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1. Introduction 

 
In this paper we describe the design and construction of a simulator of liberalized 

multi-product postal markets.  The simulator uses a novel approach to explore equilibrium 

in these markets under various schemes for relaxing postal price regulation.   

A market is “liberalized” when an incumbent supplier faces potential competitors 

who will enter the market if it is profitable and will remain out of the market if it is not. 

Liberalized markets can arise in many contexts but are most often associated with price de-

regulation.  The general idea is that the threat of entry will impose sufficient discipline on an 

incumbent’s prices to make the pre-existing price regulation at-least-partly redundant.  An 

example of partial liberalization of U.S. postal markets occurred in the mid-1970s when 

UPS, FedEx and others were permitted to offer expedited mail and parcel delivery services 

in direct competition with the U.S Postal Service (USPS).  More recently, successive postal 

directives of the European Union (EU) have imposed wholesale liberalizations on the 

domestic postal markets of its member countries.  International mail markets provide 

another example.  These markets are almost always naturally liberalized at the collection 

end because most national postal authorities are committed by international agreements to 

collect mail for delivery in other countries but usually find that it is impractical to exclude 

entrants (see Pearsall 2016).   

 Economists typically analyze postal markets under assumptions that limit the 

entrant/competitors (ECs) to pure strategies consisting of single combinations of products.  

However, our simulations show that when an EC’s entry decisions are endogenous the 

resulting pattern of entry is likely to be a stochastic mix of product combinations.  In these 

cases the postal operator’s (PO’s) prices limit and equalize the profit that an EC can derive 

on entry from employing two or more product combinations.  The EC’s entries and exits 

then converge on a stochastic mix of these equally profitable combinations.  In equilibrium 

the resultant entry frequencies leave the PO with no incentive at the margin to adjust its 

prices to improve the expected value of its objective.  We have found nothing describing 

such an equilibrium within the familiar economics literature.  

Our simulator generates the price choices of a PO who is always present in the 

market, the price choices of ECs when they choose to enter, and the patterns of product 
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combinations chosen by the ECs.  The simulator does this by finding a Nash equilibrium for 

a non-zero-sum, non-cooperative, multi-person game.  The ECs react to the PO’s pricing 

choices by choosing a combination of products to offer in the market and prices for the 

products that maximize their profit.  The PO observes the frequencies of the ECs’ product 

choices and sets its own prices to maximize the expected value of its economic objective 

(which may differ from profit) subject to whatever constraints have been imposed by the 

regulator.  The Nash equilibrium consists of a pair of strategies that are optimal against each 

other. 

The game is solved using the method of fictitious play (aka Brown’s method). The 

simulator alternately derives the strategy for each player that is optimal given the most 

recent strategy employed by its opponent.  The process converges iteratively on prices and 

frequencies that describe a Nash equilibrium.  In effect, the simulator solves the game by 

replicating the operation of the liberalized market over time. 

The simulator is designed to enable us to simulate postal markets over a range of 

market conditions, regulatory constraints and PO objectives.  In its current configuration the 

simulator will accept demand models with up to six matched postal services each for the PO 

and the ECs.  The demand functions for both the PO and ECs are approximated as linear 

functions and are calibrated by specifying elasticity matrices, volume levels, market shares 

and diversion rates when the PO and ECs offer all of their services at matched prices.  For 

simplicity, when there is more than one EC, the ECs’ are assumed to be identical to each 

other so they divide equally the demand that would arise if there were only one EC.  The 

cost functions of the PO and ECs are approximated as linear functions and are calibrated to 

costs input for the volumes used to calibrate the demand functions.  There may be up to 

sixty-four different product combinations for an EC.  Demand and cost functions for each 

combination are derived under assumptions that respect the requirements of neo-classical 

demand and cost theory. 

The simulator allows us to explore the operation and equilibrium of postal markets 

under a variety of more-or-less restrictive regulatory regimes.  Users may designate a 

reserved area for the PO in the form of services for which the ECs are not permitted to offer 

directly competitive products.  Conversely, the user may designate services that the ECs will 

always offer even at a loss.  Price floors and price caps may be individually specified for 
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each of the PO’s products.  In addition a global price cap may be imposed upon the 

collection of prices chosen by the PO.  The weights for the global price index are chosen by 

the user. 

Our simulator allows the user to select the objective quantity that the PO maximizes.  

The basic choices are: profit, welfare, cost and revenue. The latter three may be maximized 

subject to a floor on the PO’s profit. The simulator can be run using weighted combinations 

of the objectives.  It is also possible to reweight the individual costs of the PO’s products to 

reflect asymmetric preferences.  For example, the PO may prefer to incur labor costs rather 

than costs for materials and capital.  

Finally, at each step of the method of fictitious play, the PO has a variety of 

technical options for inferring the frequencies of the ECs’ product combination selections 

from those made at previous steps.  For example, the PO may employ frequencies calculated 

as simple or weighted averages of the EC’s past selections.   

In the following section we describe the characteristics of liberalized markets that 

make it reasonable to describe these markets as non-zero-sum, non-cooperative, multi-

person games.   Section 3 provides a semi-formal description of the game.  In Section 4 we 

outline the method of fictitious play for finding the Nash equilibrium for these games.  The 

remaining sections of the paper describe in some detail how the simulator is constructed and 

provide an example of its intended application.  In Section 5 we propose a method for 

deriving a linear demand model from existing estimates of demand elasticities and assumed 

parameters.  In Section 6 the method is extended to the derivation of linear cost models for 

the PO and EC.  At each step of the simulator the EC chooses a product combination and 

prices that maximize its profit.  This is described in Section 7.  Similarly, at each step the 

PO chooses prices to maximizes its objective subject to various linear constraints.  

Necessary conditions for a solution to this problem are derived in Section 8. In Section 9 we 

describe how the components of the simulator are assembled and solved for the strategies 

used by the PO and ECs.  In Section 10 we present the results of an illustrative simulation of 

liberalized US postal markets.  The paper concludes briefly in Section 11 with our plans for 

the simulator’s future use.  
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2. Design of the Simulator 
 

The concepts underlying our simulator are applicable when a PO remains in an open 

market and acts as the price leader.  This is the common condition of postal markets 

following an opening to potential entrants.  Typically, the pre-existing price regulation is 

relaxed but not entirely eliminated and administrative rules or competition laws delay the 

PO’s responses to the entry and pricing decisions of an unregulated EC.  Entry and exit by 

an EC normally require substantial lead times also.  However, an EC’s prices are not subject 

to regulation and can be changed much more rapidly than either the POs prices or the EC’s 

selections of product offerings.  Therefore, the EC is usually in a position to observe the 

PO’s prices before it must set its own.   

The role of price leader following market opening is not an advantage to an 

incumbent PO.  In fact it may be a considerable disadvantage since it prevents the PO from 

engaging in predatory pricing - price discrimination based upon the product combinations 

and prices selected by the ECs on entry.  If a PO can discriminate it will not set its prices 

without knowing if ECs are present.  Instead, it will act as a Cournot oligopolist and employ 

a different set of prices for each combination of products that it may encounter from ECs.  

Price leadership by the PO is an essential condition for liberalized markets as we have 

defined them. 

In the immediate aftermath of a postal liberalization postal markets will be finely 

tuned to the service offerings of the incumbent PO.  ECs attempting to distinguish their 

service offerings from those of the PO will find that the high ground is already occupied.  

For example, an EC’s best opportunity to enter the US market for Standard mail may be to 

deliver printed advertising to every address within broadly-defined areas.  Unaddressed mail 

can be delivered at very low cost because it needs almost no processing but the service is of 

lower value because a mailer mostly loses the ability to precisely target recipients. At 

present USPS is prevented by the U.S. Congress from accepting such mail.   Standard mail 

is all addressed so an EC delivering advertising mail indiscriminately within local areas 

would be offering a bulk mail service that is inferior to USPS Standard mail.  

Most of the analysis underlying our simulator is an extension of models and 

concepts that apply to a simple case where the PO offers a single mail service at a single 
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price and a single EC that also offers only a single service at a single price.1  The service 

offered by the EC may not be identical to that offered by the PO so the two services are not 

necessarily perfect substitutes.  This type of market has properties that define a non-

cooperative non-zero-sum two-person game with a Nash equilibrium. The two players of the 

game are the PO and the EC offering the substitute service.  The PO’s pure strategies are the 

different prices that it may set.  The EC has two pure strategies: to be either in or out of the 

market.  Both the PO and the EC may be regarded as choosing strategies from compact and 

convex sets.  The PO’s price must be non-negative and is upper-bounded by a price that is 

sufficiently high to drive the demand for the PO’s services to zero even if the EC is not 

present.  The EC’s set of strategies may be extended to include probabilistic mixes of its two 

pure strategies.  The payoffs to the two players are determined by their objective functions 

which are differentiable and strictly concave over their respective sets of feasible strategies.   

 Since each player chooses a strategy from a compact and convex set, a Nash 

equilibrium consisting of a pair of strategies that are optimal against each other exists.  

Moreover, because of the strict concavity of the PO’s objective, the equilibrium price is 

unique.  Equilibrium takes one of three forms, monopoly, duopoly with price leadership, or 

stochastic entry with limit-pricing.  In a monopoly the EC finds that it is unprofitable to be 

in even when the PO sets a monopoly price.  Consequently, the EC is always out and the 

market becomes a PO monopoly.  In duopoly with price leadership the EC is always in.  The 

equilibrium for stochastic entry with limit-pricing is a pair of strategies consisting of a price, 

which leaves the EC indifferent between entering or not entering, and a mixed strategy 

indexed by a probability of entry for the EC.   

 
3. A Liberalized Multi-Product Postal Market 

 

 When there are multiple services offered by the PO its prices are denoted by the 

price vector ��.   On entering the postal market the EC selects a combination of products 

from a set of possible services that would normally be differentiated somewhat from those 

offered by the PO.  Let � ∈ � designate a combination of services for the EC contained 

                                                   
1 Single-product models describing markets along these lines may be found in Pearsall and Trozzo 
(2008), Pearsall (2011) and Pearsall (2016). 
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within a set � of all possible combinations that the EC might offer, including the option of 

not offering any services.  T 

The EC’s prices for the services in the combination � are the elements of a price 

vector ��� .  If the EC chooses to offer the services designated by �, it takes the PO’s price 

vector, ��, as given and sets prices on the services, ���  , to maximize its profit function, ���	�� , ����.  The EC’s profit functions are assumed to be strictly concave for any �� that the 

PO might choose and for any � ∈ � except for the special case of non-entry for which there 

is no price vector and a zero profit.   A profit function ���	�� , ���� always reaches a maximum 

at a single vector of prices. Therefore, for any product combination � we may treat the EC as 

setting prices for the services offered according to a reaction function ���	��� �
�����������	�� , �����.  In effect, the EC’s prices are determined by a post-optimization for 

every possible product combination with the PO’s prices known in advance to the EC. 

The PO’s pure strategies for a single play of the game are real price vectors �� 
chosen within a compact and convex region � of real number space ��.  The dimension of �� is the number of the PO’s services.  We would usually expect �� to be non-negative and 

bounded from above, but the PO’s prices may be subject to a variety of additional regulatory 

constraints.  For example, individual floors on prices may be imposed to avoid cross-

subsidies; individual caps may be imposed to control the PO’s exercise of market power; the 

level of the PO’s prices may be regulated with a global price cap; and the PO’s profit may 

be constrained by a break-even condition or a limit on the PO’s rate of return.   

The EC’s pure strategies for a single play of the game are indexed to the elements of 

the set � of possible product combinations.  The game is extended to include mixed 

strategies for the EC by assigning probabilities to the EC’s possible product combinations.  

Let ��  be the probability assigned to the product combination �.  A mixed strategy consists 

of an assignment of a probability �� to each of the elements of  � so that 0 � �� � 1	∀	� ∈ � 

and  ∑ �� � 1�∈" .   

The PO’s price vector �� is set before the PO knows the EC’s specific choice of a 

product combination � ∈ �.  Similarly, the EC chooses a product combination on entering 

(or decides not to enter) by choosing � without knowing the PO’s prices.  By including 

mixed strategies we extend the EC’s choices to include random selections of product 

combinations according to the probabilities �� ∀	� ∈ �. The EC’s set of all possible 
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strategies becomes compact and convex when extended to include all of the EC’s possible 

mixed strategies. 

The EC’s objective is to maximize its expected profit.  Therefore, the EC’s expected 

payoff is just ∑ ���∈" ���#�� , ���	���$.  The PO’s objective may also be to maximize expected 

profit.  However, the PO’s objective may differ from profit if it is subject to regulation.  So 

we assume only that the PO’s objective is to maximize a concave function of the price 

vector �� when the EC follows its reaction function for each product combination � ∈ �. The 

payoff to the PO if the EC chooses the product combination � is the strictly concave 

function ���#�� , ���	���$.  The PO’s objective is to maximize the expected value of its 

payoffs, ∑ ���∈" ���#�� , ���	���$.  Since the probabilities �� are all non-negative and at least 

one must be positive, the PO’s objective is a strictly concave function of  ��. 
A Nash equilibrium consists of a pair of feasible strategies for the two players which 

are simultaneously optimal against each other.  The EC’s mixed strategy of entry and exit 

using various service combinations solves the problem: 

 ���&�'∑ ���∈" ���#�� , ���	���$|0 � �� � 1	∀	� ∈ �	and		 ∑ �� � 1�∈" , 
given the prices chosen by the PO. Ordinarily, the EC simply sets �� � 1 for the pure 

strategy that yields the largest profit ���#�� , ���	���$.  However, it is necessary to formulate 

the EC’s problem in a way that accommodates ties.  If two or more product combinations 

yield the same maximum profit, then the EC’s maximization problem is degenerate and 

probabilistic mixes of the equi-profitable combinations are all solutions to the EC’s 

maximization problem. 

The PO’s strategy is a vector of prices for its own products that simultaneously solve 

the problem: 

 ����-'∑ ���∈" ���#�� , ���	���$|�� ∈ �, 
given the probabilities that describe the EC’s entries and exits.  These problems each have 

concave objective functions and feasible strategies drawn from compact and convex vector 

spaces.  Therefore, the maximization problems for the PO and EC jointly determine a Nash 

equilibrium.  A Nash equilibrium is unique with respect to the price vector ��because the 

PO’s objective is strictly concave.     
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4. The Method of Fictitious Play 
 

The traditional language and descriptions of game theory encourage us to view a 

game’s equilibrium strategies as though they are deliberately chosen by the players. 

However, this is misleading as a way to view equilibrium in a liberalized market.  It is better 

to view the equilibrium price vector, ��,and probabilities of entry, ��	∀	� ∈ �, as a matched 

pair describing the probabilistic outcome of repeated plays of the game.   

The method of fictitious play mimics the operation over time of a liberalized market 

in which the EC and PO each maximize their own objectives using the information they 

might reasonably be expected to possess from knowing their own costs and observing the 

market.  The players do not use information that they would be unlikely possess in an actual 

liberalized market.  In particular, the PO does not anticipate the EC’s selections of product 

combinations using information other than the EC’s past selections.  The information that 

the players rely on consists of the past record of the EC’s selections of product combinations 

and the PO’s most recent selection of prices.  We also assume that the EC’s reaction 

function ���	��� can be deduced by the PO for any of the product combinations � ∈ �.    

The method proceeds iteratively in steps indexed by the superscript 0,1, . . , . /1, ., . 0 1, … 2�3.  At step i the EC knows the PO’s price from the previous step, ��456, and 

chooses a product combination t to maximize its profit, i.e., it solves the problem 

���� 7��� 8��456, ���#��456$9 |	� ∈ �	:.  Simultaneously, the PO uses an estimate of  the 

frequencies  ��456∀	� ∈ � derived from the EC’s past selections of product combinations.  

The estimate is regarded as predetermined as the PO maximizes its objective, i.e., it solves 

the problem ����-'∑ ��456�∈" ���#�� , ���	���$|�� ∈ �,.  Note that the PO uses the EC’s 

reaction function for each t. 

The players’ solutions to the two problems at step i are used to construct the prices 

and frequencies for the next step.  At step i+1the EC simply takes the price vector that 

solves the PO’s maximization problem as ��4.  The PO’s re-estimation of the product 

frequencies is more complicated.  Basically, the PO adds a data point consisting of the EC’s 

choice t to the sample it uses to estimate ��4∀	� ∈ �.  However, there are various ways that a 

PO might estimate the frequencies from the sample.  The approach used in basic 

applications of the method of fictitious play is to compute the frequencies as sample 
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proportions.  Alternatively, the frequencies may be estimated after truncating and/or 

censoring the sample or after weighting the points in the sample.  In fact the method of 

fictitious play can be made to work with virtually all of the usual statistical methods for 

estimating frequencies from a time series. 

The method begins at an arbitrary starting point consisting of an assumed pair of 

feasible strategies ��; and  ��;∀	� ∈ �.  As the steps increase the strategies approach a 

probability limit which is the Nash equilibrium for the game. The method of fictitious play 

simulates the market behavior of the EC and the PO in a way that is wholly consistent with 

micro-economic theory.  Neither the EC nor the PO needs to be aware of the fact that they 

are playing a game.  The PO need not deliberately engage in limit-pricing and the EC need 

not intentionally randomize its choice of product combinations.  The PO and the EC are 

merely responding to the entry and price signals they receive from the market.  

Nevertheless, limit-pricing by the PO and stochastic entry by the EC are often descriptive of 

their behavior over time.   

 
5. The Demand Model 

 

The simulator employs demand models that are linear in form: 

<=�=�> � ?@�@�A 0 ?
 BB′ DA <����>. 
The component vectors and coefficient matrix of the model are partitioned to conform to the 

products and prices of the PO (subscript “I”) and of the EC (subscript “E”). ��, =�  the price and quantity vectors for the PO’s products. ��, =�  the price and quantity vectors for the EC’s products. 

?@�@�A the vector of equation intercepts. 

?
 BB′ DA the matrix of price derivatives.   

The model is linear so the equation intercepts and price derivatives are all fixed values.  We 

regard the income effects of postal price changes as negligible. Therefore, the entire matrix 

of price derivatives must be symmetric in accordance with neo-classical demand theory.  In 

particular, the principal submatrices A and C are symmetric.  It is also desirable but not 

strictly essential that the matrix of price derivatives be negative definite. 
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The simulator requires a linear demand model for each combination of postal 

products that the EC may offer.  The most obvious distinction between these models is that 

the rows and columns corresponding to products that the EC chooses not to offer are 

entirely zeroed out.  However, there are other differences between the matrices that we 

would also expect to see.  For example, we would expect any of the PO’s products to exhibit 

a larger elasticity of demand when the EC offers a directly competing service and a smaller 

elasticity when the EC does not.  

It is unlikely that estimates of many of the required demand models will exist prior 

to a liberalization of postal markets.  In the remainder of this section we offer a method for 

extracting the needed demand models in a consistent manner from a limited set of elasticity 

estimates and assumed parameter values.  The method assumes that the EC’s possible 

products roughly match those already offered by the PO. We have tested our method for 

models with 6 products each for the PO and the EC using various elasticity matrices taken 

from fits to USPS data of a branching AIDS model (Bzhilyanskaya et al 2015).  The results 

demonstrate that our method is a practical way to generate useable demand models with 

very limited information.   

The method takes two steps.  In the first step an estimate of the incumbent PO’s 

elasticity matrix is transformed so that when the price derivatives are calculated for centered 

values for prices and volumes the resultant derivative matrix is symmetric.  In the second 

step the demand equations are extrapolated to include all of the EC’s possible product 

combinations.  These extrapolations require some additional information in the form of two 

sets of values that are stipulated for a base case in which the EC offers all of the same 

products at the same prices as the PO.  The stipulated values are the market shares of the PO 

(and the EC) and the “diversion” rates at which the PO and EC exchange demand for 

comparable services at the margin.  For example, suppose that an EC succeeds in increasing 

the demand for a product by lowering his price for the product. A diversion rate of 0.90 for 

the service means that 90 percent of the increase is the result of diverting volume from the 

PO’s comparable product. 

The formulas that are applied in the first step are:  EF4G , H4GI   an estimate of the elasticity of demand for the PO’s product i with respect to the 

price of the PO’s product j and the variance of the estimate. 
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�4, =4 the centered price and volume for the PO’s product i. 

 JK4G � LMNL�O � EF4G MN�O the centered derivative. 

 P��#JK4G$ � EF4GI MNQ�NQ the variance of the centered derivative. 

J4G � RST#UVON$UVNOWRST#UVNO$UVONRST#UVNO$WRST#UVON$   for . X Y the centered and symmetric derivative. 

E4G � J4G �OMN for . X Y and E44 � EF44.2 
The elasticity estimates and assumed parameter values for a two-product example of 

our method are shown as red numbers enclosed in boxes in Table 1.  Also shown in the table 

are the results of the first step.   

Table 1:  Two Products Example 
 

 

  

The method begins with the estimated elasticity matrix and the corresponding matrix 

of standard deviations shown in the upper left-hand side of Table 1.  In displaying matrices 

                                                   
2 This equation preserves the diagonal elements of the initial matrix of elasticities.  Alternatively, the 

row sums of the initial matrix may be preserved by settingE44 � ∑ EF4G /∑ E4GGZ4G E44 .  It may also 

be necessary to further adjust the elasticity estimates so that the matrix of partial derivatives is 
negative definite. 

Estimated Incumbent Elasticity Matrix dQ/dP Centered

Product 1 Product 2 Row Sum Product 1 Product 2

Product 1 -0.4000 0.1000 -0.3000 Product 1 -52,000 2,167

Product 2 0.3000 -0.7000 -0.4000 Product 2 3,000 -1,167

Elasticity Standard Deviations dQ/dP Centered Std. Dev.

Product 1 Product 2 Product 1 Product 2

Product 1 0.1500 0.0500 Product 1 19,500 1,083

Product 2 0.2000 0.1000 Product 2 2,000 167

Centering Price and Volume dQ/dP Centered and Symmetric

Price Volume Product 1 Product 2

Product 1 0.5000 65,000 Product 1 -52,000 2,356

Product 2 3.0000 5,000 Product 2 2,356 -1,167

Diversion Centered and Symmetric Elasticities

Incumbent Entrant Rate Product 1 Product 2 Row Sum

Product 1 0.9000 0.1000 0.8000 Product 1 -0.4000 0.1087 -0.2913

Product 2 0.4000 0.6000 0.6000 Product 2 0.2356 -0.7000 -0.4644

Market Shares
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of elasticities and derivatives we follow the convention of listing volumes vertically and 

prices horizontally.  For instance, 0.1000 is the estimated cross-elasticity of demand of the 

PO’s product 1 with respect to the price of its product 2. 

The estimated elasticities are combined with the centering prices and volumes to 

obtain the centered derivatives and their standard deviations on the upper right-hand side of 

Table 1. The matrix of centered derivatives is asymmetric. The two off-diagonal derivatives 

are unequal at the centering price and volume.  The standard deviations of these elements 

are used to resolve this inconsistency by combining these elements into a single most likely 

value.  This value appears in the off diagonal locations of the centered and symmetric 

derivatives matrix.  This is the matrix A of the linear demand model when the EC does not 

enter any postal markets at all.   

 
Table 2:  Demand Model Two Products Example 
 

 
 

The results of the second step in our method are displayed in Table 2.  Here we have 

a linear demand model for each of the EC’s four possible product combinations.  These are 

denoted cases 0 to 3.  The products that are offered by the PO and EC for each case are 

designated by a “1” in the left-hand column.   

Elasticity Matrices dQ/dP Derivative Matrices

Case 0 Case 0

In PO-1 PO-2 EC-1 EC-2 Row Sum In PO-1 PO-2 EC-1 EC-2 Intercept

1 PO-1 -0.400 0.109 0.000 0.000 -0.291 1 PO-1 -52,000 2,356 0 0 83,933

1 PO-2 0.236 -0.700 0.000 0.000 -0.464 1 PO-2 2,356 -1,167 0 0 67,322

0 EC-1 0.000 0.000 0.000 0.000 0.000 0 EC-1 0 0 0 0 0

0 EC-2 0.000 0.000 0.000 0.000 0.000 0 EC-2 0 0 0 0 0

Case 1 Case 1

In PO-1 PO-2 EC-1 EC-2 Row Sum In PO-1 PO-2 EC-1 EC-2 Intercept

1 PO-1 -1.210 0.109 0.810 0.000 -0.291 1 PO-1 -141,556 2,120 94,756 0 75,540

1 PO-2 0.212 -0.700 0.024 0.000 -0.464 1 PO-2 2,120 -1,167 236 0 67,322

1 EC-1 7.289 0.109 -9.111 0.000 -1.713 1 EC-1 94,756 236 -118,444 0 17,638

0 EC-2 0.000 0.000 0.000 0.000 0.000 0 EC-2 0 0 0 0 0

Case 2 Case 2

In PO-1 PO-2 EC-1 EC-2 Row Sum In PO-1 PO-2 EC-1 EC-2 Intercept

1 PO-1 -0.400 0.043 0.000 0.065 -0.291 1 PO-1 -52,000 942 0 1,413 83,933

1 PO-2 0.236 -2.078 0.000 1.378 -0.464 1 PO-2 942 -1,385 0 919 26,929

0 EC-1 0.000 0.000 0.000 0.000 0.000 0 EC-1 0 0 0 0 0

1 EC-2 0.236 0.919 0.000 -1.531 -0.377 1 EC-2 1,413 919 0 -1,531 4,131

Case 3 Case 3

In PO-1 PO-2 EC-1 EC-2 Row Sum In PO-1 PO-2 EC-1 EC-2 Intercept

1 PO-1 -1.210 0.043 0.810 0.065 -0.291 1 PO-1 -141,556 848 94,756 1,272 75,540

1 PO-2 0.212 -2.078 0.024 1.378 -0.464 1 PO-2 848 -1,385 94 919 26,929

1 EC-1 7.289 0.043 -9.111 0.065 -1.713 1 EC-1 94,756 94 -118,444 141 17,638

1 EC-2 0.212 0.919 0.024 -1.531 -0.377 1 EC-2 1,272 919 141 -1,531 4,131
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The elasticity matrices for the cases appear down the left-hand side of the table.  The 

labeling of the rows and columns of the matrices identifies the supplier and the product.  

These elasticities were derived from the results of step 1 using the following formulas: �4G, [4G , 34G, [′4G elements of the elasticity sub-matrices corresponding to A, B, C, B’. 

\4 � 0 entrant does not offer product i,  \4 � 1 entrant offers product i.  ]4  PO market share of product i; 	1 / ]4) EC market share of product i. �4  diversion rate for product i.  

�44 � ^E44 																																																										for	\4 � 0E44 #1 0 �4	1 / ]4� ]⁄ 4$ 	1 / �4I�			for	\4c � 1 

�4G � dE4G 							for	. X Y	and	\G � 0	E4G]G			for	. X Y	and	\G � 1 

344 � d0																																																									for	\4 � 0E44 	1 0 ]4 	1 / ]4�⁄ � 	1 / �4I�			for	\4⁄ � 1 

 

34G � ^0																							for	. X Y	and	\4 � 0	or	\G � 0E4G#1 / ]G$		for	. X Y	and	\4 � 1	and	\G � 1 

 [44 � d	0																																	for	\4 � 0	/344�4 	1 / ]4� ]4	⁄ 	for	\4 � 1 

 

[4G � ^0																							for	. X Y	and	\4 � 0	or	\G � 0E4G#1 / ]G$		for	. X Y	and	\4 � 1	and	\G � 1 

 [44e � d 0																										for	\4 � 0	[44 ]4 	1 / ]4�		for	\4 � 1	⁄  

 [4Ge � d 0								for	. X Y	and	\4 � 0	E4G]G 		for	. X Y	and	\4 � 1	 
 
The coefficients of the demand models for the four cases are arranged down the 

right-hand side of Table 2.  The formulas transform the centered elasticity matrix of Table 1 

in a way that preserves several essential properties of the resultant elasticity and derivative 

matrices for the cases.  First, the PO’s elasticities are unchanged when the EC does not offer 

a directly competing product.  Second, in all cases the row sums of the elasticity matrices 

for the PO are identical to those of the elasticity matrices in Table 1.  Therefore, the PO 

always responds identically to proportionate changes in all postal prices, including the 
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prices of any products offered by an EC.  Third, the derivatives matrices are all symmetric 

as required by micro-economic theory.  The elements of the derivatives matrices in Table 2 

are calculated from their corresponding elasticities at the centering prices and volumes.  

Finally, if the original derivatives matrix is negative definite, it is very likely that all of the 

derivative matrices derived from it will also be negative definite. 

 
6. The Cost Model 

 

The simulator employs cost functions for the PO and EC that are also linear: D� � f�e=� 0 g� 	for	the	Incumbent	PO	and			 D� � f�e =� 0 g� 	for	the	Potential	Entrant	EC f�, f� vectors of marginal costs for the PO and EC.  g�, g� cost equation intercepts for the PO and EC. 

There is a single cost function for the PO since the PO always offers the same set of products.  

However, there may be different cost functions for the EC depending on the EC’s product 

combinations.  As before we treat each product combination as a distinct case and construct a 

cost function for the EC for each case.  Also, we rely on initial cost estimates for the PO and 

assumed values for several parameters.  Table 2 continues the two-product example of the 

previous section. 

 In the upper left-hand corner of Table 3 are shown the estimates of the PO’s unit 

volume variable costs for the products under the assumption that the PO is alone in the market 

and produces the entire basis volume of each.  These volumes are the same as the centering 

volumes in Table 1 but this correspondence is not required by our method.  We assume that 

similar estimates of unit volume variable costs for the same basis volumes are also available 

for the EC.   

 Again, we proceed in two steps.  First, marginal costs are derived for the basis case in 

which the PO and EC offer all possible services and charge identical prices.  For convenience 

we have assumed that the basis prices and volumes are the same as those used to center the 

linear demand equations in Table 1.  The demand model divides the basis volume for each 

product between the PO and the EC according to the assumed market shares exhibited in 

Table 1.  This division is shown in Table 3.  The marginal costs for the basis volumes are 

derived by adjusting the initial unit volume variable costs upwards to correct for the effects of 
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economies of scope and scale lost with lower volumes.  The adjustment roughly follows the 

same cost accounting arithmetic used by USPS and the PRC to attribute postal costs to various 

services.   fv �, fv� vectors of the initial unit volume variable costs for the PO and EC. w�, w�  cost “drivers” for the PO and EC computed by converting the volumes of all products 

to into an equivalent volume of the first product using given unit equivalents.  xy , x�  volume “variabilities” for the PO and EC.  Volume variability is defined as the 

elasticity of variable cost with respect to the cost driver, D.  US postal accounting methods 

treat volume variability as fixed. 

The vectors f� 	and f� are derived by applying the formulas: f� � fv �	w� 	w� 0w��⁄ �z-56 and f� � fv�	w� 	w� 0 w��⁄ �z�56. 

These marginal cost vectors appear in the PO’s cost function and in the EC’s cost function for 

all of the EC’s product combinations.   

 
Table 3:  Cost Model Two Products Example 
 

 

Incumbent Entrant Incumbent Entrant Incumbent Entrant

Product 1 0.200 0.250 0.237 0.344 500 0

Product 2 2.500 1.750 2.961 2.408 100 200

Basis Basis Prod. 1 Unit

Price Volume Incumbent Entrant Equivalent

Product 1 0.500 65,000 58,500 6,500 Product 1 1.000

Product 2 3.000 5,000 2,000 3,000 Product 2 12.500

Incumbent Entrant Incumbent Entrant

0.600 0.700 Volume Variable Cost 19,781 9,460

Infra Vol. Var. Cost 13,187 4,054

Incumbent Entrant

Incumbent Entrant Revenue 35,250 12,250

83,500 44,000 Variable Cost 32,968 13,514

Specific Fixed Cost 600 200

Institutional Fixed Cost 2,000 500

Profit -318 -1,964

Basis Cost Intercept 15,787 4,754

Vol. Var. Infra Vol. Variable Specific Ent. Cost

Case Product 1 Product 2 Cost Var. Cost Cost Fixed Cost Intercept

0 0 0 0 0 0 0 0

1 6,500 0 2,236 958 3,194 0 1,458

2 0 3,000 7,224 3,096 10,320 200 3,796

3 6,500 3,000 9,460 4,054 13,514 200 4,754

Specific Fixed Cost

Basis Case

Basis Marginal Costs

Basis Equiv. Volume

Ent. Basis Volumes

Inc. Cost Intercept 

15,787

Initial Unit V V Costs

Basis Volumes

Volume Variability
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The second step of our method is to calculate the intercepts for the cost equations.  The 

intercepts position the cost equations so that they will each replicate the total cost of the PO or 

the EC when the EC selects a particular product combination.  The intercepts g�, g� 

themselves are composed of several kinds of costs that are assumed to remain fixed when the 

simulator uses the linear cost model.  These components are: infra volume variable cost 

(IVVC) which captures the accumulated effects of economies of scope and scale, specific 

fixed cost (SFC) which is the sum of those fixed costs that are incurred only when the PO and 

EC offer the associated products, and institutional fixed cost (IFC) which is always incurred 

unless the PO or EC chooses to exit all postal markets.  The total cost of the PO or EC is the 

sum of the intercept g�or g� and the PO or EC’s volume variable costs (VVC) f�e=� or f�e =�.  

Properly defined, the variable cost of the PO or IC is the sum of its VVC and IVVC, 

not VVC alone.  Under the USPS and PRC accounting system IVVC and VVC can be related 

using the volume variabilityx:  VVC � ϵ	VVC 0 IVVC�.  Therefore, IVVC can be derived from 

VVC using IVVC � 		1 / x� x⁄ �VVC.  The components of SFC for the products and the IFC 

for the PO and EC must be supplied by users.  Altogether the PO and EC’s cost components, 

revenue and profit in the basis case of the two-product example are shown in Table 3.  The 

basis cost intercept is the sum of its components IVVC, SFC and IFC.  

This arithmetic is simply repeated for each of the EC’s product combination as shown 

in the last four lines of Table 3.  The values of g� for each of the EC’s cost functions 

corresponding to the four cases are on the right-hand side.  Notice that the bottom line just 

duplicates the basis case for the EC.  The PO’s cost function does not change from case to 

case so g� is the incumbent basis case intercept. 

 

7. The Entrant’s Problem  

 

The PO is the price leader in a liberalized market.  Therefore, the EC sets its price 

vector for whatever product combination it has chosen knowing the price vector �� that has 

been selected by the PO.  The EC will do this by setting ��to maximize its profit for the 

chosen product combination.   

The simulator constructs the EC’s profit function from the components of the linear 

demand and cost models that apply to the EC.  These components are: =� � @� 0 B′�� 0 D��  the EC’s demand functions, and 
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D� � f�e =� 0 g�  the EC’s cost function. 

The EC’s profit function is: }� � ��e=� / D� � 	�� /f��′~@� 0 B′�� 0 D���. 
We may delete the rows and columns of vectors and matrices when they apply to 

products that the EC does not offer.  Then the EC’s profit function }� 	is a strictly concave 

function of ��with a unique maximum at the point where the profit function’s price gradient is 

zero.  This first-order condition is: 

 �}� � ~@� 0 B′�� 0 D��� 0 D	�� /f�� � 0. 

When we solve the condition for �� we get the vector function: 

 ��	��� � f� 2⁄ / D56 ~@� 0 Be�-� 2⁄  

which is the EC’s reaction function.  Both the profit function and the reaction function are 

dependent on the EC’s choice of a product combination so there is a }��  and ���#��4$ for every � ∈ �. 
The sub-matrix C must be non-singular to form the reaction function.  When @� , B	and	C are derived as shown in Section 5 they have zeros in the rows and columns for 

products that the EC does not offer (those for which \4 � 0�.  We avoid the singularity by 

deleting these rows and columns.  This is inconvenient for computations because it requires 

doing the arithmetic with arrays of all different sizes.  An easy solution is to insert a “1” on 

the diagonal elements of the matrix C wherever the element corresponds to an omitted 

product.  Similarly, a “0” can be inserted in f� for each omitted product.  With these 

changes the matrix C becomes non-singular, the reaction function installs a price of zero for 

the products not offered by the EC, and the EC’s profit is unaffected.   

 Recall that at each step of the method of fictitious play the EC chooses a product 

combination, t, by solving ���� 7��� 8��456, ���#��456$9 |	� ∈ �	: given the PO’s price vector 

��456 from the previous step.  The simulator makes this selection by calculating ��and }�for 

every possible � ∈ �.  The calculation for each t employs the demand and cost model 

coefficients for the corresponding case.  The prototype simulator has six products each for 

the PO and EC so there can be as many as 64 cases to be compared.  The EC’s product 

selection is the feasible product combination � ∈ � yielding the highest profit }�. 
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 Not all of the 64 possible product combinations may be eligible for selection.  The 

simulator permits users to designate a reserved area for the PO consisting of products that 

only the PO may offer.  The EC is prohibited from offering products of its own that compete 

directly with those in the reserved area.  Conversely, the user may designate a 

predetermined area of products that it is assumed the EC will always offer.  These products 

are present in all of the product combinations chosen by the EC even if the EC must suffer a 

loss to produce them.  Both a reserved area and a predetermined area restrict the size of the 

set of feasible product combinations �.  The reserved area eliminates combinations that 

include the EC’s directly competing products.  The predetermined area eliminates product 

combinations that do not include the EC’s products that are predetermined. 

 
8. The Incumbent’s Problem 

 

The PO’s objective may be either to maximize its profit or to maximize some other 

quantity such as welfare, sales or the command of resources.  All of these alternatives have 

been proposed as objectives for enterprises under regulation.  Profit, of course, is the 

objective assumed by neo-classical micro-economic theory.  It is the objective that 

implicitly underlies most normative theorizing about postal price regulation.  “Welfare” is 

defined operationally as the sum of consumers’ surplus on the PO’s products plus the PO’s 

profit.  It is the objective used by Baumol and Bradford (1970) to obtain Boiteux/Ramsey 

prices for an efficient price-regulated monopoly.  “Sales” is equated to the PO’s revenue.   

Sales maximization has been proposed by Baumol (1959) as closer to a typical enterprise’s 

actual objective than profit maximization.  Finally, “command of resources” can be equated 

to the PO’s cost.  Maximizing its command of resources would be the objective of a PO 

acting as a public bureaucracy according to a theory of bureaucratic behavior due to 

Niskanen (1971).  All of these objectives, except for profit, are normally accompanied by a 

floor on the PO’s profit level.  However, the floor does not necessarily have to be an 

economic profit of zero. 

The simulator allows a user to choose among these objectives singly or to employ a 

weighted combination of them.  It is also possible to specify unit volume variable costs that 

differ from marginal costs for the cost maximization objective.  This feature enables the 

simulator to approximate other objective measures that may play a part in determining the 
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PO’s market behavior.  For example, a government- run PO might be obliged to assist 

politically by stimulating employment.  An employment bias in the PO’s objective can be 

introduced by adjusting the marginal costs to magnify their labor component.  The adjusted 

marginal costs then become the unit volume variable costs that are used when the PO 

maximizes cost. 

As the price leader, the PO sets its prices without knowing precisely which product 

combination the EC will select in response.  Therefore, all of the product combinations that 

the EC might choose are relevant for the PO’s selection of a price vector �� .		For any single 

feasible EC product combination � ∈ � the PO must take into account the following:3 =� � @� 0 
�� 0 B�� the PO’s demand functions, and ��	��� � f� 2⁄ / D56 ~@� 0 B′��� 2⁄  the EC’s reaction function. 

These may be combined to obtain demand functions for the PO that embed the EC’s 

reaction function, are linear functions of only ��, and depend on t: 

 =� � � 0 E�� with � � @� 0 Bf� 2⁄ / BD56@� 2⁄  and E � 
 / BDB′ 2⁄ . 

We also make use of the PO’s cost function which does not depend on t: 

  D� � f�e=� 0 g�  the PO’s cost function. 

Singly, the alternative objective quantities of the PO may be written as functions of 

just the PO’s price vector: }� � 	�� /f��e~� 0 E��� 	/ g�  profit. �� � /~� 0 E���eE56~� 0 E��� 0 }�  welfare from the PO’s products. D� � fv �e~� 0 E��� 0 g�  cost with the adjusted marginal costs fv �. �� � ��′~� 0 E���  revenue. 

The simulator’s generalized objective for the PO is a weighted average using the user’s 

selections for profit, welfare, cost and revenue.  Three of the PO’s objectives may be 

accompanied by a profit floor }� � }��.  The profit floor is accounted for in the PO’s 

generalized objective by adding another term for profit calculated using a multiplier. The 

multiplier � � 0 is an add-on weight for profit that is adjusted (if necessary) until  }� � }�� 
when a profit floor is in effect.  If there is no floor or the floor is ineffective, � � 0.  The 

                                                   
3 Notation such as a superscript “t” designating the product combination to which the demand 
function and reaction function apply has been omitted.  
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PO’s generalized objective is �;�� 0��}4 0 �ID� 0 ���� with the objective weights 

including � normalized so that they sum to one. 

  At each step of the method of fictitious play the PO chooses its price by solving  ����-'∑ ���∈" ���#�� , ���	���$|�� ∈ �, given the PO’s estimate of the frequencies, ��∀	� ∈�, with which the EC uses its product combinations.4  We may now provide specific forms 

for the elements of this problem. The objective is to maximize ∑ ��~�;�� 0��}4 0�∈"�ID� 0����� subject to a set of linear inequalities that define the compact and convex set S 

of feasible price vectors. The simulator is designed to accept two kinds of constraints.  First, 

the PO may be required to observe a global price cap.  This imposes a single constraint Pe�� � �,  P is a vector of volume weights for the calculation of a global price index which 

is capped at the value �.  Second, the postal regulator may impose caps and floors 

individually on the prices of the PO’s products as in the US.  The US price caps are intended 

to prevent USPS from freely exercising its market power in those markets where it is 

considered dominant.  The floors are imposed to prevent cross subsidies. The simulator 

allows a user to explore different regulatory environments by mixing and matching a global 

cap with various individual caps and floors, and by varying the vector of volume weights for 

a global cap. 

The simulator is designed so that price floors for all of the PO’s prices are assumed 

by default.  Users must indicate when a price cap applies to a product in which case the 

corresponding floor is over-ridden.5  This restriction prevents price caps and floors from 

ever working at cross purposes.  The constraints for the caps are �� � ��� and for the floors 

are �� � ��� where ��� and ��� are vectors of the cap and floor levels.  However, the user 

chooses, product-by-product, whether the cap or the floor constraint is applicable.   

 Altogether, the specific problem that is solved for the PO at each step is: 

����-'∑ ���∈" ~�;�� 0��}4 0 �ID� 0 �����|Pe�� � �, �� � ��� , �� � ���,. 
The problem is solved using the Lagrange multiplier method.  We form a Lagrangian from 

the problem’s objective and constraints using multipliers for the constraints.  The 

Lagrangian for the PO’s maximization problem is: 

                                                   
4 The superscript “i” designating the iteration for the frequencies has been omitted.  
5 Users may install zeros for the price floors to negate them without also capping them. 
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�� � ∑ ���∈" ~�;�� 0��}4 0�ID� 0 ����� 0 ��~Pe�� / �� 0 ��e~�� / ���� 0																	��e ��� / ���� with �� � 0, �� � 0 and �� � 0.   

��is a scalar multiplier; �� and ��are vectors of multipliers.  The Lagrangian is formed so 

that price caps have non-positive multipliers and price floors have non-negative multipliers.  

These signs conform to the expected effects on the maximized objective of increases in the 

caps and floors.  

The price gradient of the Lagrangian is: 

��� �����∈"
~�;��� 0���}4 0�I�D� 0������ 0 ��P 0 �� 0 ��  

The gradient of the Lagrangian has components corresponding to the price gradients of  the 

PO’s alternative objective quantities.  These components are: �}� � E�� 0 � 0 Ef� profit. ��� � 2E�� 0 � / Ef4  welfare from the PO’s products. �D� � Efv �  cost with adjusted marginal costs. ��� � 2E�� 0 �  revenue. 

The price vector �� is the same for all of the EC’s product combinations.  Therefore, 

we may substitute the weighted averages E� � ∑ ��E�∈"  and �̅ � ∑ ����∈" 	wherever the 

weighted averages appear in the Lagrangian gradient to get: ��� � �;~E��� / E�f�� 0 �6~2E��� 0 �̅ / E�f�� 0 �IE�fv � 0 ��~2E��� 0 �̅� 0 ��P 0														�� 0 ��   

We may further simplify ��� by rearranging and collecting terms.  Let � � �; 0 2�6 02�� and � � 	�; 0�6 0 �I�E�f� /�IE�	fv � /f�� / 	�6 0 ����̅.  At any step of the 

method of fictitious play k and K are fixed.  The Lagrangian gradient becomes the linear 

functional ��� � �E��� 0 ��P 0 �� 0 �� / � with variables �� , �� , �� 	and	�� . 

 Necessary conditions for a solution to the PO’s maximization problem are that the 

Lagrangian gradient equal zero, that the constraint terms in the PO’s Lagrangian also all 

equal zero, and that the Lagrange multipliers have all the correct signs.  These conditions 

may be simplified somewhat by exploiting the fact that the price caps and floors are not 

simultaneously effective.  We may combine the multiplier vectors for these constraints as  � � �� 0 �� .  And we may combine the matching constraint terms in the Lagrangian as 
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�′~�� / ��� where ��  is a vector composed of the chosen elements of ��� and ���.  The 

necessary conditions are: �E��� 0 ��P 0 � / � � 0, 

��~Pe�� / �� � 0, �′~�� / ��� � 0,  

�� � 0, �	 d� for	constraint	elements	corresponding	to	price	caps						� 0	for	constraint	elements	corresponding	to	price	floors  
 

9. The Method of Solution 

 
The necessary conditions are solved at each step of the method of fictitious play to 

generate the PO’s price vector �� used in the next step.  The method of solution is to use the 

necessary conditions to form a linear equation system under the assumption that a specific 

combinations of the price constraints are binding.  Such a system is formed and solved for 

every possible combination of binding price constraints.  The solutions that do not violate 

the constraints or the sign conditions on the Lagrange multipliers are then compared with 

respect to their objective values.6  The price vector �� is taken from the solution with the 

highest objective value. 

The linear system is composed of the Lagrangian gradient set equal to zero and the 

equation for the global price index.  The equation system takes two forms depending upon 

whether or not the global price cap is a binding constraint. 

<�E� PPe 0> <����> � <��> / ?�0A 	the	global	price	cap	constraint	is	binding.   
<�E� 0Pe 1> < ��/�> � ?�0A / ?�0A 	the	global	price	cap	constraint	is	nonbinding.  

In the first equation system, ��, �� and � are variables and g is the predetermined value of 

the global price cap.  In the second, � and  ��switch roles with	�� � 0. The variables of the 

second system are ��, � and �.  We may combine these two equation systems by using the 

switch \ � d1		if	the	global	price	cap	constraint	is	binding,						0	if	the	global	price	cap	constraint	is	nonbinding  

The combined linear system is: 

                                                   
6 If there are no combinations for which both the prices and multipliers meet these conditions, then 
the comparison is conducted among the solutions that do not violate the constraints without regard 
for the signs of the multipliers.  
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<�E� \PPe 	1 / \�> < ��\�� / 	1 / \��> � < �\�> / ?�0A 
We can solve this linear system if we know which of the conditions �� � ��� and 

�� � ��� are binding.  Let �� � <����> be a partition of the PO’s price vector into components 

that correspond to the prices that are bounded, ��, and prices that are not bounded , ��. A 

price is bounded if it is equal in the solution to its cap or floor; it is not bounded if is not 

equal to its cap or floor.  �� � <������> and � � <����>are the conforming partitions of  �� and �.  

We extend the partitioning to the equation system as follows: 

��E��� �E��� \P��E��� �E��� \P�P�e P�e 	1 / \�� �
����\�� / 	1 / \��� � �����\�� / �����0 � 

Now, consider the necessary condition  �′~�� / ��� � 0.  Using the partition notation this 

condition is ��e ~�� / ���� 0 ��e ~�� / ���� � 0.  We have �� � ���for prices that are bound, 

and we have �� � 0 for prices that are not bound.  These substitutions may be made in the 

partitioned equation system and the system rearranged to obtain a linear system that can be 

solved for the remaining variables �� , ��and	��(or g).  The rearranged linear system is: 

�� �E��� \P�0 �E��� \P�0 P�e 	1 / \�� �
����\�� / 	1 / \��� � �����\�� / ��E����E���P�e ���� 

“I” denotes an identity matrix with the same dimensions as E���.  The coefficient matrix on 

the left-hand side is non-singular so the rearranged linear system has the straight forward 

solution: 

� ����\�� / 	1 / \��� � �� �E��� \P�0 �E��� \P�0 P�e 	1 / \��
56
������\�� / ��E����E���P�e ����� 

 The simulator constructs and solves a linear system for every possible division of the 

PO’s prices into bounded and unbounded prices. It will solve these systems twice if a global 

price constraint is present; once with \ � 0 and once with \ � 1.  For each solution it is 

determined whether or not the values of �� � <�����> 	]atisfiy the constraints Pe�� � �, �� �
��� 	and	�� � ���.  It is also determined if the calculated multipliers ��and � � ?��0 A have the 
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correct signs �� � 0, �� � 0 and �� � 0.  If these tests are passed the solution is feasible.   

Objective values of the solutions are calculated from ∑ ���∈" ~�;�� 0 ��}4 0 �ID� 0�����.  The incumbent PO’s pricing problem is solved by the feasible solution with the 

highest objective value.  

 The method of solution includes an algorithm for determining the multiplier � when 

the PO’s maximization problem includes the profit floor }�  � }��.  There can be three 

different outcomes from adding this constraint to the PO’s problem.  First, the constraint 

may be ineffective.  Then, � is set at 0. and the PO’s objective includes only a negligible 

add-on weight.  Second, the constraint may make the PO’s problem infeasible.  When this 

happens � is set at 1000.0 and the PO’s objective is effectively converted to maximizing the 

PO’s profit.  Third, we may have }� � }�� for 0   �   1000.  In this case the value of the 

multiplier � is found by applying the algorithm. 

 The algorithm applies a version of the method of chords.  The basic idea is to 

approximate the functional relationship between  }� and �,  let us call it }� � �	��, and then 

use the  inverse function to calculate � � �56	}���.  A parabolic section is used as the 

approximating function �K and the function is fit at each iteration using the three points from 

past iterations that most closely straddle }��.  �¡ � �K56	}��� is then used to solve the PO’s 

maximization problem.  If the resulting profit }¡� is close enough to }��, then the algorithm 

terminates.  If not, then the data point 	�¡, }��� is used to improve the approximation �K in the 

region of }�� and the process is repeated.  The process converges monotonically (and 

rapidly!) on a solution because the points used to re-estimate �K are successively closer to }��.   
 

10. An Illustrative Simulation of  Liberalized U.S. Postal Markets 

 
Table 4 holds an example of a simulation of US postal markets after an assumed de-

regulation and liberalization.  The example was devised using demand elasticities and their 

standard errors for FY 2013 taken from an AIDS model recently fit to USPS data by 

Bzhilyanskaya  et al .  The volumes and prices used to center the demand model are USPS 

volumes and revenues per piece for FY 2015.  Volumes, revenues, costs, etc. are shown in 

thousands (000); prices, etc. are in constant dollars.   USPS unit costs are roughly equal to 

USPS volume variable costs per piece in FY 2015.   
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The input data and control settings have been devised to provide an example that 

illustrates the capabilities of the simulator, rather than to accurately portray the outcome of 

an actual liberalization and de-regulation of US postal markets.  To calibrate the demand 

model we assumed that all USPS market shares are 0.5 and that all of the diversion rates are 

0.9.  For the cost model we simply assumed that an EC’s cost function would be identical to 

the USPS cost function with fixed costs omitted. 

The control values for the simulation are shown boxed in red in Table 4. To produce 

the example we assigned USPS a reserved area comprised of just First-Class mail.  Entrants 

were assumed to always be present in the market for Competitive Expedited Package 

Services. Otherwise, the ECs were free to enter and exit the remaining four markets.  Profit 

maximization was selected as the objective for USPS.  Therefore, no profit floor was 

imposed.   

The price of First-Class mail was capped at $0.55.  It was assumed that the prices of 

the remaining five classes would be de-regulated by eliminating any price caps that apply to 

these classes under current law.  Therefore, the remaining regulatory price controls consist 

of default price floors for all of the classes except First-Class mail.  There is no global price 

cap so the simulator just computes the price index using the given weights.   

The simulator was run for 500 iterations but only the last 200 iterations were used to 

calculate the averages labeled “Simulated” in the table.  Table 4 exhibits the prices, entry 

frequencies and other statistics for both the last iteration and for the simulation averages. 

The simulated results for this case are characteristic of the results we have obtained 

with many tests of the simulator.  The simulator has converged upon a solution that exhibits 

limit-pricing by USPS and stochastic selection of product combinations by a single potential 

entrant.  The “Incumbent” prices shown in Table 4 confront the “Entrant” with six product 

combinations for which the EC takes the same loss of about -6,822,058.   The identity of the 

services in each combination are shown at the bottom left-hand side of Table 4..  
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Simulation

Global Price Cost Objective

Macro Controls (Hot Keys) Previous Simulated Last Iteration Last Iteration Simulated Cap Weights Unit V V Cost

Key Effect 1Cls 0.5500 0.5500 0.5500 1Cls 1Cls 63,149,837 0.2047

\x Execute from Start PrOth 5.1069 5.1069 5.1069 PrOth 4.9877 4.9888 PrOth 6,945,272 4.2528

\c Continue Execution 2Per 0.7003 0.6992 0.6997 2Per 0.6753 0.6697 2Per 5,838,175 0.3598

\l One Iteration Loop 3Std 0.2136 0.2135 0.2135 3Std 0.1939 0.1936 3Std 80,090,273 0.1382

\p Single Pass 4Pkg 3.7437 3.7427 3.7431 4Pkg 3.4363 3.4277 4Pkg 564,576 1.3602

PclSR 2.1050 2.1061 2.1057 PclSR 1.8519 PclSR 7,875,043 1.4134

Statistical Frequency Models Last Iteration Simulated

1 Simple Average (SA) Freq. Model Simulated Case Frequency Incumbent Entrant Inc. Expected Profit -4,859,825 -4,861,865

2 SA w/o Run Up 1Cls 0.0000 0.0000 0.0000 1Cls 52,558,066 0 Incumbent Profit -5,516,705 -4,619,967

3 SA w/ Run Up w/ Censoring PrOth 1.0000 1.0000 1.0000 PrOth 3,080,847 4,421,514 Ent. Maximum Profit -6,818,589 -6,822,058

4 SA w/o Run Up w/ Censoring 2Per 0.5083 0.5102 0.4876 2Per 3,140,382 1,243,318 Incumbent Welfare 37,142,733 36,788,670

5 Weighted Average (WA) 3Std 0.7490 0.7495 0.7214 3Std 39,438,631 53,489,212 Inc. Adjusted Cost 65,814,431 65,814,070

6 WA w/o Run Up 4Pkg 1.0000 1.0000 1.0000 4Pkg 213,890 300,492 Incumbent Revenue 60,954,606 60,952,205

7 WA w/ Run Up w/ Censoring PclSR 0.3485 0.3481 0.3532 PclSR 2,324,487 1,554,878

8 WA w/o Run Up w/ Censoring Global Cap Index 0.6694 0.6693

All per

Objective Weight Selection Entrants Entrant Sample Size

Infeasibility Codes Welfare 0.0000 0 Revenue 38,467,059 38,467,059 Last Iteration Simulated 200

0 Volumes all Non-negative Profit 1.0000 1 V V Cost 29,895,332 29,895,332 1.0000 1.0000 Iteration

1 Negative Entrant Volume Adj'd Cost 0.0000 0 Non-V V Cost 15,390,316 15,390,316 500

2 Negative Incumbent Volume Revenue 0.0000 0 Profit -6,818,589 -6,818,589 Incumbent Case Entrant Case End Simulation

3 Negative Ent. & Inc. Volumes 1 30 500

10 to 13 Also Negative Entrant Price

Multiplier Price Floor Price Cap Reserved (1) Price Capped

Mail Catagories Index 0 None 0.6500 Global Entered (-1) 0 Old Inc. Profit Rho

1Cls First-Class Mail 1Cls 26,687,459 0.2047 0.5500 1Cls 1 1 Upper Limit -5,493,755 0.993648

PrOth Competitive Expedited Package Services PrOth 0 4.2528 5.6121 PrOth -1 0 Start Rho -4,859,825 0.992336

2Per Periodicals 2Per 0 0.3598 0.2722 2Per 0 0 Lower Limit -5,500,001 0.992335

3Std Standard Mail 3Std 0 0.1382 0.2211 3Std 0 0 New Inc. Profit Rho

4Pkg Market Dominant Package Services 4Pkg 0 1.3602 1.4278 4Pkg 0 0 Upper Limit -4,859,825 0.000100

PclSR Parcel Select and Return Services PclSR 0 1.4134 1.9937 PclSR 0 0 Finish Rho -5,500,000 0.000000

Lower Limit -5,500,001 0.992335

Incumbent Status Frequency

Infeasible Old Rho New Rho Profit Floor no Floor Unbounded Model

0 0.000100 0.000000 -5,500,000 0 -1 4 a b c

-3.38773E+15 6.72798E+15 -3.34041E+15

Case Flags (Include=1, Exclude=0) Current Ent. Case Incumbent Entrants Infeasibility

No. 1Cls PrOth 2Per 3Std 4Pkg PclSR Case Lookup Profit Profit Freq. Model Simulated Code

22 0 1 1 0 1 0 22 -274,699 -6,826,766 0.1971 0.2388 0 Last Iteration Simulated

26 0 1 0 1 1 0 26 -4,783,059 -6,819,500 0.2178 0.1990 0 Consumers' Surplus 73,352,341 73,320,588

30 0 1 1 1 1 0 ***** 30 -5,516,705 -6,818,589 0.2365 0.2090 0 Producers' Surplus -12,335,293 -11,442,026

54 0 1 1 0 1 1 54 -2,913,880 -6,835,910 0.0539 0.0398 2 Social Welfare 61,017,048 61,878,562

58 0 1 0 1 1 1 58 -7,425,724 -6,824,934 0.2739 0.3134 2

62 0 1 1 1 1 1 62 -8,149,172 -6,830,894 0.0207 0.0000 2 Last Iteration Simulated

Entrants Revenue 38,467,059 36,791,185

Entrants Vol. Var. Cost 29,895,332 28,999,949

Ent. Intra V V & Fixed 15,390,316 14,613,295

Entrant Case Frequency

Method of Chords for Profit Constraint

Multipliers for Price Caps and Floors

Entrant Price (when Entered)Incumbent Price

Frequency of Entrant Product Offerings

Binomial Coefficients for New Objective

Social Welfare All Products/Producers

Expected Volume

Profit Constraint Multiplier

Number of Entrants

Incumbent Objective Weights
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The entrant alternates its choice among these six combinations at frequencies 

derived from the last 200 iterations of the simulation.  In effect, the EC employs a mixed 

strategy of entry and exit.  For the individual products these frequencies translate into 

simulated entry probabilities of 1.000 each for Competitive Expedited Package Services and 

Market Dominant Package Services, 0.508 for Periodicals, 0.749 for Standard  mail and 

0.349 for Parcel Select and Return services.  The entrant does not enter the prohibited 

market for First-Class mail. 

Together, the “Incumbent Prices” and the simulated “Frequency of Entrant Product 

Offerings” describe an equilibrium pair of strategies as defined by game theory.  They are 

optimal against each other.  Neither the PO nor the EC have an incentive to change.  

Together the strategies establish both players’ prices and the EC’s probabilities for offering 

the six combinations of postal services.  Other product combinations are not used either 

because they violate the assumed regulatory restrictions or because they result in lower 

profits for the ECs. 

The example exhibits the competitive effects of the assumed regulatory regime.  The 

price cap on First-Class mail is effective and has a positive multiplier value.  USPS 

encounters competitors that are always present in the markets for Competitive Expedited 

Package Services  and Market Dominant Package Services and Periodicals; and infrequently 

in the remaining markets that are open to entrants. 

USPS’s assumed position as the price leader places it at a disadvantage in postal 

markets where it faces competition.  This fact is mostly evident from the “Incumbent” and 

“Entrant” prices at the top of Table 4.  USPS gets underpriced in every market where and 

when an entrant is present.  For example, when an EC enters the market for Standard 

Regular mail its price per piece averages $0.1936 while the PO’s average price for the 

directly competing service is $0.2135. 

 Profits, costs, revenues, profits, and incumbent welfare (defined as consumers’ 

surplus on the PO’s products plus the PO’s profit) and the global cap index are shown down 

the right-hand side of Table 4.   Welfare calculated for all products and all producers of 

postal services are shown on the lower right.  Values are exhibited for the last iteration and 

for averages over the selected sample.   These are included to help users of the simulator to 

judge convergence and to permit comparisons with the results of other simulations.   
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11. Conclusion 

 

It is rarely possible to conduct scientific experiments with an actual economic 

system.  Simulation offers a practical alternative by substituting a model intended to mimic 

the system.  However, the rules for setting up controlled experiments, taking observations, 

analyzing results and reaching valid conclusions all remain about the same as they would be 

for an actual experiment.  Our simulator mimics the behavior of POs and ECs in inter-

related postal markets that are de-regulated and opened to entry in various ways.  However, 

the simulator is purely an experimental apparatus.  To reveal empirically the behavioral 

characteristics of postal markets the simulator must serve within an appropriately designed 

research plan. 

The design we have in mind is a set of experiments intended to identify an improved 

regulatory regime for USPS.  The simulator’s dimensions match the number of major 

classes of US mail.  It can use demand estimates that are available from existing 

econometric studies of US postal markets, cost estimates that can be extracted from USPS 

Cost and Revenue Analysis (CRA) reports and parameters that can be judged with fair 

accuracy.  It can account for uncertainty regarding USPS’ corporate economic objective by 

allowing us to simulate all of the basic possibilities.  And it enables us to mix and match 

regulatory arrangements by selecting among a range of regulatory devices including 

reserved areas, individual price caps and floors, a global price cap and a constraint imposed 

on USPS’ profits.   

Our simulator incorporates a major technical innovation.  We treat the product 

selections of potential EC’s as endogenous.  At every step of a simulation the EC’s choose a 

product configuration to maximize profits in response to the PO’s prices.  In turn, the PO 

chooses prices to maximize its objective given its estimate of the frequencies at which the 

ECs chooses the various product configurations.   Test runs of the simulator quickly reveal 

the signature characteristics of equilibrium in liberalized postal markets.  These are limit 

pricing by the PO and the stochastic use of product configurations by the ECs. 

 

  



 30 

References 

 

Baumol, W. J., (1959), Business Behavior, Value and Growth, Chapter 6, MacMillan, New 
York, 1959. 

Baumol, W. J. and D. F. Bradford, (1970), “Optimal Departures from Marginal Cost 
Pricing,” American Economic Review, Vol. 60, No. 3, 1970, pp. 265-283. 

Bzhilyanskaya, L. Y., M. M. Cigno and E. S. Pearsall, (2015), “A Branching AIDS Model 
for Estimating U.S. Postal Price Elasticities”, in Postal and Delivery Innovation in the 

Digital Economy, Michael Crew and Timothy J. Brennan (eds), Springer, Switzerland, 
2015. 

Niskanen, William A., (1971), Bureaucracy and Public Economics, Expanded edition, 
Edward Elgar, Northampton, MA, 1994. 

Pearsall, E. S., and C. L. Trozzo, (2008), “A Contestable Market Model of the Delivery of 
Commercial Mail”, paper presented at the IDEI 5th bi-annual Postal Economics 
conference “Regulation, Competition and Universal Service in the Postal Sector”, 
Toulouse, March 13-14, 2008, available from the author at espearsall@verizon.net. 

Pearsall, E. S., (2011), “On Equilibrium in a Liberalized Market”, paper presented at the 
CRRI Advanced Workshop on Regulation and Competition, 30th Annual Eastern 
Conference, Skytop PA, USA, May 18-20, 2011, available from the author at 
espearsall@verizon.net. 

Pearsall, E. S., (2016), “ A Game-Theoretic Model of the Market for International Mail”, in 
The Future of the Postal Sector in a Digital World, Michael Crew and Timothy J. 
Brennan (eds), Springer, Switzerland, 2016. 

   
 


