Dynamics of Compatibility under Switching Cost

Doh-shin Jeon (TSE)

Domenico Menicucci (University of Firenze)

Nikrooz Nasr (TSE)

Toulouse, January 8 2016

"The Internet was made in universities and it was designed to interoperate. And as we've commercialized it, we've added more of an **island-like** approach to it, which I think is a somewhat a shame for users."

— Larry Page CEO of Google Alphabet

Walled garden

I Personal computing (AAPL, GOOG, MSFT)

<u>lock-in</u> consumers by making it hard to <u>transfer data</u> (health data, apps, music, log-in info ...) to another platform or by providing some <u>benefits</u> <u>exclusively</u> to those who use everything from the same ecosystem (continuity, notification sync, ...)

Walled garden

I Personal computing (AAPL, GOOG, MSFT)

<u>lock-in</u> consumers by making it hard to <u>transfer data</u> (health data, apps, music, log-in info ...) to another platform or by providing some <u>benefits</u> <u>exclusively</u> to those who use everything from the same ecosystem (continuity, notification sync, ...)

II Cloud computing (AMZN, GOOG, MSFT, FB, IBM, ORCL)

 enterprises would incur a huge <u>cost</u> if they wish to transfer their data from one vendor to another due to <u>incompatible</u> technologies

III Advertising (GOOG, FB)

 marketers are <u>forced</u> to buy and measure through the platform, if they want to integrate their own data (first-party/third-party) with the platform's.

Walled garden

I Personal computing (AAPL, GOOG, MSFT)

• <u>lock-in</u> consumers by making it hard to <u>transfer data</u> (health data, apps, music, log-in info ...) to another platform or by providing some <u>benefits</u> <u>exclusively</u> to those who use everything from the same ecosystem (continuity, notification sync, ...)

II Cloud computing (AMZN, GOOG, MSFT, FB, IBM, ORCL)

 enterprises would incur a huge <u>cost</u> if they wish to transfer their data from one vendor to another due to <u>incompatible</u> technologies

III Advertising (GOOG, FB)

marketers are <u>forced</u> to buy and measure through the platform, if they
want to integrate their own data (first-party/third-party) with the platform's.

IV Messaging (GOOG, FB, TWTR, AAPL, WeChat, Line)

• users *can't connect* to other platforms or use their services.

V Publishers (FB, GOOG, SnapChat, AAPL)

<u>different</u> format of content for each platform

Do symmetric platforms have an incentive to choose compatibility?

Do symmetric platforms have an incentive to choose compatibility?

Existing literature using a static model

 symmetric firms have an incentive to choose compatibility: Matutes and Régibeau (RAND, 1988) and Economides (AER, 1989)

Do symmetric platforms have an incentive to choose compatibility?

Existing literature using a static model

 symmetric firms have an incentive to choose compatibility: Matutes and Régibeau (RAND, 1988) and Economides (AER, 1989)

Our approach

- we consider a dynamic (two-period) model: consumers should upgrade products or renew subscriptions
- we show that symmetric firms have an incentive to choose incompatibility in both periods if
 - the weight of the second-period payoff is large enough
 - the switching cost is significant

Model

- **2 Firms** ∈ {A,B}
- **2 Products** $j \in \{x,y\}$ either independent or perfect complements

Model

- **2 Firms** ∈ {A,B}
- 2 Products j ∈ {x,y} either independent or perfect complements
 1st Period is identical to Matutes and Régibeau (1988)
 - A two-dimensional Hoteling model: a mass one of consumers are uniformly distributed over a square
 - Unit demand: Marginal cost is large enough that a consumer buys only one between A_i and B_i for given j = x,y
 - Full coverage: ve (expected value per product) is large enough
 - Linear transportation cost $t = t_x = t_y$

Model

- **2 Firms** ∈ {A,B}
- 2 Products j ∈ {x,y} either independent or perfect complements
 1st Period is identical to Matutes and Régibeau (1988)
 2nd Period
 - At the end of period one, a consumer discovers the true value of the product she consumed; $\mathbf{v} \sim \mathbf{U}[\mathbf{v}^e 1/2, \mathbf{v}^e + 1/2]$
 - A switching cost of s > 0 per product; homogenous for all consumers
 - Poaching: behavior-based price discrimination
 - Common discount factor; $\delta > 0$

Stage game for each period

- 1. Compatibility choice: each platform simultaneously chooses between compatibility and incompatibility. If at least one firm chooses incompatibility, incompatibility prevails
- 2. Pricing: each platform simultaneously chooses prices
- 3. Consumers make purchase decisions

Lemma 1. Compatibility in period two

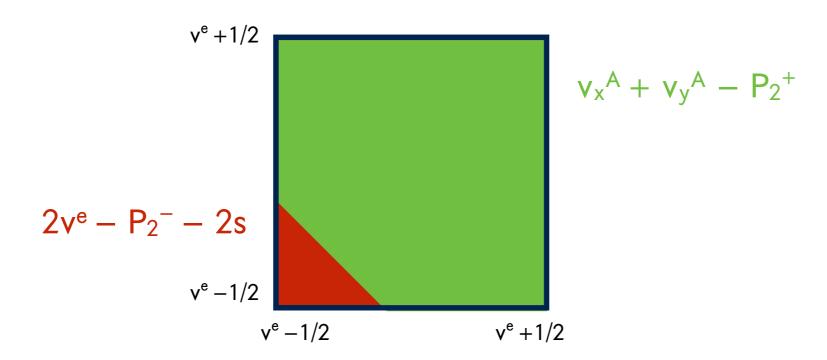
- Four submarkets: A_x, B_x, A_y, B_y
- In each submarket, say A_x , because of the switching cost, one is dominant (A) and the other (B) is dominated

Lemma 1. Compatibility in period two

- Four submarkets: A_x, B_x, A_y, B_y
- In each submarket, say A_x , because of the switching cost, one is dominant (A) and the other (B) is dominated

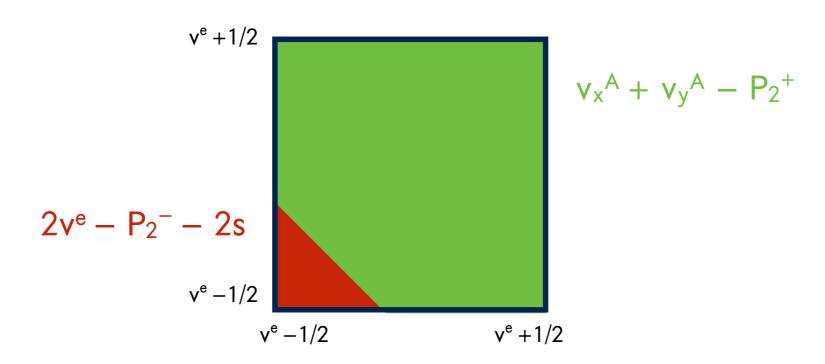
Lemma 1. Compatibility in period two

- Four submarkets: A_x, B_x, A_y, B_y
- In each submarket, say A_x , because of the switching cost, one is dominant (A) and the other (B) is dominated


• Equilibrium profits: Π_2^- , Π_2^+

Lemma 2. Incompatibility in both periods

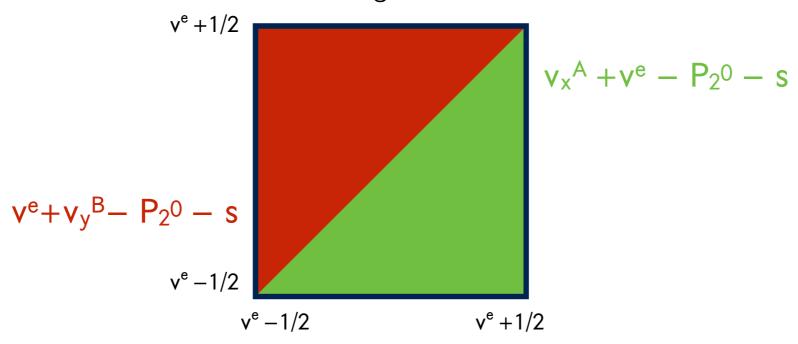
- Two submarkets: A_xA_y , B_xB_y
- In each submarket, say A_xA_y , because of the switching cost, one is dominant (A) and the other (B) is dominated


Lemma 2. Incompatibility in both periods

- Two submarkets: A_xA_y , B_xB_y
- In each submarket, say A_xA_y , because of the switching cost, one is dominant (A) and the other (B) is dominated

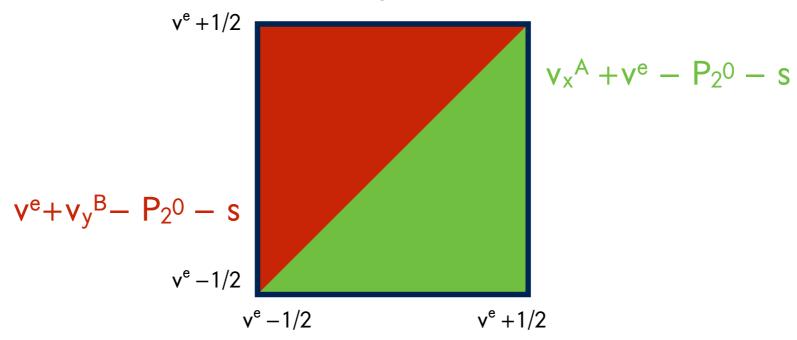
Lemma 2. Incompatibility in both periods

- Two submarkets: A_xA_y , B_xB_y
- In each submarket, say A_xA_y , because of the switching cost, one is dominant (A) and the other (B) is dominated


• Equilibrium profits: Π_2^- , Π_2^+

Lemma 3. Compatibility in 1st period and incompatibility in 2nd period

- Four submarkets: A_xA_y , B_xB_y , A_xB_y , B_xA_y
- In each hybrid submarket, say A_xB_y , no firm is dominant no matter what the level of switching cost

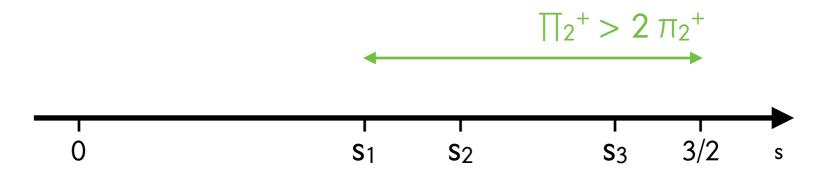

Lemma 3. Compatibility in 1st period and incompatibility in 2nd period

- Four submarkets: A_xA_y , B_xB_y , A_xB_y , B_xA_y
- In each hybrid submarket, say A_xB_y , no firm is dominant no matter what the level of switching cost

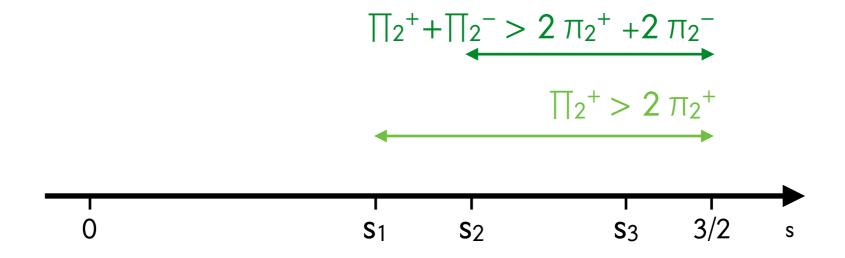
Lemma 3. Compatibility in 1st period and incompatibility in 2nd period

- Four submarkets: A_xA_y, B_xB_y, A_xB_y, B_xA_y
- In each hybrid submarket, say A_xB_y , no firm is dominant no matter what the level of switching cost

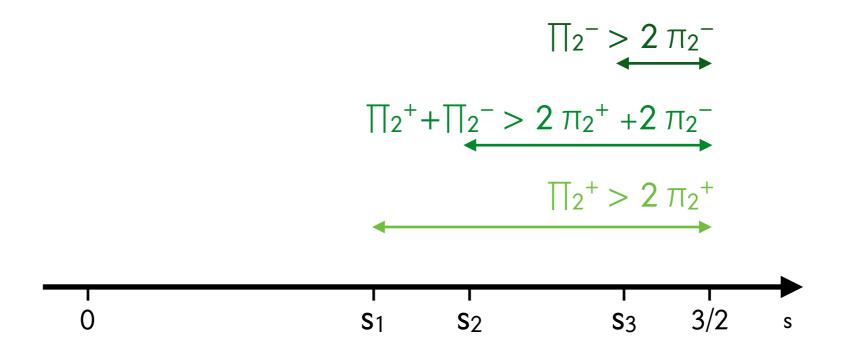
• Equilibrium profits: \prod_{2}^{0} , \prod_{2}^{0}


Corollary. Hurkens-Jeon-Menicucci (2013)

• The more dominated a firm (**s** high enough), the more competition is soften under incompatibility than under compatibility.

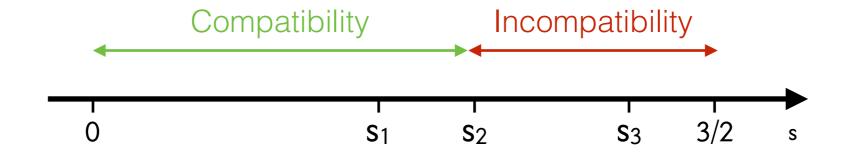

Corollary. Hurkens-Jeon-Menicucci (2013)

 The more dominated a firm (s high enough), the more competition is soften under incompatibility than under compatibility.


Corollary. Hurkens-Jeon-Menicucci (2013)

 The more dominated a firm (s high enough), the more competition is soften under incompatibility than under compatibility.

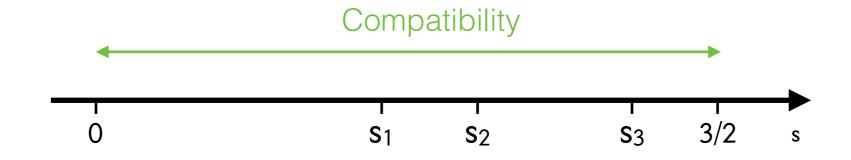
Corollary. Hurkens-Jeon-Menicucci (2013)


 The more dominated a firm (s high enough), the more competition is soften under incompatibility than under compatibility.

Second-period compatibility choice

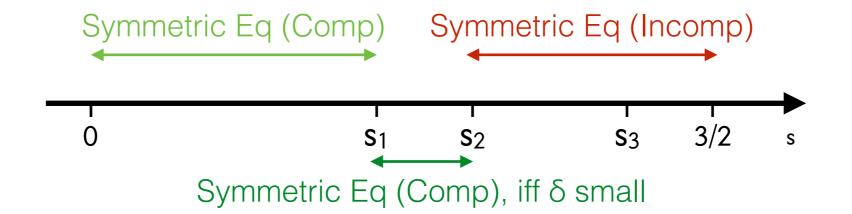
(given **symmetric** first-period market shares)

Lemma 4. Given incompatibility in 1st period

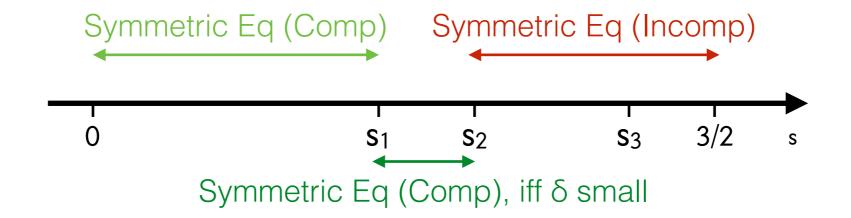

Second-period compatibility choice

(given **symmetric** first-period market shares)

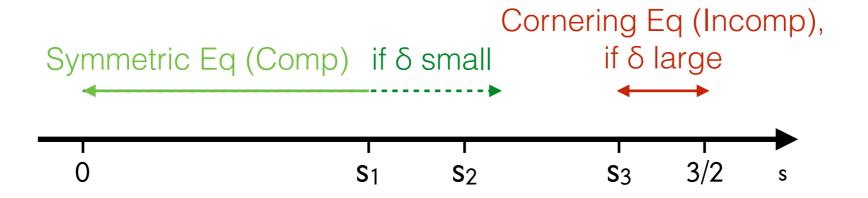
Lemma 4. Given incompatibility in 1st period



Lemma 5. Given compatibility in 1st period

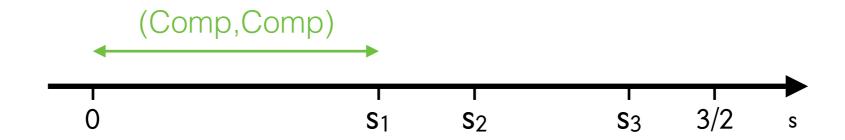

First-period pricing equilibrium

Propositions 1 & 2. Given incompatibility in 1st period



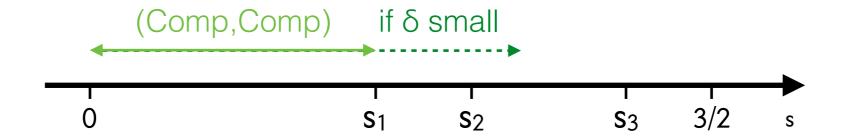
First-period pricing equilibrium

Propositions 1 & 2. Given incompatibility in 1st period



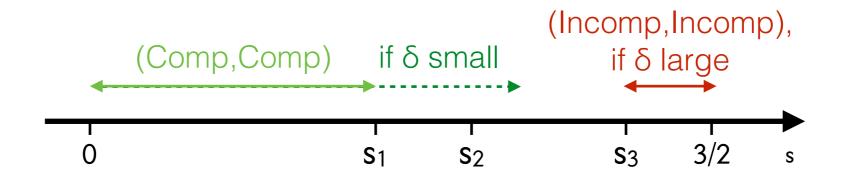
Propositions 3 & 4. Given compatibility in 1st period

Main result


Proposition 5. First-period compatibility choice

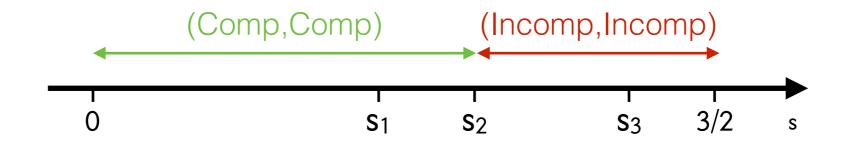
 s small: compatibility in period two, independently of the first period compatibility regime ⇒ both firms prefer and compatibility in period one as it softens competition in period one.

Main result

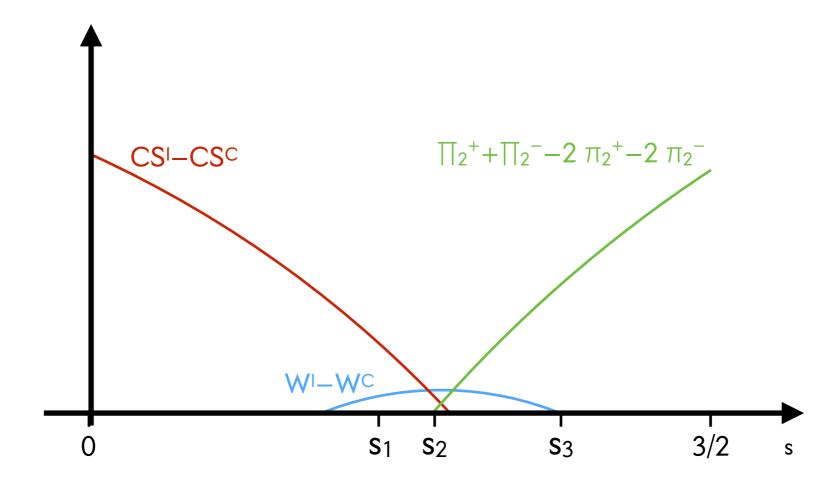

Proposition 5. First-period compatibility choice

- s small: compatibility in period two, independently of the first period compatibility regime ⇒ both firms prefer and compatibility in period one as it softens competition in period one.
- δ small: Prop 5 generalised Matutes and Régibeau (1988), since second-period profits are relatively unimportant.

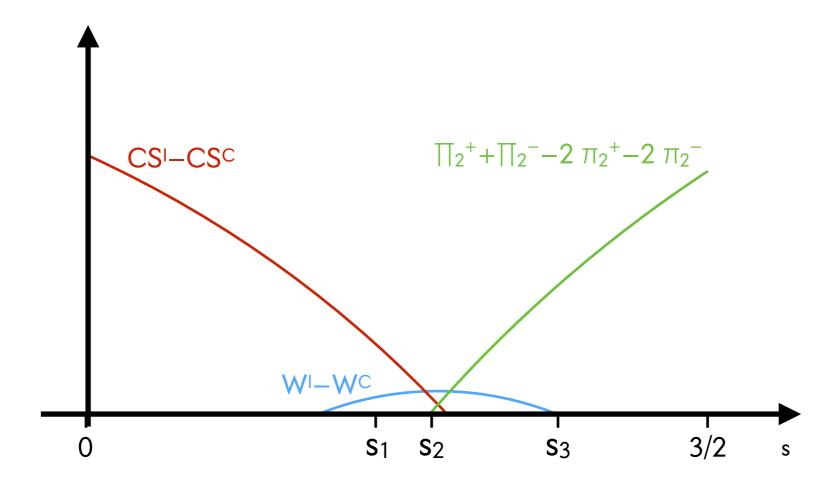
Main result


Proposition 5. First-period compatibility choice

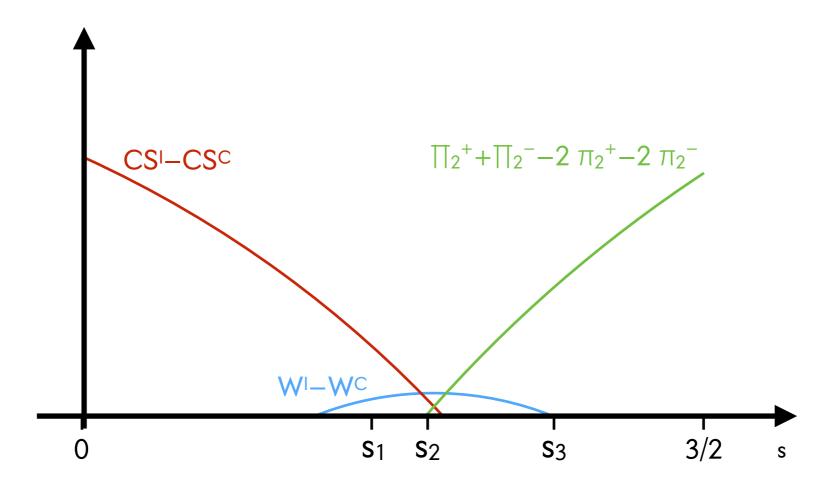
- s small: compatibility in period two, independently of the first period compatibility regime ⇒ both firms prefer and compatibility in period one as it softens competition in period one.
- δ small: Prop 5 generalised Matutes and Régibeau (1988), since second-period profits are relatively unimportant.
- δ large, and s large: Matutes and Régibeau (1988) is reversed. Even if the first-period incompatibility intensifies competition in 1st period, the firms choose it as this leads to the second-period incompatibility which softens competition in period two.


Non-negative prices

Proposition 6. For δ large enough


• Each firm charges **zero** price for in the first period.

CS and welfare: non-negative pricing


Striking conflict between consumer surplus and industry profit.

CS and welfare: non-negative pricing

- Striking conflict between consumer surplus and industry profit.
- s small enough because consumers can make switching decision only at the system level

CS and welfare: non-negative pricing

- Striking conflict between consumer surplus and industry profit.
- s small enough because consumers can make switching decision only at the system level
- s high enough, no switching is socially optimal, but under incompatibility more poaching arises.

Conclusion

- Consumers' product-specific investment makes lock-in very likely
- Then, we find that platforms choose incompatibility today to soften future competition; intensive competition will be followed by weak competition
- Internet platforms behave like islands
- This hurts consumers and is likely to reduce welfare