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Abstract

This paper studies the role of information asymmetries in second price, common value
auctions. Motivated by information structures that arise commonly in applications such as
online advertising, we seek to understand what types of information asymmetries lead to
substantial reductions in revenue for the auctioneer. One application of our results concerns
online advertising auctions in the presence of “cookies,” which allow individual advertisers to
recognize advertising opportunities for users who, for example, are customers of their websites.
Cookies create substantial information asymmetries both ex ante and at the interim stage,
when advertisers form their beliefs. The paper proceeds by first introducing a new refinement,
which we call “tremble robust equilibrium” (TRE), which overcomes the problem of multiplicity
of equilibria in many domains of interest. Second, we consider a special information structure,
where only one bidder has access to superior information, and show that the seller’s revenue
in the unique TRE is equal to the expected value of the object conditional on the lowest
possible signal, no matter how unlikely it is that this signal is realized. Thus, if cookies
identify especially good users, revenue may not be affected much, but if cookies can (even
occasionally) be used to identify very poor users, the revenue consequences are severe. In the
third part of the paper, we study the case where multiple bidders may be informed, providing
additional characterizations of the impact of information structure on revenue. Finally, we
consider richer market designs that ensure greater revenue for the auctioneer, for example by
auctioning the right to participate in the mechanism.

∗ittaia@microsoft.com
†athey@fas.harvard.edu
‡moshe@microsoft.com
§mgrubb@mit.edu

1



1 Introduction

At least since Milgrom and Weber (1982a)’s classic paper, economists have studied the role of
information revelation in the design of common value auctions. Milgrom and Weber (1982a)’s
linkage principle shows that the auctioneer typically benefits by releasing information publicly
to all bidders. In many important classes of applications, however, the information revelation
problem is more subtle. The auctioneer may not be able to directly observe and release
information, but rather has the option to allow bidders to assess information on their own.
The auctioneer may not be able to verify whether and how bidders exercise this option, and
the content of the information remains the private information of bidders.

This type of problem arises in the classic examples of common value auctions, auctions
for natural resources such as oil and timber: in principle, the auctioneer can either limit or
facilitate access to bidders seeking to do seismic surveys or cruise tracts of timber. But there
are many other applications as well. In used car auctions, the auctioneer has some control
over the type and extent of inspections potential buyers may do. In internet car auctions,
some buyers may be local and have the ability to inspect a car in person; the seller can choose
whether to allow this or not. In auctions for financial assets, some bidders may have access
to better information about the assets. In all of these cases, some bidders may not be able
to directly verify whether other bidders have access to superior information in a particular
auction.

This paper develops new theoretical results about the impact of the information structure
on revenue in common value auctions, focusing on situations where there may be strong asym-
metries of information at either the ex ante (before bidders observe their signals) or the interim
stage (after observing their signals). The primary motivating application for our study is on-
line advertising. In the US, the fast growing online-advertising market is expected to capture
15% of total US ad spending in 2010 ($25Bn) and grow to more than 40% of ad spending
by 2014 ($40Bn) (eMarketer 2010). A large part of the success of search advertising ($12Bn
of U.S. online advertising 2010 (Morrison 2010)) is undoubtedly due to advertisers’ ability to
target advertising to specific audiences by placing ads on keywords that match to search terms
entered by users into search engines. Traditionally, display advertising ($9Bn of U.S. online
advertising in 2010 (Morrison 2010)) has been less targeted, or targeted based on broad cate-
gories of users (e.g. “sports enthusiasts”) identified by the publisher who sells the impression,
typically based on the user’s browsing behavior on that publisher. However, a growing trend
is that advertisers are targeting display ads with increasing sophistication by tracking web
surfers using cookies (Helft and Vega 2010). Cookies placed on users’ computers by specific
web sites can be used to match a user with information such as the user’s order history with
an online retailer, their recent history of airline searches on a travel website, or their browsing
and clicking behavior across a network of online publishers (such as publishers on the same
advertising network). A critically important difference between the two cases is the source of
information. In the case of search advertising or traditional display advertising, the publisher
has as much or more information than the advertiser, and the information is disclosed to all
ad buyers symmetrically. In cookie-based display-advertising, however, ad buyers bring their
own private information collected via cookies stored on web surfers’ computers.

Although there are a variety of mechanisms for selling display advertising, auctions are a
leading method, especially for “remnant” inventory, and it is in these markets (where in the
absence of targeting, impressions may have a fairly low value) that cookies potentially play a
very important role. For example, Google’s ad exchange is currently described as a second-
price auction that takes place in real time: that is, at the moment an internet user views a
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page on an internet publisher, a call is made to the ad exchange, bidders on the exchange
instantaneously view information provided by the exchange about the publisher and the user
as well as any cookies they may have for the individual user, and based on that information,
place a bid. The cookie is only meaningful to the bidder if it belongs directly to the bidder
(e.g., Amazon.com may have a cookie on the machines of regular customers), or if the bidder
has purchased access to specific cookies from a third-party information broker. Cookie-based
bidding potentially makes display auctions inherently asymmetric at both the ex ante and the
interim stage. At the ex ante stage, bidders may vary greatly in their likelihood of holding
informative cookies, both because popular websites have more opportunities to track visitors
and because different sites vary in the sophistication of their tracking technologies. At the
interim stage, for a particular impression, a typical bidder may have only a small chance of
having a relevant cookie, but bidders who do, have a substantial information advantage relative
to those who do not.

If cookies only provided advertisers private-value information, then increasing sophistica-
tion in the prevalence and use of cookies by advertisers would present ad inventory sellers a
two-way trade-off between better matching of advertisements with impressions and reduced
competition in thinner markets (Levin and Milgrom 2010). In such a private value setting,
Board (2009) shows that irrespective of such asymmetry, more cookies and more targeting al-
ways increase second-price auction revenue as long as the market is sufficiently thick. However,
cookies undoubtedly also contain substantial common value information. (For instance, when
one bidder has a cookie which identifies an impression as due to web-bot rather than a human,
the impression is of zero value to all bidders.) As a result, the inherent asymmetry created
by cookies can lead to cream skimming or lemons-avoidance by informationally advantaged
bidders, with potentially dire consequences for seller revenues.

Thus, a designer of online advertising markets (or other markets with similar informational
issues) faces an interesting set of market design problems. One question is whether the market
should encourage or discourage the use of cookies, and how the performance of the market
will be affected by increases in the prevalence of cookies. This is within the control of the
market designer: in display advertising, it is up to the marketplace to determine how products
are defined. All advertising opportunities from a given publisher can be grouped together, for
example. Google’s ad exchange reportedly does not support revealing all possible cookies. A
second market design question concerns the allocation problem: if an auction is to be used,
what format performs best? Both first and second price auctions are used in the industry.
There are a number of other design questions, as well, including whether reserve prices, entry
fees, or other modifications to a basic auction should be considered.

In order to understand the market design tradeoffs involved in an environment with these
kinds of information asymmetries, the first part of our paper develops a model of pure common-
value second-price auctions. Perhaps surprisingly, the existing literature leaves a number of
questions open. For example, while it is well known that the presence of an informationally-
advantaged bidder will substantially reduce seller revenues in a sealed-bid first-price auction
(FPA) for an item with common value (Milgrom and Weber 1982b, Engelbrecht-Wiggans,
Milgrom and Weber 1983, Hendricks and Porter 1988), substantially less is known about the
same issue in the context of second-price auctions. One of the main impediments to progress
has been the well known multiplicity of Bayesian Nash Equilibria in second-price common-value
auctions (Milgrom 1981). As a consequence, little is known about what types of information
structures lead to more or less severe reductions in revenue.

In order to address the multiplicity problem, we begin by suggesting a new refinement,
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tremble robust equilibrium.1 Tremble robust equilibrium (TRE) selects only Bayesian Nash
Equilibria that are near to an equilibrium (in undominated bids) of a perturbed game in which
a random bidder enters with vanishingly small probability ε and then bids smoothly over the
support of valuations. In addition to capturing an aspect of the real-world uncertainty faced
by bidders in the kinds of applications we are interested in, we argue that this refinement has
a number of attractive properties. In many cases, this refinement selects a unique equilibrium.
In our setting, when bidders are ex ante symmetric it selects the symmetric equilibrium studied
by Milgrom and Weber (1982a) in a setting with continuous signals (we have not yet applied
our TRE refinement to Milgrom and Weber’s (1982a) model). Moreover it rules out intuitively
unappealing equilibria in which uninformed bidders bid aggressively because they can rely on
others to set fair prices.

We then proceed to analyze a number of special cases of common value second price auctions
using the TRE refinement. To develop some intuition about our main results, consider first a
very simple example of an information structure in a common value auction. Only one bidder
uses cookie tracking (that is, only one bidder is privately informed), and the bidder can only
determine the presence or absence of the cookie: that is, informed bidder has a binary signal
which either takes on the value {no-cookie} or {cookie}. The other bidders cannot assess the
existence of the cookie for a particular impression (though they know the overall information
structure, including the probability of cookies). Apart from the restriction to a binary rather
than continuous signal, this corresponds to the setting of informational advantage studied by
Milgrom and Weber (1982b) in first-price auctions.

We show that for this simple information structure, there is a unique TRE in the second-
price auction, one with intuitive appeal. We are then able to address some interesting com-
parative statics questions about when, and why, different kinds of information asymmetries
can have dramatically different impacts on revenue.

Consider two cases within this simple information structure. In the first case, cookies
identify “peaches,” or high-value impressions. This is perhaps the most natural assumption -
someone who has been to an advertiser’s website before is more likely to be an active internet
shopper than a random web surfer. In the second case, cookies identify “lemons,” or low-value
impressions. This might occur if a prior visit indicates the surfer is in fact a web-bot and not
a real person. In both cases, information is otherwise symmetric across bidders, and the value
of the impression is common to all bidders.

At first, it might seem that for both the “lemons” and “peaches” cases, there could be dire
consequences for revenue, due to the extreme adverse selection: one bidder has strictly better
information than the others. However, the surprising result is that in the “peaches” case,
revenue loss is minimal. In contrast, in the “lemons” case, revenue collapses to the value of the
“lemons,” even if the probability that an impression has a cookie is arbitrarily close to zero.
This result contrasts with that of Engelbrecht-Wiggans et al. (1983), which shows that the
revenue losses from a first-price auction should be proportional to proportion of impressions
that have cookies for both lemons and peaches. Putting our results together with Engelbrecht-
Wiggans et al. (1983), it follows that a first-price auction will perform substantially better in
an environment where one bidder has access to relatively rare cookies for “lemons.”2

We next generalize the information structure, allowing for cookies (signals) to be more

1In Section 3 we discuss some standard refinements and explain why they do not adequately address the multi-
plicity problem in common value SPA.

2We find that first price auction revenues are always higher than second price auction revenues when only one
bidder is informed, but the difference is on the order of ϵ2 when the informed bidder has access to relatively rare
cookies for “peaches”, that arrive at rate ϵ.
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richly informative, and the informed bidder to have a signal drawn from a finite set. We
show that there is a unique TRE of the second-price auction. In that TRE the informed
bidder is bidding his posterior given his signal, while every uninformed bidder bids the object’s
expected value conditional on the worst signal being realized (the signal of the informed bidder
with lowest posterior), and the revenue equals to this bid. Thus the TRE is one which, like
Akerlof’s (1970) classic “market for lemons,” uninformed buyers are not willing to pay more
than their lowest possible value. To understand the role of the refinement, we note that there
are Bayesian Nash equilibria with higher revenues, in which a single uninformed bidder bids
more aggressively and relies on the informed bidder to bid his expected value and set a “fair”
price. Our refinement rules these equilibria out because, in a nearby perturbed auction with a
random bidder, aggressive bids by an uninformed bidder would sometimes win at a high price
set by the random bidder rather than a fair price set by the informed bidder and hence be
unprofitable.

Beyond the initial case of a single informed bidder, we have begun to extend our analysis
to the general case of multiple informed bidders with richer signal structures. Our progress so
far involves a trade-off with respect to relaxing assumptions, where we have pushed the model
in two directions. First, we consider domains in which multiple informed bidders receive
discrete signals but restrict attention to information structures that satisfy the strong-high-
signal property. The strong high signal property is sufficient to ensure the existence of a unique
TRE, as in the single informed bidder case. Second, we consider all monotonic domains with
two bidders, each with a binary-signal (where each signal is either low or high). For any such
domain we provide a TRE and prove it is unique.

Turning to the case of multiple informed bidders, we begin by defining the strong-high-
signal property. We say that an individual bidder’s signal realization is strong if learning
signal realizations from other bidders would not effect the bidder’s estimate of the value. We
say that a strong signal is high if the expected value given that signal is at least as high as
the value given any other profile of signals in the domain. The strong-high-signal property
is defined recursively. First, it requires that in the domain there exists at least one strong
high signal, and second, that the restricted domain that conditions on that signal not being
realized recursively satisfies the same strong-high-signal property. For domains that satisfy
the strong-high-signal property we show that the profile of strategies in which each agent bids
the posterior given his signal and the worst feasible combination of signals of the others, is
indeed the unique TRE.

A domain with only a single informed bidder always satisfies the strong-high-signal prop-
erty. With a single informed bidder, the informed bidder’s high signal is both a strong signal
(the informed bidder’s posterior belief given the signal is independent of the signals of the
others) and a high signal (the expected value given the signal equals the maximum value given
any feasible combination of signals for all agents). Moreover, if we condition on that signal
not being realized and consider the domain with that restriction, that domain also satisfies the
condition. (In particular, a domain in which all agents are uninformed satisfies the condition
as all signals are strong high signals.) We see that the single informed bidder results are now a
special case of the result for domains satisfying strong-high-signal property. The unique TRE
that is selected is exactly the one described above: The informed is bidding the posterior given
his signal, while every uninformed bidder bids the object’s expected value conditional on the
worst signal being realized (the signal of the informed bidder with lowest posterior).

Next, we consider a two-bidder binary-signal model, assuming without loss of generality
that Pr[H1, L2](1−v(H1, L2)) ≤ Pr[L1,H2](1−v(L1,H2)). Here Pr[H1, L2] is the probability
bidder 1 receives a high signal but bidder 2 receives a low signal and v(H1, L2) is the object’s
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value in that event. We show that in the unique TRE the following holds. Both bidders
bid v(L1, L2) = 0 conditional on receiving a low signal. Conditional on receiving a high
signal, bidder 1 (called the strong bidder) always bids aggressively at the objects maximum
possible value v(H1,H2) = 1. However, conditional on receiving a high signal, bidder 2 (called
the weak bidder) mixes between aggressive and defensive bids, bidding 1 with probability
Pr[H1,L2](1−v(H1,L2))
Pr[L1,H2](1−v(L1,H2))

and v(L1,H2) with the remaining probability.

Note that bidder 1 is called the strong bidder if Pr[H1, L2](1−v(H1, L2)) ≤ Pr[L1,H2](1−
v(L1,H2)). Bidder 1’s strength is the inverse of Pr[H1, L2](1 − v(H1, L2)). Conditional on
receiving a high signal, Pr[H1, L2](1−v(H1, L2)) captures the ”downside risk” faced by bidder
1 that bidder 2 may have a low rather than high signal. It takes into account both the likelihood
that bidder 2 has a low rather than a high signal (Pr[H1, L2]) and the size of the value loss
(v(H1, H2)− v(H1, L2) = 1− v(H1, L2)) if bidder 2 has a low rather than a high signal. The
bidder with the smaller downside risk is called the stronger bidder.

Our analysis of the second-price auction between two informed bidders with cookies en-
compasses two special cases. The first is that in which one bidder never receives a cookie -
or that only one bidder is informed. The second is that in which bidders are symmetric ex
ante. These are variations of the polar extremes of ex ante asymmetry and symmetry stud-
ied respectively by Milgrom and Weber (1982b) (for first price auctions) and Milgrom and
Weber (1982a) (for multiple auction formats). As already stated, the first-price auction has
higher revenue under extreme asymmetry when only one bidder is informed. Focusing on the
symmetric equilibrium of the SPA when bidders are ex ante symmetric, Milgrom and Weber
(1982a) show that the SPA has higher revenue than the FPA. Since, in our setting, the TRE
refinement selects the symmetric equilibrium when bidders are symmetric ex ante, the same
result applies. (Milgrom and Weber’s (1982a) result is proved for continuous signals, but the
authors point out in footnote 15 that it is true more generally.) Thus the revenue ranking
between first and second price auctions is reversed by sufficient ex ante asymmetry.

Summarizing our findings for second-price, common value auctions, we show that the na-
ture of information asymmetry has strong implications for revenue. When just one bidder is
informed, revenue drops to the lowest possible expected value a bidder may have after observ-
ing his signal, even if that signal is very rarely realized, implying that revenue may be almost
unaffected if cookies identify only peaches, but collapses when they may identify lemons, even
if the probability is small. These results with a single informed bidder generalize to settings
with multiple informed bidders if the information structure satisfies the strong-high-signal
property. When all bidders receive either peaches or lemons information, if all bidders are
informed about peaches revenue will be high, while if at least one is informed about lemons
revenue will collapse. Nevertheless, when multiple bidders are informed but the strong-high-
signal property is relaxed, revenue need not collapse even when cookies identify lemons. This is
true, in particular, with two informed bidders who each might receive a cookie that identifies a
lemon (so that the value is 0 unless both receive a high signal). In this case, revenues decrease
in proportion to the asymmetry in the likelihood that each bidder is the sole bidder to discover
a lemon. At one extreme, when bidders are ex ante symmetric, the seller extracts all surplus.
At the other extreme, when the information of bidder 1 completely dominates the information
of bidder 2 (so that bidder 2 is never the sole bidder to discover a lemon) the seller extracts
no surplus. In other words, revenues are particularly low when one bidder faces a much larger
adverse selection problem or winner’s curse than the other.

Taken together, the findings show that common value second price auctions can be vulner-
able to low-revenue outcomes when bidders are asymmetric ex ante. Moreover, low-revenue
outcomes are associated with particular forms of asymmetry. It is not sufficient for a bidder to
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be ex ante better informed than another for revenues to suffer substantially. Rather, the key
vulnerability of the second price auction is to ex ante asymmetry with respect to information
about lemons. In contrast, the distinction between information about lemons and peaches ap-
pears unimportant for first price auction revenues (meaning that they are likely to be a good
alternative to the second price auction when the likelihood of discovering lemons is asymmetric
across bidders).

So far, we have focused mainly on the costs of information asymmetry, while suppressing
any benefit. As mentioned above, the cost-benefit tradeoff between private value information
(which we have suppressed) and market thinness has already received some attention in the
literature, so we do not revisit that here. Instead, in the last part of the paper, we extend
the model in a slightly different direction, allowing for the possibility that cookies contain
action-relevant information. For instance, when placing a display ad on the New York Times
website, Zappos can include a picture of the exact running shoes the New York Times reader
had previously been looking at on Zappos.com. This means that the information in cookies
can directly increase the value of winning to bidders and create a value advantage as well as an
informational advantage. Both the presence of private-value and action-relevant information
give clear reasons that ad-buyers and sellers alike benefit from incorporating the inherently
asymmetric targeting information from cookies into display-ad auctions. Thus, simply banning
cookie based bidding is likely not optimal.

In the final section of our paper we discuss a seller’s optimal mechanism design problem
when cookies contain both action-relevant and common value information. We assume a
particular correlation structure in signals: that one and only one bidder receives an informative
cookie. In this setting, although all bidders are symmetric ex ante with equal likelihood of
receiving a cookie, because only one becomes informed, revenue drops to the expected value
conditional on the worst possible cookie.

The revenue drop result follows from the analysis in Section 5.1 of auctions with only one
informed bidder. This analysis essentially captures the continuation game that arises at the
interim stage once bidders have discovered whether or not they are the single informed bidder.
Notice that it does not contradict the result in Section 5.3 that ex ante symmetry leads to full
revenue extraction, because that result was specific to the information structure assumed in
Section 5.3. The important difference here is that at the interim stage at one case (Section
5.1) at most one bidder has a “high” signal that leads to an interim valuation above the items
unconditional expected valuation, while in the other case (Section 5.3) more than one bidder
might get such a signal.

Because bidders are ex ante symmetric, we show that full revenue can be extracted by
charging symmetric entry fees to participate in the SPA. The TRE refinement is crucial for
setting entry fees correctly, as it provides a unique prediction of bidder profits in the SPA.
Note that this approach is ex ante individually rational, but not interim individually rational.

For bidders with binary signals, we also present an interim individually rational, dominant
strategy mechanism that extracts (1 − 1/n)-fraction of the social welfare as revenue, using a
variant of Myerson’s optimal auction for the private value setting. The mechanism runs a SPA
on all bids above some reserve price r, and if no such bid exists it sells to a random bidder at
a given floor price f (pooling). Loss of revenue arises from lowering the reserve price to satisfy
the incentive constraint for bidders with high signals.
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2 Related Literature

This paper seeks to understand how revenues in a common value second price auction depend
on the structure of information held by bidders. A serious challenge to comparing revenues
across different information structures is that for any given information structure there are
typically many different equilibria with widely different revenues. For instance, consider a
setting commonly studied in the literature: There are two bidders 1 and 2 who receive contin-
uously signals s1 and s2 which have marginal distributions F1 (s1) and F2 (s2) and the value of
the object conditional on the signals is v (s1, s2). It is well know that there are a continuum of
equilibria (Milgrom 1981). In particular, for any increasing function h, the following bidding
strategies form an equilibrium (Milgrom (2004) Theorem 5.4.8):

b1 (s1) = v
(
s1, h

−1 (s1)
)
, b2 (s2) = v (h (s2) , s2) . (1)

The bidding strategies described by equation (1) imply that bidders 1 and 2 make the
same bid whenever bidder 2 has signal s2 and bidder 1 has signal h(s2). In other words, the
function h(s2) describes the bidder 1 signal s1 that ties with s2 in equilibrium. Because h
can be any increasing function, Nash equilibrium makes no prediction about which bidder
1 signal ties with s2 in equilibrium and hence no useful prediction about revenue. Similar
multiplicity arises in our setting in which bidder signals are drawn from discrete and finite
support. For instance, in Section 5.1 where we consider the case of a single informed bidder
and n− 1 uninformed bidders, the following is an equilibrium: The informed bidder bids her
expected value conditional on her signal, n − 2 uninformed bidders bid to tie the informed
bidder’s lowest bid, and the last uninformed bidder bids a bid b that is weakly higher. This is
an equilibrium for any such bid b. Thus for any particular signal of the informed bidder, there
exists an equilibrium in which the uninformed bidder bids the same amount. Thus revenue
could be anywhere between the informed bidder’s lowest possible valuation and the full surplus.
Similarly, in Section 5.3 where 2 bidders each receive binary signals, it is an equilibrium for the
informationally advantaged bidder to always bid 1 when her signal is high and zero otherwise,
while the other bidder bids zero following a low signal and mixes between bids of 0 and 1
following a high signal. This is an equilibrium for any mixing probability by the weak bidder.
Thus in equilibrium the weak bidder with a high signal can tie with the strong bidder with
a low signal, the strong bidder with a high signal, or a mixture of the two. In each case our
TRE refinement resolves this multiplicity by selecting a unique equilibrium.

A common approach in the literature with symmetric bidders is to focus on the symmetric
equilibrium: bi (si) = v (si, si) (Milgrom and Weber 1982a, Matthews 1984). As shown by
Milgrom and Weber (1982a) and Matthews (1984) others, this selects the equilibrium in which
each bidder bids the object’s expected value conditional on the highest signal of competing
bidders being equal to her own. This excludes extreme equilibria such as one in which one
bidder bids an object’s maximum value and all other bidders bid zero. Unfortunately it is not
clear how the symmetry refinement can be extended to asymmetric environments of the type
we are interested in, or why symmetry should be expected in equilibrium.3 In fact, Klem-
perer (1998) argues that with almost common values all reasonable equilibria are extremely
asymmetric.

Recent work by Parreiras (2006), Cheng and Tan (2007), and Larson (2009) introduce per-
turbations to select a unique equilibrium in two-bidder auctions with continuously distributed

3Hausch (1987) selects the bi (si) = v (si, si) equilibrium in a setting in which asymmetry implies v (si, sj) ̸=
v (sj , si) for si ̸= sj . The motivation for this choice is unclear.
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signals. Parreiras (2006) perturbs the auction format by assuming that winning bidders pay
their own bid rather than the second highest with probability ε, and taking the limit as ε goes
to zero. Cheng and Tan (2007) and Larson (2009) introduce private value perturbations to the
common value environment and take the limit as these perturbations go to zero. Cheng and
Tan (2007) assume private value perturbations are perfectly correlated with common value
signals and are symmetric across bidders. The symmetry of perturbations selects a unique
equilibrium. Larson (2009) allows for asymmetric perturbations which are assumed to be in-
dependent of common value signals and shows that the equilibrium selected depends on the
ratio of the standard deviations of the two bidders’ private value perturbations. Larson (2009)
shows that a weakness of Cheng and Tan’s (2007) approach is that it is the assumption of
symmetry in perturbations that drives the equilibrium selection. The different choices of per-
turbations by different authors lead to very different equilibrium selection and conclusions.
For instance, Parreiras (2006) show that second-price auctions generate at least as much rev-
enue as first-price auctions even when bidders are asymmetric (given affiliated signals). In
contrast, Cheng and Tan (2007) find that first-price auction revenues are strictly higher than
second-price auction revenues given any bidder asymmetry ex ante (with independent signals
and a submodular value function).

An alternative approach taken in the literature that has been applied to auctions with more
than two bidders is to select equilibria that survive iterated deletion of dominated strategies.
Harstad and Levin (1985) consider the case in which the first order-statistic of bidders’ signals
is a sufficient statistic for the object’s value in the Milgrom and Weber (1982a) setting with
symmetric bidders and continuously distributed signals. For this case, Harstad and Levin
(1985) shows that iterated deletion of dominated strategies uniquely selects the symmetric
Milgrom and Weber (1982a) equilibrium. Einy, Haimanko, Orzach and Sela (2002) consider
the case of asymmetric bidders and discrete signals with finite support. Einy et al. (2002) show
that if the information structure is connected then iterated deletion of dominated strategies se-
lects a set of equilibria with a unique Pareto-dominant (from bidders’ perspective) equilibrium.
Malueg and Orzach (2009) apply Einy et al.’s (2002) refinement in two examples and Malueg
and Orzach (2011) apply Einy et al.’s (2002) refinement to the special case of two-bidder auc-
tions with connected and overlapping information partitions. For a particular one-parameter
family of common-value distributions, Malueg and Orzach (2011) find that distributions with
sufficiently thin left tails yield lower revenues in second-price auctions than in first-price auc-
tions. The primary drawback to Einy et al.’s (2002) approach is that the required assumptions
on the information structure are very restrictive. For instance, we show in Appendix C.2 that
Einy et al.’s (2002) connectedness property is strictly more restrictive than our strong-high-
signal property. Thus connectedness rules out many interesting settings such as our model of
two bidders with binary signals in which neither bidder is perfectly informed. Even when one
bidder is perfectly informed, iterated deletion of dominated strategies is unhelpful on its own:
Any bid by the uninformed bidder between the informed bidder’s low (0) and high (1) interim
valuations survives, so revenue may be anywhere between 0 and the object’s expected value.

An alternative literature on almost-common-value auctions perturbs the common value
framework by assuming that one bidder has a small value-advantage and is known ex ante to
value the object slightly more than other bidders. The common wisdom from early papers
which modeled two-bidder auctions is that a slight value advantage causes: (1) the strong
bidder to win almost all the time, (2) for revenues to collapse in second-price auctions, and
(3) for first-price auctions to generate higher revenue (Bikhchandani 1988, Avery and Kagel
1997, Klemperer 1998, Bulow, Huang and Klemperer 1999). However, more recently Levin and
Kagel (2005) show that dramatic revenue losses from small asymmetries rely on the two-bidder
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assumption and that revenue losses are proportional to the value advantage when there are
three or more bidders.

Our approach focuses on the pure common value model where no bidder has a value ad-
vantage. We do not wish to restrict the information structure to be symmetric or connected,
so cannot focus on symmetric equilibria as in Milgrom and Weber (1982a) or use iterated dele-
tion of dominated strategies as in Einy et al. (2002). Instead we introduce a new refinement,
TRE, which selects equilibria near those of a perturbed game with an additional random bid-
der. This is similar in spirit to Parreiras (2006), Cheng and Tan (2007), and Larson (2009).
Unlike Cheng and Tan’s (2007) and Larson’s (2009) private value perturbation refinements,
TRE typically does not need further refinement to select among perturbations since there
is often a unique TRE. For instance, the TRE refinement selects the symmetric equilibrium
when bidders are ex ante symmetric (providing an additional justification for focusing on such
symmetric equilibria). Cheng and Tan’s (2007) and Larson’s (2009) private value perturbation
refinements do the same with the additional assumption that the perturbations be symmet-
ric across bidders. Our finding that sufficient ex ante asymmetry favors first price auctions
over second price auctions (reversing Milgrom and Weber’s (1982a) result from the symmetric
case) is similar to Cheng and Tan’s (2007) result that ex ante asymmetry favors first-price
auctions but contrasts with Parreiras’s (2006) finding that Milgrom and Weber’s (1982a) first
and second-price auction revenue ranking result is robust to asymmetry. Our finding that
revenue losses in second price auctions due to informationally advantaged bidders are much
larger when the information advantage concerns “lemons” rather than “peaches” mirrors the
cost of private seller information in Akerlof’s (1970) market for lemons. However the result
is novel as it depends on the tremble robust equilibrium refinement - alternative equilibrium
selection rules would lead to a different result.

In the context of analyzing the generalized second price (GSP) auction for sponsored search
with independent valuations and complete information, Hashimoto (2010) proposes to refine
the set of equilibria by adding a non-strategic random bidder that participates in the auction
with small probability. Edelman, Ostrovsky and Schwarz (2007) and Varian (2007) have shown
that GSP has an envy-free efficient equilibrium, the main result of Hashimoto (2010) is that
this equilibrium does not survive the refinement.

Recently, Kempe, Syrgkanis and Tardos (2013) have studied information asymmetries in
hybrid auctions mixing first and second price auctions at different proportions. They show
that the equilibrium at the limit at second price does not suffer from revenue collapse predicted
by our refinement.

3 The Solution Concept

Consider the following simple scenario. We run a second price auction (with random tie
breaking) for a common value good. Assume that the good has only two possible values, P
(Peach) and L (Lemon) and it holds that P > L = 0. Each value is realized with probability
1/2. There are two agents, one is perfectly informed about the value of the good, while the
other only knows the prior. Negative bids are dominated and will never be submitted. What
bidding strategies and revenues should we expect?

Nash equilibrium provides no prediction about revenue beyond an upper bound of the full
surplus (L + P )/2. It is an equilibrium for the informed bidder to bid his value and the
uninformed bidder to bid P , which results in full surplus extraction. However, it is also an
equilibrium for the uninformed bidder to bid 10P and the informed bidder to bid 0, earning 0

10



revenue.
A natural refinement is to restrict attention to Nash equilibria in which bidders only use

undominated strategies. Notice that unlike in the private value model, agents do not necessarily
have a dominant strategy in a common value second price auction. Indeed, in the scenario
described above the informed agent has a dominant strategy (to bid the value given his signal),
while the uninformed agent does not. To see that, observe that for any two bids b1 and b2
such that P ≥ b1 > b2 ≥ L there exist two strategies of the informed agent such that for one
strategy the utility from b1 is higher, while for the other strategy the utility from b2 is higher.
Bidding b1 is superior to bidding b2 when the informed is bidding (b1+ b2)/2 when the value is
P , and bidding L when the value is L. On the other hand bidding b2 is superior to bidding b1
when the informed is bidding (b1 + b2)/2 when the value is L, and bidding L when the value
is P (handing out the good items to the other bidder).

Thus ruling out dominated strategies restricts the informed bidder to use her dominant
strategy and bid her value. However the only restriction placed on the uninformed bidder is
that he not bid less than L or more than P . Revenue could be anywhere between L and the
full surplus.

A common approach to the multiplicity problem in the literature is to focus on settings in
which bidders are ex ante symmetric and assume bidders bid symmetrically (e.g. Milgrom and
Weber (1982a)). Unfortunately this is not applicable when we are studying situations in which
bidders are known to be substantially different ex ante. Einy et al. (2002) restrict attention
to sophisticated equilibria which survive iterative simultaneous maximal elimination of weakly
dominated strategies. However, this refinement by itself does not identify a unique outcome.
In the current example, for instance, the set of sophisticated equilibria are the same as the set
of Nash equilibria in undominated strategies. Thus, Einy et al. (2002) further refine the set of
sophisticated equilibria by focusing on strategies that guarantee a payoff of zero, which does
identify a unique outcome in the restricted information structure (”connected domains”) they
study. Einy et al. (2002) also show that in connected domains uniqueness can be achieved by
introducing an additional rational uninformed bidder.4 Unfortunately, focusing on strategies
that guarantee a payoff of zero or introducing another rational uninformed bidder are not
sufficient to derive a unique outcome even in simple domains such as the one we analyze in
which two bidders each receives a binary signal.

We also believe that for the example in discussion the natural outcome is that the informed
bidder bid her posterior value and the uninformed bidder bid L. As observed by Einy et al.
(2002), introducing another rational uninformed bidder provides the needed refinement for
some domains. Yet, as this refinement does not provide unique outcome even in some rather
simple domains we are interested in, we suggest a different approach that achieves the same
outcome for the example in discussion. In our refinement, with some small probability another
uninformed bidder enters the auction and bids somewhere between L and P . That ”random”
bidder is not assumed to act rationally and his sole propose is to make the game “noisy” in
order to remove unreasonable equilibria. Indeed, in the example discussed, in the presence of
such a bidder if the uninformed bidders bids higher than L she risks overpaying for a low value
item without ever winning the high value item at a discount.

We formalize this intuition by considering a perturbation of the game in which with some
small probability ϵ > 0 there is an additional bidder that comes to the auction and bids a ran-

4For the current example this works because in the second stage of iterated elimination, each uninformed agent
can never have positive utility by any bid b larger than L, while it can have negative utility if any of the other
uninformed agents is bidding more than L but less than b. Thus bidding L is the only strategy that is not eliminated
in the second stage.
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dom value drawn from some distribution which is ”nice” (satisfying some simple assumptions:
support on the relevant values, differentiability and density that is continuous and positive on
the interval). We want to consider only Nash equilibria that are nearby to Nash equilibria (in
undominated bids) of such perturbed games.

Returning to the example with one informed bidder and one uninformed bidder, recall that
bidding her interim value was the only undominated bid for the informed bidder. Given that
the informed bidder bids her posterior value, the presence of a random bidder means that L
is the only undominated bid for an uninformed bidder. The informed bidder ensures that the
uninformed bidder can never win the object at a discount below value. However the random
bidder ensures that any bid above L risks overpaying for a low value object when the random
bidder sets the price. Thus bidding above L leads to a strictly negative payoff. We observe
that by adding noise a unique strategy profile and revenue is predicted.

Motivated by the above we suggest the following refinement of (mixed) Nash Equilibrium
for an auction scenario. The solution concept picks a (mixed) Nash equilibrium that is the
limit, as ϵ goes to zero, of a series of mixed Nash equilibrium (with support on undominated
bids) of each modification of the original game in which another “random” bidder is added
with small probability ϵ. The random bidder is bidding a random value drawn from some
distribution with support over the “relevant” values, is differentiable and has density that is
continuous and positive on the interval. We call such a profile of strategies a Tremble Robust
Equilibrium (TRE). The formal definition of this new refinement is presented in Section 4.2.
Moreover, if there is a profile of strategies that is (mixed) Nash Equilibrium in any such small
perturbation of the original game, we call it a strong Tremble Robust Equilibrium.

Our TRE refinement similar in spirit to other perturbation based refinements discussed in
Section 2 (Parreiras 2006, Cheng and Tan 2007, Larson 2009). One can naturally ask whether
instead of using the new refinement of TRE one can use the classical refinement of Tremble
Hand Perfect Equilibrium (PE) by Selten (1975). It turns out that the PE solution concept
(adjusted to games with infinite sets of actions and incomplete information) is too permissive
and does not provide the natural unique prediction one would expect in the most basic setting
with two agents discussed above: the setting with one informed agent with a binary signal, and
one uninformed agent. In Appendix A we show that two extensions by Simon and Stinchcombe
(1995) of PE to infinite games (which we adjust to incomplete information) do not provide
unique prediction in the above setting. On the other hand, in the same setting, if we restrict
the perturbation of the informed agent to be independent of his signal then in the unique
equilibrium the uninformed is bidding the unconditional expected value of the item, contrary
to our expectation.

4 Auctions where each Agent has Finitely Many

Signals

We start by presenting our model followed by the refinement.

4.1 The Model

An auctioneer is offering an indivisible good to a set N of n potential buyers. Let Ω be the
set of states of the world (possibly infinite). There is a prior distribution H ∈ ∆(Ω) over the
states, this prior is commonly known.
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Let ω ∈ Ω be the realized state of the world, the state is not observed by the buyers. Each
buyer i gets a signal about the state of the world ω from a finite set of signals Si. We denote
S = S1 × S2 × . . .× Sn. For every state ω ∈ Ω and buyer i there is a known distribution over
signals di(ω) ∈ ∆(Si) which is commonly known; and buyer i gets a private signal si ∈ Si

sampled from di(ω). Signal si ∈ Si for agent i is feasible if agent i receives signal si with
positive probability, and the vector of signals s = (s1, s2, . . . , sn) ∈ S is feasible if it is realized
with positive probability. We assume that for every i, every signal si ∈ Si is feasible.5 The
value of the item to agent i when the state of the world is ω is vi(ω) ≥ 0.

When buyer i’s signal si was realized to s′i he updates his belief about his expected value of
the good, his posterior belief is that the expected value is vi(s

′
i) = E[vi(ω)|si = s′i], where the

expectation is taken both over the randomness H that generated ω and the randomness di(ω)
that generated the realized signal s′i. Similarly, we denote by vi(s

′) the posterior expected
value given that each agent i receives signal s′i and s′ is the vector of received signals, that is
vi(s

′) = E[vi(ω)|si = s′i ∀ i].6

Definition 1. A domain is a monotonic domain if for each agent j there exists a linear order
over his set of signals Sj, and for every agent i and two feasible vectors of signals s and s′

such that s ≤ s′ (that is, for every j it holds that sj ≤ s′j according to the linear order on Sj)
it holds that vi(s) ≤ vi(s

′).

Let Tj ⊆ Sj be a set of signals for buyer j, and let T = T1 × T2 × . . .× Tn be a product of
such subsets, one for each buyer. We say that T is feasible if some t = (t1, t2, . . . , tn) ∈ T is
feasible (t is realized with positive probability). For T that is feasible let vi(T ) be the expected
value that agent i has for the good, conditional on the signal sj of each buyer j being from Tj .

A pure strategy µi for agent i is a mapping from his signal to his bid: µi : Si → ℜ+, that
is µi(si) ∈ ℜ+. A mixed strategy µi for agent i is a mapping from his signal to a distribution
over non-negative bids.

4.2 The Refinement

We present the following refinement with the goal of pointing out a unique outcome of the
game defined by an auction (specifically we use it for the Second Price Auction (SPA)) in our
model. The refinement is defined for every game induced by an auction.

The refinement is based on a random bidder that bids according to a distribution that
satisfy some properties.

Let vmin = mins∈S{vi(s)} and vmax = maxs∈S{vi(s)} be the minimal and maximal possible
value conditional on any signal profile, respectively. Similarly, for a fixed signal si ∈ Si, let
vmin(si) = mins−i∈{S−i

vi(si, s−i)} and vmax = maxs−i∈S−i{vi(si, s−i)}.

Definition 2. We say that a distribution R is standard if the support of R is [vmin, vmax] (the
“relevant” values), R is continuous, strictly increasing and differentiable, and its density r is
continuous and positive on the interval.

Consider an auction and the game λ that is induced by the auction. We next define the
game with the random bidder added to it.

5This is without loss of generality as we can define Si to be the set of signal with positive probability of being
sampled.

6If the vector s′ can never be realized we define vi(s
′) = 0.
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Definition 3. For a standard distribution R and ϵ > 0 define λ(ϵ, R) to be the game induced
by λ with the following modification: with probability ϵ there is an additional bidder submitting
a bid b sampled according to R. We call λ(ϵ, R) an (ϵ, R)-tremble of the game λ.

Alternatively, one can think of the (ϵ, R)-tremble of the game λ as a game with n+1 agents,
the n original agents and a random bidder, that random bidder bids 0 with probability 1− ϵ
and bid according to R with probability ϵ. The unconditional distribution according to which
the random bidder is bidding is denoted by R̂ and is defined as R̂(x) = 1− ϵ+ ϵ · R(x). The
density of R̂(x) for every x > 0 is r̂(x) = ϵ · r(x).

Let µi be a strategy of agent i. A strategy maps the signal of the agent to distribution over
bids. The strategy is a pure strategy if for every signal the mapping is to a single bid. Let µ
be a vector of strategies, one for each agent.

Definition 4. (i) A (pure or mixed) Nash equilibrium µ is a Tremble Robust Equilibrium
(TRE) of the game λ, if there exists a standard distribution R and a sequence of positive
numbers {ϵj}∞j=1 such that

1. limj→∞ϵj = 0.

2. µϵj is a (pure or mixed) Nash equilibrium of the game λ(ϵj , R), the (ϵj , R)-tremble of the
game λ, for every ϵj.

3. for every agent i ∈ N and signal si ∈ Si,

• The support of µ
ϵj
i (si) is contained in [vmin(si), vmax(si)] for every ϵj (bidders do

not submit dominated bids).

• {µϵj
i (si)}∞j=1 converges in distribution to µi(si).

(ii) µ is a strong Tremble Robust Equilibrium if it is a TRE and, in addition, for the
decreasing sequence {ϵj}∞j=1 satisfying (1) and (2) above, there exists k such that for every
j > k in (2) it holds that µϵj = µ.

5 Common Value SPA Auction

In this section we consider the restriction of the above model to the common value case and
study the SPA. When we talk about the Second Price Auction (SPA) game we refer to the
game induced by a Second Price Auction (SPA) with random tie breaking rule. In the common
value model the state of the world determines the quality of the good, and thus determines
its value. Thus, in the common value model, there exists a value function v such that when
the state of the world is ω ∈ Ω, the value of the good is v(ω), that is, vi(ω) = v(ω) for every
bidder i.

5.1 Only One Informed Bidder

We first describe the important special case that only one agent has some information about
the state, while all others are completely uninformed (each always gets the same signal). Now,
all agents but agent 1 are completely uniformed about the state of the world. We call buyer 1
the informed buyer and the rest of the buyers are called the uninformed buyers. We denote the
set of signals of the informed buyer by S.7 When the informed buyer’s signal s was realized to
s′ ∈ S, he updates his belief about his expected value of the good, his posterior belief is that

7This is a slight abuse of notation which we take as the set of signals for every other buyer is a singleton.
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the expected value is E[v(ω)|s = s′], where the expectation is taken both over the randomness
H that generated ω and the randomness d(ω) that generated the realized signal s′. We are
interested in predicting the equilibrium and the revenue of the second price auction.

The next theorem presents a strong TRE in pure strategies and shows that it is the unique
TRE.

Theorem 5. In any domain with one informed buyer and any number of uninformed buyers,
the unique TRE of the SPA game is the profile of strategies µ in which:

1. the informed buyer with set of signals S and signal s realized to s′ ∈ S, bids bI(s
′) =

E[v(ω)|s = s′].

2. each of the uniformed buyers bids bU = minŝ∈S E[v(ω)|s = ŝ].

Moreover, this profile is a strong TRE in pure strategies.

Proof. To show that µ is a strong TRE of the SPA game it is sufficient to show that it is a pure
NE in any (ϵ, R)-tremble of the game. This is indeed true as the strategy of the informed bidder
is dominant, thus is a best response to any strategies of the uninformed bidders. Additionally,
the strategy of any uninformed bidder is a best response to the dominant strategy played by
the informed bidder and the strategies of the other uninformed bidders (it gives 0 utility and
no strategy give positive utility). Finally, µ is trivially a pure strategy profile.

Next we show that it is the unique TRE. Clearly the strategy of the informed bidder is the
unique strategy in undominated bids (even among mixed strategies) as for any signal his bid
is the unique bid that dominates any other bid. For any uninformed bidder, bidding below bU
is dominated by bidding bU , while bidding above bU cannot be a best response to the unique
strategy of the informed bidder in any (ϵ, R)-tremble of the game (thus will not be a NE in
any (ϵ, R)-tremble of the game).

We stress that the strategy of the uniformed is independent of the probability of the
informed buyer receiving the signal that generates the lowest expectation: even a tiny (but
positive) probability of receiving a signal is sufficient to cause the uniformed buyers to bid so
low.

The following corollary is immediate from Theorem 5, it shows that the revenue of the SPA
with only one informed bidder in the unique TRE is as low as it can get in undominated bids.

Corollary 6. In the unique TRE of the SPA game with one informed buyer and any number
of uninformed buyers, the expected revenue of the auctioneer is R = minŝ∈S E[v(ω)|s = ŝ].

We point out the connection to the Lemon Market problem (Akerlof 1970): similar Adverse
Selection phenomena derive both results. Yet, we note that in the SPA with common value,
Adverse Selection by itself does not necessarily imply significant drop in revenue in every
Nash Equilibrium: it is a Nash Equilibrium for the informed agent to bid according to his
signal while the uninformed agent bids any value X (as any bid results with 0 utility to the
uninformed agent). In particular, the uninformed agent is able to win high quality items in
NE (unlike in the Market for Lemons). Thus, multiplicity of Nash equilibria as well as the
ability of the uninformed party to win high quality items in NE make the common value SPA
somewhat different than the Markets for Lemons. Our TRE refinement enables a result in
the spirit of Markets for Lemons, by predicting a unique NE for which there is indeed drop in
revenue.

We next discuss the implications of these results to the revenue of the seller in display
advertisement common-value SPA with asymmetric information.
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Example 7. Impressions in display ads auction have various qualities (values) dependent on
the likelihood of the user to be influenced by the ad to buy some product. Assume that there are
two qualities (common value for an impression), low (L for Lemon) and high (P for Peach),
that is Ω = {L,P}. A peaches is more valuable than a lemon, that is v(P ) > v(L). The
commonly known prior is that with probability p ∈ (0, 1) the impression is a peach P , and
with probability 1− p it is a lemon. Fix any small ϵ̂ > 0. We consider the follow two possible
information structures.

In the case that the informed buyer is ϵ̂-informed about peaches the set of signals for the
informed is S = {∅, SP }. Conditional on the quality being high (ω = P ) the informed buyer
gets signal SP with probability ϵ̂, otherwise he gets the signal ∅.

In the case that the informed buyer is ϵ̂-informed about lemons the set of signals for the
informed is S = {∅, SL}. Conditional on the quality being low (ω = L) the informed buyer gets
signal SL with probability ϵ̂, otherwise he gets the signal ∅.

Let us now examine the revenue for the two cases. Although in both cases the informed
buyer has a tiny probability (ϵ̂) of knowing the exact quality, there is a substantial difference
in the revenue the seller gets in the SPA in the unique TRE as of Theorem 5.

When the informed buyer is ϵ̂-informed about peaches the revenue is

min
ŝ∈S

E[v(ω)|s = ŝ] = min{E[v(ω)|s = ∅], E[v(ω)|s = SP ]}

Now, E[v(ω)|s = SP ] = v(P ). To compute E[v(ω)|s = ∅] we observe that

Pr[s = ∅] = Pr[s = ∅|ω = L]Pr[ω = L] + Pr[s = ∅|ω = P ]Pr[ω = P ]

= (1− p) + (1− ϵ̂)p = 1− ϵ̂p

We now use Bayes rule to compute E[v(ω)|s = ∅].

E[v(ω)|s = ∅] =
∑
ω∈Ω

v(ω)Pr[ω|s = ∅] =
∑
ω∈Ω

v(ω)
Pr[s = ∅|ω]Pr[ω]

Pr[s = ∅]

= v(L)
1− p

1− ϵ̂p
+ v(P )

(1− ϵ̂)p

1− ϵ̂p
=

v(L)(1− p) + v(P )(1− ϵ̂)p

1− ϵ̂p
=

E[v(ω)]− ϵ̂v(P )p

1− ϵ̂p

This is clearly smaller than E[v(ω)|s = SP ] = v(P ), thus this is the expected revenue of

the auction, that is the revenue is RSPA
peaches = E[v(ω)]−ϵ̂v(P )p

1−ϵ̂p . We observe that the revenue
continuously converges to the unconditional expectation E[v(ω)] when ϵ̂ converges to 0.

Next we contrasts the above with the case that the informed buyer is ϵ̂-informed about
lemons. The revenue in the unique TRE is

min
ŝ∈S

E[v(ω)|s = ŝ] = min{E[v(ω)|s = ∅], E[v(ω)|s = SL]}

Now, E[v(ω)|s = SL] = v(L) while E[v(ω)|s = ∅] > v(L). Thus the revenue is RSPA
lemons = v(L),

a complete collapse, independent of how small ϵ̂ is! The revenue of the seller is discontinuous
in ϵ̂ at ϵ̂ = 0. Note that this revenue collapse result extends to the case that the informed
bidders also sometimes gets a signal about a peach, as long as he has positive probability of
getting a signal about a lemon.
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5.1.1 FPA vs. SPA

By comparing the SPA revenue result in Corollary 6 with the FPA revenue result in Theorem
4 of Engelbrecht-Wiggans et al. (1983), it is straightforward to show that FPA revenues are
always higher than SPA revenues when only one bidder is informed.

Corollary 8. Consider any common value domain with n agents, n−1 of them are uninformed,
and the last agent is informed with any information structure. In any such domain the revenue
of the first price auction is strictly higher than the revenue in the unique TRE of the second
price auction game.

Proof. To make the comparison, define the informed bidder’s interim expected value con-
ditional on receiving signal s as h(s) = E[v(ω)|s] and the minimum such value as h =
mins∈S E[v(ω)|s]. Further, let F be the cumulative distribution function of h. According
to Corollary 6, SPA revenue is at most h. According to Theorem 4 of Engelbrecht-Wiggans et
al. (1983), FPA revenue is ∫ ∞

0
(1− F (h))2dh

which can be re-written as h+
∫∞
h (1− F (h))2dh. For an informed bidder, F (h) < 1 so this is

clearly strictly more than h.

This result clearly implies that for both information structures we consider in Example 7
the revenue of the FPA is larger than the revenue of the unique TRE of the SPA game. For
that example we can compute the revenue differences exactly. In Appendix B.1 we we use the
Engelbrecht-Wiggans et al.’s (1983) revenue result for FPA and show that in both the case
that the informed is ϵ̂-informed about lemons and the case he is ϵ̂-informed about peaches, the
revenue of the FPA is

RFPA = E [v (ω)]− ϵ̂p(1− p) (v(P )− v(L))

Notice that the revenue loss is proportional to ϵ̂, the arrival rate of cookies, regardless of
whether cookies contain information about lemons or about peaches. Thus while FPA revenues
are always higher than SPA revenues, the difference is substantial only when cookies identify
lemons. In particular, loss in revenue from using a SPA rather than a FPA is proportional to
ϵ̂2 when cookies identify peaches:

RFPA
peaches −RSPA

peaches = ϵ̂2
p2(1− p)

1− ϵ̂p
(v(P )− v(L)) .

However, when cookies identify lemons, the loss is

RFPA
lemons −RSPA

lemons = (1− ϵ̂(1− p)) p (v(P )− v(L)) ,

or approximately p (v(P )− v(L)) when ϵ̂ is small.
We have seen that for both the case that the informed agent is ϵ̂-informed about lemons

and the case that the informed agent is ϵ̂-informed about peaches, revenue of FPA does not
collapse (does not tend to zero with epsilon). We next show that this is implied by a much
more general observation. We observe that the revenue of FPA can be bounded from below,
independent of the information structure. In Appendix B.2 we prove the following proposition.

Proposition 9. Consider any common value domain with items of value in [0, 1] and expected
value of E. Assume that there are n agents, n−1 of them are uninformed. For any information
structure for the informed agent the revenue of the FPA is at least (E[v])2.
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Consider the case that items can have very low value (say 0) and that the expected value
E[v] is some positive constant E. This observation, in particular, says that the revenue of
the FPA does not collapse to zero no matter what the information structure is, in contrast to
the revenue of SPA in the unique TRE, which can be arbitrarily small if the informed agent
has positive probability of getting a signal with posterior close to zero (like in the case he is
ϵ̂-informed about lemons).

We also observed that the revenue of the FPA is continuous in F (h), thus a small change
in the information structure of the informed agent implies a small change in the revenue of the
seller. This is in contrast to the SPA revenue, which by our result can change dramatically
due to a small change in the information structure. This is exactly the case when all agents
are uninformed and one of them becomes ϵ̂-informed about lemons. This small change in
information structure have major implication on the revenue of the SPA.

5.2 Many Agents, each with Finitely Many Signals

In this section we present a condition on the information structure that allows us to generalize
the result for a single informed agent (Theorem 5) to some domains in which multiple agents
have informative signals. The condition is sufficient to ensure existence of a unique TRE.
Moreover, it is a strong TRE in pure strategies. The condition on the domain, which we call
”strong-high-signal”, is recursively defined. In every domain that satisfies the condition there
exists a signal for some agent such that his posterior belief given the signal, is independent of
the signals of the others, and is as high as the posterior belief given any feasible combination of
signals for all agents. Moreover, if we condition on that signal not being realized and consider
the domain with that restriction, that domain also satisfies the condition. (A domain in which
all agents are uninformed satisfies the condition.) We show that the profile of strategies in
which each agent bids the posterior given his signal and the worst feasible combination of
signals of the others, is indeed a strong TRE in pure strategies, and the unique TRE. We start
by formally defining the condition.

Definition 10. Consider a common value domain with n agents, each with finitely many
signals. We say that such a domain satisfies the strong-high-signal property if in the domain,
for some agent i, signal si ∈ Si and s−i ∈ S−i such that (si, s−i) is feasible, it holds that

• v(si, s
′
−i) = v(si, s−i) for any s′−i ∈ S−i such that the profile (si, s

′
−i) is feasible, and

• v(t) ≤ v(si, s−i) for any feasible profile t

and moreover, if we consider the same domain but restricted to the case that agent i does not
receive the signal si, if that restricted domain contains any feasible vector of signals then it
also satisfies the strong-high-signal property.

It is easy to see that any domain with one informed agent satisfies this property, as at
each point one can take the signal with the highest posterior value for the informed agent
and recursively remove it. An example for a slightly more interesting domain that satisfies the
strong-high-signal property is any monotonic domain with two agents, each agent i has a binary
signal in {Li, Hi} (where Hi is the higher signal), and for which it holds that v(H1,H2) =
v(H1) ≥ v(H2). The assumption that v(H1,H2) = v(H1) implies that v(H1, L2) = v(H1)
thus the first requirement is satisfied for H1. Now monotonicity implies that v(H1, H2) ≥
v(L1,H2) ≥ v(L1, L2) thus the second requirement is satisfied. To prove that the property
holds we only need to consider the domain restricted to agent 1 receiving L1. But that domain
clearly satisfies the property as it has at most one informed agent (agent 2).
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We next state the main result of this section, its proof appears in Appendix C.1. We show
that for a domain that satisfies the strong-high-signal property, the profile of strategies in which
each agent bids the posterior given his signal and the worst feasible combination of signals of
the others, is indeed a strong TRE in pure strategies, and the unique TRE. Observation 13
shows that a strong TRE in pure strategies might not exist if the property is violated.

Theorem 11. Consider a common value domain with n agents, each with finitely many sig-
nals, in which the strong-high-signal property holds. Let µ be the profile of strategies in which
agent i with signal si ∈ Si bids µi(si) = min{v(si, s−i)|s−i ∈ S−i and (si, s−i) is feasible}.
Then µ is the unique TRE and moreover, µ is a strong TRE in pure strategies.

This theorem has significant implications regarding the revenue of the seller in the unique
TRE. In this TRE each bidder bids the posterior given his signal and the worst feasible
combination of signals of the others, which can be much lower than the interim valuation
given only the bidder’s signal. For the special case of only one informed agent, the revenue
equals to the lowest posterior of the informed (Corollary 6), which can be significantly lower
than the expected value of the item.

The result of Theorem 11 clearly applies to the case that only one agent is informed, in
this case µ is a strong TRE in pure strategies that is exactly the one described by Theorem 5.
The theorem also applies to the case of monotonic domain with two agents with binary signals
when v(H1,H2) = v(H1) ≥ v(H2). In this case the profile µ is the profile in which agent 1
getting signal H1 bids v(H1), agent 2 getting signal H2 bids v(L1,H2), and each agent bids
v(L1, L2) given his low signal.

Another family of domains for which Theorem 11 applies is the family of connected domains
which are studied by Einy et al. (2002). Connected domains are defined as follows.

Definition 12. A domain is called a connected domain if the following conditions hold. Each
agent i has a partition Πi of the set of states Ω, and his signal is the element of the partition
that include the realized state. The information partition Πi of bidder i is connected (with
respect to the common value v) if every πi ∈ Πi has the property that, when ω1, ω2 ∈ πi and
v(ω1) ≤ v(ω2) then every ω ∈ Ω with v(ω1) ≤ v(ω) ≤ v(ω2) is necessarily in πi. A common-
value domain is connected (with respect to the common value) if the information partition Πi

is connected for every agent i.

In Appendix C.2 we show that any connected domain satisfies the strong-high-signal prop-
erty, thus Theorem 11 applies to any connected domain. Moreover, we observe that for con-
nected domains the profile µ is exactly the profile of strategies pointed out by Einy et al.
(2002) (the single ”sophisticated equilibrium” that Pareto-dominates the rest in terms of bid-
ders resulting utilities). We note that while connected domains allow multiple agents to have
multiple signals each, there are some simple domains, even ones with a single informed bidder,
that are not connected. In Appendix C.2 we also present a simple domain that satisfies the
strong-high-signal property (thus Theorem 11 applies) but is not connected, and also is not
equivalent to any connect domain (thus the result of Einy et al. does not apply).

The strong-high-signal property

The following observation follows form the uniqueness result presented in Theorem 18 for any
domain covered by that theorem. It implies that if the strong-high-signal property if violated,
the result presented in Theorem 11 might not hold.

19



Observation 13. There exists a domain for which the strong-high-signal property does not
hold, and for which there does not exist any strong TRE in pure strategies.

5.2.1 Generalizing ”Lemons and Peaches” to n agents

In this section we generalize the result about a single agent with either lemons or peaches
information, to many agents each getting a signal for a finite (non necessarily binary) set.

Consider a monotonic common value domain with items of value in [0, 1] and expected value
of E[v(ω)]. Assume that there are n agents, each receiving a signal si from an ordered, finite
set of signals Si. Let Li and Hi denote the lowest and highest signals of agent i, respectively.
Assume that the domain satisfies the conditions of Theorem 11, and consider the strong TRE
µ as defined by the theorem. We next discuss the revenue of the seller in that strong TRE µ,
for various information structures that generalizes the case that only one agent is informed,
and is slightly informed about lemons or about peaches.

We first define what it means for an agent to be slightly informed about peaches. Agent
i has some information about peaches if his non-peaches signal Li is the common signal, has
probability close to 1 (alternatively, the probability that the signal is realized to any of the
other signals, the various peaches signals, is low, smaller than ϵi).

Definition 14. Fix any ϵi ≥ 0. We say that agent i is ϵi-informed about peaches, if Pr[si ̸=
Li] =

∑
si∈Si\{Li} Pr[si] ≤ ϵi.

We first show that if all n agents are each slightly informed about peaches, then the revenue
of the SPA in the unique TRE is high (close to the social welfare, which equals to E[v(ω)]).

Proposition 15. Fix any non-negative constants ϵ1, ϵ2, . . . , ϵn. Consider any monotonic do-
main that satisfies the strong-high-signal property and for which it also holds that every agent
i ∈ {1, 2, . . . , n} is ϵi-informed about peaches. In the unique TRE µ (as defined in Theorem 11)
the revenue of the SPA is at least

E[v(ω)]−
n∑

j=1

ϵj

The proof of this proposition and of Proposition 17 can be found in Appendix C.3.
We next define what it means for agent i to be slightly informed about lemons.

Definition 16. Fix any ϵi > 0. We say that agent i is ϵi-informed about lemons, if

• 0 < Pr[si ̸= Hi] =
∑

si∈Si\{Hi} Pr[si] < ϵi.

• for any si ∈ Si \ {Hi}, if (si, s−i) is feasible then v(si, s−i) < ϵi.

Informally, the first assumption states that all lemon signals (not Hi, the non-lemon signal)
for agent i are rare, the probability that any of them is realized is at most ϵi. The second
assumption states that when i receives any one of his lemons signals it actually indicates that
the value of the item, even in the best case, is very low (at most ϵi).

We next aim to show that when a set of agents are slightly informed about peaches and
the rest of the agents are slightly informed about lemons, revenue will be very low (as long as
some non-degeneracy conditions are satisfied).

Proposition 17. Fix any positive constants ϵ1, ϵ2, . . . , ϵi. Consider any domain that satisfies
the strong-high-signal property and for which it also holds that each agent j ∈ {1, 2, . . . , i−1} is
ϵj-informed about peaches, while agent i is ϵi-informed about lemons. Assume that the domain
is non degenerated in the following sense:
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• For any j < i the signal Hi does not imply Lj (alternatively, (Lj , si, s−{i,j}) is feasible
for some si ̸= Hi and some s−{i,j}).

• For any j > i and any signal sj ∈ Sj, the signal Hi does not imply sj (alternatively,
(sj , si, s−{i,j}) is feasible for some si ̸= Hi and some s−{i,j}).

Then the revenue of the SPA in the unique TRE µ (as defined in Theorem 11), is at most

ϵi +

i∑
j=1

ϵj

An example for a domain for which Proposition 17 applies is any connected domain satisfy-
ing the following conditions. Items have uniform value in [0, 1]. Each agent j has an increasing

list of kj + 1 thresholds satisfying 0 = t0j < t1j < t3j < . . . < t
kj
j = 1, and his signal indi-

cates the interval between two consecutive thresholds of his that includes the realized value.
Fix i ≤ n. The condition that every agent j < i is ϵj-informed about peaches is satisfied
when t1j > 1 − ϵj . The condition that agent i is ϵi-informed about lemons is satisfied when

tki−1
i < ϵi. Every agent j > i is also ϵi-informed about lemons when tki−1

i > t
kj−1
j . For such

an agent j, the value conditional on his best signal is not as high as the value conditional on
i’s best signal (this captures the second non-degeneracy condition). It is easy to verify that
the first non-degeneracy condition is satisfied for any such a domain. Proposition 17 states
that the revenue is at most ϵi +

∑i
j=1 ϵj . The seller’s revenue is low even though with high

probability (at least 1−
∑i

j=1 ϵj) agent i gets signal Hi and is bidding relatively high (at least
(1 − ϵi − maxj<i ϵj)/2). The revenue is low as all other agents are bidding low (at most ϵi),
thus the second highest bid is low.

5.3 Two Agents, Each with a Binary Signal

When more than one agent is partially informed about the state of the world and the conditions
that ensure existence of a strong TRE are not satisfied, the situation becomes much more
complicated. In this section we present a complete analysis for any monotonic domain with
two bidders, each getting a binary signal.

Let {L1, H1} be the signals of agent 1, and {L2,H2} be the signals of agent 2. Assume
that the domain is monotonic and that the order of signals is H1 > L1 and H2 > L2. With
some abuse of notation for any agent i with will use Hi to also denote the event that the
signal of agent i was realized to Hi, and similarly for Li. Assume without loss of gen-
erality that v(H1, H2) = 1 and that v(L1, L2) = 0. In monotonic domain it holds that
v(L1,H2), v(H1, L2) ∈ [0, 1].

A domain with two bidders, each with a binary signal is non-degenerated if Pr[H1,H2] > 0,
and for any bidder i ∈ {1, 2} it holds that 1 > Pr[Hi] > 0. The main result in this section is
for non-degenerated monotonic domains when none of the bidders is complete informed, yet
for completeness we first discuss the rather simple cases when the domain is degenerated or at
least one bidder is completely informed.

If for some bidder i ∈ {1, 2} it holds that Pr[Hi] = 0 or Pr[Hi] = 1 then that bidder
is completely uninformed, and the results of Section 5.1 apply (unless both are completely
uninformed, in that case both have a dominant strategy to bid the unconditional expectation).
We are left to consider domains for which for any bidder i ∈ {1, 2} it holds that 1 > Pr[Hi] > 0.
A special case covered by Theorem 11 is the case when v(H1,H2) = v(H1) ≥ v(H2), that is,
agent 1 knows the value exactly when getting H1. In this case the unique TRE is the profile
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in which agent 1 getting signal H1 bids v(H1), agent 2 getting signal H2 bids v(L1,H2), and
each agent bids v(L1, L2) given his low signal.

After handling all the trivial cases above, we can finally focus on the non-degenerated
case when v(H1,H2) > max{v(H1), v(H2)}. Observe that these conditions are equivalent to
1 > Pr[H1, L2](1 − v(H1, L2)) > 0 and 1 > Pr[L1,H2](1 − v(L1, H2)) > 0. When these two
conditions hold we can assume without loss of generality that 0 < Pr[H1, L2](1−v(H1, L2)) ≤
Pr[L1,H2](1− v(L1,H2)) < 1 (otherwise we exchange the agents’ names).

Theorem 18. Consider any non-degenerated monotonic domain with two bidders, each with
a binary signal. Assume that 0 < Pr[H1, L2](1− v(H1, L2)) ≤ Pr[L1,H2](1− v(L1,H2)) < 1.

The unique TRE of the SPA game is the profile of strategies µ in which:

• Every bidder i bids v(L1, L2) = 0 when getting signal Li.

• Bidder 1 with signal H1 always bids v(H1, H2) = 1.

• Bidder 2 with signal H2

– bids v(H1,H2) = 1 with probability Pr[H1,L2]
Pr[L1,H2]

· 1−v(H1,L2)
1−v(L1,H2)

, and

– bids v(L1, H2) with the remaining probability.

Before discussing the theorem we consider the implications of this result on the revenue
of the seller. As an immediate corollary we get a prediction about the revenue in the unique
TRE of this game. No revenue is generated unless both bidders receive a high signal, and even
in this case the revenue is only some fraction of the value created.

Corollary 19. In any monotonic domain with 2 agents and binary-signal each which satisfies
0 < Pr[H1, L2](1 − v(H1, L2)) ≤ Pr[L1,H2](1 − v(L1,H2)) < 1, the revenue of the seller in
the unique TRE of the SPA game is only

Pr[H1,H2] ·
(
v(L1,H2) + (1− v(L1,H2)) ·

Pr[H1, L2]

Pr[L1,H2]
· 1− v(H1, L2)

1− v(L1,H2)

)
Note that this can be an arbitrarily small fraction of the welfare, that is the case for example

when v(H1, L2) = 0 and Pr[H1, L2] tends to 0.
We next consider the intuition behind the result. We have assumed that Pr[H1, L2](1 −

v(H1, L2)) ≤ Pr[L1,H2](1−v(L1,H2)), how should one interpret this assumption? For bidder
i ∈ {1, 2} the expression Pr[Hi, Lj ](1− v(Hi, Lj)) = Pr[Hi, Lj ](v(H1,H2)− v(Hi, Lj)) is the
loss that bidder i has when he gets signal Hi, bids v(H1,H2) = 1 and pays his bid. The smaller
this loss is, the ”stronger” the bidder is. The bidder with the (weakly) smaller loss, bidder 1,
is the (weakly) better informed bidder.

The theorem shows that in the unique TRE the weakly better informed agent (agent 1)
is bidding 0 when getting the low signal, and bidding v(H1,H2) = 1, as if both got their
high signals, when he gets his high signal. The weakly worse informed agent (agent 2) is also
bidding 0 when he gets his low signal, but he does not always bid v(H1,H2) = 1 when he gets
the high signal H2. When he gets the high signal H2 he bids v(H1,H2) = 1 with probability
Pr[H1,L2]
Pr[L1,H2]

· 1−v(H1,L2)
1−v(L1,H2)

, and he bids v(L1,H2) with the remaining probability. The ratio in which

agent 2 is bidding v(H1,H2) = 1 is exactly the ratio between the strength of the two bidders.
This ratio is 1 when the agents are ex ante symmetric, and becomes smaller and smaller as
the asymmetry grows.

A particulary interesting special case is the ax ante symmetric case, v1 = v2 < 1 and
Pr[H1, L2] = Pr[L1,H2] > 0. In this case both agents are ax ante symmetric and not com-
pletely informed about the value. In this case in the unique TRE both agents are always
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bidding 1 (a pure strategy) when getting the high signal, and the entire surplus when both get
high signals is extracted as revenue by the seller (yet the revenue is 0 if exactly one agent gets
the high signal, although the value might be positive, thus not all surplus is extracted). Thus
when bidders are symmetric ex ante, our TRE refinement selects the symmetric equilibrium
studied by Milgrom and Weber (1982a) and others. Hence, Milgrom and Weber’s (1982a)
result ranking second-price auction revenue higher than first-price auction revenue applies.
(Milgrom and Weber’s (1982a) result is proved for continuous signals, but the authors point
out in footnote 15 that it is true more generally.) Comparing this to the result in Section 5.1
that first-price auction revenue is always higher than second-price auction revenue when only
one bidder is informed illustrates that the revenue ranking depends on the level of ex ante
asymmetry. While second-price auctions dominate under symmetric conditions, first-price
auctions generate more revenue in sufficiently asymmetric settings.

Given ex ante asymmetry, the unique TRE identified by Theorem 18 is in mixed strategies
(agent 2 is mixing between bidding 0 and bidding 1, both with positive probability) and we
conclude that there is no pure TRE. Moreover, it is easy to see that the unique TRE is not a
strong TRE, as one can observe that in any (ϵ, R)-tremble of the game agent 2 has negative
utility by bidding 1, while bidding 0 ensures 0 utility.

We next present a sketch of the proof of Theorem 18, for the complete proof see Ap-
pendix D.2.

Sketch of the Proof of Theorem 18

We next present a sketch of the proof of Theorem 18.
Proof sketch: Fix any standard distribution R and ϵ > 0 and let λ(ϵ, R) be the (ϵ, R)-

tremble of the game. In the (ϵ, R)-tremble of the game the random bidder arrives to the
auction with small probability ϵ > 0 and is bidding according to a standard distribution R (its
support is [0, 1]).

Assume that agent i with signal Hi is bidding according to distribution Gi, let gi denote
the density of Gi whenever Gi is differentiable (note that since Gi is non-decreasing it is
differentiable almost everywhere, see, for example, Theorem 31.2 in Billingsley (1995)). We
note that this is an abuse of notation as Gi and gi both depend on R and ϵ.

To prove the theorem we show that for any standard distribution R and small enough ϵ
a mixed NE η in each of the games λ(ϵ, R) exists (Lemma 69). We then show that the limit
of any sequence of NE strategies in the games λ(ϵ, R) must converges to µ as ϵ goes to zero.
Combined with the existence of a mixed NE in each of the games λ(ϵ, R) this show that µ is
the limit of the some sequence of NE strategies in the games λ(ϵ, R), thus a TRE. As the limit
of any sequence of NE strategies in the games λ(ϵ, R) must converges to µ as ϵ goes to zero, µ
is the unique TRE.

We next present the high level arguments that prove the uniqueness of µ. Fix a standard
distribution R and ϵ > 0 and consider the game λ(ϵ, R). A NE η of the (ϵ, R)-tremble of the
game λ consists of four bid distributions, one for each bidder for each signal he may receive.
Thus η = (G1, G

L
1 , G2, G

L
2 ) where Gi and GL

i are the bid distributions when i ∈ {1, 2} gets the
signals Hi and Li, respectively. We first observe that if bidders never submit dominated bids,
bidder i ∈ {1, 2} that receives signal Li must bid v(L1, L2) = 0. We next focus on the bids
when bidder i gets the high signal Hi. To simplify the notation we denote v1 = v(H1, L2) and
v2 = v(L1,H2).

For a given η we define the following notations. Let bi = inf{b : Gi(b) > 0} and b̄i =
inf{x : Gi(x) = 1} for agent i ∈ {1, 2}. Define b = min{b1, b2}, bmin = max{b1, b2} and
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bmax = max{b̄i, b̄j}. Note that when agent never submit dominated bids by definition it holds
that 1 ≥ bmax ≥ bmin ≥ b ≥ 0.

We start with some necessary conditions that any mix NE η in a fixed λ(ϵ, R) must satisfy.

Lemma 20. At η the following must hold.

1. For some j ∈ {1, 2} it holds that b = bj = vj and bmin = bi ≥ vi for i ̸= j.

2. Both G1 and G2 are continuous and strictly increasing on (bmin, bmax). It holds that
G1(bmax) = G2(bmax) = 1. Moreover, if bmax > bmin then bmax = b̄1 = b̄2.

3. For every bidder i ∈ {1, 2} it holds that Gi(b) = 0 for every b ∈ [0, b), and Gi(b) = Gi(b)
for every b ∈ [b, bmin).

4. If bmin = b then b = max{v1, v2}. Additionally, if v1 = v2 then bmin = b = v1 = v2 and
no bidder has any atom anywhere. If vi > vj then bmin = b = vi and i has an atom at b,
while j has no atoms.

5. If bmin > b then for one agent, say j, it holds that b = bj = vj. Bidder j has an atom at
vj and bidder i ̸= j has an atom at

bmin = b∗i (Gj(vj)) =
Pr[Hj |Hi]Gj(vj) + vi Pr[Lj |Hi]

Pr[Hj |Hi]Gj(vj) + Pr[Lj |Hi]
> max{vi, vj} (2)

and bmin satisfies bmin ≤ v(Hi), and bmin = v(Hi) if and only if Gj(vj) = 1.

It also holds that either

• bmax = bmin, in this case Gi(bmin) = 1, Gj(vj) = 1 (j always bids vj, i always bids
bmin). Or

• bmax > bmin, Gi(bmin) > 0 and

Gi(bmin) =
Pr [Li|Hj ]

Pr [Hi|Hj ]

∫ bmin

vj
(x− vj) r̂ (x) dx

R̂ (bmin) (1− bmin)
(3)

Given the above necessary conditions we use the FOC on the bids in (bmin, bmax) to present
a complete characterization of NE in the tremble of the game when ϵ is small.

Lemma 21. If ϵ is small enough at η the following must hold. There must exist bmin and
bmax such that 1 > bmax > bmin ≥ 0 and:

• The two bidders are symmetric (Pr[H1, L2] = Pr[L1,H2] and v1 = v2) if and only if
bmin = b = v1 = v2 and G1(bmin) = G2(bmin) = 0 (no atoms).

• If Pr[H1, L2](1−v1) = Pr[L1,H2](1−v2) but the bidders are not symmetric, and it holds
that v1 > v2 and Pr[H1, L2] < Pr[L1, H2], then bidder 1 has an atom at bmin = b1 of
size G1(bmin) > 0, and bidder 2 has an atom at v2 = b2 = b < bmin of size G2(v2) > 0.
It holds that

bmin = b∗1(G2(v2)) =
Pr[H2|H1]G2(v2) + v1 Pr[L2|H1]

Pr[H2|H1]G2(v2) + Pr[L2|H1]
> max{v1, v2} (4)

G1(bmin) =
Pr[L1|H2]

Pr[H1|H2]

∫ bmin

v2
(x− v2) r̂ (x) dx

R̂ (bmin) (1− bmin)
(5)

G2(v2) =
R̂(bmax)

R̂(bmin)
−

(
R̂(bmax)

R̂(bmin)
−G1(bmin)

)
· Pr[H1, L2]

Pr[L1,H2]
·
∫ bmax

bmin

x−v1
1−x r(x)dx∫ bmax

bmin

x−v2
1−x r(x)dx

(6)
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• Assume Pr[H1, L2](1− v1) < Pr[L1,H2](1− v2). Then either

– bmin = b, bidder 1 has no atom (G1(bmin) = 0) and bidder 2 has an atom at b =
b2 = v2 ≥ v1 of size G2(v2) > 0 specified by Equation (6), or

– bmin > b, bidder 1 has an atom at bmin = b1 specified by Equation (4), its size
G1(bmin) > 0 is specified by Equation (5), and bidder 2 has an atom at v2 = b2 =
b < bmin of size G2(v2) > 0 specified by Equation (6).

Moreover, it always hold that

G1(b) =


0 if 0 ≤ b < bmin;
Pr[L1|H2]
Pr[H1|H2]

· ϵ
R̂(b)

·
∫ b
bmin

x−v2
1−x r(x)dx+G1(bmin) · R̂(bmin)

R̂(b)
if bmin ≤ b ≤ bmax;

1 if bmax < b ≤ 1.

and

G2(b) =


0 if 0 ≤ b < v2;
G2(v2) if v2 ≤ b < bmin;
Pr[L2|H1]
Pr[H2|H1]

· ϵ
R̂(b)

∫ b
bmin

x−v1
1−x · r(x)dx+G2(v2) · R̂(bmin)

R̂(b)
if bmin ≤ b ≤ bmax;

1 if bmax < b ≤ 1.

From this we derive that G2(v2) approaches 1− Pr[H1,L2]
Pr[L1,H2]

· 1−v(H1,L2)
1−v(L1,H2)

when ϵ goes to 0, and

that G1(bmin) tends to 0. Moreover, we derive that for any large enough bid b ∈ (0, 1) both
G1(b) and G2(b)−G2(v2) are bounded from above, by some function that tends to 0 as ϵ goes
to 0. We conclude that the limit of the sequence of these mixed NE is exactly µ, as claimed
in the theorem statement.

6 Discussion: Mechanism Design

The previous section shows that in the common value model the revenue of the SPA might be
significantly smaller than the welfare. In the section we consider the problem of maximizing
the revenue the seller receives by selling the item.

In the common value model there is a trivial mechanism that is ex-ante individually rational
and maximizes the welfare as well as the revenue: we offer the first buyer a take-it-or-leave-it
offer to buy the item for the price equal to the unconditional expectation of the item.

Yet this trivial mechanism does not extend to the case that there is some private component
to the value of the item. For example, in the domain of online advertisement it is reasonable to
assume that an informed buyer (advertiser) that has a high quality signal (cookie) on the user
machine can tailor a specific advertisement to the specific user, generating some additional
value over the common value created by placing a generic advertisement that is not user
specific.

This motivates us to consider the following generalization of the model with a single in-
formed bidder, in which the informed bidder is also advantaged. In this model there are n
potential buyers. One random buyer i is informed about the state of the world (gets a signal
si ∈ Si), while the others are uninformed. Assume that the signals are sorted by the expected
common value to an uninformed bidder. Assume that for the maximal signal smax the value
for the informed bidder is larger than the common value by some B > 0 (this is his Bonus).
Let smin denote the lowest signal.
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Let E be the unconditional expected value of the item to an uninformed bidder. Let pmax

be the probability of the signal to be realized to smax, and let L be the expected value of
the item conditional on the signal being smin. The expected social welfare when the realized
informed bidder always gets the item is E+pmaxB. In this model selling the item ax-ante to a
fixed agent at his expected value will generate revenue of E+ pmaxB

n , which can be significantly
lower than the maximal social welfare.

A mechanism that gets revenue that equals the maximal welfare must allocate the item
efficiently. Running the second price auction in this scenario will indeed maximize the social
welfare. Yet, one can easily extend Theorem 5 to this model and see that for any realized
informed bidder the unique TRE in this model is exactly the same as the one described by the
theorem (with the adjustment that the informed bidder with signal smax bids his value that
includes the bonus).

Yet, we can build a mechanism that is ex-ante individually rational, is socially efficient
and extracts (almost) the entire welfare as revenue. All this in the unique outcome of the
mechanism under our refinement as we explain below.

The mechanism has two stages. The mechanism first presents each bidder with a take-it-
or-leave-it offer to buy the right to bid in a second price auction (SPA), and then runs a SPA
with the bids of every agent that has bought the right to enter the SPA. Theorem 5 (and its
extension to this model) predicts a unique TRE. The payment in the SPA is always going to
be L. The take-it-or-leave-it price is set to be slightly less than the expected utility that the
agent gets by participating in the SPA, assuming all agents participate in the SPA and bid
according to the unique TRE in that game. The entry price is set to be slightly less than
(E + pmaxB − L)/n.

As TRE provides a unique prediction to the outcome of the second stage, agents have a
unique rational decision when facing the entry decision, and they choose to pay the entry
fee. Thus, in the unique subgame-perfect-equilibrium that uses the TRE refinement, agents
will all choose to enter (pay the entry fee), and allocation will be socially efficient in the
SPA. The utility of each agent is essentially 0 (his gain goes to 0 as the entry price tends to
(E + pmaxB −L)/n). Although the revenue in the SPA is low, the entire utility an agent gets
in this auction in expectation is essentially charged as entry fee. The revenue from entry would
be n(E + pmaxB − L)/n = E + pmaxB − L, while the revenue in the SPA would be L, and
the total revenue is exactly the social welfare E + pmaxB. Thus the total revenue essentially
equals to the social welfare.

The above mechanism can only be used when agent can reasonably predict the outcome
of the SPA that takes place at the second stage, and it can be extended to any other scenario
in which a uniqueness result can be proven about the outcome of the SPA game under some
solution concept.

Interim Individually Rational Mechanism

We note that the above mechanism is not interim individually rational. We next consider the
problem of designing an interim individually rational mechanism for this setting, when the
informed player has only two signals smin and smax. The mechanism we design is dominant
strategy incentive compatible. Let L be the value conditioned on smin and P +B be the value
of the advantaged bidder conditioned on smax.

While our model is not one of independent private value, it is sufficiently close that it seems
useful to consider the optimal auction when each players value is sampled independently and
identically from the following distribution: the value is L with probability 1− 1/n, and P +B
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with probability 1/n. For this instance, Myerson’s optimal auction is to have some reserve
price r and some floor price f . If some bidders bid at least r then we run a second price
auction with reserve r, otherwise we randomly choose a winner among those who bid at least
f and charge the winner f .

In our model we can indeed set f = L and r = P + B − z, where z = (P + B − f)/n is
the expected utility of agent i bidding f given signal smax (conditioned on every other agent
j bidding f).

The revenue obtained is (1− pmax)f + pmaxr. Note that this is at least (1− 1/n)−fraction
of the social welfare which is (1− pmax)L+ pmax(P +B).
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A Multiplicity of Equilibria under Perfect Equilib-

rium

Considering refinements for our game, one natural candidate is Selten’s (1975) Tremble Hand
Perfect Equilibrium (PE). In this section we show that in our common value SPA with asym-
metric information, PE does not provide the natural unique prediction one would expect in
the most basic setting with two agents: one informed agent with a binary signal, and one
uninformed agent. Note that in this setting there is a unique TRE in undominated strategies,
and it is a strong TRE in pure strategies. In this natural equilibrium, the informed bids his
posterior value while the uninformed bids to match the lowest possible bid of the informed.

Formally, consider the setting with two agents, one informed agent with a binary signal,
and one uninformed agent. Assume that the common value is 0 conditional on the informed
low signal, and 1 conditional on his high signal. Each signal is realized with probability 1/2.
Each agent’s action space (bid space) is the set [0, 1] (an infinite set). In the unique TRE in
undominated strategies the informed bids 0 on the low signal and 1 on the high signal, while
the uninformed always bids 0.

We note that PE is usually defined for finite normal form games while our game is a
game of incomplete information with infinite strategy spaces (finite type spaces but infinite
action spaces). The adaptation of the solution concept to incomplete information is relatively
straightforward. The move to infinite games is more delicate and we discuss two adaptations
that were suggested in Simon and Stinchcombe (1995) (extending these adaptations to the
incomplete information setting) and show that neither provide a unique prediction.

We start by presenting Simon and Stinchcombe’s (1995) reformulation Selten’s (1975)
Tremble Hand Perfect Equilibrium (PE) for finite (normal form) games with complete in-
formation. Let N be a finite set of agents. For agent i ∈ N let Ai be a finite set of pure
actions, and let A = ×i∈NAi. Let ∆i (resp. ∆

fs
i ) be the set of probability distributions (resp.

full support probability distributions) on Ai. Let ∆ = ×i∈N∆i and ∆fs = ×i∈N∆fs
i . For

µ ∈ ∆, let Bri(µ−i) denote i’s set of mixed-strategy best-responses to the vector of strategies
of the others µ−i.

Definition 22. ( Selten (1975)) Consider a finite game. Fix ϵ > 0. A vector µϵ = (µϵ
i)i∈N in

∆fs is an ϵ-Perfect Equilibrium if for each agent i ∈ N it holds that8

di(µ
ϵ
i , Bri(µ

ϵ
−i)) < ϵ

where di(µi, νi) =
∑

ai∈Ai
|µi(ai)− νi(ai)|.

A vector µ = (µi)i∈N in ∆ is a Perfect Equilibrium if there exists an infinite sequence of
positive numbers ϵ1, ϵ2, . . . which converges to 0 such that (1) for each j, µϵj is an ϵj-Perfect
Equilibrium and (2) for every i ∈ N it holds that µ

ϵj
i converges in distribution to µi when j

goes to infinity.

8Informally, his strategy is at most ϵ away from being a best response.
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Loosely speaking, for a finite (normal form) game a Perfect Equilibrium is a limit, as ϵ
goes to 0, of a sequence of full support strategy vectors, each element of such a vector is ϵ
close to being a best response to the other agent’s strategies in that element of the sequence
of strategy vectors.

We next discuss two adaptations, suggested in (Simon and Stinchcombe 1995), of PE to
infinite games. The first is called ”limit-of-finite” which considers the limit of a sequence of
strategies in a sequence of finite games, in each game only a finite subset of actions is allowed
and every player’s strategy has full support. The distance from every action to the set of
allowed actions goes to zero and the sequence of strategies converges to the ”limit-of-finite”.
The second is called strong perfect equilibrium which looks directly at the infinite game and
requires strictly positive mass to every nonempty open subset and the sequence of strategies
converges to the strong perfect equilibrium.

Next, we adjust these concepts to games with incomplete information, finite types spaces
but infinite action spaces, and show that neither predict a unique equilibrium in the simple
setting discussed above.9

A.1 Limit of Finite Games

We next define the notion of limit-of-finite Perfect Equilibrium for games with incomplete
information, finite types spaces but infinite action spaces. The approach is to define perfect
equilibrium as the limit of ϵ-perfect equilibria for sequences of successively larger (more refined)
finite games.

Let N be a finite set of agents. For agent i ∈ N let Ti be a finite set of types for agent i.
Assume that the agents have a common prior over types. Let Ai be a compact (infinite) set
of actions. Let Bi be a nonempty finite subset of Ai, and let B = ×i∈NBi. For such a Bi, let
∆i(Bi) (resp. ∆fs

i (Bi)) be the set of probability distributions (resp. full support probability
distributions) on Bi.

A Bi-supported mixed strategy µi(Bi) for agent i is a mapping from his type ti to an
element of ∆i(Bi). For a profile of mixed strategies µ(B) = (µi(Bi))i∈N , agent i and type
ti ∈ Ti, let Brtii (Bi, µ−i) denote i’s set of Bi-supported mixed-strategy best-responses to the
vector of strategies of the others µ−i(B−i) (with respect to the given prior and the utility
functions) when his type is ti.

Definition 23. Consider a game with incomplete information, finite types spaces but infinite
action spaces. Fix ϵ > 0 and δ > 0. For each agent i ∈ N let Bδ

i denote a finite subset of

Ai within (distance) δ of Ai. A vector µ(ϵ,δ) = (µ
(ϵ,δ)
i )i∈N such that for each i and ti ∈ Ti it

holds that µ
(ϵ,δ)
i (ti) ∈ ∆fs

i (Bδ
i ) is an (ϵ, δ)-Perfect Equilibrium if for each agent i ∈ N and type

ti ∈ Ti it holds that
dδi (µ

(ϵ,δ)
i (ti), Brtii (B

δ
i , µ

(ϵ,δ)
−i )) < ϵ

where dδi (µi, νi) =
∑

ai∈Bδ
i
|µi(ai)− νi(ai)|.

9We note that with tremble that is independent of the signal of the informed agent, such multiplicity of equilibria
result cannot be proven. Yet, the unique equlibirum that is the result of any such tremble is not the one we would
expect. In the same setting of an item of a common value 0 or 1, with equal probability, and two agents, one perfectly
informed and one uninformed, we observe the following. For any tremble of the informed that is independent of the
informed agent’s signal, the best response of the uninformed agent is to bid the unconditional expectation (half)
as this is the value of the item conditional on winning in the case the informed trembles (and if he does not, the
uninformed agent just pays the exact value of the item if winning, as the price is set by the informed agent).
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A vector µ = (µi)i∈N is a limit-of-finite Perfect Equilibrium if there exists two infinite
sequences of positive numbers ϵ1, ϵ2, . . . and δ1, δ2, . . . both converging to 0 such that (1) for
each j, µ(ϵj ,δj) is an (ϵj , δj)-Perfect Equilibrium and (2) for every i ∈ N and ti ∈ Ti it holds

that µ
(ϵj ,δj)
i (ti) converges in distribution to µi(ti) when j goes to infinity.

We next show that there are multiple strong PE in the infinite game with one informed
agent with a binary signal and one uninformed agent.

Proposition 24. Consider the infinite game with one informed agent with a binary signal and
one uninformed agent as defined above. For any y ∈ (0, 1), the following is a (pure strategy)
limit-of-finite perfect equilibrium in this infinite game: The informed bids according to his
dominant strategy (his posterior: 0 on low signal, 1 on high signal), while the uninformed
always bids y.

Proof. Consider the following natural way to make our game finite by discretizing the bids:
fix a large natural number m and only allow bids of the form k/m for k ∈ {0, 1, . . . ,m}. Note
that as m grows to infinity the distance between any bid y and such a set of bids decreases to
zero.

Fix ϵ > 0 that is small enough. Fix m that is large enough and fix k0 ∈ {1, . . . ,m − 1}
such that (k0 + 1)/m has minimal distance to y out of all bids of form k/m. To prove the
claim we present a profile of strategies with full support over the discrete set of bids that is
close to the profile in which the informed bids according to his dominant strategy while the
uninformed always bids y. The strategies that we build have an atom of size at least 1− ϵ on
the specified bids. For the informed with low signal, the probability on every bid other than 0
is proportional to ϵ2, while for the informed with high signal the probability of every bid other
than 1 is proportional to ϵ3, except for k0/m for which he assigns probability of about ϵ. This
motivates the uninformed to bid (k0 + 1)/m, right above this ”gift” given by the informed
bidder with high signal, and we show that such a bid is his best response. We next define the
strategies formally.

The informed agent with low signal is bidding 0 with probability 1 − ϵ2, and for any k ∈
{1, . . . ,m} he bids k/m with probability ϵ2/m. The informed agent with high signal is bidding
1 with probability 1− ϵ. He bids k0/m with probability ϵ− ϵ3, and for any k ∈ {0, . . . ,m− 1}
such that k ̸= k0, he bids k/m with probability ϵ3/(m− 1).

The uninformed agent is bidding (k0 + 1)/m with probability 1 − ϵ, and for any k ∈
{0, . . . ,m} such that k ̸= k0 + 1 he bids k/m with probability ϵ/m.

The informed agent has a dominant strategy to bid his posterior value, and his strategy is
clearly ϵ close to that strategy. It remains to show that the strategy of the uninformed is ϵ
close to his best response (to the strategy of the informed). We claim that if ϵ is small enough
the best response of the uninformed to the strategy of the informed is to bid (k0 + 1)/m with
probability 1. Indeed, consider any bid j/m:

• If j = k0+1 then the informed has positive utility as when the value is high he has utility
of at least 1/m with probability at least (ϵ − ϵ3). When the value is low his loss is at
most (k0 + 1)/m and this happens only with probability at most ϵ2. For small enough ϵ
the loss will be smaller than the gain.

• If j = 0 then the uninformed has utility 0.

• If 0 < j < k0 then the uninformed wins item of value 1 with probability at most jϵ3/(2 ·
(m − 1)) (as the quality is high with probability 1/2 and in such case he only wins if
the informed is bidding below him), thus his expected value is at most jϵ3/(2 · (m− 1)).
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On the other hand his expected payment is at least (1/4) · (ϵ2/m) · (1/m) (in case it is
low value he pays at least 1/m with probability (1/2) · (ϵ2/m) - the probability of the
other bidding 1/m and tie is broken in favor of him). Thus his expected utility is at most
jϵ3/(2 · (m− 1))− ϵ2/4m2 which is negative for small enough ϵ > 0.

• If j = k0 then we claim that this bid is dominated by bidding (k0+1)/m. Due to random
tie breaking the bid of k0/m only wins half of the times when the value is high and the
informed is also bidding k0/m. By increasing his bid to (k0 + 1)/m the uninformed will
always win in this case. The affect of this change is linear in ϵ. The negative effect due
to winning more when the informed gets the low signal is only of the order of ϵ2, thus for
small enough ϵ it will be smaller.

• If j > k0 + 1 then we claim that this bid is dominated by bidding (j − 1)/m. This
follow since the probability of winning high value items decreases by order of ϵ3, while
the probability of not paying for low value items decreases by order of ϵ2.

Note that the proof of the proposition shows that PE does not provide a unique prediction
even if we consider finite discrete action spaces. This seems to indicate that the problem with
PE (with respect to our setting) is deeper than just its extension to games with infinite action
spaces.

A.2 Strong Perfect Equilibrium

We next define the notion of strong Perfect Equilibrium for games with incomplete information,
finite types spaces but infinite action spaces. Let N be a finite set of agents. For agent i ∈ N
let Ti be a finite set of types for agent i. Assume that the agents have a common prior over
types. Let Ai be a compact (infinite) set of actions. Let ∆i be the set of probability measures

on Ai, while ∆fs
i be the set of probability measures on Ai assigning strictly positive mass to

every nonempty open subset of Ai. We measure the distance between two measures µ, ν on
an infinite actions space using the following metric:

ρ(µ, ν) = sup{|µ(B)− ν(B)| : B measurable}

A mixed strategy µi for agent i is a mapping from his type ti ∈ Ti to an element of ∆i.
For a profile of mixed strategies µ = (µi)i∈N agent i and type ti ∈ Ti, let Brtii (µ−i) denote i’s
set of mixed-strategy best-responses to the vector of strategies of the others µ−i (with respect
to the given prior and the utility functions) when his type is ti.

Definition 25. Consider a game with incomplete information, finite types spaces but infinite
action spaces. Fix ϵ > 0. A vector µϵ = (µϵ

i)i∈N such that for each i and ti ∈ Ti it holds that

µi(ti) ∈ ∆fs
i is a strong ϵ-Perfect Equilibrium if for each agent i ∈ N and type ti ∈ Ti it holds

that

ρi(µ
ϵ
i(ti), Brtii (µ

ϵ
−i)) < ϵ

A vector µ = (µi)i∈N is a strong Perfect Equilibrium if there exists an infinite sequence
of positive numbers ϵ1, ϵ2, . . . which converges to 0 such that (1) for each j, µϵj is a strong
ϵj-Perfect Equilibrium and (2) for every i ∈ N and ti ∈ Ti it holds that µ

ϵj
i (ti) converges in

distribution to µi(ti) when j goes to infinity.
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We next show that there are multiple strong PE in the infinite game with one informed
agent with a binary signal and one uninformed agent. The construction of the strategies in
the next proposition is very similar to the one in Proposition 24.

Proposition 26. Consider the infinite game with one informed agent with a binary signal and
one uninformed agent as defined above. For any y ∈ (0, 1), the following is a (pure strategy)
strong perfect equilibrium in this infinite game: The informed bids according to his dominant
strategy (his posterior: 0 on low signal, 1 on high signal), while the uninformed always bids y.

Proof. Fix some y ∈ (0, 1). Consider the following tremble for a given ϵ > 0 that is small
enough.

The informed agent with low signal is bidding with CDF FL(x) = 1− ϵ2+xϵ2 for x ∈ [0, 1].
(He bids 0 with probability 1− ϵ2 or uniformly between 0 and 1 with probability ϵ2.)

The informed agent with high signal is bidding with CDF FH : For x ∈ [0, y − ϵ] it holds
that FH(x) = xϵ3. For x ∈ (y− ϵ, y] it holds that FH(x) = FH(y− ϵ)+ (x− y+ ϵ)(1− ϵ2). For
x ∈ (y, 1) it holds that FH(x) = FH(y) + (x − y)ϵ3, and finally, FH(1) = 1. (He bids 1 with
probability 1 − ϵ + ϵ4, uniformly between y − ϵ and y with probability ϵ − ϵ3, and uniformly
over all other bids in [0, 1] with the remaining probability ϵ3(1− ϵ).)

The uninformed agent is bidding with CDF G: For x ∈ [0, y) it holds that G(x) = xϵ. For
x = y it holds that G(x) = G(y) = yϵ+1−ϵ. For x ∈ (y, 1] it holds that G(x) = G(y)+(x−y)ϵ.
(He bids y with probability 1− ϵ or uniformly between 0 and 1 with probability ϵ.)

Clearly these strategies have full support and their limit as ϵ goes to 0 is as required.
The informed agent has a dominant strategy to bid his posterior value, and his strategy is

clearly ϵ close to that strategy. It remains to show that the strategy of the uninformed is ϵ
close to his best response (to the strategy of the informed). We claim that if ϵ is small enough
the best response of the uninformed to the strategy of the informed is to bid y with probability
1. Indeed, consider any bid z:

• If z = 0 then the agent has utility 0.

• If z = y then for small enough ϵ > 0 the agent has positive utility. Indeed his expected
gain from high value items is at least 1/2 ·FH(y)(1−y) = (ϵ− ϵ3(1−y+ ϵ))(1−y)/2 ≥ cϵ
for some constant c > 0 (for small enough ϵ > 0), while his expected loss from low value
items is at most 1/2 · (1− FL(0))y ≤ (y/2)ϵ2 ≤ ϵ2.

• If 0 < z < y then for small enough ϵ > 0 it holds that 0 < z < y − ϵ. Moreover, for
small enough ϵ > 0 the agent has negative utility. Indeed his expected gain is at most
1/2·FH(z)·1 ≤ zϵ3, while his expected loss is at least 1/2·(FL(z)−FL(z/2))·z/2 ≥ z2ϵ2/4.

• If z > y then for small enough ϵ > 0 the agent can increase his utility by bidding y
instead of bidding z. Indeed his expected loss of value by bidding y instead of z is at
most 1/2 · (FH(z)− FH(y)) · 1 = (y− z)ϵ3/2, while his expected reduction in payment is
at least 1/2 · (FL(z)− FL(y)) · y ≥ (z − y)ϵ2/2.

B One Informed Agent

B.1 FPA Revenue in Example 7

Let h = E [v (w) |s] be the informed bidder’s interim value given signal s, and F be its cumu-
lative distribution. Then by Engelbrecht-Wiggans et al.’s (1983) Theorem 4, FPA revenue is
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∫∞
0 (1− F (h))2 dh. First consider the peaches case. Let E− = E[v(w)]−ϵ̂pv(P )

1−ϵ̂p be the posterior

given the signal ∅. As shown in the main text, h ∈ {E−, v (P )} and Pr (h = v (P )) = ϵ̂p.
Therefore

Fpeaches (h) =


0, h < E−

1− ϵ̂p, h ∈ [E−, v (P ))
1, h ≥ v (P )

,

and hence

RFPA
peaches =

(
1− (ϵ̂p)2

) E [v (w)]− ϵ̂pv (P )

1− ϵ̂p
+(ϵ̂p)2 v (P ) = E [v (w)]− ϵ̂p (1− p) (v (P )− v (L)) .

Second, consider the lemons case. Let E+ = E[v(w)]−ϵ̂(1−p)v(L)
1−ϵ̂(1−p) be the posterior given the signal

∅. Now, h ∈ {v (L) , E+} and Pr (h = v (L)) = ϵ̂ (1− p). Therefore

Flemons (h) =


0, h < v (L)

ϵ̂(1− p), h ∈ [v (L) , E+)
1, h ≥ E+

,

and hence

RFPA
lemons = v(L) + (1− ϵ̂ (1− p))2

(
E+ − v(L)

)
= E [v (w)]− ϵ̂p (1− p) (v (P )− v (L)) .

B.2 Bounding the FPA Revenue from Below

In this section we prove Proposition 9.

Proposition 27. Consider any common value domain with items of value in [0, 1] and expected
value of E. Assume that there are n agents, n−1 of them are uninformed. For any information
structure for the informed agent the revenue of the FPA is at least E2.

Proof. Define the informed bidder’s interim expected value conditional on receiving signal s
as h(s) = E[v(ω)|s]. Further, let F be the cumulative distribution function of h. Note that
as items have value in [0, 1], h ∈ [0, 1] and F (1) = 1. According to Theorem 4 of Engelbrecht-
Wiggans et al. (1983), FPA revenue is∫ 1

0
(1− F (h))2dh

and the informed agent expected profit is∫ 1

0
F (h)(1− F (h))dh

Note that the revenue and the informed agent’s profit sum up to E, the expected value of the
item (the social welfare). To bound the revenue from below we bound the informed agent’s
profit from above. We use the following result due to Ahlswede and Daykin (1979).

Lemma 28. If, for 4 non-negative functions g1, g2, g3, g4 mapping R → R, the following holds:

for all x, y ∈ R, g1(max(x, y)) · g2(min(x, y)) ≥ g3(x) · g4(y),
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then it follows that ∫ b

a
g1(t)dt ·

∫ b

a
g2(t)dt ≥

∫ b

a
g3(t)dt

∫ b

a
g4(t)dt.

We apply this lemma by setting

g1(t) = F (t), g2(t) = 1− F (t), g3(t) = F (t) · (1− F (t)), g4(t) = 1.

Monotonicity of F implies that the conditions of the lemma hold. Indeed, if x′′ > x′,

F (x′′) · (1− F (x′)) ≥ F (x′′) · (1− F (x′′))

and
F (x′′) · (1− F (x′)) ≥ F (x′) · (1− F (x′)),

.
Then, it follows that

E · (1− E) =

∫ 1

0
F (t)dt ·

∫ 1

0
(1− F (t))dt ≥

∫ 1

0
F (t)(1− F (t))dt.

As the revenue equals to the welfare minus the informed agent’s profit we conclude that the
revenue is bounded from above by E2:∫ 1

0
(1− F (h))2dh = E −

∫ 1

0
F (t)(1− F (t))dt ≤ E2

C Many Agents, each with Finitely Many Signals

C.1 Proof of Theorem 11

We prove Theorem 11 by induction, and we begin with an observation and a lemma that are
applied at each induction step. First, recall that Theorem 11 defines:

µi(si) ≡ min{v(si, s−i)|s−i ∈ S−i and (si, s−i) is feasible}.

A natural binary relation between signals can be defined using the relation between the
lower bounds they place on the expected value. We say that signal si of bidder i is weakly
lower than signal sj of bidder j if µi(si) ≤ µj(sj), and is strictly higher than signal sj of bidder
j if µi(si) > µj(sj).

The next lemma is a major step in showing that bidder i with signal si does not bid above
µi(si).

Lemma 29. Fix a signal sj received by bidder j and any strategy profile η in which every
bidder i with signal si strictly higher than sj (µi(si) > µj(sj)) bids µi(si) with probability 1.

1. If η is a NE of the tremble λ(ϵ, R) with ϵ > 0, then no bidder i with signal si (including
bidder j with signal sj) weakly lower than sj bids strictly above µj(sj).

2. In the original game λ and in any tremble λ(ϵ, R) for ϵ > 0, the utility of bidder j with
signal sj from bidding µj(sj) is at least as high as his utility from any higher bid.
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Proof. Proof of part (1): Let bi(si) be the supremum bid by bidder i with signal si. Let b
be the maximum supremum bid among signals weakly lower than sj :

b ≡ max
i∈N,si∈Si

{bi(si) : µi(si) ≤ µj(sj)}.

Suppose η is a NE of the tremble λ(ϵ, R) but b > µj(sj). Let δ > 0 be sufficiently small such
that (1) µj(sj) < b− δ and (2) for any bidder i and signal si if bi(si) < b implies bi(si) < b− δ.
With positive probability, no signal strictly higher than sj is realized and the high bid falls in
the interval (b− δ, b]. Therefore at least one bidder k with a signal sk that satisfies bk(sk) = b
and µk(sk) ≤ µj(sj) (possibly k = j and sk = sj) wins with positive probability with a bid in
the interval (b− δ, b].

Fix any bid b ∈ (b − δ, b] that wins with positive probability conditional on being placed
by bidder k with signal sk. We show below that for bidder k with signal sk, bidding µj(sj) is
strictly more profitable than bidding b. Because bidder k with signal sk makes such bids with
positive probability, this contradicts η being a NE. The argument follows below.

Consider a particular realization in which bidder k receives signal sk. Let bmax
−k be the

highest realized bid of bidders other than k (including the random bidder). Further, let bidder
i be the bidder who has the highest realized signal si and his bid be bi. (If there are multiple
bidders whose signals tie for the highest then choose any i from the set.)

Now compare k’s outcome from bidding b rather than µj(sj). If b
max
−k < µj(sj) or b

max
−k > b

then k’s outcome and payoff are unchanged by bidding b rather than µj(sj). However, if
bmax
−k ∈ [µj(sj), b] then k wins and pays bmax

−k by bidding b at some cases were he was losing by
bidding µj(sj). Consider three cases. First, suppose that some bidder with a signal strictly
higher than sj is bidding bmax

−k . Then by assumption bmax
−k = bi = µi(si) and by the strong-high-

signal property (SHSP) v(s) = µi(si). Thus the additional win is priced at its value and does
not change k’s payoff. Second, suppose bmax

−k = µj(sj). Then by SHSP v(s) ≤ µj(sj) and the
additional win is priced at or above its value and weakly reduces k’s payoff. Third, suppose
bmax
−k ∈ (µj(sj), b] and it is not the bid of a bidder with a strictly higher signal. If no signal
strictly higher than sj is realized, then by SHSP v(s) ≤ µj(sj). If at least one signal strictly
higher than sj is realized, then by assumption bmax

−k > bi = µi(si) and by SHSP v(s) = µi(si).
In either case, the additional win must be priced strictly above its value (bmax

−k > v(s)) and
strictly reduces k’s payoff.

The preceding paragraph shows that for any realization, bidding b yields a weakly lower
payoff for k than bidding µj(sj) and in the third case yields a strictly lower payoff. The third
case occurs with positive probability in any tremble λ(ϵ, R) with ϵ > 0. Therefore bidding b
rather than µj(sj) strictly reduces k’s expected payoff ex ante.

Proof of part (2): In the proof of part (1) above, we showed that (for any realization)
bidding b yields a weakly lower payoff for bidder k with signal sk than bidding µj(sj). The
same argument can be repeated under the assumptions of part (2) to show that bidding µj(sj)
is weakly better than any higher bid for bidder j with signal sj . Note that we do not claim
a strict payoff ranking because in profile η bidder j (unlike bidder k) might win with zero
probability at both bids.

Recall that we have defined vmin(si) = mins−i∈{S−i
vi(si, s−i)} and observe that µi(si) =

vmin(si). We next observe that bidder i with signal si that only submits undominated bids
never bids below µi(si).
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Observation 30. In the original game λ and in any tremble λ(ϵ, R) for ϵ > 0, for bidder i
with signal si bidding µi(si) weakly dominates bidding any amount bi < µi(si).

10

We combine this observation with Lemma 29 to the prove Theorem 11.

Proof. (of Theorem 11) Fix any strict linear order on the signals that is consistent with the
order of lower bounds they place on the expected value. That is, fix an arbitrary order
satisfying that for every si and sj , if µi(si) > µj(sj) then si is ranked higher than sj .

The proof proceeds by induction. The base case considers the highest signal according to
the fixed order. Suppose the highest signal is bidder i’s signal si. By Observation 30 bidding
µi(si) = vmin(si) dominates any lower bid for bidder i with signal si. Moreover, SHSP implies
that for the highest signal si, for any s−i ∈ S−i such that (si, s−i) is feasible, it holds that
µi(si) = v(si, s−i). Thus µi(si) = vmax(si) and therefore in any tremble λ(ϵ, R) in which
the bid of agent i with signal si belongs to [vmin(si), vmax(si)] it holds that the bid must be
µi(si) = vmin(si) = vmax(si). Moreover, bidding µi(si) is a dominant strategy for bidder i
with signal si in the original game λ and any tremble λ(ϵ, R).

We move to the induction step. Consider the lth highest signal, which is sj received by
bidder j. Assume that every bidder i with strictly higher signal si (that is, µi(si) > µj(sj))
bids µi(si) with probability 1. Observation 30 and claim (2) of Lemma 29 imply that it is a
best response for bidder j with signal sj to bid µj(sj) in the original game λ and the tremble
λ(ϵ, R). Moreover, Observation 30 and claim (1) of Lemma 29 imply that this is the unique
best response in any NE in undominated bids of any tremble λ(ϵ, R), for ϵ > 0.

Proceeding by induction through all signals shows that the pure strategy profile µ is a Nash
equilibrium both in the original game λ and in any tremble λ(ϵ, R) with ϵ > 0. Moreover, it
is the unique Nash equilibrium in undominated bids in any tremble λ(ϵ, R) with ϵ > 0. The
theorem follows directly.

C.2 Relation to the work of Einy et al.(2002)

Einy et al. (2002) study common value second price auction in domains that are connected. For
connected domains Einy et al. consider the concept of sophisticated equilibrium, which makes
successive rounds of dominated strategy eliminations. This process might result in multiple
equilibria and that paper points out a single sophisticated equilibrium that Pareto-dominates
the rest in terms of bidders resulting utilities, and it is also the only sophisticated equilibrium
that guarantees every bidder non-negative utility. Moreover, this is the only sophisticated
equilibrium that survives the elimination process if an uninformed bidder is added to the
domain.

In this section we observe that Theorem 11 applies to any connected domain, as any such
domain satisfies the strong-high-signal property. Moreover, we observe that for connected
domains the TRE of Theorem 11 is exactly the one pointed out by Einy et al. (2002). Finally,
we show that some domain that satisfy the strong-high-signal property are not connected.
Some obvious such domains are monotonic domains in which the mapping from the state of
the world to signals is not deterministic (yet they still satisfy the strong-high-signal property),
but we also present examples of domains in which the mapping is deterministic yet they are
not connected and for which Theorem 11 applies.

Before formally presenting connected domains we present an example due to Einy et al.
(2002) and the TRE we (as well as Einy et al.) pick for that domain.

10It is trivial to come up with strategies for the other bidders for which µi(si) gives strictly higher utility than bi.
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Example 31. Assume that there are two buyers and four states of the world Ω = {ω1, ω2, ω3, ω4},
with v(ωi) = i and states all are equally probable ( H(ωi) = 1/4 for all i ∈ {1, 2, 3, 4} ). If
the state is ω1 then agent 1 gets the signal L1, otherwise he gets H1. If the state is ω4 then
agent 2 gets the signal H2, otherwise he gets L2. In µ ,the TRE of Theorem 11 it holds that
µ2(H2) = v(H1,H2) = 4, µ1(H1) = v(H1, L2) = 2.5 and µ1(L1) = µ2(L2) = v(L1, L2) = 1.

We next define connected domains.

Definition 32. A domain is a connected domain if the following hold. Each agent i has a
partition Πi of the state of nature and his signal is the element of the partition that include
the realized state. The information partition Πi of bidder i is connected (with respect to the
common value v) if every πi ∈ Πi has the property that, when ω1, ω2 ∈ πi and v(ω1) ≤ v(ω2)
then every ω ∈ Ω with v(ω1) ≤ v(ω) ≤ v(ω2) is necessarily in πi. A common-value domain is
connected (with respect to the common value) if for every agent i his information partition Πi

is connected.

Lemma 33. Every connected domain satisfies that strong-high-signal property.

Proof. Let Π∗ be the coarsest partition of Ω that refines the partition Πj for every agent j.
Let σ denote an element of Π∗. Let v(σ) denote the expected value of the item conditional
on σ. We prove the claim by induction on the number of elements in Π∗. If this number is
1 the claim trivially holds as the domain in which no agent gets any information satisfies the
property by definition.

Assume that we have proven the claim for every Π∗ of size smaller than k, we prove the
claim for Π∗ of size k. Consider that element σ of Π∗ such that v(σ) is maximal. There must
exist an agent i and signal si such that si implies σ, otherwise Π∗ is not the coarsest refinement.
There is only one combination of signals that has value v(σ), in that combination each agent
gets the best signal (the one with the highest value conditional on the signal). Now, as the
domain is connected it holds that v(σ) > v(t) for every combination of signals t. This implies
that si has the required properties from the top signal at a domain that satisfies the strong-
high-signal property. Removing this signal creates another connected domain, and its coarsest
partition has only k − 1 elements, so by the induction hypothesis it satisfies the strong-high-
signal property. We conclude that the original domain satisfies the strong-high-signal property
as we need to show.

Proposition 34. For every connected domain the TRE of Theorem 11 is exactly the same as
the unique sophisticated equilibrium picked by Einy et al. (2002) (the sophisticated equilibrium
that survives the elimination process if an uninformed bidder is added to the domain).

Proof. Einy et al. show that unique sophisticated equilibrium that they pick can be computed
as follows. One can look at Π∗, the coarsest partition of Ω that refines the partition Πj for
every agent j. Let σ denote an element of Π∗. Let v(σ) denote the expected value of the
item conditional on σ. An order over elements σ1, σ2 ∈ Π∗ is naturally defined by the order
on the corresponding values v(σ1) and v(σ2). For agent j with signal πj ∈ Πj the bid is
defined to minσ∈πj v(σ). An equivalent definition is that agent j with signal πj ∈ Πj bids
min{v(πj , π−j)|π−j ∈ S−j and (πj , π−j) is feasible}, which is exactly µj(sj) as defined in
Theorem 11.

We next show that there are domains that are not connected yet satisfy the strong-high-
signal property. This implies that Theorem 11 applies to a strict superset of the domains that
are handled by Einy et al. (2002). We start with a simple example with only one informed
bidder.
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Example 35. Consider a domain with two buyers and three states of the world Ω = {ω1, ω2, ω3},
with v(ω1) = 0, v(ω2) = 4, v(ω3) = 10 and all states are equally probable (H(ωi) = 1/3 for
all i ∈ {1, 2, 3}). If the state is ω1 or ω3 then agent 1 gets the signal H1, otherwise he gets
L1. Agent 2 is not informed at all. This example is covered by Theorem 11 and moreover it
is covered by Theorem 5. Yet, this domain is not connected, as signal H1 of agent 1 indicates
that the state is ω1 or ω3 and does not include ω2.

We also present an example with more than one informed bidder, in this example there are
2 agents and each has a binary signal.

Example 36. Assume that there are two buyers and four states of the world Ω = {ω1, ω2, ω3, ω4}
with v(ω1) = 0, v(ω2) = 4, v(ω3) = 6, v(ω4) = 10, and all states are equally probable
(H(ωi) = 1/4 for all i ∈ {1, 2, 3, 4}). If the state is ω4 then agent 1 gets the signal H1, otherwise
he gets L1. If the state is ω1 or ω3 then agent 2 gets the signal L2, otherwise he gets H2. (note
that this is not connected as ω2 does not belong to L2). In the TRE µ of Theorem 11 it holds
that µ1(H1) = v(H1,H2) = 10, µ2(H2) = v(L1,H2) = 4 and µ1(L1) = µ2(L2) = v(L1, L2) = 3.

While Example 35 presents a very simple domain that is not connected, it is clear that there
exists a different representation of the states of the world for which a domain with exactly the
same signal structure and posteriors, is indeed connected. In this new representation each state
corresponds to one of the informed agent’s signals and the value corresponds to the posterior
value given that signal. That is, we can define Ω′ = {ω′

1, ω
′
2}, with v(ω′

1) = 5, v(ω′
2) = 4,

and the probabilities are H(ω′
1) = 2/3 and H(ω′

2) = 1/3. If the state is ω′
1 then agent 1 gets

the signal H1, otherwise he gets L1. Agent 2 is not informed at all. Clearly under the new
representation the domain is connected, and the domain is equivalent to the original domain.

One might wonder if any domain that satisfies the strong-high-signal property can be trans-
formed to an equivalent connect domain. We next show that this is not the case, presenting
a domain that satisfies the property and cannot be represented by a connect domain. This
shows that Theorem 11 applies to domains that do not have a representation as connected
domains.

The domain we consider is the domain presented in Example 36, with v(ω2) assigned a
value of 2 instead of 4. Clearly in a connected domain that is equivalent to that domain it
must be the case that signals H1 and H2 are both received for some subset of states of the
world such that for each such state the value is at least as high as the value if signal H1 is
not received. Now connectivity for H2 implies that v(L1) ≥ v(L2) which does not hold for the
domain we are considering.

C.3 Generalizing ”Lemons and Peaches” to n agents

We restate Proposition 15 and present its proof.

Proposition 37. Fix any non-negative constants ϵ1, ϵ2, . . . , ϵn. Consider any monotonic do-
main that satisfies the strong-high-signal property and for which it also holds that every agent
i ∈ {1, 2, . . . , n} is ϵi-informed about peaches. In the unique TRE µ (as defined in Theorem 11)
the revenue of the SPA is at least

E[v(ω)]−
n∑

j=1

ϵj
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Proof. If
∑n

i=1 ϵi ≥ 1 the claim follows trivially. Items have values in [0, 1] and thus E[v(ω)] ≤
1, this implies that E[v(ω)] −

∑n
j=1 ϵj ≤ 0, and the claim about the revenue clearly holds as

revenue is non-negative since every bid is non-negative. We next assume that
∑n

i=1 ϵi < 1.
Let L = (L1, L2, . . . , Ln) be the combination of signals in which each agent i gets signals

Li. Observe that Pr[not L] ≤
∑n

i=1 Pr[si ̸= Li] ≤
∑n

i=1 ϵi as every agent i is ϵi-informed
about peaches, thus Pr[L] ≥ 1−

∑n
j=1 ϵj > 0 which means that L is feasible. As the domain is

monotonic and Li is the lowest signal for agent i, for every feasible s it holds that v(L) ≤ v(s).
This implies that µi(si) ≥ v(L) for every agent i and signal si ∈ Si.

As all bids are at least v(L), the revenue is at least v(L), thus it is sufficient to show that
v(L) ≥ E[v(ω)]−

∑n
j=1 ϵj .

Observe that
E[v(ω)] = v(L) · Pr[L] + v(not L) · Pr[not L]

Which implies that

v(L) =
E[v(ω)]− v(not L) · Pr[not L]

Pr[L]
≥ E[v(ω)]− Pr[not L] ≥ E[v(ω)]−

n∑
i=1

ϵi

since 0 < Pr[L] ≤ 1, v(not L) ≤ 1 (as for any ω it holds that v(ω) ∈ [0, 1]), and Pr[not L] <∑n
i=1 ϵi.

We next restate Proposition 17 and present its proof.

Proposition 38. Fix any positive constants ϵ1, ϵ2, . . . , ϵi. Consider any domain that satisfies
the strong-high-signal property and for which it also holds that each agent j ∈ {1, 2, . . . , i−1} is
ϵj-informed about peaches, while agent i is ϵi-informed about lemons. Assume that the domain
is non degenerated in the following sense:

• For any j < i the signal Hi does not imply Lj (alternatively, (Lj , si, s−{i,j}) is feasible
for some si ̸= Hi and some s−{i,j}).

• For any j > i and any signal sj ∈ Sj, the signal Hi does not imply sj (alternatively,
(sj , si, s−{i,j}) is feasible for some si ̸= Hi and some s−{i,j}).

Then the revenue of the SPA in the unique TRE µ (as defined in Theorem 11), is at most

ϵi +

i∑
j=1

ϵj

Proof. If
∑n

i=1 ϵi ≥ 1 the claim follows trivially. Items have values in [0, 1] and thus all bids
are at most 1, which implies that the revenue is at most 1. We next assume that

∑n
i=1 ϵi < 1.

Since each j < i is ϵj-informed about peaches it holds that

Pr[L1, L2, . . . , Li−1] ≥ 1−
i−1∑
j=1

ϵj

Now, since i is ϵi-informed about lemons it holds that Pr[Hi] ≥ 1− ϵi, and thus

Pr[L1, L2, . . . , Li−1,Hi] ≥ Pr[L1, L2, . . . , Li−1] + Pr[Hi]− 1 ≥ 1−
i∑

j=1

ϵj > 0
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The revenue obtained when the signals of agents 1, 2, . . . , i are not realized to (L1, L2, . . . , Li−1,Hi)
is at most the maximal value of any item, which is 1, and that happens with probability at
most

∑i
j=1 ϵj . Thus this case contributes at most

∑i
j=1 ϵj to the expected revenue.

We next bound the revenue obtained when the signals of agents 1, 2, . . . , i are realized to
(L1, L2, . . . , Li−1,Hi), and event that happens with probability at most 1. To prove the claim
it is sufficient to show that the maximal of the bids of all agents other than i is at most ϵi, since
this upper bounds the revenue. We first bound the bid µj(Lj) of any agent j < i when getting
signal Lj . By the first non-degeneracy assumption (Lj , si, s−{i,j}) is feasible for some si ̸= Hi

and some s−{i,j}. As agent i is ϵi-informed about lemons it holds that v(Lj , si, s−{i,j}) ≤ ϵi
and thus µj(Lj) ≤ ϵi.

We next bound the bid µj(sj) of any agent j > i when getting any signal sj ∈ Sj . By the
second non-degeneracy assumption (sj , si, s−{i,j}) is feasible for some si ̸= Hi and some s−{i,j}.
As agent i is ϵi-informed about lemons it holds that v(sj , si, s−{i,j}) ≤ ϵi and thus µj(sj) ≤ ϵi.
We have shown that when the signals of agents 1, 2, . . . , i are realized to (L1, L2, . . . , Li−1,Hi)
the maximal of the bids of all agents other than i is at most ϵi, thus the revenue in this case
is bounded by ϵi, and the claim follows.

D Two Agents, Each with a Binary Signal

D.1 Proof of Lemma 20

Let G be a distribution function. We say that G has an atom at b if b = 0 and G(0) > 0, or
if b > 0 and G is discontinuous at b. We define G−(b) = supx<bG(x). We say that a bid b of
bidder j is optimal (or is in the support) if the utility from that bid (given the other agent’s
strategy and the random bidder) is at least as high as with any other bid.

In this section we use i to denote a bidder, either bidder 1 or 2. When we want to refer to
the other bidder we use j to denote that bidder, and assume that j ̸= i.

Let R be a standard distribution and fix some ϵ > 0. A NE η of the (ϵ, R)-tremble of the
game λ consists of four bid distributions, one for each bidder for each signal he may receive.
Thus η = (G1, G

L
1 , G2, G

L
2 ) where Gi and GL

i are the bid distributions when i ∈ {1, 2} gets the
signals Hi and Li, respectively. In η, for bidder i with signal Hi: let Πi(bi) denote the utility
(profit) of bidder i when he bids bi, and let vwin

i (bi) denote the expected value of the items i
gets, conditional on winning, when he bids bi.

To simplify the notation we denote v1 = v(H1, L2) and v2 = v(L1,H2). We assume that
0 < Pr[H1, L2](1 − v1) ≤ Pr[L1,H2](1 − v2) < 1, and that in case of equality v1 ≥ v2. Note
that this implies that min{Pr[H1, L2], P r[L1,H2]} > 0.

We first show that if bidders never submit dominated bids bidder i ∈ {1, 2} that receives
signal Li must bid v(L1, L2) = 0.

Lemma 39. At η the following must hold. For each bidder i ∈ {1, 2} it holds that GL
i (0) = 1.

That is, bidder i with signal Li always bids v(L1, L2) = 0. Also, it holds that G−
i (vi) =

supb<viGi(b) = 0. That is, bidder i with signal Hi always bids at least vi.

Proof. By assumption, bidders do not make weakly dominated bids. Therefore, bidder i bids
at least 0 given signal Li and at least v(Hi, Lj) given signal Hi. Similarly, bidder i bids no
more than v(Li,Hj) given signal Li and no more than 1 given signal Hi. Bidder 1 with signal
L1 cannot bid b ∈ (0, v2) because she would only win when bidder 2 has a low signal and the
value is zero but she would pay a positive amount due to the random bidder. Increasing the
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bid to v2 incurs the same losses conditional on L2 as bidding just below v2 and earns zero
conditional on H2 because any wins are priced at their value v2. Therefore bidder 1 must bid
0 given a low signal, and the same is true for bidder 2 by similar logic.

Given this lemma we focus in the rest of the proof at the bidding of each bidder i given his
high signal Hi. (e.g. if we say that some bid ”is optimal for i” we mean to say that this bid
”is optimal for i with signal Hi”).

Lemma 40. At η the following must hold. Assume that Gj is discontinuous at b < 1 (has an
atom at b), then ∃δ > 0 such that bidding in the interval (b− δ, b] is not optimal for i as it is
dominated by bidding b+ δ.

Proof. Let ∆ be the discrete increase in Gj at b. For δ > 0 small enough bidding b + δ is
strictly better than bidding in (b− δ, b] as the probability of winning increases by at least ∆/2
(moving from b to b + δ means always winning against the atom instead of tie-breaking),
while the increase in payment when winning low value items tends to 0 as δ go to zero (as the
random bidder is bidding continuously).

Let b− and b+ be two bids such that 0 ≤ b− < b+ ≤ 1.
For b > 0 define G−

j (b) as the left hand limit of Gj evaluated at b:

G−
j (b) = sup

x<b
Gj (x) .

Lemma 41. At η the following must hold. For every bidder j the expected value of the items
he gets, conditional on winning, is monotonic in his bid. That is, if vwin

j (b) is the expected

value of the items j gets, conditional on winning, with bid b, then vwin
j (b) is non-decreasing in

b.

Proof. If i is bidding an atom of size ∆i(b) at b it holds that ∆i(b) = Gi(b)−G−
i (b). If bidder

j is bidding b > 0, then j’s expected value conditional on winning vwin
j (b) can be computed

by separating the case that i bids below b, and the case that i is bidding at b:

vwin
j (b) =

Pr [Hi | Hj ]
(
G−

i (b) + 1
2∆i (b)

)
+ Pr [Li | Hj ] vj

Pr [Hi | Hj ]
(
G−

i (b) + 1
2∆i (b)

)
+ Pr [Li | Hj ]

where the factor half comes from tie breaking in case both are bidding at b. Note that the first
term is non-decreasing in b because it is increasing in G−

i (b) and G−
i (b) is non-decreasing in b.

Moreover, any increase in the bid will make sure the bidder always wins against the atom at
b, instead of only half of the time.

The next lemma shows than an optimal bid b for bidder j must be at least the expected
value of the item j wins, conditional on winning.

Lemma 42. At η the following must hold. If b ∈ [0, 1) is an optimal bid of bidder j then
b ≥ vwin

j (b).

Proof. If vwin
j (b) = vj the claim follows from b ≥ vj (Lemma 39 ).

Now assume in contradiction that b < vwin
j (b) ≤ 1 and that vwin

j (b) > vj . It must hold that

Gi(b) > 0, since Gi(b) = 0 implies vwin
j (b) = vj . If i has an atom at b < 1 then b is not optimal

for j by Lemma 40, contradicting our assumption that b is optimal for j. Thus, bidder i does
not have an atom at b.
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We show that for δ > 0 that is small enough (δ < vwin
j (b)− b), bidding b+ δ gives higher

utility. To show that the bid b + δ gives higher utility than b, we consider the difference in
utility due to such an increase in the bid. There are two cases: first, if bidder j wins with
b+ δ but would have lost with b due to a bid of i in (b, b+ δ) then j wins an item of value 1
and pays at most b + δ < 1, having positive utility. Second, if i was not bidding in (b, b + δ)
but the random bidders does, by bidding b + δ bidder j is now winning items with expected
value at least vwin

j (b) (by Lemma 41 vwin
j () is non-decreasing) and paying at most b + δ. As

δ < vwin
j (b) − b the expected value from such a win is positive. Moreover, this second event

happens with strictly positive probability because the random bidder is bidding continuously
over [0, 1] and given no atoms of bidder i at b > 0 bidder i bids less than b with probability
Pr[Li|Hj ] + Pr[Hi|Hj ]Gi(b) > 0. We conclude that such an increase in bid strictly increases
the utility.

Lemma 43. At η the following must hold. For 1 ≥ b+ > b− ≥ 0 suppose that Gj (b
−) =

G−
j (b+) (j does not bid on (b−, b+)). Let Γ = Gj (b

−). Let

b∗i (Γ) =
Pr [Hj |Hi] Γ + Pr [Lj |Hi] vi
Pr [Hj |Hi] Γ + Pr [Lj |Hi]

If b∗i (Γ) ∈ (b−, b+] then b∗i (Γ) strictly dominates any other bid by i in (b−, b+]. If b∗i (Γ) > b+,
then i’s payoff is strictly increasing in b over (b−, b+]. If b∗i (Γ) ≤ b−, then i’s payoff is strictly
decreasing in b over (b−, b+).

Proof. Gj (bj) is constant over (b
−, b+) and thus gj (bj) = 0 over (b−, b+). Therefore Πi (bi) is

continuous and differentiable on (b−, b+). Moreover, since gj(bj) is zero, the derivative is

dΠi (bi)

dbi
= r̂(bi)

(
Pr [Hj |Hi] Γ (1− bi) + Pr [Lj |Hi] (vi − bi)

)
As we assume that 1 > Pr [Lj |Hi] > 0 and it holds that r̂(bi) > 0, Pr [Hj |Hi] ≥ 0, this function
of bi is not identically 0. The function has a unique 0 at b∗ (Γ), it is positive for bi > b∗ (Γ),
and it is negative for bi > b∗ (Γ). Thus if i has an optimal bid in the interval (b−, b+) it can
only be at b∗ (Γ). To extend the result to the interval (b−, b+] consider four cases:

(1) b∗ (Γ) ∈ (b−, b+): In this case, b∗ (Γ) is the unique best bid within the interval (b−, b+).
At either endpoint b− or b+, either j bids an atom and the corresponding endpoint cannot be
an optimal bid (Lemma 40) or j does not bid an atom and Πi(bi) is continuous at that point,
meaning it is dominated by the interior bid b∗i (Γ). In either case, b∗i (Γ) is the only possible
optimal bid within [b−, b+].

(2) b∗ (Γ) ≤ b−: In this case, dΠi (bi) /dbi < 0 for (b−, b+) and there is no optimal bid
in (b−, b+). If j bids an atom at b+ then b+ is not an optimal bid for i by Lemma 40. If j
does not bid an atom at b+, then Πi(bi) is continuous from the left at b+. Therefore Πi(bi)
is strictly lower at b+ than at any other bi ∈ (b−, b+). In either case there is no optimal bid
within (b−, b+], a contradiction.

(3) b∗ (Γ) > b+: Lemmas 41 and 42 imply that any optimal bid bi > b− must be at least
b∗i (Γ) because vwin

i (bi) = b∗i (Γ) for all bi ∈ (b−, b+). Therefore there is no optimal bid at or
below b+, a contradiction.

(4) b∗ (Γ) = b+. In this case, dΠi (bi) /dbi > 0 for (b−, b+). Therefore Πi(bi) is strictly
higher at b+ than at any bi ∈ (b−, b+) because Πi(bi) is either continuous at b+ or increases
discretely at b+ (depending on whether or not j has an atom at b+.) Therefore b∗ (Γ) = b+ is
the only possible optimal bid for i in the interval (b−, b+].
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Corollary 44. At η the following must hold. If bidder i ∈ {1, 2} bids an atom at b ∈ [0, 1],
then b = b∗i (Gj(b)).

Proof. Lemma 40 implies that j does not bid in the interval (b−δ, b] for some δ > 0. Therefore
Lemma 43 implies the result.

Define bi to be the infimum bid by i ∈ {1, 2}, bi = inf{b : Gi(b) > 0}. Let b = min {b1, b2}
be the infimum of all bids of any bidder with a high signal. Let bmin = max{b1, b2}.

Corollary 45. At η the following must hold. Suppose that j ∈ {1, 2} has an optimal bid b at
or below bi. Then b = vj.

Proof. Note that Gi(b) = 0 because Lemma 40 implies that i does not have an atom at bi if
b = bi. Thus, as i does not bid strictly below bi but j has an optimal bid b weakly below bi,
Lemma 43 implies b = b∗j (0) = vj .

Lemma 46. At η the following must hold. Assume that both bids b− ≥ 0 and b+ > b− are
optimal bids for bidder i ∈ {1, 2}. Then for bidder j ̸= i it holds that Gj(b

+) > Gj(b
−).

Proof. Assume in contradiction that both bids b+ and b− < b+ are optimal bids for bidder
i, while Gj(b

+) = Gj(b
−) = Γ (note that Gj is non decreasing thus Gj(b

+) ≥ Gj(b
−)).

Because Gj(b) is constant over [b
−, b+], Πi (bi) is continuous and differentiable on (b−, b+) and

is continuous from the left at b+. By Lemma 40, the fact that b− is an optimal bid for i implies
that j does not bid an atom at b−. Therefore there is no tie-breaking at b− that would be
resolved by bidding slightly more than b− and Πi (bi) is also continuous from the right at b−.
Following the argument in the proof of Lemma 43, within the interval (b−, b+), dΠi (bi) /dbi is
zero at b∗ (Γ), strictly positive for bi > b∗ (Γ), and strictly negative for bi > b∗ (Γ). There are
three cases: (1) b∗ (Γ) ≤ b−. Then dΠi (bi) /dbi < 0 for (b−, b+) and, by right-continuity at b−

and left-continuity at b+, Πi (b
+) < Πi (b

−) contradicting optimality of b+. (2) b∗ (Γ) ≥ b+.
Then by a symmetric argument b− cannot be optimal. (3) b∗ (Γ) ∈ (b−, b+). Then by similar
argument both b− and b+ are strictly dominated by b∗ (Γ).

Lemma 47. At η the following must hold.

1. Suppose both bidders have the same infimum bid: bi = bj = b = bmin. Then b =
max{vi, vj}. If vi = vj, then neither bidder bids an atom at b (that is, Gj(b) = Gi(b) = 0).
However, if vi < vj then j bids an atom at b = vj and i does not bid at b.

2. Suppose bidder i has a strictly higher infimum bid: bi > bj. Then b = bj = vj and j bids
an atom with some positive weight Γ > 0 at vj but nowhere else at or below bi:

Gj (b) =

{
0
Γ

b < vj
b ∈ [vj , bi]

Moreover, bmin = bi > vi.

Proof. (1) It cannot be the case that both bidders have an atom at b. Suppose i does not have
an atom at b. Then Πj(b) is continuous at b and therefore b is an optimal bid for j. (bj = b
implies that j bids with positive probability at b or in every neighborhood above b.) Because
j has an optimal bid at bi, Corollary 45 implies that bi = vj . Moreover, bi ≥ vi by Lemma 39.
Therefore vi ≤ vj and b = max{vi, vj}.
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Suppose that vi < vj and j does not bid an atom at b. Then Πi(b) is continuous at b and
hence b is an optimal bid for i and Corollary 45 implies b = vi, which is a contradiction. Thus
vi < vj implies j has an atom at b. (Hence by Lemma 40 i does not bid at b.)

Suppose that vi = vj and j has an atom of weight Γ > 0 at b. Then by Lemma 42, bidder
i must bid at least vwin

i (b) > vi, which is a contradiction. Thus vi = vj implies neither bidder
has an atom at b.

(2) The assumption bj < bi implies that j bids with some positive probability Γ > 0 below
bi. By Corollary 45, j can only bid below bi at vj . Therefore j bids with atom Γ at bj = vj
and nowhere else below bi. Moreover, Lemma 42 implies that for all bids b ≥ bi, bidder i must
bid at least vwin

i (bi) = b∗i (Γ) > vi.

Lemma 48. If for all δ > 0, bidder i has an optimal bid in the interval (b− δ, b] then b is an
optimal bid for i.

Proof. By Lemma 40, j does not have an atom at b and hence Πi (bi) is continuous from the
left at bi = b. Since i has an optimal bid at b or arbitrarily close to b, continuity implies that
b must be an optimal bid.

Suppose that bidder j has an atom at b > 0. By Lemma 40, bidder i does not bid in
(b − δ, b] for some δ > 0. Define xi(b) to be the supremum point below b at which bidder i
does place a bid

xi(b) = sup {x : Gi (x) < Gi(b)} = inf {x : Gi (x) = Gi(b)} .

Lemma 40 implies xi(b) < b. Similarly, let

xj(b) = inf
{
x : Gj (x) = G−

j (b)
}
.

Note that if i does not bid below b (bi ≥ b) then xi(b) = −∞.
Our goal is to prove that if j has an atom at b then b is j’s infimum bid. We first prove

some helpful claims.

Lemma 49. If j has an atom at b > 0 and b is not j’s infimum bid (0 ≤ bj < b) then:

1. It holds that vj ≤ xj(b) < xi(b) < b.

2. In the interval (xj(b), b], i bids an atom at xi (b) = b∗i (Gj (xi(b))) but nowhere else.

3. j bids with an atom at xj(b) = b∗j (Gi (xj(b))).

4. b = b∗j (Gi(b)).

Proof. We prove the claims:

1. We prove that vj ≤ xj(b) < xi(b) < b:

• xj(b) ≥ vj : By assumption (bj < b) bidder j bids with positive probability below b.
Such bids must be at least vj .

• xi(b) < b: follows from Lemma 40.

• xj(b) < xi(b): suppose not and xi(b) ≤ xj(b) < b. There are two cases. (i) First,
if xj(b) > xi(b), then there exists some bid b− ∈ [xi(b), b) where j bids. Then by
Lemma 46, Gi(b

−) < Gi(b) which contradicts Gi (xi(b)) = Gi(b) and xi(b) < b− < b.
(ii) Second, if xj(b) = xi(b) then by Lemma 48 xi (b) is an optimal bid for j. Then
by Lemma 46, Gi(xi) < Gi(b) which contradicts Gi (xi) = Gi(b).
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2. By part (1) and definition of xi(b), j does not bid with positive probability in the interval
(xj(b), b) but i does. As a result, Lemma 43 implies part (2).

3. There are two cases, either bi = xi(b) or bi < xi(b). (i) By part (1), j bids with positive
probability below xi(b). Therefore, if bidder i’s infimum bid is at bi = xi(b), Lemma 47
implies that j bids with an atom at xj(b) = vj . (ii) bidder i bids with positive probability
below xi(b) and bi < xi(b). Parts (1) and (2) of the Lemma can be applied to the atom
at xi(b) and these imply that j bids with an atom at xj(b) = b∗j (Gi(xj(b))) > vi.

4. Since i does not have an atom at b (Lemma 40), vwin
j (b) = b∗j (Gi(b)). Therefore Lemma

42 implies that b ≥ b∗j (Gi(b)). Thus it is sufficient to show b ≤ b∗j (Gi(b)). Suppose not
and b > b∗j (Gi(b)). Within the interval (xi(b), b), the proof of Lemma 43 implies Πj is
strictly increasing as the bid is moved towards b∗j (Gi(b)) from above or below. Since i
does not have an atom at b, Πj is left-continuous at b. Thus if b > b∗j (Gi(b)), b could not
be optimal for j since it would be dominated by bidding b− δ for some δ > 0.

Lemma 50. If j ∈ {1, 2} has an atom at b then b is j’s infimum bid: b = bj.

Proof. Suppose not and j bids with positive probability in a neighborhood of b− < b. Then
by Lemma 49, j bids with an atom at xj(b) = b∗j (Gi (xj(b))), i bids with an atom at xi(b) ∈
(xj(b), b), b = b∗j (Gi(b)), and there are no other bids in the interval (xj (b) , b). We will show a
contradiction by showing that Πj(b) > Πj (xj(b)). Let Γ1 = Gi (xj(b)) and Γ2 = Gi (xi(b)) =
Gi(b).

Let Π−
j and Π+

j be the left and right hand limits of Πj respectively. I will write down the
difference in profit between bidding at xj(b) and b for bidder j in three parts corresponding to
Π−

j (xi(b))−Πj (xj(b)), Π
+
j (xi(b))−Π−

j (xi(b)), and Πj(b)−Π+
j (xi(b)):

Πj(b)−Πj (xj(b)) = (Gi (xj(b)) Pr [Hi|Hj ] + Pr [Li|Hj ])

∫ xi(b)

xj(b)

(
b∗j (Γ1)− t

)
r̂ (t) dt

+Pr [Hi|Hj ] (Gi (xi(b))−Gi (xj(b))) R̂ (xi(b)) (1− xi(b))

+ (Gi (xi(b)) Pr [Hi|Hj ] + Pr [Li|Hj ])

∫ b

xi(b)

(
b∗j (Γ2)− t

)
r̂ (t) dt

The third term Πj(b)−Πj (xi(b)) is positive since b = b∗j (Γ2) implies the following integral is
positive: ∫ b

xi(b)

(
b∗j (Γ2)− t

)
r̂ (t) dt =

∫ b

xi(b)
(b− t) r̂ (t) dt > 0. (7)

The fact that b∗j (Γ1) = xj(b) provides a lower bound to the integral in the first term:∫ xi(b)

xj(b)

(
b∗j (Γ1)− t

)
r̂ (t) dt ≥ −

(
R̂ (xi(b))− R̂ (xj(b))

)
(xi(b)− xj(b)) ≥ −R̂ (xi(b)) (xi(b)− xj(b)) .

(8)
The inequalities in equations (7) and (8) imply that

Πj(b)−Πj (xj(b)) > − (Gi (xj(b)) Pr [Hi|Hj ] + Pr [Li|Hj ]) R̂ (xi(b)) (xi(b)− xj(b)) (9)

+Pr [Hi|Hj ] (Gi (xi(b))−Gi (xj(b))) R̂ (xi(b)) (1− xi(b)) (10)
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Substituting xj (b) = b∗j (Gi (xj (b))) =
Gi(xj(b)) Pr(Hi|Hj)+Pr(Li|Hj)vj
Gi(xj(b)) Pr(Hi|Hj)+Pr(Li|Hj)

into the right-hand side

of equation (10) and canceling and regrouping terms gives

R̂ (xi (b)) (Gi (xi (b)) Pr (Hi|Hj) + Pr (Li|Hj))

(
Gi (xi (b)) Pr (Hi|Hj) + Pr (Li|Hj) vj
(Gi (xi (b)) Pr (Hi|Hj) + Pr (Li|Hj))

− xi (b)

)
.

Finally, sinceGi (xi (b)) = Gi (b) and b = b∗j (Gi (b)) we can substitute in b =
Gi(xi(b)) Pr(Hi|Hj)+Pr(Li|Hj)vj
Gi(xi(b)) Pr(Hi|Hj)+Pr(Li|Hj)

yielding
R̂ (xi (b)) (Gi (xi (b)) Pr (Hi|Hj) + Pr (Li|Hj)) (b− xi (b)) ,

which is positive since b > xi (b). Thus Πj(b)−Πj (xj(b)) > 0.

Recall the definition bmin = max{b1, b2}. In addition, define b̄i = inf {x : Gi (x) = 1} and
b̄j = inf {x : Gj (x) = 1}. Finally, define bmax = max{b̄1, b̄2}. Notice that bmax ≥ bmin.

Lemma 51. At η the following must hold.

1. If bmax > bmin then both bidders have the same supremum bid: bi = bj = bmax.

2. Both G1 and G2 are continuous for all b > bmin. Moreover, both G1 and G2 are strictly
increasing over the interval (bmin, bmax).

3. Suppose that bi > bj so that bmin = bi > b = bj. Then j bids an atom at b = bj = vj and
i bids an atom at bmin = bi = b∗i (Gj(vj)) with weight Γi. Moreover the size of i’s atom
at bmin is 1 if bmax = bmin and otherwise is:

Γi =
Pr [Li|Hj ]

Pr [Hi|Hj ]

∫ bmin

vj
(x− vj) r̂ (x) dx

R̂ (bmin) (1− bmin)

Proof. (1) Suppose not and bmax = bi > bj . Then j does not bid over (bj , bi) but i bids with
positive probability in (bj , bi]. By Lemma 43 and the definition of bi, this positive probability
must be concentrated at a single atom at bi. By Lemma 47, bi is i’s infimum bid, that is
bi = bi, thus bi = bi ≤ bmin ≤ bmax = bi, so bmin = bmax, a contradiction.

(2) By Lemma 50 Gi and Gj are continuous for all b > bmin. To show that they must
also be strictly increasing over (bmax, bmin) we consider and rule out two types of flat spots.
Throughout, we assume bmax > bmin (the claim is trivially satisfied for bmax = bmin).

First, suppose that at least one bidder, say i, does not bid in an interval (bmin, b
+) so that

Gi(bmin) = G−
i (b

+) = Γ for some b+ > bmin. Note that bmax > bmin and part (1) imply Γ < 1
and no atoms above bmin implies G−

i (b
+) = Gi(b

+). Moreover, let b+ be the upper bound of
the flat spot: b+ = sup{b : Gi(b) = Gi(bmin)}. By Lemma 43, j can place at most one bid over
(bmin, b

+]. By definition, bmin must be the infimum bid of one or both bidders. As neither
bidder bids in (bmin, b

+), this implies one (but not both by Lemma 43) bidders has an atom
at bmin. By the definition of b+ and the fact that j does not bid an atom at b+, b+ must be
an optimal bid for i.

Suppose (i) i has the atom at bmin. Then i has optimal bids at bmin and b+ but Gj(bmin) =
Gj(b

+), contradicting Lemma 46.
Suppose instead (ii) that j has the atom at bmin. By Lemma 46, b+ is not an optimal bid

for j because bmin is optimal but Gi(bmin) = Gi(b
+). Because i does not bid an atom at b+,

Πj(b) is continuous at b
+ and j does not have an optimal bid in a neighborhood (b+−β, b++β)

for β > 0 sufficiently small. However i must bid with positive probability in this interval by
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definition of b+, by Lemma 43 it must be concentrated at an atom, and this contradicts no
atoms above bmin.

Second, suppose that at least one bidder, say i, does not bid in an interval (b−, b+) such
that Gi(b

−) = G−
i (b

+) = Γ where

bmin < b− = inf{b : Gi(b) = Γ} < b+ = sup{b : Gi(b) = Γ} < bmax.

Note that b− > bmin implies Γ > 0 and bmax > b+ implies Γ < 1. Because there are no atoms
above bmin, both agent’s utility functions are continuous at b− and b+. Thus the definitions
of b− and b+ (and Γ ∈ (0, 1)) therefore imply that b− and b+ are both optimal bids for i. By
Lemma 43, j can place at most one bid over (b−, b+], and because j cannot have an atom, this
implies Gj(b

−) = Gj(b
+). By Lemma 46, this contradicts optimality of b− and b+ for i.

(3) Lemma 47 and bj < bi imply that j bids an atom at b = vj but nowhere else below
bmin. The final step in the proof is to show that i bids an atom at bmin. Then Corollary 44
implies bmin = b∗i (Gj(bmin)). Finally Gj(bmin) = Gj(vj) because j does not bid in (vj , bmin]
(Lemmas 40 and 47).

To show that i bids an atom at bmin, there are two cases. (1) bmax = bmin: This implies
that j’s atom at vj has mass 1 and that i bids bmin with probability 1. (2) bmax > bmin:
Then by part (1) of this Lemma, for any δ > 0 bidder j has optimal bid within the interval
(bmin, bmin + δ). This means that bidder i must have an atom at bmin = bi. Suppose not and
Gi(bmin) = Gi(0). Then bmin will be an optimal bid for j by continuity but b is also an optimal
bid for j. This contradicts Lemma 46 given Gi(bmin) = Gi(0).

To compute Γi we observe that the utility of j is the same across all bids in the support,
in particular at his atom at bj = vj and at any optimal bid bj > bmin that is arbitrarily close
to bmin (such bid exists for any δ > 0 in the interval (bmin, bmin + δ) since bmax > bmin). Thus
the change in utility from increasing the bid from vj to such bj is zero. The next equation
presents this utility change in the limit when bj tends to bmin from above.

R̂(bmin) Pr[Hi|Hj ]Γi(1− bmin)− Pr[Li|Hj ]

∫ bmin

vj

(x− vj) r̂ (x) dx = 0

Or equivalently,

Γi =
Pr [Li|Hj ]

Pr [Hi|Hj ]

∫ bmin

vj
(x− vj) r̂ (x) dx

R̂ (bmin) (1− bmin)

Recall that bi = inf{b : Gi(b) > 0} and b̄i = inf{x : Gi(x) = 1} for agent i ∈ {1, 2}.
Note that when agent never submit dominated bids by definition it holds that 1 ≥ bmax =
max{b̄i, b̄j} ≥ bmin = max{b1, b2} ≥ b = min{b1, b2} ≥ 0.

We are now ready to restate Lemma 20 and prove it.

Lemma 52. At η the following must hold.

1. For some j ∈ {1, 2} it holds that b = bj = vj and bmin = bi ≥ vi for i ̸= j.

2. Both G1 and G2 are continuous and strictly increasing on (bmin, bmax). It holds that
G1(bmax) = G2(bmax) = 1. Moreover, if bmax > bmin then bmax = b̄1 = b̄2.

3. For every bidder i ∈ {1, 2} it holds that Gi(b) = 0 for every b ∈ [0, b), and Gi(b) = Gi(b)
for every b ∈ [b, bmin).
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4. If bmin = b then b = max{v1, v2}. Additionally, if v1 = v2 then bmin = b = v1 = v2 and
no bidder has any atom anywhere. If vi > vj then bmin = b = vi and i has an atom at b,
while j has no atoms.

5. If bmin > b then for one agent, say j, it holds that b = bj = vj. Bidder j has an atom at
vj and bidder i ̸= j has an atom at

bmin = b∗i (Gj(vj)) =
Pr[Hj |Hi]Gj(vj) + vi Pr[Lj |Hi]

Pr[Hj |Hi]Gj(vj) + Pr[Lj |Hi]
> max{vi, vj} (11)

and bmin satisfies bmin ≤ v(Hi), and bmin = v(Hi) if and only if Gj(vj) = 1.

It also holds that either

• bmax = bmin, in this case Gi(bmin) = 1, Gj(vj) = 1 (j always bids vj, i always bids
bmin). Or

• bmax > bmin, Gi(bmin) > 0 and

Gi(bmin) =
Pr [Li|Hj ]

Pr [Hi|Hj ]

∫ bmin

vj
(x− vj) r̂ (x) dx

R̂ (bmin) (1− bmin)
(12)

Proof. (1) Follows from Lemma 47. (2) Follows from the definition of bmax and Lemma 51
parts 1 and 2. (3) Gi(b) = 0 for b < b follows from the definition of b. Gi(b) = Gi(b)
for b ∈ [b, bmin) follows from Lemma 47 part 2. (4) Follows from Lemma 47 part 1. (5)
Follows almost entirely from Lemma 51 part 3. The fact that max{vi, vj} < bmin ≤ v(Hi)
and bmin = v(Hi) if and only if Gj(vj) = 1 follows from the definition of bmin, inspection of
equation (11), and the fact that v(Hi) = Pr[Hj |Hi] + vi Pr[Lj |Hi].

Lemma 53. At η the following must hold. If ϵ > 0 is small enough then bmax > bmin.

Proof. Assume that bmax = bmin. Clearly it cannot be the case that bmin = b as it means that
both agents are bidding an atom (of size 1) at b. If bmin < 1, this contradicts Lemma 40. If
bmin ≥ 1, bidder i ∈ {1, 2} could earn strictly more by deviating to bid vi. Reducing the bid
to vi means that bidder i loses every time bidder j ̸= i has a high signal. In these cases the
value is 1, but the payment would have been 1, so bidder i is indifferent to losing rather than
tying. In addition, reducing the bid to vi means that bidder i now loses every time that bidder
j has a low signal and the random bidder bids between vi and i. Thus the bid reduction avoids
overpayment with positive probability. This contradicts optimality of bidder i bidding 1. We
conclude that bmin > b.

Given bmax = bmin > b, Lemma 20 implies that one agent, say j, is bidding an atom of
size 1 at vj , while the other agent i is bidding an atom of size 1 at bmin = b∗i (1). We note
that Equation (11) shows that for vi < 1 there exists ζ < 1 which is independent of ϵ such
that bmin < ζ. When ϵ is small enough agent j can deviate and get strictly higher utility by
bidding b+ ∈ (bmin, 1). This deviation has two effects. First it means that j has additional
wins when i has a low signal and the random bidder bids between vj and b+ causing j to pay
more than the value vj . This costs bidder j

ϵPr [Li|Hj ]

∫ b+

vj

(x− vj) r (x) dx < ϵ

which is proportional to ε. In addition, the deviation means that j has additional wins when
i has a high signal and the random bidder bids below b+. All of these incremental wins
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are valued at 1 but cost no more than b+ so increase j’s payoff. Considering just those
incremental wins for which the random bidder bids below bmin, this benefit is bounded below
by Pr[Hi|Hj ](1− bmin) > Pr[Hi|Hj ](1− ζ). Thus ϵ < Pr[Hi|Hj ](1− ζ) is a sufficient condition
for the deviation to be strictly profitable. This contradiction shows bmax > bmin.

D.2 Proofs of Lemma 21 and of Theorem 18

We next restate Theorem 18 and prove it.

Theorem 54. Consider any non-degenerated monotonic domain with 2 bidders, each with a
binary signal. Assume that 0 < Pr[H1, L2](1− v(H1, L2)) ≤ Pr[L1, H2](1− v(L1,H2)) < 1.

The unique TRE of the SPA game is the profile of strategies µ in which:

• Every bidder i bids v(L1, L2) = 0 when getting signal Li.

• Bidder 1 with signal H1 always bids v(H1, H2) = 1.

• Bidder 2 with signal H2

– bids v(H1,H2) = 1 with probability Pr[H1,L2]
Pr[L1,H2]

· 1−v(H1,L2)
1−v(L1,H2)

, and

– bids v(L1, H2) with the remaining probability.

Recall that to simplify the notation we denote v1 = v(H1, L2) and v2 = v(L1, H2). As
the domain is non-degenerated, Pr[H1,H2] > 0 and for any bidder i ∈ {1, 2} it holds that
1 > Pr[Hi] > 0. The assumption that 0 < Pr[H1, L2](1−v1) ≤ Pr[L1,H2](1−v2) < 1 implies
max{v1, v2} < 1 and that min{Pr[H1, L2], P r[L1,H2]} > 0 and combining with the above
implies that min{Pr[L2|H1], P r[L2|H1]} > 0. Additionally, as the domain is non-degenerated,
min{Pr[H1|H2], P r[H2|H1]} > 0.

Consider the game with the random bidder that is bidding according to a standard distri-
bution (its support is [0, 1]). The random bidder arrives to the auction with small probability
ϵ > 0.

Assume that agent i with signal Hi is bidding according to distribution Gi, let gi denote
the density of Gi whenever Gi is differentiable (note that since Gi is non-decreasing it is
differentiable almost everywhere, see, for example, Theorem 31.2 in (Billingsley 1995)). We
note that this is an abuse of notation as Gi and gi both depend on R and ϵ.

To prove the theorem we show that for any standard distribution R and small enough ϵ
a mixed NE in each of the games λ(ϵ, R) exists (Lemma 69). We then show that the limit
of any sequence of NE strategies in the games λ(ϵ, R) must converges to µ as ϵ goes to zero.
Combined with the existence of a mixed NE in each of the games λ(ϵ, R) this show that µ is
the limit of the some sequence of NE strategies in the games λ(ϵ, R), thus a TRE. As the limit
of any sequence of NE strategies in the games λ(ϵ, R) must converges to µ as ϵ goes to zero, µ
is the unique TRE.

Fix a standard distributionR and ϵ > 0 and consider the game λ(ϵ, R). Let η = (G1, G
L
1 , G2, G

L
2 )

be a NE of λ(ϵ, R). For agent i let bi = inf {b : Gi (b) > 0}. Define b = min{b1, b2} and
bmin = max{b1, b2}.

Lemma 20 characterizes candidates for NE in λ(ϵ, R). We next take it as given and defer
the proof of it to Section D.1.

The following two well known theorems (see for example (Billingsley 1995)) will be useful
for proving our lemmas.
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Theorem 55 (Theorem 31.2 in (Billingsley 1995)). A non-decreasing function G is differen-

tiable almost everywhere, the derivative g is non-negative, and G(b) − G(a) ≥
∫ b
a g(x)dx for

all a and b.

Theorem 56 (Theorem 31.3 in (Billingsley 1995)). If g is non-negative and integrable, and if

G(b) =
∫ b
−∞ g(x)dx, then ∂G(b)

∂b = g(b) except on a set of Lebesgue measure 0.

In addition, the following well known differential-equation result is also useful for proving
our lemmas.

Theorem 57. Assume that q(x) = u′(x) + p(x) · u(x) holds for every x ∈ (bmin, b) but a set

of measure zero, and p(x) and q(x) are continuous on the interval. Define z(x) = e
∫ x
bmin

p(y)dy
.

Then every function u(x) that satisfies the assumption is of the form

u(b)− u(bmin)

z(b)
=

1

z(b)

∫ b

bmin

z(x)q(x)dx+ C (13)

for some C.

D.2.1 Characterizations of the CDFs of G1 and G2

Lemma 58. At η the following must hold. For every bid b ≥ bmin in the support of agent 2’s
distribution G2, it must holds that

Pr[L1|H2] · ϵ
∫ b

bmin

(x− v2) · r(x)dx = Pr[H1|H2]
(
s
(min)
1 (b) + s

(+)
1 (b)

)
(14)

where

s
(min)
1 (b) = ϵ ·G1(bmin)

∫ b

bmin

(1− y) · r(y)dy (15)

and

s
(+)
1 (b) =

∫ b

bmin

g1(x)

(
R̂(b)(1− x)− ϵ ·

∫ b

x
(y − x)r(y)dy

)
dx (16)

Proof. By Lemma 20 for any δ > 0 agent 2 has an optimal bid in [bmin, bmin+δ). Agent 2 must
be indifferent between all his bids, in particular, between bidding b and bidding arbitrarily close
to bmin. The left hand side is the decrease in the expected utility of agent 2 when the agent
1 receives signal L1 (happens with probability Pr[L1|H2]). As agent 1 with signal L1 bids 0
(Lemma 39), agent 2 with signal H2 bidding a positive value always beats agent 1. Any time
agent 2’s wins he gets a value of v2. A bid of b wins while a bid arbitrary close to bmin does
not, only when the random bidder arrives (happens with probability ϵ). In this case the extra

utility gain is
∫ b
bmin

(x− v2) · r(x)dx.
The right side handles the net gain when agent 1 receives signal H1 (happens with proba-

bility Pr[H1|H2]). Agent 1 is bidding at most bmin, which happen with probability G1(bmin).
By bidding b and not arbitrarily close to bmin the presence of the random bidder creates an

additional utility of s
(min)
1 (b) = ϵ ·G1(bmin)

∫ b
bmin

(1− y) · r(y)dy to agent 2.
Next consider the case that agent 1 is bidding more than bmin. With probability 1− ϵ the

random bidder is bidding 0. By Lemma 20, G1 is continuous for every b ∈ (bmin, 1) (has no
atom at bid in (bmin, 1)). As G1 is continuous for every b ∈ (bmin, 1), the expected utility is

given by
∫ b
bmin

g1(x) (1− x) dx, as the value from winning is 1, the payment if set by agent 1 is
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x. (note that by Theorem 56 G1 if differentiable at all points but a set of measure 0, and there
are no atoms at these points, thus this set cannot change the integral). Thus conditional on
H1, the contribution of this case to the utility of agent 2 is

(1− ϵ)

∫ b

bmin

g1(x) (1− x) dx (17)

Additionally, with probability ϵ the random bidder is bidding according to R. In this case
the utility difference is

ϵ

(∫ b

bmin

g1(x)

(∫ x

bmin

(1− x)r(y)dy +

∫ b

x
(1− y)r(y)dy

)
dx

)
= (18)

ϵ

(∫ b

bmin

g1(x)

(
R(x)(1− x) +

∫ b

x
(1− x+ x− y)r(y)dy

)
dx

)
= (19)

ϵ

(∫ b

bmin

g1(x)

(
R(b)(1− x)−

∫ b

x
(y − x)r(y)dy

)
dx

)
(20)

Now Equation 14 is derived by noting that R̂(x) = 1− ϵ+ ϵ ·R(x).

Lemma 59. At η the following must hold. For every bid b ≥ bmin in the support of agent 2’s

distribution G2, if
∂s

(+)
1 (b)
∂b exists at b then it holds that

Pr[L1|H2]

Pr[H1|H2]
· b− v2
1− b

· r̂(b)

R̂(b)
= g1(b) +

r̂(b)

R̂(b)
·G1(b) (21)

Proof. Under the condition of the lemma, by Lemma 58 we know that Equation (14) holds at

b. We show that if
∂s

(+)
1 (b)
∂b exists we can take the derivative of Equation (14) with respect to

b and that this yield the desired equality.
First we look at the LHS of Equation (14). As R is standard r is continuous and the

derivative with respect to b exists. It holds that the derivative of the LHS of Equation (14) is

∂(Pr[L1|H2] · ϵ
∫ b
bmin

(x− v2) · r(x)dx)
∂b

= Pr[L1|H2] · ϵ · (b− v2) · r(b) (22)

The derivative of the RHS of Equation (14) exists as
∂s

(+)
1 (b)
∂b exists by assumption and

∂s
(min)
1 (b)
∂b exists as r is continuous. The derivative is

Pr[H1|H2] ·
∂
(
s
(min)
1 (b) + s

(+)
1 (b)

)
∂b

= Pr[H1|H2] ·

(
∂s

(min)
1 (b)

∂b
+

∂s
(+)
1 (b)

∂b

)
(23)

Now
∂s

(min)
1 (b)

∂b
= ϵ ·G1(bmin) · (1− b) · r(b) (24)

and

∂s
(+)
1 (b)

∂b
=

∂
(∫ b

bmin
g1(x)

(
R̂(b)(1− x)− ϵ ·

∫ b
x (y − x)r(y)dy

)
dx
)

∂b
= (25)
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∂
(
R̂(b)

∫ b
bmin

g1(x) (1− x) dx
)

∂b
− ϵ

∂
(∫ b

bmin
g1(x)

(∫ b
x (y − x)r(y)dy

)
dx
)

∂b
(26)

We handle each of the two terms:

∂
(
R̂(b)

∫ b
bmin

g1(x) (1− x) dx
)

∂b
= ϵ · r(b)

(∫ b

bmin

g1(x) (1− x) dx

)
+ R̂(b) · g1(b) (1− b) (27)

Now define h(b, x) =
∫ b
x (y − x)r(y)dy and note that h(b, b) = 0 and ∂h(b,x)

∂b = (b− x)r(b)

∂
∫ b
bmin

g1(x)h(b, x)dx

∂b
=

∫ b

bmin

g1(x)
∂h(b, x)

∂b
dx = r(b) ·

∫ b

bmin

g1(x)(b− x)dx (28)

We conclude that

∂s
(+)
1 (b)

∂b
= ϵ·r(b)

∫ b

bmin

g1(x) (1− x) dx+R̂(b)·g1(b) (1− b)−ϵ·r(b)·
∫ b

bmin

g1(x)(b−x)dx = (29)

ϵ · r(b)
∫ b

bmin

g1(x) (1− b) dx+ R̂(b) · g1(b) (1− b) = (30)

ϵ · r(b)(G1(b)−G1(bmin)) (1− b) + R̂(b) · g1(b) (1− b) (31)

Summarizing:

∂s
(min)
1 (b)

∂b
+

∂s
(+)
1 (b)

∂b
= ϵ · r(b)G1(b) (1− b) + R̂(b) · g1(b) (1− b) (32)

Combining all the above with the observation that r̂(b) = ϵ · r(b) we conclude that

Pr[L1|H2]

Pr[H1|H2]
· (b− v2) · r̂(b) = r̂(b) ·G1(b) (1− b) + R̂(b) · g1(b) (1− b) (33)

Equivalently, by reorganizing, this yields equation (21).

Lemma 60. At η the following must hold. For every bid b ≥ bmin in the support of agent 2’s
distribution G2, it must holds that

G1(b) =
Pr[L1|H2]

Pr[H1|H2]
· ϵ

R̂(b)
·
∫ b

bmin

x− v2
1− x

r(x)dx+G1(bmin) ·
R̂(bmin)

R̂(b)
(34)

Proof. By Theorem 55 G1 is differentiable almost everywhere. At any point x for which G1 is

differentiable (g1(x) exists) it holds that
∂s

(+)
1 (b)
∂b exists. By Lemma 59 if

∂s
(+)
1 (b)
∂b exists for an

optimal b ∈ (bmin, 1), then for b it holds that

Pr[L1|H2]

Pr[H1|H2]
· b− v2
1− b

· r̂(b)

R̂(b)
= g1(b) +

r̂(b)

R̂(b)
·G1(b) (35)

This is a First-Order Ordinary Differential Equation. We apply Theorem 57 with u(b) =

G1(b), u
′(b) = g1(b), q(b) =

Pr[L1|H2]
Pr[H1|H2]

· b−v2
1−b · r̂(b)

R̂(b)
and p(b) = r̂(b)

R̂(b)
.
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We observe that z(x) =
∫ x
bmin

p(y)dy =
∫ x
bmin

r̂(y)

R̂(y)
dy = log(R̂(x)) − log(bmin), thus z(x) =

e
∫ x
bmin

p(y)dy
= R̂(x)/R̂(bmin). Thus

G1(b)−G1(bmin)
R̂(bmin)

R̂(b)
=

R̂(bmin)

R̂(b)

(∫ b

bmin

R̂(x)

R̂(bmin)

Pr[L1|H2]

Pr[H1|H2]
· x− v2
1− x

· r̂(x)

R̂(x)
dx+ C

)
=

(36)
1

R̂(b)

(∫ b

bmin

Pr[L1|H2]

Pr[H1|H2]
· x− v2
1− x

· r̂(x)dx+ C

)
(37)

C is determined by evaluating the above at b = bmin. It must hold that C = 0. We conclude
that

G1(b) =
Pr[L1|H2]

Pr[H1|H2]
· ϵ

R̂(b)

∫ b

bmin

x− v2
1− x

· r(x)dx+G1(bmin) ·
R̂(bmin)

R̂(b)
(38)

By replacing each player by the other and repeating the proof above similarly we get:

Lemma 61. At η the following must hold. For every bid b ≥ bmin in the support of agent 1’s
distribution G1, it must holds that

G2(b) =
Pr[L2|H1]

Pr[H2|H1]
· ϵ

R̂(b)

∫ b

bmin

x− v1
1− x

· r(x)dx+G2(bmin) ·
R̂(bmin)

R̂(b)
(39)

D.2.2 Proofs of Lemma 21

We first show that bmax tends to 1 as ϵ goes to 0.

Lemma 62. Fix a small δ > 0. At η the following must hold. If ϵ > 0 is small enough then
it holds that 1 > bmax > 1− δ (bmax tends to 1 as ϵ goes to 0).

Proof. By Lemma 60 and Lemma 61, for each bidder i ∈ {1, 2} and j ̸= i, bmax must satisfy:

1 =
Pr[Li|Hj ]

Pr[Hi|Hj ]
· ϵ

R̂(bmax)

∫ bmax

bmin

x− vi
1− x

· r(x)dx+Gi(bmin) ·
R̂(bmin)

R̂(bmax)
(40)

As ϵ approaches zero, Lemma 53, Lemma 20, and Equation (12) imply that for some bidder
i either Gi(bmin) = 0 or Gi(bmin) approaches zero. For the first term to approach 1 as ϵ
approaches zero requires the integral to approach infinity. As r is continuous on a compact set
its infimum is obtained. Since r is positive for every x, ∃r > 0 such that r(x) ≥ r for every x.
Hence it is clear that for the integral to approach infinity bmax must approach 1. Finally, for
any fixed ϵ > 0 it must hold that 1 > bmax as the integral to approach infinity as bmax tends
to 1.

The following notations will be useful. Let α1 =
Pr[L1|H2]
Pr[H1|H2]

and α2 =
Pr[L2|H1]
Pr[H2|H1]

.

We assume that 0 < Pr[H1, L2](1− v1) ≤ Pr[L1,H2](1− v2).
11 Additionally, assume that

if Pr[H1, L2](1−v1) = Pr[L1,H2](1−v2) then v1 ≥ v2. The next lemma (Lemma 21) presents
additional properties that candidates for NE must satisfy when ϵ is small enough.

11If min{Pr[H1, L2](1− v1), P r[L1,H2](1− v2)} > 0 this is without loss of generality, by renaming the bidders if
necessary.
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Lemma 63. If ϵ is small enough at η the following must hold. There must exist bmin and
bmax such that 1 > bmax > bmin ≥ 0 and:

• The two bidders are symmetric (Pr[H1, L2] = Pr[L1,H2] and v1 = v2) if and only if
bmin = b = v1 = v2 and G1(bmin) = G2(bmin) = 0 (no atoms).

• If Pr[H1, L2](1−v1) = Pr[L1,H2](1−v2) but the bidders are not symmetric, and it holds
that v1 > v2 and Pr[H1, L2] < Pr[L1, H2], then bidder 1 has an atom at bmin = b1 of
size G1(bmin) > 0, and bidder 2 has an atom at v2 = b2 = b < bmin of size G2(v2) > 0.
It holds that

bmin = b∗1(G2(v2)) =
Pr[H2|H1]G2(v2) + v1 Pr[L2|H1]

Pr[H2|H1]G2(v2) + Pr[L2|H1]
> max{v1, v2} (41)

G1(bmin) =
Pr[L1|H2]

Pr[H1|H2]

∫ bmin

v2
(x− v2) r̂ (x) dx

R̂ (bmin) (1− bmin)
(42)

G2(v2) =
R̂(bmax)

R̂(bmin)
−

(
R̂(bmax)

R̂(bmin)
−G1(bmin)

)
· Pr[H1, L2]

Pr[L1,H2]
·
∫ bmax

bmin

x−v1
1−x r(x)dx∫ bmax

bmin

x−v2
1−x r(x)dx

(43)

• Assume Pr[H1, L2](1− v1) < Pr[L1,H2](1− v2). Then either

– bmin = b, bidder 1 has no atom (G1(bmin) = 0) and bidder 2 has an atom at b =
b2 = v2 ≥ v1 of size G2(v2) > 0 specified by Equation (43), or

– bmin > b, bidder 1 has an atom at bmin = b1 specified by Equation (41), its size
G1(bmin) > 0 is specified by Equation (42), and bidder 2 has an atom at v2 = b2 =
b < bmin of size G2(v2) > 0 specified by Equation (43).

Moreover, it always hold that

G1(b) =


0 if 0 ≤ b < bmin;
Pr[L1|H2]
Pr[H1|H2]

· ϵ
R̂(b)

·
∫ b
bmin

x−v2
1−x r(x)dx+G1(bmin) · R̂(bmin)

R̂(b)
if bmin ≤ b ≤ bmax;

1 if bmax < b ≤ 1.
(44)

and

G2(b) =


0 if 0 ≤ b < v2;
G2(v2) if v2 ≤ b < bmin;
Pr[L2|H1]
Pr[H2|H1]

· ϵ
R̂(b)

∫ b
bmin

x−v1
1−x · r(x)dx+G2(v2) · R̂(bmin)

R̂(b)
if bmin ≤ b ≤ bmax;

1 if bmax < b ≤ 1.

(45)

Proof. By Lemma 53 for small enough ϵ it holds that bmax > bmin, so we assume that in the
rest of the proof.

Observe that

α2

α1
=

Pr[L2|H1]

Pr[L1|H2]
· Pr[H1|H2]

Pr[H2|H1]
=

Pr[L2|H1]

Pr[L1|H2]
· Pr[H1,H2]

Pr[H2]
· Pr[H1]

Pr[H1,H2]
=

Pr[H1, L2]

Pr[L1,H2]
(46)

Let T (b, bmin) =

∫ b
bmin

1
1−x

·r(x)dx∫ b
bmin

x
1−x

·r(x)dx
, and let β(b) = R̂(bmin)

R̂(b)
.
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Claim 1. Assume bmax > bmin. It holds that

1−G2(bmin) · β(bmax)

1−G1(bmin) · β(bmax)
=

α2

α1
· 1− v1T (bmax, bmin)

1− v2T (bmax, bmin)
(47)

Proof. Recall that by Lemma 20 for bmax it holds that G1(bmax) = G2(bmax) = 1.
By Lemma 61 for every bid b ≥ bmin in the support of agent 1’s distribution G1, that is, for

every b ∈ [bmin, bmax), Equation (39) hold. As the equation is continuous at bmax we conclude
that

1−G2(bmin) · β(bmax) = α2 ·
ϵ

R̂(bmax)

∫ bmax

bmin

x− v1
1− x

· r(x)dx (48)

Additionally, by Lemma 60 for every bid b ≥ bmin in the support of agent 2’s distribution
G2, that is, for every b ∈ [bmin, bmax), Equation (34) hold. As the equation is continuous at
bmax we conclude that

1−G1(bmin) · β(bmax) = α1 ·
ϵ

R̂(bmax)

∫ bmax

bmin

x− v2
1− x

· r(x)dx (49)

The claim follows from dividing the two equations (since for bmax > bmin both sides of the
two equations are not 0, thus such a division is well defined).

Claim 2. Assume bmax > bmin. There are no atoms (G1(bmin) = G2(bmin) = 0) if and only
if both bidders are symmetric: v1 = v2 and Pr[H1, L2] = Pr[L1,H2].

Proof. By Lemma 20 if G1(bmin) = G2(bmin) = 0 then b = bmin = v1 = v2. In such a case

Equation (47) reduces to α2 = α1. Now, recall that
α2
α1

= Pr[H1,L2]
Pr[L1,H2]

, thus if there are no atoms

in both G1 and G2 then b = bmin = v1 = v2 and Pr[H1, L2] = Pr[L1, H2], that is, the two
agents are completely symmetric.

Now, assume that both bidders are symmetric, that is, v = v1 = v2 and Pr[H1, L2] =
Pr[L1,H2], we want to show that no bidder has an atom. We next show that it cannot be the
case that bmin > b. This is sufficient as, by Lemma 20, bmin = b and v1 = v2 imply that no
bidder has an atom, that is G2(bmin) = G1(bmin) = 0.

We next show that symmetry and bmin > b implies a contradiction. For symmetric bidders
Equation (47) implies that G1(bmin) = G2(bmin). Using Lemma 20 we observe the following.
One bidder, w.l.o.g. bidder 2, bids an atom at b = v1 = v2 = v and the other bidder (bidder
1) bids an atom at bmin > b = v. Denote Γ = G1(bmin) = G2(b). By Equation (41),

bmin = b∗1(Γ) =
Pr [H2|H1] Γ + v1 Pr [L2|H1]

Pr [H2|H1] Γ + Pr [L2|H1]
,

or equivalently,

Γ =
Pr [L2|H1]

Pr [H2|H1]
· bmin − v1
1− bmin

.

By Equation (42),

Γ =
Pr [L1|H2]

Pr [H1|H2]
·
∫ bmin

v2
(x− v2) r̂(x)dx

R̂ (bmin) (1− bmin)
.

Thus,

Pr [L1|H2]

Pr [H1|H2]
·
∫ bmin

v2
(x− v2) r̂(x)dx

R̂ (bmin) (1− bmin)
=

Pr [L2|H1]

Pr [H2|H1]
· bmin − v1
1− bmin

,
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or due to symmetry in conditional probabilities (α1 = α2) and values (v1 = v2 = v),∫ bmin

v
(x− v) r̂(x)dx = R̂ (bmin) (bmin − v) .

Integration by parts implies that∫ bmin

v
(x− v) r̂(x)dx = (bmin − v) R̂ (bmin)−

∫ bmin

v
R̂(x)dx,

and this can only equal R̂ (bmin) (bmin − v) when bmin = v, a contradiction.

We next consider the case that Pr[H1, L2](1−v1) = Pr[L1,H2](1−v2) but the bidders are
not symmetric (v1 > v2 and Pr[H1, L2] < Pr[L1,H2] ).

Claim 3. Assume bmax > bmin and that ϵ is small enough. Assume that Pr[H1, L2](1 −
v1) = Pr[L1, H2](1 − v2) but the bidders are not symmetric, and it holds that v1 > v2 and
Pr[H1, L2] < Pr[L1,H2]. Then bidder 1 has an atom at bmin = b1 > v1 and bidder 2 has an
atom at v2 = b2 = b < bmin.

Proof. By Claim 2 as bidders are not symmetric it cannot be the case that both bidders have
no atom.

We next show that it cannot be the case that only one bidder has an atom. By Lemma 20
if only one bidder has an atom and v1 > v2 it must be the case that b = bmin = v1 > v2 and
bidder 1 has the atom at v1. But in this case, as G2(bmin) = 0, the LHS of Equation (47)
equals to 1

1−G1(bmin)·β(bmax)
> 1 (as 0 < β(bmax) ≤ 1 and G1(bmin) > 0), while the RHS of

Equation (47) is at most 1 since by Lemma 64 it is monotonically increasing to its limit 1, a
contradiction.

We conclude that both bidders have an atom, each at his infimum bid. We next figure out
which bidder has an atom at b and which has an atom at bmin. We first show that it must
be the case that both G1(bmin) and G2(bmin) tend to 0 as ϵ goes to 0. By Equation (12) for
one bidder i it holds that Gi(bmin) must tend to 0 as ϵ goes to 0 (as bmin does not tend to
1 the denominator does not tend to 0, while the numerator tends to 0). Now, as the RHS
of Equation (47) tends to 1 as ϵ goes to 0, G1(bmin) − G2(bmin) must tend to 0. Now, as
both G1(bmin) and G2(bmin) tend to 0 as ϵ goes to 0, by Equation (11) the bid of bidder
i that is bidding at bi = bmin must tend to vi, that is bmin − vi tends to 0. Now recall
that in that case it holds that bmin > bj = vj . Thus, if vi < vj we get a contradiction as
bmin − vi > vj − vi and vj − vi is some positive constant (bounded away from 0). We conclude
that bmin = b1 > b = b2 = v2, that is, bidder 1 has an atom at bmin = b1 > v1 and bidder 2
has an atom at v2 = b2 = b < bmin, as we need to show.

Claim 4. Assume bmax > bmin and that ϵ is small enough. Assume that Pr[H1, L2](1 −
v1) < Pr[L1,H2](1 − v2). Then either bidder 1 has no atom and bidder 2 has an atom at
v2 = b2 = b = bmin. Or, bidder 1 has an atom at bmin = b1 > v1 and bidder 2 has an atom at
v2 = b2 = b < bmin.

Proof. By Claim 2 as bidders are not symmetric it cannot be the case that both bidders have
no atom. We next consider the case that at least one bidder has an atom. By Lemma 62 bmax

tends to 1 as ϵ goes to 0. Additionally, T (b, bmin) tends to 1 as b tends to 1 (by Lemma 64).

Thus, the RHS of Equation (47) tends to χ = Pr[H1,L2](1−v1)
Pr[L1,H2](1−v2)

< 1 as ϵ goes to 0. Equation (47)

combined with χ < 1 implies that G1(bmin) < G2(bmin).
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Now, if only one bidder has an atom it must be bidder 2, since G2(bmin) = 0 implies
G1(bmin) < 0, a contradiction. If on the other hand both bidders have an atom, we claim
that bidder 1 has an atom at bmin = b1 and bidder 2 has an atom at v2 = b2 = b < bmin.

Observe also that β(bmax) =
R̂(bmin)

R̂(bmax)
tends to 1 as ϵ goes to 0. Now, if bidder 2 is the bidder

with the atom at bmin, by Equation (42) G2(bmin) must tend to 0 as ϵ goes to 0 (as bmin

does not tend to 1 the denominator does not tend to 0, while the numerator tends to 0).
Combining with G1(bmin) < G2(bmin) this will imply that G1(bmin) must also tend to 0 as ϵ
goes to zero. But then the LHS of Equation (47) tends to 1 while the RHS tends to χ < 1, a
contradiction. We conclude that bidder 1 has an atom at bmin = b1 and bidder 2 has an atom
at v2 = b2 = b < bmin.

By Equation (47) G2(bmin) must satisfy

G2(bmin) =
1

β(bmax)
−
(

1

β(bmax)
−G1(bmin)

)
· Pr[H1, L2]

Pr[L1,H2]
· 1− v1T (bmax, bmin)

1− v2T (bmax, bmin)
(50)

Now Equation (43) follows from the definition of β(bmax) and T (bmax, bmin). The other
claims in the lemma for the case that bidder 1 has an atom at bmin = b1 and bidder 2 has an
atom at v2 = b2 = b < bmin directly follow from Lemma 20, Lemma 60 and Lemma 61.

Note that by Lemma 64 and the above observations, as ϵ goes to 0, the size of the atom
G2(v2) tends to 1− Pr[H1,L2](1−v1)

Pr[L1,H2](1−v2)
.

Lemma 64. Fix any 0 ≤ bmin < 1 and a standard distribution R with density r. The function

T (b) =

∫ b
bmin

1
1−x · r(x)dx∫ b

bmin

x
1−x · r(x)dx

(51)

monotonically decreases to 1 as b increases from bmin to 1.
Additionally, ∫ b

bmin

x−v1
1−x r(x)dx∫ b

bmin

x−v2
1−x r(x)dx

=
1− v1 · T (b)
1− v2 · T (b)

(52)

tends to 1−v1
1−v2

as b tends to 1. If v1 > v2 it is monotonically increasing to its limit, and if
v1 < v2 it is monotonically decreasing to its limit.

Proof. Let c ≥ bmin be some number such that 0 < c < 1 (say, c = bmin unless bmin = 0,
in this case c = 1/2). Assume b ≥ c. Since r is continuous on a compact set its infimum is
obtained. Since r is positive for every x, ∃r > 0 such that r(x) ≥ r for every x. Then∫ b

bmin

1

1− x
r(x)dx ≥

∫ b

bmin

x

1− x
r(x)dx ≥ r ·

∫ b

c

x

1− x
dx ≥ c · r ·

∫ b

c

1

1− x
dx

Now we observe that both the numerator and the denominator of T (b) tend to infinity when
b tends to 1 as

lim
b→1

∫ b

c

1

1− x
dx = lim

b→1
(ln (1− c)− ln (1− b)) = ∞

Thus by L’Hôpital’s rule,

lim
b→1

∫ b
bmin

1
1−xr(x)dx∫ b

bmin

x
1−xr(x)dx

= lim
b→1

d
db

∫ b
bmin

1
1−xr(x)dx

d
db

∫ b
bmin

x
1−xr(x)dx

= lim
b→1

1
1−br (b)
b

1−br (b)
= lim

b→1

1

b
= 1.
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Next we show that T (b) monotonically decreases to 1 as b increases to 1. For any b < 1 all
terms are finite, so we can compute the derivative:

d

db

∫ b
bmin

1
1−xr(x)dx∫ b

bmin

x
1−xr(x)dx

=
1

1− b
r (b)

∫ b
bmin

x−b
1−xr(x)dx(∫ b

bmin

x
1−xr (x) dx

)2 < 0.

For b < 1, 1
1−b > 0. For 0 ≤ bmin < b < 1 and x ∈ [bmin, b] ,

x−b
1−x < 1. Therefore T (b) is

monotonically decreasing to 1 as b increases to 1.
Observe that ∫ b

bmin

x−v1
1−x r(x)dx∫ b

bmin

x−v2
1−x r(x)dx

=
1− v1 · T (b)
1− v2 · T (b)

= 1− v1 − v2
1/T (b)− v2

. (53)

When v1 > v2 it is monotonically increasing to 1−v1
1−v2

as b increases to 1, since T (b) decreases to
1 and v1 − v2 > 0. Similar argument shows that when v1 < v2 it is monotonically decreasing
to its limit.

D.2.3 Convergence to the TRE

For a standard distribution R it holds that its density function r is bounded as r is a continuous
function on a compact set. Thus there exists some bound rmax < ∞ such that rmax ≥ r(x)
for all x.

Lemma 65. If ϵ is small enough then the following holds. For every b ∈ (bmin, bmax) in the
support of G1 it must holds that:

Pr[L1|H2]

Pr[H1|H2]
· ϵ

1− ϵ
· rmax · (−b− log(1− b)) +G1(bmin) ≥ G1(b) (54)

where for rmax it holds that rmax ≥ r(x) for all x.

Proof. By Lemma 60

G1(b) =
Pr[L1|H2]

Pr[H1|H2]
· ϵ

R̂(b)
·
∫ b

bmin

x− v2
1− x

r(x)dx+G1(bmin) ·
R̂(bmin)

R̂(b)
(55)

As v2 ≥ 0 and r(b) ≤ rmax for all b,∫ b

bmin

x− v2
1− x

r(x)dx ≤
∫ b

bmin

x

1− x
r(x)dx ≤ rmax

∫ b

0

x

1− x
dx = rmax(−b− log(1− b)) (56)

As R̂(b) ≥ R̂(bmin) ≥ 1− ϵ we conclude that

G1(b) ≤
Pr[L1|H2]

Pr[H1|H2]
· ϵ

1− ϵ
· rmax(−b− log(1− b)) +G1(bmin) (57)

Lemma 66. If ϵ is small enough then the following holds. For every b ∈ (bmin, bmax) in the
support of G2 it must holds that:

Pr[L2|H1]

Pr[H2|H1]
· ϵ

1− ϵ
· rmax · (−b− log(1− b)) ≥ G2(b)−G2(v2) (58)

where for rmax it holds that rmax ≥ r(x) for all x.
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Proof. The proof is the same as the proof of Lemma 65 when using the following equation
proved in Lemma 61 and the fact that G2(bmin) = G2(v2):

G2(b) =
Pr[L2|H1]

Pr[H2|H1]
· ϵ

R̂(b)

∫ b

bmin

x− v1
1− x

· r(x)dx+G2(bmin) ·
R̂(bmin)

R̂(b)
(59)

Lemma 21, Lemma 65 and Lemma 66 enable us to prove that any TRE must be µ.

Corollary 67. Fix a standard distribution R. For every b ∈ [0,min{v2, v1}) it holds that
G1(b) = G2(b) = 0. For every b ∈ [min{v2, v1}, 1) the limits of G1(b) and of G2(b) − G2(v2),

as ϵ goes to zero, are both zero. Additionally, G2(v2) tends to 1 − Pr[H1,L2](1−v1)
Pr[L1,H2](1−v2)

as ϵ goes to
zero.

Proof. Fix some b < 1. For a small δ > 0 such that δ < 1− b, by Lemma 53 and Lemma 62 it
holds that for a small enough ϵ, bmax > 1− δ and bmax > bmin. Now it holds that b < bmax.

Since b1 ≥ v1 and b2 ≥ v2 it holds that b = min{b1, b2} ≥ min{v1, v2}, thus by Lemma 21
G1(b) = G2(b) = 0 for every b ∈ [0,min{v1, v2}). The same lemma also implies that G1(b) =
G2(b)−G2(v2) = 0 for every b ∈ [min{v1, v2}, bmin).

Next we consider b ∈ [bmin, 1). We first observe that for any fixed b ∈ (bmin, 1), by
Lemma 65, G1(b) tends to G1(bmin) as ϵ goes to 0 (and clearly G1(b) = G1(bmin) for b = bmin).
The claim that G1(b) tends to 0 follows from Lemma 21 which shows that G1(bmin) is either 0
or tends to 0 when ϵ goes to 0. Additionally, by Lemma 66, for any fixed b ∈ (bmin, 1) it holds
that G2(b) tends to G2(v2) as ϵ goes to 0. As G2 is continuous at bmin the claim also hold at
that point.

Finally, Lemma 21 combined with Lemma 64 show that G2(v2) is 0 if and and only if the

bidders are symmetric and Pr[H1,L2](1−v1)
Pr[L1,H2](1−v2)

= 1, and otherwise G2(v2) tends to 1− Pr[H1,L2](1−v1)
Pr[L1,H2](1−v2)

as ϵ goes to zero.

D.2.4 Existence of NE in λ(ϵ, R)

Observe that R(b) = b is a standard distribution, so standard distributions exist. We next
show that for any standard distribution R, if ϵ is small enough then there exists a mixed NE
in the game λ(ϵ, R).

We prove existence of one of three types of equilibria depending on parameter values. For
symmetric bidders, we show the existence of an equilibrium with no atoms (case 1). For
asymmetric bidders we show the existence of either a one-atom (case 2) or a two-atom (case 3)
equilibrium depending on whether or not equation (63) in the proof is satisfied. The following
observation indicates why equation (63) determines whether asymmetric equilibria involve one
or two atoms.

Observation 68. If ϵ is small enough and G1(bmin) > 0 (bidder 1 has an atom, which implies
that bidder 2 also has an atom) then it must hold that

α2 ·
v2 − v1
1− v2

≤ 1− α2

α1
· 1− v1
1− v2

(60)

Proof. If G1(bmin) > 0 then Equation (41) holds. In particular it must holds that

G2(v2) + v1α2

G2(v2) + α2
= 1− α2(1− v1)

G2(v2) + α2
> v2 (61)
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By Corollary 67, G2(v2) tends to 1− Pr[H1,L2](1−v1)
Pr[L1,H2](1−v2)

= 1− α2(1−v1)
α1(1−v2)

as ϵ goes to zero. Thus it
must holds that

1− α2(1− v1)(
1− α2(1−v1)

α1(1−v2)

)
+ α2

≥ v2 (62)

and the claim follows from reorganizing the last equation.

Lemma 69. Fix any standard distribution R. For every small enough ϵ > 0 there exists a
mixed NE η in the game λ(ϵ, R).

Proof. Let v̄ = max{v1, v2}. Throughout the proof we index bidders 1 and 2 such that either
1) α1(1 − v2) = α2(1 − v1) and v1 > v2, or 2) α1(1 − v2) > α2(1 − v1). Moreover, we often
distinguish between three cases:

1. No atom case. Bidders are symmetric: v = v1 = v2 and Pr[H1, L2] = Pr[L1,H2]. In this
case we show there exists an equilibrium in which bmin = v and neither bidder has an
atom: G1(bmin) = G2(v2) = 0.

2. One atom case. Bidders are asymmetric (v1 ̸= v2 or Pr[H1, L2] ̸= Pr[L1,H2]) and
equation (63) holds:

α2 ·
v2 − v1
1− v2

≥ 1− α2

α1
· 1− v1
1− v2

. (63)

Note that asymmetry and equation (63) imply that α1(1− v2) > α2(1− v1) and v2 > v1.
This is so as by assumption the RHS of equation (63) is non-negative, this implies that
v2 ≥ v1. If v2 = v1 Then the equation implies that α1 = α2 which means the bidders are
symmetric, a contradiction. Therefore v2 > v1 and thus α1(1 − v2) > α2(1 − v1) (since
in the case that α1(1− v2) = α2(1− v1) we assume that v1 > v2).

In this case we show that there exists an equilibrium in which bmin = v2 and only bidder
2 has an atom: G2(v2) > 0 and G1(bmin) = 0.

3. Two atom case. Bidders are asymmetric (v1 ̸= v2 or Pr[H1, L2] ̸= Pr[L1,H2]) and
equation (63) is violated. Note that either 1) α1(1 − v2) = α2(1 − v1) and v1 > v2, or
2) α1(1 − v2) > α2(1 − v1) are both feasible. In this case we show that there exists an
equilibrium in which bmin > max{v1, v2} and both bidders have atoms: G2(v2) > 0 and
G1(bmin) > 0.

In all cases, bidder i with signal Li is bidding v(L1, L2) = 0. We construct distributions G1

and G2 using the necessary conditions in Lemma 21 and show that they form a NE. Equations
(44) and (45) define G1 and G2 as a function of the four parameters bmin, bmax, G1(bmin),
and G2(v2). There are three main steps to the proof. First we show existence of parameters
bmin, bmax, G1(bmin), and G2(v2) that satisfy the necessary conditions in Lemma 21. Second,
we show that, for the chosen parameters, G1 and G2 are well defined distributions (non-
decreasing, and satisfying G1(0) = G2(0) = 0 and G1(1) = G2(1) = 1). Third we show that
the constructed bid distributions are best responses. By construction, bidder i ∈ {1, 2} is
indifferent to all bids in the support of his bid distribution and we show that every bid outside
the support gives weakly lower utility.

Step 1. Existence of parameters bmin, bmax, G1(bmin), and G2(v2):
Case 1 (no atoms): First consider the case that the bidders are symmetric. We define

bmin = v and G1(bmin) = G2(v2) = 0. By the necessary conditions at bmax it must hold that

1 = G1(bmax) =
Pr[L1|H2]

Pr[H1|H2]
· ϵ

R̂(bmax)
·
∫ bmax

v

x− v

1− x
r(x)dx (64)
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The RHS increases from zero to infinity as bmax increases from v to 1 (Claim 6), so there exists
a unique value of bmax ∈ (v, 1) that solves this equation. It is clear that bmax must tend to 1 as
ϵ goes to 0. Note that all the necessary conditions presented in Lemma 21 for the symmetric
case are now satisfied.

Case 2 (one atom): Next consider the case that bidders are asymmetric and equation
(63) holds (implying α2 · (1 − v1) < α1 · (1 − v2) and v1 < v2). We define bmin = v2 and
G1(bmin) = 0. As G1(bmin) = 0, bmax ∈ (v, 1) can be determined exactly as in the symmetric
case. Finally, we set G2(v2) using Equation (43). Observe that G2(v2) as defined tends to
1− α2

α1
· 1−v1
1−v2

∈ (0, 1) as ϵ tends to 0, thus for sufficiently small ϵ it is positive.
Case 3 (two atoms): Finally, consider the case that bidders are asymmetric and equa-

tion (63) is violated. We define G1(bmin) as a function of bmin and bmax by equation (42). We
define G2(v2) as a function of bmin by equation (41), or equivalently by:

G2(v2) =
Pr[L2|H1]

Pr[H2|H1]

bmin − v1
1− bmin

. (65)

The arguments below show that bmin > max{v1, v2}, which ensures that G1(bmin) > 0 and
G2(v2) > 0. By substituting G1(bmin) and G2(v2) into equations (44) and (45), which deter-
mine G1(b) and G2(b), and evaluating these equations at bmax, for which it must hold that
G1(bmax) = G2(bmax) = 1, we derive that we need to find bmin and bmax that satisfy the
following pair of equations:

1 = α1 ·
1

R̂(bmax)

∫ bmax

bmin

x− v2
1− x

· r̂(x)dx+ α1 ·
1

R̂(bmax)

∫ bmin

v2

x− v2
1− bmin

· r̂(x)dx (66)

1 = α2 ·
1

R̂(bmax)

∫ bmax

bmin

x− v1
1− x

· r̂(x)dx+
bmin − v1
1− bmin

· α2 ·
R̂(bmin)

R̂(bmax)
(67)

We first show that when ϵ is small enough, for any bmin ∈ [v̄, v(H1)] we can find a unique
bmax ∈ (bmin, 1) that solves equation (66). We denote such a solution by bmax(bmin). When

bmax = bmin, the RHS of equation (66) equals ϵ · h(bmin) for h(bmin) =
α1

R̂(bmin)

∫ bmin

v2
x−v2

1−bmin
·

r(x)dx. As h is a continuous function on a compact set it is bounded, thus ϵ · h(bmin) < 1
for any bmin ∈ [v̄, v(H1)] as long as ϵ is small enough. Now, for every fixed bmin ∈ [v̄, v(H1)],
the RHS of equation (66) is continuously increasing in bmax (by Claim 6 below) and goes to
infinity when bmax tends to 1. Therefore there exists a unique bmax ∈ (bmin, 1) that solves
the equation. Note that bmax(bmin) is a continuous function of bmin and, for any fixed bmin,
bmax(bmin) tends to 1 as ϵ tends to 0.

Now we substitute bmax(bmin) into equation (67) and get the following equation in bmin

1 = α2 ·
1

R̂(bmax(bmin))

∫ bmax(bmin)

bmin

x− v1
1− x

· r̂(x)dx+
bmin − v1
1− bmin

· α2 ·
R̂(bmin)

R̂(bmax(bmin))
(68)

To complete the proof we need to show that there exists bmin ∈ [v̄, v(H1)] that satisfies equa-
tion (68). The RHS of this equation is a continuous function of bmin on the compact set
[v̄, v(H1)]. It will therefore be sufficient to show that for bmin = v(H1) the RHS is strictly
larger than 1, while for bmin = v̄ the RHS is strictly smaller than 1. Once this is shown (below)
we conclude that there exists bmin > v̄ such that the RHS is exactly 1. This bmin together
with bmax = bmax(bmin) solve both equations (66) and (67) and satisfy 1 > bmax > bmin > v̄.
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To prove the remaining two inequalities, define:

z(bmin) = α1 ·
1

R̂(bmax(bmin))

∫ bmax(bmin)

bmin

x− v2
1− x

· r̂(x)dx.

Now, the RHS of equation (68) can be written as

z(bmin) ·
α2 ·

∫ bmax(bmin)
bmin

x−v1
1−x · r̂(x)dx

α1 ·
∫ bmax(bmin)
bmin

x−v2
1−x · r̂(x)dx

+
bmin − v1
1− bmin

· α2 ·
R̂(bmin)

R̂(bmax(bmin))
(69)

Fix bmin. Note that equation (66) implies that z(bmin) ≤ 1 and z(bmin) tends to 1 as ϵ goes to
0, as the second term of the RHS of equation (66) is positive and tends to 0. By Lemma 64,
α2·

∫ bmax(bmin)

bmin

x−v1
1−x

·r̂(x)dx

α1·
∫ bmax(bmin)

bmin

x−v2
1−x

·r̂(x)dx
tends to α2(1−v1)

α1(1−v2)
, and thus, as ϵ tends to 0, the RHS of equation (68)

tends to
α2(1− v1)

α1(1− v2)
+

bmin − v1
1− bmin

· α2 (70)

For bmin = v(H1), equation (70) strictly exceeds 1 since by equation (41) it holds that
bmin = v(H1) if and only if G2(v2) =

bmin−v1
1−bmin

·α2 = 1, and the first term is strictly positive by
assumption. Thus, for sufficiently small ϵ, the RHS of equation (68) also strictly exceeds 1 for
bmin = v(H1).

If bmin = v̄ we show that the RHS of equation (68) is strictly less than 1 for sufficiently
small ϵ. We consider two cases separately. First, if bmin = v̄ = v2 ≥ v1, equation (70) is
strictly less than 1 as equation (63) is violated. Thus, for sufficiently small ϵ, the RHS of
equation (68) is also strictly less than 1. Second, if bmin = v̄ = v1 > v2, equation (70) is
weakly (but not necessarily strictly) less than 1. However, we show that equation (69) (and
hence the RHS of equation (68)) is strictly less than equation (70) for all ϵ > 0. This follows
because bmin > v2 implies that the second term on the RHS of equation (66) is strictly positive

so that z(bmin) < 1 and v1 > v2 implies (by Lemma 64) that
α2·

∫ bmax
bmin

x−v1
1−x

·r̂(x)dx

α1·
∫ bmax
bmin

x−v2
1−x

·r̂(x)dx
is increasing

to its limit (which is at most 1).
Step 2. G1 and G2 are well defined: We next argue that G1 and G2, as defined above by

Step 1 and equations (44) and (45), are well defined distributions. The way we have chosen the
parameters in Step 1 ensures that max{v1, v2} ≤ bmin < bmax ≤ 1, G1(bmin), G2(v2) ≥ 0, and
G1(bmax) = G2(bmax) = 1. The two distributions are continuous from the right at bmin, and
by Claim 6 and Claim 5 are strictly increasing on (bmin, bmax). Thus both are monotonically
non-decreasing on [0,∞) with G1(0) = G2(0) = 0 and G1(bmax) = G2(bmax) = 1.

Step 3. Constructed bid distributions are best responses: To see that η is indeed
a mixed NE we show that each bidder is best responding to the other. Observe that, by
construction, G1 and G2 ensure that each bidder is indifferent between all the bids in the
support her bid distribution. It only remains to show that all other bids earn weakly lower
payoffs.

First consider bids above bmax. As 0 < Pr[H1, L2](1 − v(H1, L2)) ≤ Pr[L1,H2](1 −
v(L1,H2)) it holds that max{v(H1), v(H2)} < 1. Therefore, as bmax tends to 1 when ϵ tends
to 0, for small enough ϵ it holds that bmax > max{v(H1), v(H2)}. Therefore, for small enough
ϵ, Lemma 43 implies that for both bidders bmax strictly dominates any higher bid b > bmax.

Second note that Lemma 43 also implies that for bidder i, bidding vi strictly dominates
any lower bid b < vi.
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Third, we consider bids b ∈ [vi, bmin] by bidder i ∈ {1, 2} outside the support of bidder i’s
bid distribution for each of the three cases.

Consider case 1 (no atoms) in which bmin = v1 = v2 = v. In this case, the utility from
bidding bmin = v equals the utility of any bid in [v, bmax] by continuity.

Consider case 2 (one atom) in which bmin = v2, α2 · (1 − v1) < α1 · (1 − v2), and v2 > v1.
Bidder 2 bids an atom at v2 so there are no other bids to check. For bidder 1, Lemma 40
implies that any bid in (v2, bmax) strictly dominates bidding v2. By Lemma 43, the bid with
the highest payoff strictly below v2 is v1. By bidding v1, bidder 1 never wins when bidder 2
gets the high signal H2. Since 1− α2

α1
· 1−v1
1−v2

> 0 the size of the atom of bidder 2 does not tend
to 0 as ϵ tends to 0, and clearly the gain by bidding above the atom of bidder 2 at v2 instead
of bidding v1 is positive if ϵ is small enough.

Consider case 3 (two atoms) in which bmin > max{v1, v2}. Bidder 2 bids an atom at v2,
which by Lemma 43 dominates any bid b < bmin. Moreover, for bidder 2, bidding bmin is
dominated by bids in the support by Lemma 40. Now turn to bidder 1. Lemmas 43 and 40
imply that i’s atom at bmin dominates any bid in [v2, bmin) because bmin is defined by equation
(41). For v1 ≥ v2, [v2, bmin) includes all bids [v1, bmin) and we are done. For v1 < v2, we
must also consider bids [v1, v2), of which v1 gives the highest payoff by Lemma 43. As v1 < v2
implies α2 · (1− v1) < α1 · (1− v2), bmin must dominate v1 for sufficiently small ϵ by the same
argument applied above in the one-atom case.

Claim 5. In all three cases (no atoms, one atom, two atoms) G2(b) as defined above is
increasing in b for every b ∈ (bmin, bmax).

Proof. We need to show that in all three cases G2(b) is increasing in b for every b ∈ (bmin, bmax).
For any such b, G2(b) satisfies Equation (39), and its derivative with respect to b is

g2(b) =
r̂(b)

R̂(b)

(
α2 ·

b− v1
1− b

−G2(b)

)
.

To prove the claim it is sufficient to show that for every b ∈ (bmin, bmax):

g2(b) ·
R̂(b)

r̂(b)
= α2 ·

b− v1
1− b

−G2(b) > 0. (71)

If G2(b) ≤ 0 the claim follows from 1 ≥ bmax > b > bmin ≥ max{v1, v2}. Next assume
that G2(b) ≥ 0. We observe that for small enough ϵ this is an increasing function in b for
b ∈ (bmin, bmax):

d

db

(
R̂(b)

r̂(b)
g2(b)

)
= α2

1− v1
(1− b)2

− g2(b) = α2
1− v1
(1− b)2

− r̂(b)

R̂(b)

(
α2

b− v1
1− b

−G2(b)

)

≥ α2
1

(1− b)2

(
(1− v1)−

r̂(b)

R̂(b)
(b− v1) (1− b)

)

≥ α2
1

(1− bmin)
2

(
1− v1 − ε

r(b)

1− ϵ

)
.

As 1 > v1 and r(b) is bounded from above (r is continuous on a compact interval), for small
enough ϵ this is positive.
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Thus, as the function R̂(b)
r̂(b) g2(b) is increasing, to prove that it is positive for any b > bmin

it would be sufficient to show that it is at least 0 at bmin, or equivalently, that the following
holds:

α2 ·
bmin − v1
1− bmin

≥ G2(bmin). (72)

We show that equation (72) is satisfied for each of the three cases.
In the first case (no atoms), G2(v2) = 0, and equation (72) clearly holds because bmin ≥ v1.

In the third case (two atoms), G2(v2) satisfies equation (41), which is exactly equivalent to
equation (72) holding with equality.

Finally we consider the second case (one atom) in which α2 · (1 − v1) < α1 · (1 − v2),
equation (63) holds and G2(bmin) = G2(v2) > 0 satisfies equation (43) with G1(bmin) = 0, and
additionally, bmin = v2 > v1 (this corresponds to the case that only bidder 2 has an atom).
These conditions imply that

G2(v2) =
R̂ (bmax)

R̂ (v2)

(
1−

α2

∫ bmax

v2
x−v1
1−x r(x)dx

α1

∫ bmax

v2
x−v2
1−x r(x)dx

)
.

Which means that we need to show that

α2
v2 − v1
1− v2

≥ R̂ (bmax)

R̂ (v2)

(
1−

α2

∫ bmax

v2
x−v1
1−x r(x)dx

α1

∫ bmax

v2
x−v2
1−x r(x)dx

)
= G2(v2)

Equation (64) determines bmax and implies that R̂(bmax) = α1

∫ bmax

v2
x−v2
1−x r̂(x)dx, thus:

R̂(bmax)

R̂(v2)
=

R̂(bmax)

R̂(bmax)−
∫ bmax

v2
r̂(x)dx

=
α1

∫ bmax

v2
x−v2
1−x r(x)dx∫ bmax

v2

(
α1

x−v2
1−x − 1

)
r(x)dx

We can now express G2(v2) as a function of bmax as follows:

G2(v2) =
α1

∫ bmax

v2
x−v2
1−x r(x)dx∫ bmax

v2

(
α1

x−v2
1−x − 1

)
r(x)dx

(
1−

α2

∫ bmax

v2
x−v1
1−x r(x)dx

α1

∫ bmax

v2
x−v2
1−x r(x)dx

)

=

∫ bmax

v2
(α1 (x− v2)− α2 (x− v1))

r(x)
1−xdx∫ bmax

v2

(
α1

x−v2
1−x − 1

)
r(x)dx

bmax tends to 1 as ϵ goes to 0 (Lemma 62) and G2(v2) tends to 1− α2
α1

· 1−v1
1−v2

as bmax tends to
1 (Corollary 67). By Equation (63) it is thus sufficient to prove that G2(v2) is nondecreasing
in bmax:

d
dbmax

G2 (v2) ≥ 0.
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dG2(v2)

dbmax
=

1(∫ bmax

v2

(
α1

x−v2
1−x − 1

)
r(x)dx

)2 · r(bmax)

1− bmax

·

(
(α1 (bmax − v2)− α2 (bmax − v1))

∫ bmax

v2
(α1 (x− v2)− (1− x)) r(x)

1−xdx

− (α1 (bmax − v2)− (1− bmax))
∫ bmax

v2
(α1 (x− v2)− α2 (x− v1))

r(x)
1−xdx

)

=
1(∫ bmax

v2

(
α1

x−v2
1−x − 1

)
r(x)dx

)2 · r(bmax)

1− bmax

·
∫ bmax

v2

bmax − x

1− x
(α1α2 (v2 − v1)− α1 (1− v2) + α2 (1− v2)) r(x)dx

= α1 (1− v2)

(
α2

v2 − v1
1− v2

−
(
1− α2 (1− v2)

α1 (1− v2)

)) r(bmax)
1−bmax

∫ bmax

v2
bmax−x
1−x r(x)dx(∫ bmax

v2

(
α1

x−v2
1−x − 1

)
r(x)dx

)2
By Equation (63), α2

v2−v1
1−v2

≥
(
1− α2(1−v2)

α1(1−v2)

)
, thus dG2(v2)

dbmax
≥ 0 holds. (Moreover, when

α2
v2−v1
1−v2

=
(
1− α2(1−v2)

α1(1−v2)

)
, dG2(v2)

dbmax
= 0 and G2 (v2) attains its limit for any bmax < 1).

Claim 6. In all three cases (no atoms, one atom, two atoms) G1(b) as defined above is
increasing in b for every b ∈ (bmin, bmax).

Proof. The same arguments as the ones presented in the proof of Claim 5 show that it is
sufficient to prove that

α1 ·
bmin − v2
1− bmin

≥ G1(bmin). (73)

When bidder 1 does not have an atom (when no bidder has an atom, or only bidder 2 has an
atom), this trivially holds since bmin ≥ v2. We are left to prove the claim when both bidders
have an atom and G1(bmin) > 0 satisfies Equation (42). We need to show that

α1 ·
bmin − v2
1− bmin

≥ α1 ·
∫ bmin

v2
(x− v2) r̂ (x) dx

R̂ (bmin) (1− bmin)
, (74)

which trivially holds since R̂(bmin) ≥
∫ bmin

v2
r̂ (x) dx = R̂(bmin)− R̂(v2).
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