constraints for both parties to avoid negative consump-
tion.

The first result at the optimum is that IR constraint has to be binding,
otherwise it would be possible to define a new contract that increases the
agent’s expected utility, reducing the penalty Fii, without affecting the prin-
cipal’s payoff, contradicting the optimality of the old solution. Then, it is
shown that if the agent’s report is verified and discovered to be truthful, she
must not be punished, thus Fii ≤ 0. The main results, however, are stated in
the following proposition:

Proposition 3 (i) Optimal schemes exist.
(ii) All income reports that are audited must be audited randomly- that is,

pi < 1 for all i- in any optimal scheme that provides the agent with positive
consumption in every income realization.

(iii) Every optimal scheme has the property that if the agent’s report is
audited and verified to be truthful, the agent must be rewarded; that is, Fii < 0
whenever 1 > pi > 012.

This proposition deserves some comments since it is at the heart of the
discussion on stochastic verification. The proof of part (ii) is given assuming
that there exist some income returns that are always verified, i.e. pi = 1 for
some i, and then noticing that in such cases, it would always be profitable to
slightly reduce these pi without changing the direction of the IC inequality but
strictly diminishing the expected cost of auditing in IR. Thus any candidate
mechanism with pi = 1 for some i would not be optimal.

Up to this point only two components of the optimal mechanism have
been characterized, it remains to describe the relationship between the opti-
mal transfers and the optimal audit probabilities, which can be derived by
discussing the following:

12See MP, 1989, p.406, Proposition 1, b) and c).
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Proposition 4 In any optimal scheme: reports corresponding to the highest
transfer will not be audited; all other reports must be audited with positive
probability; reports corresponding to higher transfers will be audited with equal
or lower probability, if Ck > Cl and 1 > pl, then pk < pl.

An analysis of the propositions above confirms that the SDC structure is
fragile with respect to random auditing: the first proposition actually denies
the existence of a treshold bankruptcy point. The second one induces the
optimal repayment to the principal to be a function of the reported income
returns, given that the probability of auditing is everywhere lower than one:
as a consequence, since in the optimal incentive scheme the probability that
the report will not be audited is never zero, the agent will not pay a constant
transfer across all states of solvency.

Now to gain a broader perspective on the basic CSV environment, we
will take into account the interaction between ex ante and ex post private
information.

4 Optimal contracting under ex ante and ex post private in-
formation

There have been relatively few works suggesting a generalization of the CSV
framework to allow for ex ante private information. The first attempt has
probably been provided by Williamson (1987) who built on the Stiglitz-Weiss
intuitions, but the most clear analysis is in our view the one recently suggested
by Choe (1998), who formally introduces a mechanism design set up13. We’ll
therefore briefly discuss his main results.

In order to focus on the characteristics of the optimal contract, we’ll start
from GH framework assuming that both the investment level and the auditing
cost c1 are fixed. Ex ante private information is represented by the random
variable X : Ω −→ {θ1, θ2} and it is obviously correlated with Y : Ω −→ R,
which describes the returns from the project: the conditioned distribution
function will be given by Fi

14. To fully characterize the lender-borrower
relationship, a general mechanism is needed.

Definition 5 A mechanism is a collection (D,S,C,F,M,B,R) where each ele-
ment represents:

D={0,1} the borrower’s decision of accepting (1) or rejecting (0) the
mechanism

13Another preliminary attempt in this direction has been provided by Innes who found
that: “With a constant positive cost c of verifying/monitoring ex post firm profit and no
monotonic contract constraint, the presence of an ex-ante informational asimmetry rein-
forces Townsend’s motivation for debt contracting as long as c is sufficiently large” (Innes,
1993, p.39).

14Fi is the conditional distribution of Y given X = θi. The unconditional distribution of
Y and the conditional F1 and F2 have the same support [y1, y2] ⊂ R+.
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S the borrower’s space of signals
C: S→{0,1} the decision of accepting (1) or rejecting (0) the project
F: {0,1} the lender’s decision of financing (1) or not (0) the

project
M the borrower’s space of messages (reports)
B: S×M→{0,1} the (deterministic) auditing region
R: S×M×B(., .)×Y→R the transfer to the lender

In this framework all the necessary conditions to apply the Revelation
Principle are satisfied, therefore without loss of generality we can substitute
the borrower’s type space Θ for the signal space S and the output realization
space Y for the more general space of messages M . An important assumption
for all the following considerations is:

Assumption 4:F1dominates F2 in the sense of first order stochastic dom-
inance; moreover

∫
ydF1 > K+c1,

∫
ydF2 < K and p

∫
ydF1+(1−p)

∫
ydF2 ≥

K + c1

The role of this assumption is to ensure that ex ante private information
is in some sense valuable. In other words, the borrower gets higher profits
undertaking the project only when θ1 is observed rather than undertaking it
regardless of the observed signal. In the first case the borrower gets

∫
ydF1−

K, while in the second one p
∫

ydF1 + (1− p)
∫

ydF2 −K. By Assumption 4
the latter is greater than the former and given the asymmetry of information,
this outcome identifies the optimal Pareto-constrained allocation (OPC) we
want to implement.

Two general classes of mechanisms are of interest here: one where the
lender chooses his strategy over F after the borrower has sent his signal on
ex ante private information and the other where the lender moves before
receiving that message. These two cases define two mechanisms without pre-
commitment (MNP) and with precommitment (MWP), respectively.

Different classes of mechanisms are identified by alternative specification
of the lender’s strategies: f : S → F in the mechanism without precom-
mitment (MNP) and f ∈ F is the uncontingent strategy under commitment
(MWP)15. Correspondingly different solution concepts are adopted: for the
MNP the relevant concept is Perfect Bayesian equilibrium, which is suitable
for signaling games; while in the MWP, when the lender moves before any pri-
vate information is communicated and independently of any such revelation,
so that a complete information game is played, the (Bayes) Nash equilibrium
implementation is chosen.

Some restrictions will have to be imposed on the principal’s expected
utility maximization problem in order to guarantee the optimality of the can-
didate solution. The participation constraint (or IR) and the usual limited
liability (LL) constraint are stated below:

15Notice that the borrower’s strategies remain the same in the two cases: (d, r′, r′′) where
d ∈ D, r′ : Θ → S and r′′ : Θ×X → M .
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Condition 6 (IR) A mechanism is individually rational if the equilibrium
expected payoffs for both agents are nonnegative

Condition 7 (LL) A mechanism satisfies limited liability if, for all (s,m) ∈
S × M and x ∈ X, there is v ∈ [y1, y2] such that R(s,m, B(s,m), y) ≤
B(s,m)(y− c1)+ [1−B(s,m)]v if C(s) = 1 and R(s,m, B(s,m), y) ≤ K if
C(s) = 0.

In addition, a specific condition for non-triviality of the project choice
decision, applies:

Condition 8 For any mechanism, C(s) = 1 for all s ∈ S1 for some proper
subset S1 ⊂ S.

Because of IR, the borrower will always want to accept the mechanism, i.e.
d = 1, and the lender will always finance the project in case of precommitment,
i.e. f = 1, therefore the MNP will be identified by the array (S, C, F,M,B,R)
excluding D and a MWP by (S, C, M, B,R) where both D and F have been
excluded. However, given the structure of the problem it is clear that there
is an advantage for both the lender and the borrower to play the game with
precommitment. If the lender could take the financing decision after receiving
the borrower’s signal and if he can correctly infer the type of borrower from
the received signal, then he will never finance a project which belongs to
type θ2

16 while the borrower will always prefer the project to be realized.
In MNP it is not optimal for the borrower to send a signal which allows
the lender to separate between types: only pooling equilibria can thus be
sustained and the OPC allocation can never be implemented17. In order to
reach the OPC allocation, therefore, we will consider MWP and within this
class of mechanisms, only those supporting separating equilibria will be taken
into consideration.

Lemma 9 For any mechanism with precommitment that has a pooling equi-
librium in which the project is chosen, there exists a mechanism with precom-
mitment that has a separating equilibrium and dominates it.

Applying the Revelation Principle (Myerson, 1979) we can restrict our
attention within the class of mechanisms with precommitment to those direct
mechanisms that allow for truthful implementation, in other words we restrict
to incentive compatible (IC) mechanisms.

16In case he did it, he would get a negative payoff by Assumption and LL.
17This result is stated in Choe’s paper, p.244, as Lemma1: Let (S, C, F, M, B, R) be a

mechanism without precommitment (MNP) such that C(s) = 1 for all s ∈ S1 for some
S1 ⊂ S and let (r1, r2, f ; µ) be its equilibrium where µ is the lender’s posterior belief about
θ. Then the only equilibrium at which the project is undertaken has r1(θ1) = r1(θ2) = s1

for some s1 ∈ S1.
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Lemma 10 For any mechanism with precommitment that has a separating
equilibrium, there exists a direct mechanism with S = Θ , M = Y which has
an equilibrium in which the borrower truthfully reports the observed informa-
tion signal as well as the return from the project. The equilibrium payoffs for
both agents in the direct mechanism are the same as the equilibrium payoffs
of the original mechanisms.

Given the two sources of asymmetry of information, there will have to be
two different IC constraints: one for the truthful report of the information
signal and another one for the report of the project return. The restriction
to direct mechanisms, in addition, allows us to describe the MWP with a
triple (B,R, r) where B represents the verification region, R the transfer to
the lender and r, with r ≤ K is defined as R(θ2, ., ., .) = r.

The incentive compatibility constraints (IC) are now specified as:
(IC1) for truthful report of the information signal:

∫
{y−R[y, B(y), y]−c1B(y)}dF1 ≥ K−r ≥

∫
{y−R[y, B(y), y]−c1B(y)}dF2

(7)
(IC2) for truthful report of the return on the project18:
there exists v ∈ [y1, y2] such that ∀y, y′

R[y′, B(y′), y] = v if B(y′) = 0
R[y, B(y), y] + c1 ≤ v if B(y) = 1, B(y′) = 0 and y ≥ R[y′, B(y′), y],

that is untruthful revelation is potentially profitable.

Lemma 11 Having defined the mechanism as a triple (B,R, r) we have to
redefine the corresponding IR and LL constraints:

(IRB) p
∫
{y − R[y, B(y), y] − c1B(y)}dF1 + (1 − p)(K − r) ≥ 0

for the borrower
(IRL) p

∫
R[y, B(y), y]dF1+(1−p)r−K ≥ 0 for

the lender
(LL) ∀y, y′ R[y, B(y), y′] ≤ [1−B(y)]v+B(y)(y′−c1) for some

v ∈ [y1, y2]

The optimal mechanism is obtained solving the lender’s maximization
problem under the incentive compatibility constraints (IC1 and IC2), the
IR and LL constraints, that have been adapted to the actual context; it is
represented by a triple (B,R, r) and it is optimal in the sense that is does not
exists an alternative array (B′, R′, r′) that satisfies the same set of constraints
and Pareto dominates the candidate.

Given this structure, the IRB is implied by LL. This is clearly an exten-
sion of the original GH framework and Choe’s result consists in proving that
whenever the project is undertaken.

18This is the same definition of incentive compatible mechanism given by Gale and Hell-
wig.
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The optimal mechanism has the SDC features, in particular:

R[y′, B(y′), y] = y − c1 and B(y′) = 1 if y′ ≤ v
R[y′, B(y′), y] = v and B(y′) = 0 if y′ > v

Notice that any such mechanism having the SDC form satisfies LL and
IC2. It is clear then, that an optimal mechanism (B,R, r) can be generally
classified as a standard debt contract whenever r can support (B,R) to meet
the additional IC1 constraint.

A mechanism with a standard debt contract can be represented by the pair
(v, r). The following proposition19 states that such a mechanism is feasible:

Proposition 12 There exists a pair (v, r) ∈ [y1, y2] × [0,K] satisfying both
IC1 and IRL

Given the existence of a mechanism with SDC, the next step is to show
the optimality of such a mechanism. The argument suggested by Choe still
relies on the property that a SDC minimizes the auditing region while the
existence of an r satisfying IC1 is basically guaranteed by Assumption 4.

Proposition 13 If (B,R,r) is a mechanism with precommitment satisfying
IC, IR and LL then there exists a mechanism with a standard debt contract
that satisfies the same constraints and dominates it.

Together with optimality of debt contracts, looking also at managerial
relationships this setting prescribes that a positive compensation should be
guaranteed to the manager even when a project is not undertaken. This
type of managerial compensation can be interpreted as a golden parachute
giving the manager an incentive to make an efficient use of ex-ante private
information.

5 Optimal debt contracts in dynamic context

At this point, it’s worth noticing that the CSV framework could not cope with
additional requirements that most corporate bonds include, such as coupon
payments and/or sinking funds payments and options20. On the other hand,
the optimality results on debt contracts were obtained in a static framework,
where the relationship between entrepreneur and investor was plagued by an
asymmetry of information, in the form of moral hazard with hidden informa-
tion21, so that the contract could not be made contingent upon realized cash
flows unless some auditing cost had been paid.

19See Choe, p.248
20Coupon payments are interest payments made on a regular basis by a firm to its bond-

holders. Sinking funds requirements usually see the firm repurchasing or retiring a portion
of bond issues each year starting before maturity. Options give the right to buy or sell a
certain amount of the underlying asset at a prespecified price and time.

21We’re still using this expression following Hart and Holmstrom (1987), given that all
the contributions we’ve been discussing here share this methodological distinction.
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This section will explicitly deal with the main attempts of representing a
repeated interaction. We start referring to Webb’s (1992) work, where the ba-
sic distinction between short term and long term contracts is introduced: “As
suggested by Hart and Holmstrom (1987) we argue that long-term contracts
derive from an inability to costlessly verify contingencies. In particular, if out-
put realizations of projects are not costlessly verifiable, a long-term contract
may then be used to induce truthful revelations that cannot be supported
by a sequence of short-term contracts. This leads to a saving of verification
costs”22.

Webb argues that a sequence of two short term standard debt contracts,
that is the natural extension of the GH result, cannot be the solution of the
two period incentive problem. It is, in fact, Pareto dominated by a contract
with contingent repayments in the first period.

The main differences with the basic one stage environment are the follow-
ing: each entrepreneur can select a project in each of the two periods t = 1, 2;
the project requires an initial investment kt and yields random return yt. Be-
fore the start of the first period, a long term contract can be signed. The
entrepreneur is free to sign contracts with competitive outside lenders at any
point. If a sequence of standard debt contracts is selected, then there exists
a threshold repayment level Rt which the investor repays when she’s solvent
and identifies the bankruptcy region in any period. Now, a long-term con-
tract implying contingent first period repayments together with debt in the
second period improves upon the previous sequence. The reason is that the
amount the entrepreneur will borrow in the second period is inversely related
to his first period net assets; therefore, since the second period contract is
contingent upon first period reported states, having variable repayments in
the first period can reduce the risk of bankruptcy.

It should be remarked that Webb’s result strongly relies upon the assump-
tion that the relevant IR constraints are recursive, that is they can be written
period by period. Actually, long term contracts require a weaker IR con-
straint to hold: it imposes the lender to earn non-negative expected profits
across states. There exists an explicit improvement when such a weaker IR
holds: transferring utility across states is a further source of reduction of the
probability of bankruptcy. A numerical example along these lines has been
recently provided by Snyder (2001). On the other hand, Webb’s setup refers
to a two period contracting problem where investment is undertaken twice.
Under those circumstances, the introduction of two individual rationality con-
straints is de facto a sufficient condition for perfect competition in financial
markets. That is, free entry is guaranteed in any period.

We believe that the approach proposed by Chang (1990) can overcome
these ambiguities. He proposed a dynamic version of the classical GH frame-
work, where the interaction between borrower and lender is modeled as a two
stage game and the results can actually be interpreted in terms of coupon or

22Webb, 1992, p.1113.
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sinking fund requirements. The mechanism design problem is still solved by
the standard debt contract.

The most interesting results on debt contracting are obtained under the
assumption that the verification cost function is not decreasing in the firm’s
cash flow, in such a case verification can only occur if the date one cash flow
is below a certain critical level. This level can be interpreted as a coupon
payment, in the sense that it tests the financial health of the firm23.

If the verification cost function is strictly increasing in the value of the
firm’s asset and if the firm commits not to pay dividends at time one, an
increase in the first period payment can reduce the retained earnings carried
over at date two, and hence reduce the expected bankruptcy costs. A way to
achieve this is to give the firm an option to repay more in period one when
its date one cash flow is high, reducing accordingly the amount of repayment
carried to period two, so as to avoid misreporting. This feature corresponds
to a call option in bond contracts.

In what follows, we will provide a detailed explanation of the main as-
sumptions and results.

The entrepreneur needs funds to finance an investment of one at time
zero, which provides random returns y1 at time one and y2 at time two. yt

is distributed over an interval [0,H) according to a distribution function Ft

for t = 1, 224. The random variables y1 and y2 are by assumption indepen-
dent. Both agents are risk neutral and have time additive utility functions,
the lenders operate on a competitive market and the riskless interest rate is
assumed to be i = 0. The realization of the random return can be observed in
each period only by the entrepreneur, who is in charge to report to the lender
the realized cash flow, here arises the issue to induce truthful reporting.

The crucial assumptions used by Chang are the followings:
i) the framework is the CSV therefore the contract has to be made contin-

gent on the reported cash flows, unless a verification cost is borne, in which
case it can be contingent to the realizations;

ii) the verification function bt (xt) for t = 1, 2 is non decreasing and
smooth; xt represents the total value of the asset of the firm at time t when
verification takes place 25.

23We’ve to remark that in the CSV framework the verification region, i.e. the interval
of reported cash flows for which verification takes place, corresponds to the firm going
bankrupt.

24It is assumed that Ht = H and that Lt = 0 for t = 1, 2. In additon, the indipen-
dence among the realizations of project’s returns rules out every possibility to analyze the
persistence or the correlation among random effects.

25Since the firm has no initial resources x1 = y1, i.e. in the first period firm’s asset
coincide with the project’s cash flow. In the second period x2 = y2 + (y1 − p1), where
(y1 − p1) represents the possible retained earnings from previous period.

It is also assumed that the distribution function Ft is twice continuosly differentiable and
with a strictly positive density function ft for t = 1, 2 and the hazard rate for y2,

f2(y2)
1−F2(y2)

is increasing, but these are mainly technical; and some covenenats are imposed on firm’s
behaviour. The firm cannot distribute dividends before the total liabilities to the lender
are repaid and cannot raise additional investment funds after period one realization has
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Here the GH results cannot be directly applied because of the repetition,
thus if it were possible to restore the basic scheme, it would also be possible
to look for the same qualitative results. In this context a contract is simply
a list K = [D1(y1), P1(y1), D2(y1, y2), P2(y1, y2)] , which prescribes a repay-
ment and a verification decision for each period as function of the reported
realizations for y1 and y2. In particular, Dt(yt, ys) represents the probabil-
ity that verification takes place given the announcement(s) yt (and ys), it is
a binary variable since no randomization is allowed and it takes value one
when bankruptcy occurs; Pt(yt, ys) is the payment to the lender at t given
the announcement(s) yt (and ys).

We’ll apply backward induction: for every possible realization of y1 the
problem to be solved in period two is exactly the same as in the GH formula-
tion, since after period two there is no continuation and the traditional results
hold. In this framework, the required repayment schedule when D1(y1) = 0
is defined as:

P2(y1, y2) = R2(y1) when D2(y1, y2) = 026

and since the firm is insolvent if she cannot repay the required constant
fraction of debt,

D2(y1, y2) = 1 if and only if [y1 − P1(y1)] + y2 < R2(y1)
thus P2(y1, y2) = [y1 − P1(y1)] + y2 < R2(y1).

Of course, when D1(y1) = 1 we correspondingly define p2(y1, y2) and
r2(y1).

Once the repayment schedules R2(y1) and r2(y1) are known, what remains
to analyze is the set of constraints on D1(y1), P1(y1), p1(y1), R2(y1), r2(y1)
that induce the right incentives for the firm to truthful report. Since both
agents are risk neutral, the optimal contract is the one that minimizes the
expected verification costs, for a given expected payment to the lender. The
usual limited liability (LL) constraints which do not allow negative consump-
tion to the borrower, P1(y1) ≤ y1and p1(y1) ≤ y1, the participation constraint
(IR) for the lender and the incentive compatible (IC) constraints for the en-
trepreneur have to be specified.

The issue of truthful reporting is relevant only when we deal with realiza-
tions that are not observable, i.e. they belong to the non verification region,
in those cases the firm must be induced to tell the truth, when the realizations
fall into the verification region instead, a misreporting firm could immediately
be detected and punished. Given two realizations x1, y1 in the support of y1,
such that D1(y1) = D1(x1) = 0, if it were possible for the borrower to mis-
report the true realization x1, i.e. if y1 ≥ P1(x1), Incentive Compatibility

occurred. In the last part of the paper, the optimality of these two assumption is also
discussed.

26We will follow the paper notation in writing the repayment function with capital letters
when there is no verification and in small letters when verification occurs. Thus, P1(y1)
represents the payment to be given to the investor in case of no verification, D1(y1) = 0 ;
while p1(y1) indicates the repayment when verification occurs, D1(y1) = 1. The same holds
for P2(y1, y2) and p2(y1, y2) .
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would imply (IC1)27:

R2(y1) + P1(y1) ≤ R2(x1) + P1(x1) ((IC1))

For the case when x1, y1 are in the support of y1 and D1(x1) = 0 but
D1(y1) = 1 and if y1 ≥ P1(x1), the relevant constraint would be (IC2):

r2(y1) + p1(y1) ≤ R2(x1) + P1(x1) ((IC2))

Finally the IR constraint for the lender is given by∫
D1(y1){p1(y1)− b1(y1) +

∫
p2(y1, y2)dF2}dF1+

+
∫

[1−D1(y1)]{P1(y1) +
∫

P2(y1, y2)dF2}dF1 ≥ 1 ((IR))

Since both parties are in this principal-agent setup risk neutral, the max-
imization of the entrepreneur’s expected payoff subject to the IC1, IC2, IR is
equivalent to the minimization of the expected cost of verification for a given
repayment to the investor under the same constraints. Thus, the contract will
determine the array (D1, P1, p1, R2, r2) that solves

min
∫

D1(y1){b1(y1)+
∫

b2(y2+(y1−p1))dF2}dF1+
∫

[1−D1(y1)]
∫

b2(y2+y1−P1)dF2}dF1

(8)
s.t.

(LL), (IC1), (IC2), (IR) and D1(y1) = {}01, D2(y1, y2) = {}01 (9)

The problem is solved using optimal control theory, having observed that
IC2 cannot be binding at the optimum28. The results obtained depend cru-
cially on the assumption on the verification technology: if it is increasing in
the available assets of the firm then it is suboptimal for the firm to repay
below the possibility in the first period, because the undistributed revenues
would increase the probability of bankruptcy in the second stage. It follows
that the optimal first period repayment exhausts all currently realized returns,
whenever the verification costs are strictly increasing29.

27If we define as total liability the sum of period one and period two repayments to the
investor, R2(.) + P1(.), then we can notice that it is not increasing in y1 in fact, if y1 ≥ x1,
since y1 ≥ P1(x1) and x1 ≥ P1(x1) for the LL constraint, it would also be y1 ≥ x1 ≥ P1(x1).

28If it were in fact, it would always be possible to substitute the optimal contract pre-
scribing verification with a non verifiable one, leaving unchanged the utility of the investor
and increasing the utility of the borrower, who should not be pay the verification costs with
this new contract.

29In more rigorous terms, if b2(.) is strictly increasing, then P1(y1) = y1, provided that
y1 − P1(y1) < R2(y1) i.e. that date one realized return cannot repay the total liability of
the firm. If y1 > P1(y1) + R2(y1) there is no defalut risk at all at time two, thus the firm
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Once the asymmetry of information has been overcome, the date two net
liability r2− (y1−p1) should be set independently of y1 at the first best level,
i.e. at the level where the marginal benefit of increasing the date two required
payment (r2) equals the marginal cost of such an increase30.

At the optimal contract the total liability of the firm is constant all over
the non verified region, as prescribed by the incentive compatibility constraint.
This result is similar to the one obtained in most other models of asymmetric
information, where the IC constraint is shown to be binding at the optimum
since otherwise the optimal candidate contract could be improved by moving
toward the first best31.Therefore, by the combination of the two preceding
statements it follows that for a contract to be optimal it has to be that the
total liability is constantly equal to M in the non verified region and the date
two net liability is a constant k in the verified region.

The final step to obtain an optimal debt contract is to show that there ex-
ists a critical level of realized cash flow in period one, below which verification
will always occur and the firm will go bankrupt32. This result is the com-
bination of optimality and incentive compatibility, together with increasing
verification costs33.

In terms of interpretation, we know that with the optimal contract, veri-
fication will not occur at date one when y1 ≥ m and the total liability given
by P1(y1) + R2(y1) will be equal to a constant M . If verification cost is not
strictly increasing, the division among P1 and R2 is undetermined, P1 will only
have to satisfy LL constraint but there are many possible optimal schedules
solving the same problem. Therefore, the requirement of b2(.) being strictly
increasing is needed in order to select only one possible solution within this
multiplicity, if b2(.) is strictly increasing in fact, the optimal repayment in
period one is given by P1(y1) = y1 for y1 ∈ [m,M ]34.

Thus the optimal contract, when b2(.) is strictly increasing, can be de-

can decide whether to retain some period one returns or not, the distribution of repayments
among stages is irrelevant. If the verification technology is constant, there is no problem
of distribution of payments over stages, since bankruptcy costs are independent of firm’s
assets.

30This is stated in Proposition 4 in the original Chang paper in the following terms: For
the optimal contract, p1(y1) + r2(y1) − y1 is a constant k. Furthermore, if b2(.) is strictly
increasing, p1(y1) = y1 and r2(y1) = k.

31This result corresponds to Proposition 5 of Chang’s paper: For the optimal contract,
P1(y1) + R2(y1) = M for all y1 for which D1(y1) = 0 . That is, the incentive compatibility
constraint IC1is binding.

32Chang’s Proposition 6 states: For the optimal contract, a verification occurs (if it occurs
at all) at date one if and only if the reported y1 is below some critical level m. Formally,
D1(y1) = 1 if and only if y1 ≤ m, where m ∈ [0, H].

33All the described results are directly derived from the interpretation of the first order
conditions of the optimal control problem into which the original minimization problem has
been transformed. The proof of existence of a solution is given using Cesari’s theorem on
control problems.

34It is worth noting that P1 = y1 for M > y1 ≥ m is not a mandatory payment schedule,
in the sense that for any y1 > m the firm can always report m hence paying m in period
one and retain y1 −m for date two. This is the call option contained in the contract.
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scribed as follows:

- when y1 > P1(y1) + R2(y1) all debt is repaid at date t = 1;
- when m < y1 ≤ P1(y1)+R2(y1) = M then D1(y1) = 0 and the borrower

pays P1(y1) = y1 and R2(y1) = M − y1;
- when y1 ≤ m then D1(y1) = 1 audit takes place and p1(y1) = y1 and

r2(y1) = y2 = k < R2(y1).

The optimal contract is therefore a standard debt contract with the ad-
ditional features of a coupon and a call option, in fact the firm is required to
repurchase a minimum amount of its liability before maturity (m) and it has
the option to pay up to M in the intermediate date, the higher the repayment
in the first period the smaller the repayment in the second period, thereby
reducing the risk of bankruptcy.

6 Contracts without commitment

A relevant issue still deserves attention: whenever limited commitment is in-
troduced, even if debt turns out to be optimal, agents have an incentive to
renegotiate the original agreement once the lender knows the true state. Krasa
and Villamil (2000) provide a further generalization of the set-up giving an
answer to the issue of limited commitiment and of the dominance of stochas-
tic over deterministic auditing rules. Their setup allows to define stochastic
contracts or deterministic contracts as an equilibrium property of the relevant
mechanism they introduce, in other words the standard debt contract is the
optimal incentive structure in a deterministic environment when commitment
is limited, on the other hand stochastic contracts are optimal when the lender
fully commits to his initial proposal.

Let’s consider an interaction between two risk-neutral agents, where stan-
dard assumptions on technology and preferences hold, which takes place over
three periods: at date one nature chooses the project outcome in the set
{y1, ...yn}, at the date two the borrower makes a voluntary payment which
is interpreted as a signal of the realization by the lender, in the third period
the lender chooses whether to enforce or not a penalty payment from the
borrower. His decision will be taken after having updated his beliefs on the
realized outcome according to Bayes’ rule, here is the room for renegotiation.
Enforcement is costlessly provided by a court35, whose technology will be
specified later on.

The first departure from the basic framework can be found in the descrip-
tion of the contract: instead of defining an array (M,C1, B), a contract will
be defined by (V, F, σ1, σ2), where V is the set of voluntary payments, F is

35KV are assuming that the output of the project is observable but not verifiable, in the
sense that the enterpreneur can hide a part of the realized project return.
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the penalty payment, σ1 and σ2 are the associated probabilities. If the en-
forcement is represented by the binary variable e = {0, 1} and defining c as
the fixed cost of enforcement, agents payoffs are defined as:

πB(y, v, e) = y − v − e[F (x, v) + c]
πL(y, v, e) = v + e[F (x, v)− c] with x = max{y − v − y, 0}
Perfect Bayes Nash Equilibrium (PBNE) is the appropriate solution con-

cept in this case to complete the description of the mechanism36.

Optimal Deterministic Contracts

To define an optimal contract, we also have to consider the event of rene-
gotiation after the voluntary payment has been made, in such a case the
lender could redefine new terms of contract with respect to what was agreed
in the initial period. Since we here allow for limited commitment, both parties
have to agree upon the renegotiation for it to take place37. Thus, the optimal
problem to be solved in the initial period will have to be integrated by a
second optimization problem that would give the continuation contract, once
the lender’s beliefs about the truly realized return will have been upgraded.
Thus, in such a naturally dynamic environment, the revelation principle fails
to apply since there exist future opportunities to modify the initial agreement.

In order to solve the renegotiation issue, a time consistency constraint will
have to be imposed on the initial problem to guarantee that all possible in-
centives for altering the initial contract are foreseen in the first negotiation38.
Thus the optimal contract will maximize the investor’s expected utility under
the usual IR constraint, LL or feasible payments requirement, the PBNE in
lieu of IC condition and time consistency:

36We find useful to refer to the definition used by KV in order to be able to refer to the
same conditions when stating theorems and giving proofs.

Definition 14 A collection of strategies σ1, σ2 and beliefs β, β′ constitute a Perfect
Bayesian Nash Equilibrium if and only if:

(i) σ1 ∈ Σ1 maximizes Eσ1,σ2πB(y, v, e) for every y
(ii) σ2 ∈ Σ2 maximizes

∑
y∈Y β′(v; y)Eσ2πL(y, v, e) for every v

(iii) β′ is derived using Bayes’ rule whenever possible

37Different degree of commitment imply different bargaining power distribution. In case of
full commitment, there is no possibility of renegotiation, thus the lender and the borrower
committ to the allocation decided in the first period. In case of no commitment, each
party has the possibility to break the original agreement after the information has been
revealed. In case of limited commitment, both parties have to agree upon a new contractual
distribution of the surplus. For more on this, see for example Salanie (1997), chap. 6.

38If time consistency constraint is imposed, agents cannot recontract in future periods to
increase their expected payoffs, see Dewatripont (1989). In other terms, the time consistency
constraint implies that in a future period of renegotiation agents will choose v′ = v, F ′ =
F (x, v), σ′2 = σ2 where v′, F ′, σ′2 is the continuation contract and v, F, σ2 is the initial
contract.
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Problem 15 At t = 0 choose σ1(y; v), σ2(v; e), V, F to maximize∑
y

β(y)Eσ1,σ2πL(y, v, e) (10)

s.t.
∑
y∈Y

βEσ1,σ2πB(y, v, e) ≥ U (11)

v ∈ [0, y] and F (.) ∈ [0, x] (12)

σ1(y; v), σ2(v; e), β, β′ is a PBNE at t = 1 (13)

v, F, σ2(v; e) is time consistent (14)

It is worth remarking that the last constraint can be interpreted as a
sequential efficiency constraint to eliminates ex-post inefficiencies. However,
it introduces further restrictions with respect to the full commitment setup,
generating a potential loss of ex-ante efficiency. Moreover, equation replaces
the usual IC constraint.

Now, the new formulation of the contractual problem allows to redefine
the optimality of debt contract, this set of constraints in fact does not exclude
a priori the possibility of having stochastic contracts. Theorem 1 in KV shows
that under some restrictions on minimal payoffs39, debt is optimal in a limited
commitment environment with possible stochastic contracts. It can be stated
in the following way:

Theorem 16 Assume there exists a simple debt contract which satisfies the
conditions (*) and (**) (in the footnote) and which gives the borrower the
reservation utility U then this contract solves Problem 19.

In order to prove this theorem KV introduce three propositions showing
first of all that time consistency implies a deterministic σ2. Secondly, a one
to one relationship between contracts in the CSV framework and in the KV
model is proved to exist, expected payoffs turn out to be the same as well40.
A debt contract in KV setup is optimal because it minimizes information
revelation (debt is informationally minimal). The first conclusion is that the
KV debt outcome turns out to be ex-post efficient and optimal even when
random monitoring is allowed, extending therefore the CSV analysis.

39These restrictions are:

(y − c) ∈ (0, x0) ((∗))

x0 <
∑

y<y∗

(y − c)β(y | y < y∗) ((∗∗))

we are, in other words, imposing restrictions on parameters determining lender’s and
borrower’s minimal payoffs from enforcement activity.

40Without loss of generality, the analysis can be restricted to deterministic σ1. See,
Appendix of KV for details.
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Optimal Stochastic Contracts

In the same way, the optimality of stochastic contracts turns out to be
an equilibrium outcome when we consider full commitment mechanisms. In
this case, agents commit to the initial contract and have no opportunity to
alter their decisions at any point in time. The time consistency constraint is
therefore irrelevant here and the subgame perfect Nash equilibrium concept
allows to solve the sequential game. The new problem to be solved is:

Problem 17 At t = 0 choose σ1(y; v), σ2(v; e), V, F to maximize:∑
y

β(y)Eσ1,σ2πL(y, v, e) (15)

s.t.
∑
y∈Y

βEσ1,σ2πB(y, v, e) ≥ U (16)

v ∈ [0, y] and F (.) ∈ [0, x] (17)

point (i) of PBNE definition (18)

KV show that Problem 21 is equivalent to the original problem defined
by Gale-Hellwig and elaborated by Mookherjee-Png, if we consider that the
monitoring probability in the GH can be identified with the enforcement prob-
ability in the model with commitment. The following theorem holds:

Theorem 18 Problem 15 and 17 are equivalent. Stochastic contracts are
optimal.

The most important conclusion that can be derived by the KV general
framework is that the relevance of debt contracts emerges in environments
where renegotiation is possible as in credit and loan contracts, while stochastic
contracts emerge when there is the institutional possibility of full-commitment
to auditing activity (public authorities or insurance companies).

7 Collateralized debt contracts

The main feature of the CSV framework is the idea that the ex post asym-
metry of information can be eliminated at some cost: the cost of verification.
This was originally interpreted by Townsend (1979) and GH (1985) as a pe-
cuniary cost in terms of utility that could depend on states realizations and
on the amount invested, no matter who had to bear it. It is very interesting
to notice that the literature on collateralized debt has recently provided an
interpretation of the role of collateral as a potential substitute of verification
cost inside the hidden information moral hazard framework: we will briefly
present the basic framework proposed by Lacker (1998) in the specification
with a perfectly divisible collateral good. The approach formalizes the notion
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that collateral requirements act as repayment incentives, in the sense that the
borrower will have to surrender his collateral in the event that payment can-
not be made as promised41. The crucial condition for the optimality of debt
contract is that the borrower and the lender have different relative valuations
of the collateral good, in particular it is required that the borrower values this
good more than the lender.

The model is very simple: there are two dates t = 1, 2, two agents j = b, l
and two goods i = 1, 2 where good 1 is the payment good and good 2 is the
collateral good. Let’s assume, without loss of generality, that the risk-averse
borrower (agent b) is endowed with a random quantity of good 2 (θ̃) and owns
k > 0 units of good 1, while the risk-neutral lender (agent l) has a known and
constant endowment e of good 1. Agents meet in the first period and contract
upon the repayment due in exchange for a loan advance, in the second period
the random variable realizes and agent b observes the realization: he can
truthfully report it to agent l or lie and claim a lower θ. The lender cannot
observe the realized θ but she wants to induce truthful revelation from the
borrower. Here is the role of the collateral: the contract prescribes that
if the promised repayment cannot be made, the lender can appropriate the
collateral of the borrower. Since the borrower values the collateral good more
than the lender, the optimal contract will minimize the expected value of the
collateral transfer subject to incentive compatibility and individual rationality
constraints. More precisely, a contract is defined as a pair of functions of the
states [y1(θ), y2(θ)] that represent the transfers of good 1 and 2, respectively.
The optimal contract can be found solving the following constrained expected
utility maximization problem:

Problem 19

max
y1(θ),y2(θ)

∫
[u1(θ − y1(θ)) + u2(k − y2(θ))] f(θ)dθ

s.t. u1(θ − y1(θ)) + u2(k − y2(θ)) ≥ u1(θ − y1(θ′)) + u2(k − y2(θ′)) (19)

∀(θ, θ′) ∈ Ω× Ω s.t. θ′ < θ (20)∫
[e + y1(θ) + µly2(θ)] f(θ)dθ ≥ vl (21)

y1 (θ) ∈ [−e, θ] (22)

y2 (θ) ∈ [0, k] (23)
41With this respect the collateral good has the same role as the ”non-pecuniary penalties”

in the CSV model developed by Diamond (1984). He introduced the possibility that even
if it could not be possible for the lender to verify due to the extremely high verification
costs, there existed some ”non-pecuniary penalties”, in terms of loss of reputation of the
entrepreneur for example, that could induce the borrower to truthfully reveal the realized
state. This item will be discussed in the following section.
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where we have assumed that ui with i = 1, 2 are the continuous, strictly
increasing and concave utility functions of the borrower for good 1 and 2; that
the lender is a risk-neutral agent and µl is her marginal rate of substitution
between collateral and payment goods; f(θ) is the density function for the
random variable θ̃ which is defined on the support Ω = [θ0, θ1]. The con-
straints (20)-(23) are the incentive compatibility, the individual rationality
for the lender and the limited liabilities constraints, respectively.

Definition 20 A collateralized debt contract is defined as a pair [y∗1(θ, R), y∗2(θ, R)]
such that:

y∗1(θ, R) = min [θ, R] ∀θ ∈ [θ0, θ1]
y∗2(θ, R) = 0 ∀θ ∈ [R, θ1]
y∗2(θ, R) = k − φ2 [u2(k)− u′1(0)(R− θ)] ∀θ ∈ [θ0, R)

where R is the contractual repayment of good 1. Now, it is clear that this
contract implies, for realizations of θ greater than R, a constant transfer of
good 1, R, and none of good 2, while if θ < R then the borrower will have to
transfer all of good 1 and part of good 2. It is also evident that the solution
to the examined maximization problem will provide the minimum amount of
transfer in collateral admissible under incentive and participation constraints.

The main proposition for the optimality of collateralized debt states the
following:

Proposition 21 If a collateralized debt contract R satisfies IR with equality
and

µl < µ∗b(θ)− ρ∗(θ)µ∗b(θ)φ(θ), ∀θ ∈ [θ0, θ1] (24)

then R is the unique optimal contract.

When the borrower is risk averse42, the second term on the right hand side
of the previous inequality is positive, since ρ∗(θ) in the coefficient of absolute
risk aversion of the borrower for good 1, optimality of the debt contract re-
quires that the gap between the borrower’s and the lender’s valuations of the
collateral to be greater than ρ∗(θ)µ∗b(θ)φ(θ), which represents the improve-
ment in risk-sharing that can be obtained increasing the collateral payment
for state θ while reducing the payment of good 1. In other words, Proposi-
tion 21 can be interpreted as an implication of introducing a lower bound on
µ∗b(θ) − µl, that is the gap between the relative valuations of the collateral
to the two agents. Since such a bound depends on the coefficient of absolute
risk aversion, the proposition shows that the smaller ρ∗(θ), the smaller the
effect of incentive constraint and the smaller the gain of giving the borrower
less collateral. When the condition on marginal rates of substitutions does

42In the special case when the borrower is also risk neutral, the relevant proposition
simply requires that µl < µb, i.e. that the borrower simply values the collateral good
more highly than the lender. The optimal contract therefore is the one that minimizes the
expected deadweight loss due to the transfer of the collateral from the high-value user to
the low-value user (Lacker, 1998, p.15).
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not hold, in each state there exists an allocation at which the marginal rates
of substitution of the borrower and the lender are the same and the contract
resembles a riskless debt. The incentive compatibility constraint binds and
the value of the repayment is constant over states.

8 Debt contracts and financial intermediation

Up to now we tried to argue that the CSV framework is the most appropriate
way to analyze the optimality of debt contracts. Many important contributes
tried to evidence how the basic predictions of CSV can be compatible with the
existence of financial intermediaries, too. Such intermediaries perform differ-
ent activities: “[...] (1) they issue securities which have payoff characteristics
which are different from those of the securities they hold (2) they write debt
contracts with borrowers (3) they hold diversified portfolio (4) they process
information. Also, they ration credit in equilibrium which some would char-
acterize as an empirical fact, as do Stiglitz and Weiss (1981)” (Williamson,
1986, p.161).

In what follows the main results obtained by Williamson (1986) are sum-
marized. The basic aim of Williamson’s work is to show that an equilibrium
allocation where financial intermediation activity is performed Pareto dom-
inates the direct lending allocation, under the assumption of so called large
scale investment project. The reason for a financial intermediary to exist is to
eliminate the duplication of monitoring activity which would emerge in case
of direct lending.

More formally, he assumes that every lender is endowed with one unit of
consumption good and thus the fixed outlay K to start an investment can
only be provided by K lenders. The first step is to consider the usual CSV
environment when financial intermediation is not allowed. The optimal allo-
cation implemented by the standard debt contract will guarantee the following
expected utility for the direct lender:

UD(R) =
∫ R

0
y f(y) dy + R(1− F (R))− cF (R) (25)

where y ∈ [0, y], is the random return from the project, f(.) and F (.) are
the density and distribution function of y , respectively, c is the monitoring
cost and R is the usual fixed payment in the debt contract. The second step is
to introduce financial intermediaries. It should be noticed that intermediaries
are here represented by lenders themselves who write identical contracts with
each entrepreneur. Each intermediary aims at maximizing his VNM utility
function issuing financial claims to other lenders and lending K units of the
unique consumption good to every entrepreneur she is contracting with43. If

43This way of characterizing financial intermediaries is quite different from the traditional
Diamond (1984) one, where intermediaries are conceived as specific agents performing the
classical delegated monitoring activity. It should be also clear that Williamson is not dealing
with coalitions of intermediaries either.
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an intermediary is contracting with m borrowers, then the amount mK − 1
will be raised from other lenders and she will herself participate with her
endowment. Under some regularity conditions on the relevant distribution
functions, any of the m optimal contracts signed between the intermediary and
the m borrowers is a standard debt contract. It can be shown (Williamson,
1986, p.170-171) that the constant repayment R received by borrower j
(j = 1, ...m) solves the following problem:

Problem 22

maxRK

∫ y

R
yjf(yj)dyj

s.t.

∫ R

0
yjf(yj)dyj + R(1− F (R))− (c/K)F (R) = r (26)

U(R) =
∫ R

0
yf(y)dy + R(1− F (R))− (c/K)F (R) (27)

In this problem, we let r to be the riskless interest rate paid on the capital
market. It turns out that the lender’s expected utility will be U(R) which is
clearly greater than UD(R) and leaves unchanged the utility of the borrower.
In other words, at any equilibrium (R∗, r∗, q∗)44 direct lending is dominated
by financial intermediation: lenders who act as intermediaries are somehow
producing information in a more efficient way. This is clearly a positive result
for the existence of financial intermediaries45.

It should be remarked that the most popular work on financial interme-
diation under asymmetric information is probably the one due to Diamond
(1984), developed inside a CSV structure. As well known, the main depar-
ture from Williamson’s framework stays in the introduction of nonpecuniary
bankruptcy penalties which replace the auditing activity in inducing truth-
ful revelation of the realized state; they are deadweight losses at social level
since the lender cannot appropriate them. However, the optimality of debt
obtained by Diamond is not robust to the introduction of borrower’s risk
aversion,as Hellwig has recently shown: “The nonlinearity of the borrower’s
utility function implies that the nonpecuniary bankruptcy penalty that is re-
quired to discourage the borrower from underreporting his ability to pay will
itself be given by a nonlinear function of the amount of underreporting. [...]
An optimal incentive compatible contract will typically not take the form of

44Notice that r∗ and q∗ are the market riskless interest rate and the aggregate loan
quantity at equilibrium, respectively, and R∗ is the constant repayment in the debt contract.
An equilibrium with intermediation is defined by a triple (R∗, r∗, q∗) which satisfies:

(i) R∗ solves Problem 23

(ii) q∗ = α
∫ r∗

t
h(t)dt

(iii) either (a) q∗ = (1− α)K
or (b) q∗ < (1− α)K and 1− F (R∗)− (c/K)f(R∗) = 0.

45It’s important to remark that we’re not dealing here with the issue of credit rationing,
that is a central part of Williamson’s analysis.
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a Standard Debt Contract”46. Actually, this result provides a very strong
argument in favour of the standard CSV framework as the only foundation
for the coexistence of debt and intermediation47.

In a partially different set up Boyd and Prescott (1986) derive a role
for intermediaries as multi-agents coalitions who perform delegated screening.
They refer to an economy populated by infinite consumers-borrowers that can
be divided in two classes according to their investment opportunities. They
can be informed on the return prospects using their labor endowment in the
project evaluation activity rather than in the productive sector. The equilib-
rium allocation, that satisfies the core property, can be associated with the
existence of large coalitions of borrowers who evaluate investment projects48.
The most remunerative projects are financed first. Boyd and Prescott show
that the equilibrium allocation of such an economy Pareto dominates the equi-
librium allocation of another economy where a competitive securities market
is formally introduced. Moreover, the presence of asymmetric information
turns out to be a necessary condition for the possibility of such an ordering.

9 Some conclusive remarks

The main objective of our discussion has been to isolate the conditions under
which the fact that it is costly for external investors to observe investment
returns implies that it is optimal for external finance to be obtained issuing
debt. With this respect Krasa and Villamil identify the more general set of
conditions necessary for optimality.

Moreover, under some definite circumstances it is also optimal for debt
issues to be intermediated by institutions frequently identified with banks.
The work of Hellwig (2001) provides us with a careful restatement of the
sources of coexistence between debt and intermediation.

In the light of these results, it seems that two sharply distinct streams of
research can farther be explored.

The first one deals with a generalization of the logical structure we’ve
been describing up to now49 through the introduction of multi-lender analy-
sis, that is a potential requisite for decentralizing the contractual allocation.
We just mention here the very recent work by Khalil, Martimort and Parigi
(2001), that builds on the common agency literature50: one of the most rel-
evant predictions of this work is to recover optimality of debt contracts as a
consequence of principals competing both in transfers and in monitoring.

46Hellwig, 2001, p. 417.
47It should be also stressed that the collateralized debt approach presented in the last

section is unaffected by Helwig’s remark.
48Any of these coalitions is assumed to have no market power.
49It should also be noted that the analysis developed here is confined to the complete

contracts paradigm.
50In particular, they qualify their work as an extension of the Bernheim and Whinston

(1986) classical paper on common agency.
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The second one is definitively more related to macroeconomic issues.
Given that under this asymmetric information structure Modigliani-Miller’s
theorem fails to hold (Townsend, 1988), there is room for the CSV frame-
work to besed to analyze the interaction between business cycle fluctuations
and credit market frictions, emphasizing the modifications in the financial
contracts’ structure as salient features of credit cycles51.

51Actually, these intuitions are summarized in several different constructions. A very
well known one aims at the renewal of I. Fisher’s debt-deflation channel relying on lim-
ited commitment, as in the Kyiotaki-Moore (1997) approach, while a somehow less popular
one is offered by the analysis of deterministic competitive economies where the presence of
asymmetric information in the lender-borrower relationship is responsible for endogenous
business fluctuations. The introduction of financial constraints is generally considered as an
enrichment and a generalization of the more traditional endogenous business cycle frame-
work. An important work in this line, for example, has been recently provided by Suarez
and Sussman (1997): assuming that the lender borrower relationship is subject to moral
hazard, liquidity effects turn out to be the source of endogenous fluctuations in an economy
where financing takes place through both debt and internal revenues. Given that firms’
effort to subscribe good project is a decreasing function of the fraction of debt-financed
investment, cycles may take place because of the dependence of internal liquidity on prices.

For analyses developed in stochastic environments useful references are: Azariadis and
Smith (1998), Bernanke and Gertler (1989), Boyd and Smith (1998).
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