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1 Introduction

Crowdfunding is a recent and rapidly growing phenomenon with a major promise: to help
bring more socially beneficial projects to fruition.1 Crowdfunding platforms have sharply re-
duced the cost for entrepreneurs to pitch their projects to a wide range of potential funders
before having to sink the costs of production.2 We build a model of crowdfunding to investi-
gate how the strategic interaction between entrepreneurs and funders determines consumer,
producer and total welfare. We locate the main social advantage of crowdfunding in its abil-
ity to adapt production to the “crowd’s information” about market demand. Entrepreneurs
also use crowdfunding to extract consumer rent, often further improving adaptation, but
possibly lowering consumer and even total welfare relative to standard finance and selling
mechanisms. We identify how platform design can limit these negative effects. We also show
how crowdfunding, as credible market signal, actually complements standard finance and
optimizes pricing, when new buyers arrive later on.

We study the prominent case of reward-based crowdfunding where funders are compen-
sated with the project’s product. So the funders are buyers. Each buyer chooses a bid after
the entrepreneur sets a funding threshold and a minimal price. Production occurs in the
“success” event where the aggregate funds, the sum of bids, reaches the funding threshold.
The entrepreneur then receives these funds and has to sink her production costs and deliver
her product to all buyers who bid at least the minimal price. Buyers can rest assured that
(a) they pay nothing in the event of funding failure and (b) they pay exactly their bids in
the event of success. That is, buyers know prices (BKP) since refund property (a) implies
any (above-minimum) bid is a price. Together with the simple aggregate funds rule (AFR),
these reassuring properties explain why so many small funders are willing to participate in
crowdfunding.3

Crowdfunding is attractive to entrepreneurs as a tool for adaptation (market-testing)
and rent-extraction (price-discrimination), as we now explain in our baseline model of buy-
ers with independent high and low valuations. Adaptation is simplest when high types are
frequent. The entrepreneur then sets the high valuation as minimal price and her fixed cost
as threshold. This threshold perfectly adapts production to actual demand: she sinks her
fixed cost precisely in the demand states that are profitable. Crowdfunding effectively com-
bines production finance with sales marketing in an ex-ante mechanism: the entrepreneur

1E.g., the recent U.S. JOBS act facilitated crowdfunding as a tool for creating jobs and consumer surplus.
2Digital search and referral tools further help match funders with projects of likely interest.
3In 2014, 3.3 million backers pledged 529 million dollars, generating over 22,000 successfully financed

projects on the major reward-based platform Kickstarter, alone. Overall, Massolution (2015) estimate that
global crowdfunding raised 16.2 billion dollars and predict that 2015 will double this figure.
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offers a sales contract before producing any goods. Her offer, to the buyers as a “crowd,”
is explicitly contingent on their aggregate bids reaching her threshold. This creates an
incentive-compatible market test, unavailable in standard finance and selling where the en-
trepreneur first finances and implements her project and only then posts a price offer to
buyers. Crowdfunding strictly raises welfare here.

Rent-extraction enters the picture when high types are less frequent, inducing the en-
trepreneur to set the low valuation as minimal price. High types are then willing to bid
strictly above this minimum to help reach the funding threshold. Caring more for project
success, high types pay more than low types for the exact same good. This rent-extraction
via multiple bids is important. For high fixed cost projects, the price-discrimination cer-
tainly raises welfare by augmenting the parameter range with beneficial production. But
the entrepreneur might set her threshold too high since threatening not to produce in states
with few high bids extracts rent at the cost of wasting some production opportunities. This
can even lower welfare relative to standard finance but only when fixed costs are moderately
low (and high types infrequent).

Before describing further results, we respond to two concerns. First, one might worry that
free-riding among funders and equilibrium coordination or computation difficulties render
the pivotality motive weak, at best. Second, aggregation over large numbers might trivialize
market uncertainty and with it, the need for adaptation.

Despite the media hype, a typical crowdfunding project actually attracts bids from only
about 50 active funders on Kickstarter (see Section 6). Moreover, pivotality concerns and
adaptation gains prove significant for surprisingly large crowds, thanks to refund property (a)
above. We now illustrate this by demonstrating the above results with 500 active funders.
Later, we also prove that market uncertainty and adaptation gains remain important for
arbitrarily large crowds in two natural extensions with correlated preferences.

Esther, a musician, wants to record a CD but only if demand is sufficient to cover the
recording studio fixed cost of e 2650. Some people are fans who value her music at e 20,
others are only willing to pay e 5 and most simply have no interest. Concretely, 500 people
have some interest: their values are i.i.d. draws from {5, 20}, each being a fan with probability
1/5. So aggregate demand is uncertain. Standard finance is unprofitable: if Esther paid
the fixed cost to produce, she would optimally sell at e 5, yielding a loss of e 150. Now
crowdfunding can help her out: offering the CD at e 20 and making production contingent
on raising at least e 2650 gives her a 0.02% chance of success and no risk of losing money.
This adaptation gain is some progress, but the expected profit of about 1 cent may not justify
even quite small effort costs of pitching her project to funders. Fortunately, she can do much
better raising her threshold above her actual cost to e 2736 to also exploit crowdfunding’s
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pivotal incentives: if she then offers the CD at e 4.99, while suggesting true fans pledge
e 7.21, fans optimally do so to raise the chance of project success and getting the CD.4 The
project now has a 17% chance to succeed and gives Esther a net expected profit of e 16.52.
So this rent-extraction improves social and private welfare, but rent-extraction can lower
welfare at a lower fixed cost such as e 2350. Then Esther would set a minimum price of
e 4.99, ask fans to pay e 5.55 and set a threshold of e 2547. This yields a higher expected
profit than selling to all at the unique price of e 5 (or e 4.99), but reduces the probability
of success to 80% from 100% under standard finance.

For the bulk of projects with around 50 interested funders, each funder is more likely to be
pivotal, so rent-extraction is more substantial, raising profits and success rates. In addition,
success on small projects can be critical stepping stones in an entrepreneur’s career path,
amplifying their social importance and also changing the relevant short-run objective from
profit-maximization towards project success or audience-maximization.5 Rent-extraction is
again vital in the 500 person example with Esther now a budding musician who aims to
demonstrate her talent, in order to move on to a greater stage. By selling at e 4.99, asking
fans to pay e 6.50 and setting her threshold at her cost of e 2650, she achieves a 38.6%
chance of recording the CD with no risk of financial loss.

We argue below that these examples are representative, because entrepreneurs self-select
into pitching their projects on crowdfunding platforms precisely when these adaptation and
extraction gains compensate for the costs of pitching projects to funders and the substantial
platform charges. For instance, Kickstarter charges 5% on top of transaction fees on the
funds raised on successful projects. So when Esther’s fixed cost is far below e 2500, making
rent-extraction unprofitable as well as guaranteeing profitability, she strictly prefers to sink
the cost and sell at e 5, to avoid the additional 5% fee. If Esther needs credit, she could
raise it on crowdfunding, but standard finance at a risk-free market rate would be cheaper.

Overall, our model shows that the “funding” in crowdfunding is not fundamental. An
entrepreneur with no credit constraints uses crowdfunding purely to adapt to demand and
to extract rent. Buyers do typically pay their bids in advance instead of just committing to
buy, but this is a simple way to enforce payment of high bids even if not needed for funding
the fixed cost. Of course, Esther would use crowdfunding purely for credit if banks were less
informed and did not trust her. But crowdfunding can also complement standard finance
(as in Mollick and Kuppuswamy, 2014, Table 3) by providing a credible market test: in our

4This strategy is part of a pure and strict Nash equilibrium and bid suggestions facilitate coordination
and computation. Also this is the unique Pareto-optimal equilibrium.

5Section 8.1 investigates the use of crowdfunding to achieve such alternative objectives. Early crowdfund-
ing platforms like SellaBand catered to creative entrepreneurs whose main objective was often to get their
work out (project success) without getting into debt.
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Section 7 extension, funds from crowdfunding buyers signal the profitability of an ex-post
market of new buyers with correlated preferences.6 This signal also helps to optimize pricing
and generates interesting dynamics.

Can general mechanism design improve on crowdfunding? Building on Cornelli’s (1996)
analysis in Section 5, we prove that in our baseline model, crowdfunding is already optimal
in the class of general mechanisms (i.e., relaxing the above simplicity restrictions, BKP and
AFR). This also proves that crowdfunding is optimally reward-based, not investment-based,
in our setting. Extending to three or more buyer types, the general optimum can still be im-
plemented in a mechanism satisfying BKP, but not with BKP and AFR: crowdfunding tends
to be soft on intermediate buyer types to achieve general optimality. This extended setting
also delivers three new results about crowdfunding: the entrepreneur may set a threshold
strictly below her fixed cost (committing to produce in some loss states to reward the highest
types); her minimal price may exceed the optimal posted price; and bid restrictions (chosen
by the entrepreneur) may matter. The last two results reflect how crowdfunding is too simple
to deal with higher dimensions optimally. Returning to the two-type setting, but removing
threshold commitment, generates parallel findings as we now explain.

Can a platform raise welfare by preventing threshold commitment? The entrepreneur’s
cost is then the only credible threshold and we showed that profit-maximizing entrepreneurs
tend to set excessive thresholds, so this could be useful. But we also showed how above-
cost thresholds can raise welfare. So perhaps platforms and regulators should instead work
to support threshold commitment? To answer these questions, we compare our baseline
crowdfunding mechanism, known as “all-or-nothing” (AON), against the same mechanism
with no threshold commitment (NTC).7

As NTC effectively lowers the entrepreneur’s threshold to equal cost, production rises at
fixed buyer bids but high type buyers bid less. At intermediate high type frequencies, the
entrepreneur instead raises high type bids by substituting for her reduced threshold with
a higher minimal price. This excludes low types and reduces consumer and total welfare.
But with infrequent high types, exclusion remains too costly and we observe a surprising
effect. The entrepreneur actually substitutes with a lower minimal price, below the low
type valuation. This maintains inclusion and encourages high type bids by raising the gap
between her at-cost threshold and the sum of low type bids, each equal to the minimal
price. NTC then yields higher total and consumer welfare than AON. We also show that bid
restrictions are neutral in AON, but help the entrepreneur extract rents in NTC.

6The entrepreneur must be unable to manipulate this signal via a pseudonym or confederate as discussed
below. The crowdfunding threshold then also reassures funders that only viable projects will go ahead.

7Only the commitment to not produce when the threshold is not reached ever binds, except in Section 5.
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To enforce AON, regulators or platforms must prevent entrepreneurs with above-cost
thresholds from self-bidding, via pseudonyms or confederates, so as to access funds that fail to
reach their thresholds but still exceed costs.8 Platforms can also use their gatekeeper power,
in project ranking and search tools, to influence threshold choices, and some directly oblige
NTC by offering only a “flexible” or “keep-it-all” crowdfunding model where the entrepreneur
can always take the funds and produce, even on failing to reach her threshold (which becomes
cheap-talk). Platforms’ percentage cut on funds raised motivates them to attract both sides
of their market: buyers and entrepreneurs. Where AON raises even consumer surplus,
platforms would certainly gain from facilitating threshold commitment, since it raises both
consumer and entrepreneur participation. This may explain AON’s current predominance.
But NTC cannot be ruled out for parameters where it delivers higher consumer welfare;
then platforms might restrict to NTC or do nothing to prevent self-bidding, if consumer
participation is sufficiently elastic relative to that of entrepreneurs.

Related Literature.
The field of crowdfunding has become quite crowded, but Agrawal et al. (2014) and

Belleflamme et al. (2015) offer useful surveys on empirics and theory. Our work stands out
from all related models because they all restrict to a unique crowdfunding price, whereas
we show that this is generally suboptimal. We thereby capture the salient feature that
buyers pay multiple prices for the exact same reward, but we first relate our main results to
the prior work of Belleflamme et al. (2014) who argued that a non-standard motivation of
funders was necessary to understand crowdfunding. Crowdfunders enjoy community benefits
proportional to their standard valuation of the good and the entrepreneur price discriminates
by having high valuation buyers buy in advance at a higher price. We show that community
benefits, while plausible especially for artistic and charitable projects, are certainly not
crucial. Indeed, we assume consumers and entrepreneurs have purely standard self-interest
motivations, except on generalizing in 8.1.

The first key contribution of our work is to demonstrate crowdfunding’s role as a market-
test for adapting production (and later pricing) by modeling a finite crowd; Belleflamme
et al. (2014) treat a continuum of buyers so there is no aggregate uncertainty to which to
adapt. The second key contribution is to model the pivotality motive and its implications
for rent-extraction via price-discrimination; this again requires the finite crowd. We also
analyze threshold commitment; while production is contingent on sufficient advance-purchase
revenues in Belleflamme et al. (2014), the threshold is simply the fixed cost. Our paper is
the only one to provide a non-trivial, rational analysis of threshold setting.

Two contemporaneous papers also model pivotality-based price-discrimination, but with
8E.g., Kickstarter discourages self-bidding but enforcement is imperfect (see Mollick, 2014, p.6).
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suboptimal designs. Like Belleflamme et al. (2014), they focus on price-discrimination with
a high crowdfunding price ex-ante and a low regular price ex-post. Sahm (2015) treats a
finite crowd, arguing that it must be small for price discrimination via pivotality. We show
that in fact the crowd need not be so small, even for pivotality. We also show that his
mechanism is suboptimal since multiple crowdfunding prices deliver better outcomes. Sahm
(2015) assumes the entrepreneur has no credit at all and must set her threshold at cost,
despite the ex-post revenues.9 Kumar et al. (2015) do, like us, let the entrepreneur choose
the threshold, but they work with a continuum of independent consumers. This has two
major drawbacks: consumers are not in fact pivotal and again there is no aggregate demand
uncertainty.10

More recently, Strausz (2015) considers a simplified version of our baseline model with
low valuation set at zero (vL = 0) so that only the exclusive option is relevant. His contri-
bution is to model the moral hazard that entrepreneurs take the funds and run, instead of
producing and delivering the rewards. Chang (2015) also analyzes this moral hazard, but
in a common value environment.11 We assume that reputational concerns and ex-post sales
enforce production and delivery commitments, consistent with Mollick (2014) who estimates
less than 4% delivery failure on successful Kickstarter projects.

All these papers restrict to a unique price in crowdfunding, but multiple prices matter.
Without them, threshold choice is trivialized, unlike in reality and in our paper. Multiple
prices often substantially increase efficiency by enhancing demand adaptation. They also
introduce the risk of excessive extraction. These effects are crucial to our results comparing
platforms with and without threshold commitment. Multiple bids are also necessary to
minimize credit constraints and to fully capture price discrimination and price dynamics.12

Closely related to our paper is Cornelli (1996) who considers the problem of a monopolist
selling an excludable good with fixed cost of production. Her general mechanism design anal-

9Sahm (2015) does consider standard finance but only as an alternative, implicitly assuming they are
always substitutes; in fact, combining with crowdfunding is often optimal as we prove.

10In their model, all crowdfunding projects exactly reach the entrepreneur’s threshold. This is inconsistent
with the fact that over half the projects fail to reach the threshold. We view these failures as a sign of market-
test in action, filtering out projects with too little demand, so that costs are only sunk on viable projects.

11Common values are important for studying investment-based crowdfunding as in Hakenes and Schlegel
(2014); exploiting the “wisdom of the crowd” is a complementary benefit of crowdfunding.

12Prices fall over time in all the three papers that feature price discrimination: the unique pre-sale or
crowdfunding price is high and the ex-post price is low. We show that prices may in fact rise or fall, depending
on the crowdfunding signal; see Section 7. An earlier literature derives advance-purchase discounts under
capacity constraints and aggregate demand uncertainty (e.g., Dana, 2001; Gale and Holmes, 1993) or when
consumers have ex-ante preference uncertainty (e.g., Courty and Li, 2000; Möller and Watanabe, 2010; Nocke
et al., 2011). In those papers, production is not contingent on the level of pre-sale revenues. In more related,
recent work on inter-personal bundling, price offers to one buyer can depend on other buyers’ choices, but
fixed costs are sunk. So fixed costs, which are crucial to all our results, are effectively zero. Nonetheless,
insights on word-of-mouth advertising suggest a complementary attraction (see e.g., Chen and Zhang, 2015).
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ysis treats weak implementation and a continuous type distribution. She does not consider
crowdfunding; in particular, her mechanisms break the aggregate funds rule (AFR). Barbieri
and Malueg (2010) investigate whether Cornelli’s optimal design ever takes the form of a
crowdfunding mechanism but they can only solve with two buyers (N = 2). Even then, the
necessary conditions are highly restrictive. AFR makes the problem extremely difficult to
solve for a continuum of types and no solutions exist for N > 2 (see also Alboth et al., 2001).
Our general mechanism analysis in Section 5 makes progress using discrete type distribu-
tions; in particular, in our baseline model, the optimal crowdfunding design implements the
general optimal outcome for any number of buyers.

In crowdfunding, each buyer’s bid helps cover the fixed cost, benefitting other buyers,
so the literature on private provision of public goods is relevant. One strand uses general
mechanism design to provide implementability results, including characterizations of interim
incentive efficient allocations for discrete excludable public goods in environments with in-
dependent, private valuations (e.g., Cornelli, 1996; Ledyard and Palfrey, 2007). A second
strand considers indirect mechanisms with simple, intuitive rules, such as voluntary contribu-
tion, satisfying AFR, and subscription games, satisfying BKP and AFR.13 With excludability
via a minimum price, subscription games are equivalent to reward-based crowdfunding. Un-
fortunately, as we just noted, with or without excludability, subscription games have proven
extremely hard to analyze with more than two players. In contrast, we fully characterize
equilibria for any number of bidders, albeit in a binary type space.

The rest of the paper is organized as follows. Section 2 introduces the baseline model,
analyzed in Section 3 under full commitment. Section 4 analyzes commitment, comparing
AON and NTC. Section 5 investigates the optimality of crowdfunding in a general mech-
anism framework and extends beyond two types. Section 6 demonstrates crowdfunding’s
relevance to large markets. Section 7 introduces ex-post buyers and studies credit and price
dynamics. We extend to alternative, not-for-profit objectives and sequential bidding in Sec-
tion 8, concluding in Section 9 with a discussion on applying the results. Proofs are collected
in Appendix A.

2 Baseline model

We present a streamlined model, deferring justification and extensions. A single entrepreneur
has a project for producing a good at fixed cost C > 0 and a constant marginal cost, nor-

13Theory and experiments demonstrate the benefit of such threshold mechanisms and the advantage of
refund property (a) for voluntary contributions for pure public goods (see e.g., Palfrey and Rosenthal, 1984;
Croson and Marks, 2000), and also with excludability, (see e.g., Menezes et al., 2001; Swope, 2002).
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malized to zero. N buyers have unit demand for the good. Their valuations are independent
draws from the 2-type distribution, with probability q on vH and 1− q on vL < vH . Buyers
each learn their private values during crowdfunding; learning after production suffices in
standard finance (SF ). The number k of the N buyers with high demand, vH , defines the
demand state and has the binomial (N, q) distribution, fNk (q) =

(
N
k

)
qk(1− q)N−k; we follow

the conventions,
(
M
k

)
= 0 if k < 0 or k > M and

(
0
0

)
= 1 and we suppress q where uncon-

fusing. To ensure that production is sometimes profitable, we assume: C<NvH . Finally, we
define q̂ = vL/vH ; this ratio plays an important and recurrent role in our analysis.

We first solve the benchmark case of standard finance, where the entrepreneur decides
project finance before learning demand state k and simply posts a price to all buyers. Then
we illustrate the potential for gains from an ex-ante selling mechanism, setting the stage for
(optimal) crowdfunding design. We normalize to no time discounting and a risk-free interest
rate of zero.

2.1 Standard finance and optimal posted-prices

In standard finance (SF), the entrepreneur and any financiers decide production before set-
ting up their selling mechanism. If production goes ahead, the entrepreneur sinks her cost
C and then designs her selling mechanism. At that point, she can do no better than use a
simple posted-price p.14 Her expected revenue is then Np for p ≤ vL, qNp for p ∈ (vL, vH ]

and 0 for higher p. So she chooses between the “exclusive” price p = vH that excludes L-
types, extracting all H-type rent, and the “inclusive” price p = vL that includes L-types,
extracting all their rent. Exclusion is optimal if q > q̂ and inclusion is optimal if q ≤ q̂. The
entrepreneur indeed produces when her fixed cost C is low enough: C < max{NvL, qNvH}.
So in the standard finance mechanism, she earns expected profit,

πSF =

{
(NvL − C)+ if q ≤ q̂

(qNvH − C)+ if q > q̂
(1)

where x+ denotes max (x, 0) for any x.

2.2 Crowdfunding and other ex-ante selling mechanisms

As her fixed cost C is strictly positive, the entrepreneur may improve on standard finance and
a posted-price, with a pre-production or “ex-ante” mechanism. First, having buyers evaluate
the good and credibly express their demand for it in a pre-production purchase commitment

14Probabilistic offers and interpersonal bundling are useless given independent valuations.
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allows the entrepreneur to avoid producing at a loss. She can adapt her production decision
to actual, instead of only expected, demand. Second, she may use non-production threats to
induce buyers to pay more than in standard finance SF. In SF’s inclusive strategy, the price
p = vL gives H-types a rent, so they would voluntarily pay more to raise the probability
of trade. The entrepreneur can therefore extract rent by using an ex-ante mechanism to
make production and sales contingent on buyers’ expressed demands. In crowdfunding, this
contingency takes a simple form: the entrepreneur’s production decision – project imple-
mentation – responds to buyer purchase commitments or funds via a simple aggregate rule.
With no threshold commitment, NTC, this arises endogenously, but in the baseline model,
AON crowdfunding, the entrepreneur often extracts more by committing against producing
when too few buyers agree to pay a good price.

Concretely, the entrepreneur commits to respond to bids from buyers by producing when
the sum of bids (aggregate revenues from production) exceeds a funding threshold T that she
chooses along with a minimum price p > 0. She can additionally restrict the set of feasible
bids B ⊆ R+ for buyers who choose to make a bid. So the entrepreneur’s crowdfunding offer
consists of the triple (T,B, p). Bids are only payable when production occurs and only bids
above the minimum price are rewarded with a unit of the good.15

The timing is straightforward. First, the entrepreneur chooses her offer (T,B, p). Second,
buyers simultaneously and independently choose their bids b from B or make no bid. Since
p > 0, we denote not bidding by b = 0. If the sum of these bids is at least T , the entrepreneur
produces, incurring a fixed cost C, and each buyer pays his bid to the entrepreneur and
receives one unit of the good if his bid exceeds the minimum price p. If the bid sum fails to
reach T , the project fails: there is no production and no buyer pays anything.

2.3 Equilibrium concept and outcomes

The entrepreneur sets the mechanism and then buyers move simultaneously in the bidding
game. The outcome induced by a particular strategy profile depends on the realizations
of the valuation of each buyer. For a profile of valuations v ∈ {vL, vH}N , the outcome
specifies for each buyer i, i’s probability pi(v) of getting the good and i’s transfer ti(v) to
the entrepreneur. As we treat buyers symmetrically, the outcome depends on i’s type, L orH
and the demand state, k. The outcome determines, for each state, whether the entrepreneur
produces and how much she receives.

The standard mechanism design approach seeks the entrepreneur’s preferred Bayesian
Nash equilibrium (BNE) of the bidding game, that is her preferred Bayesian incentive com-

15To guarantee equilibrium existence we restrict B to be a closed set.
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patible (BIC) outcome. We also go beyond this by investigating full implementation of this
outcome under a mild equilibrium refinement:16 we seek a mechanism for which all BNE
satisfying the refinement generate this outcome. We find that in the baseline model and
extensions maintaining threshold commitment, the entrepreneur’s optimal BIC outcome can
be uniquely implemented in Pareto-undominated BNE: one BNE Pareto dominates all the
others and this BNE delivers the preferred outcome.17

Several crowdfunding mechanisms may yield the same profit to the entrepreneur, but
the profit-maximizing BIC outcome is generically unique in our study. To cover even the
non-generic parameter sets where distinct BIC outcomes deliver the same maximized en-
trepreneurial profit, we define the optimal crowdfunding outcome to be that which max-
imizes production among BIC outcomes that maximize the entrepreneur’s profit. This
always gives a unique optimal crowdfunding outcome, albeit not necessarily a unique crowd-
funding mechanism.

3 Optimal design with full commitment

In this section, we analyze the baseline model. The entrepreneur has full commitment to any
desired threshold T and bid restriction B. As we prove below, the entrepreneur need only
consider crowdfunding mechanisms that induce symmetric pure strategy equilibria with L

and H type buyers bidding bL ≤ bH , respectively, and B = {bL, bH}\{0}. The entrepreneur’s
expected profit is zero if T > NbH , NbL − C if bH = bL ≥ T/N and otherwise,

π(bL, bH , T, p) =
N∑
k=n

fNk (kbH + (N − k)bL − C)

where n =
⌈
T−NbL
bH−bL

⌉
is the pivotal number of H-types triggering production.18

The threshold T and minimum price p only affect the profit function via the pivotal
number n and the incentive compatibility of bids. So we can denote the entrepreneur’s
profit function by πn(bL, bH) and optimize the choice of pivot n together with compatible
bids bL and bH . Denoting the project success rate by SMn =

∑M
k=n f

M
k , we can write (see

Lemma B.1(iii)),

πn(bL, bH) = SNn
(
NbL − C + E[k|k ≥ n](bH − bL)

)
(2)

16See e.g., Palfrey (1992) and Jackson (2001) on mechanism design, implementation and multiple equilibria.
17This concept is also called interim incentive efficiency in the mechanism design literature (Ledyard and

Palfrey, 2007). Other refinements such as strict payoff dominance and risk dominance are equally effective.
18We use dxe to denote the smallest non-negative integer larger than or equal to x.
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This expected profit captures the tradeoff between project success (production probability)
and the production-contingent expectation of revenue minus cost.

With bL > 0, the entrepreneur maximizes profit subject to the individual rationality
constraints, p ≤ bL ≤ vL, bH ≤ vH and incentive compatibility of H-type buyers bidding bH
instead of bL:19

(vH − bH)SN−1
n−1 ≥ (vH − bL)SN−1

n (IC)

In equilibrium, each H-type believes that if he bids bL instead of bH , he only gets the good
when at least n of the other N−1 buyers are H-type, whereas if he bids bH , only n−1 other
buyers need be H-type. So he trades off the higher net gain vH − bL against lower success
SN−1
n . Defining hazard ratio,

hn =
fN−1
n−1

SN−1
n−1

= 1− SN−1
n

SN−1
n−1

we can rewrite (IC) as,
bH ≤ hnvH + (1− hn)bL (3)

or as δ ≤ hn(vH − bL) where δ = bH − bL is the H-type voluntary additional bid.
With bL = 0 representing no bid by L-types, the entrepreneur simply maximizes (2),

subject to bH ≤ vH . We first characterize the solution for this simple case of exclusive
strategies, denoted script E, and then characterize inclusive strategies, denoted script I. We
then compare the two optimized profits to find the optimal strategy. We conclude with a
welfare analysis.

3.1 Exclusion

When the entrepreneur excludes low type buyers (bL = 0), she readily extracts allH-type rent
by setting bH = vH and p ≤ bH . She can then dedicate T or n to adapting implementation
to demand: T = C ensures production cost C is sunk precisely in the profitable demand
states, k with kvH − C ≥ 0. Equivalently, she picks nE = dñEe where ñE = C/vH ; any
T ∈ ((nE − 1)vH , nEvH ] will do, including C. This gives her optimized expected profit as,

πEnE =
N∑

k=nE

fNk (kvH − C)

Given exclusion, crowdfunding perfectly reveals the aggregate high type demand and
perfectly adapts the production decision to this information.

19The converse incentive compatibility for L-types cannot bind since the entrepreneur prefers the high bid.
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3.2 Inclusion

Turning to inclusive strategies, p ≤ bL ≤ vL, for a given n, the entrepreneur maximizes profit
(2) subject to the binding incentive constraint (IC), which guarantees bH ≤ vH . Raising bL
relaxes the incentive constraint and raises profits, so the entrepreneur sets bL = vL, efficiently
extracting all rent from L-types; any bL will do when n = N . As bH raises profit, (IC) binds
giving bH = b̄n where,

b̄n = hnvH + (1− hn)vL (4)

This inclusive n-type strategy gives profit,

πIn = SNn
(
NvL − C + E[k|k ≥ n]hn(vH − vL)

)
(5)

The maximal threshold compatible with an n-type inclusive strategy is T n = NvL + nδ̄n

where δ̄n = b̄n − vL = hn (vH − vL). The next section shows that this maximal threshold
is the unique optimum in the absence of bid restrictions. The hazard ratio hn determines
the fraction of H-type’s rent from buying at vL that can be extracted using the pivotality
motive. As hn is strictly increasing from h0 = 0 to hN = 1 (see Lemma B.1(vii)), b̄n and
δ̄n increase strictly with n, as does E[k|k ≥ n]. But the probability of project success Sn
strictly falls with n, so there is a tradeoff. At n = 0, there is no pivotal motive. All buyers
pay vL and production takes place for sure. At the other extreme, with n = N , production
requires all buyers to be H-type, so all H-types are fully pivotal, removing free-riding. The
entrepreneur then extracts all their informational rent with b̄N = vH , but production only
occurs with probability qN .

The tradeoff between higher rent extraction from high n against a lower probability of
production generates a single-peaked sequence πIn and the following lemma characterizes the
entrepreneur’s optimal choice, nI , from inclusive strategies n.

Lemma 1. πIn is increasing for n ≤ nI and decreasing for n ≥ nI , where nI = dñIe and

ñI =
C −NvL + q(NvH − C)

vH − vL
(6)

Since
1− ñI

N
=

1− q
1− q̂

(
1− C

NvH

)
and 1− ñE

N
= 1− C

NvH

we have ñI = ñE along the line q = q̂ and ñI < ñE for q < q̂. Notice that ñI (and thus
also nI) is increasing in both the cost C and probability q of H-types. This is intuitive:
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the entrepreneur loses less from failing to produce in the event of few high types as her
production cost rises and as that event becomes less likely.

To understand the comparative statics graphically, we define for each n,

Cn(q) =
N(vL − qvH) + n(vH − vL)

1− q
(7)

On the curve C = Cn(q), nI = ñI = n and the entrepreneur is indifferent between the
inclusive strategies of types n and n + 1. Recall from Section 2.3 that she then picks the
more efficient one, type nI . So by Lemma 1, nI = arg minn{C ≤ Cn(q)}. It follows that the
entrepreneur never produces at a loss:

Lemma 2. Under inclusion, the entrepreneur never produces at a loss; the maximal optimal
threshold strictly exceeds cost.

3.3 Overall optimum

To find the entrepreneur’s overall optimum strategy, we compare the profit expressions from
her optimal exclusive and inclusive strategies. This reveals that exclusion is optimal if and
only if q > q̂ = vL/vH . It is intuitive that the relative profitability of exclusion increases with
q, since the excluded L-types become less common. But it is not obvious why the cut-off
value of q at which exclusion becomes optimal should be exactly the same as for a posted-
price. Indeed, we later show that this is not true when the entrepreneur lacks threshold
commitment. The reason why it is true with commitment is that nE = nI at q = q̂, as we
noted after Lemma 1. So production takes place for exactly the same demand realizations
under optimal exclusion and inclusion. This implies an identical expected cost term under
both strategies, making their relative profitabilities independent of C at q = q̂. Now at
C = 0 and q = q̂, a posted price of vL is as profitable as a posted price of vH , so πE0 = πI0 . It
follows that πEnE = πInI at q = q̂ for any C, with exclusion optimal above the line q = q̂ and
inclusion optimal below it. We summarize the overall solution as Proposition 1.

Proposition 1. The optimal crowdfunding outcome is characterized as follows:
(a) For q > q̂ = vL/vH , L-types are excluded and H-types get the good, paying vH , if and

only if the number of H-types k ≥ nE = dC/vHe.
(b) For q ≤ q̂ = vL/vH , both L and H types get the good, paying respectively vL and b̄nI ,

where nI is as in Lemma 1.
The sets of mechanisms with the tightest bid restrictions that uniquely implement the
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respective optimal exclusive and inclusive outcomes in Pareto-undominated BNE are:

ME = {(T, {vH}, p) : 0 ≤ p ≤ vH and (nE − 1)vH < T ≤ nEvH}

MI = {(T, {vL, b̄nI}, p) : 0 ≤ p ≤ vL and T nI − δ̄nI < T ≤ T nI}.

The multiplicity of optimal mechanisms owes to the fact that bid restrictions are su-
perfluous under threshold commitment in our baseline model. In the next subsection, we
will derive unique optimal mechanisms when bid restrictions are not possible. But notice
already that the optimal exclusion outcome can be simply implemented by setting the min-
imal price at the high valuation and the break-even funding threshold T = C, while the
optimal inclusive outcome can be implemented using p = vL and T = T nI> C.

The bidding game induced by any of the optimal mechanisms does have other equilibria
besides the one preferred by the entrepreneur, but they are all Pareto dominated. Namely,
the equilibria with buyers not bidding or always bidding vL yield a zero payoff for any type
of buyer. There also exists a mixed strategy equilibrium in which H-types sometimes bid
vL. Such a mixed strategy leads to a lower probability of project success and therefore to
a strictly lower payoff for H-types. Hence, the mixed strategy equilibrium is also Pareto
dominated.

The probability that an optimally chosen mechanism leads to project success is equal to
SNnE(q) if q > q̂ and equal to SNnI (q) if q ≤ q̂. The success probability decreases with C but
is non-monotonic in q because a small increase in q can lead to a discrete jump up in nI .
Nevertheless, the profit of the entrepreneur is strictly increasing in q (and decreasing in C).

Proposition 2. nE is increasing in C and constant in q. nI is increasing in C and q. It
follows that optimal entrepeneur profit strictly decreases with C and increases with q.

[Figure 1 about here.]

Figure 1 shows the regions in the (C, q)-space where different outcomes are optimal for
N = 5, vL = 1 and vH = 1.6. Note that πI5 = πE5 as in both cases one only sells when all
buyers have high valuation. For q̂ = vL/vH = 0.625 and C ∈ [(i − 1)vH , ivH ], πIi = πEi (for
i = 1, ..., 4). For q > q̂, it is optimal to sell only at high price vH ; for q ≤ q̂, it is optimal to
include low valuation buyers. For a given q < q̂, the maximal threshold T goes up in steps as
C increases. For example, with q = 0.5: T 0 = 5, T 1 = 5.04, T 2 = 5.32, T 3 = 5.98, T 4 = 6.92,
T 5 = 8. For a given fixed cost C, the minimal number of high valuation buyers goes up in
steps as q increases. The corresponding maximal threshold T makes upward jumps as the
optimal outcome switches from producing when there are at least n to n+ 1 H-type buyers,
but decreases in q in the interior region where production occurs when there are at least n
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H-type buyers. Although setting a threshold T < C may be in the entrepreneur’s optimal
set, she never has a strict incentive to do so: she can always achieve her optimal outcome
with a threshold T ≥ C. See Figure 2 for an illustration.

[Figure 2 about here.]

3.4 Welfare gains and losses from crowdfunding

We now analyze the welfare effects of introducing crowdfunding in comparison with a posted-
price, as used with standard finance.

In the case, q > q̂, where exclusion is optimal for the entrepreneur, crowdfunding is always
beneficial as we now explain. First, note that while exclusive strategies are always inefficient
in excluding L-types, standard finance is equally exclusive because ppost = vH on this region.
To see how crowdfunding strictly raises welfare by adapting production to demand, recall
that under a posted-price, production occurs if and only if expected profits are positive, that
is, when qNvH−C ≥ 0. Figure 3 illustrates. Standard finance never results in production on
the orange triangular region where C/q > NvH and always involves production in the other
orange region, even though ex-post demand from H-types sometimes does and sometimes
does not cover the fixed cost. In contrast, crowdfunding generates positive welfare (equal to
profits) on the former region by producing in the high demand states, n ≥ nE. Similarly,
by avoiding production in the low demand states, n < nE, it generates welfare and profit
gains for parameters in the latter region; recall that nE ≥ 1 (the vertical dashed white
lines distinguish nE = 1, 2, 3, 4, 5). So, on both regions, posted-prices involve strict ex-post
production inefficiencies that crowdfunding completely avoids by adapting to demand.

Crowdfunding is clearly not welfare-maximizing if production occurs with (excluded)
L-types present, as with nE < N . In addition, nE tends to exceed the welfare optimal
minimum which we denote by n∗: in the welfare-maximizing allocation, all buyers consume
if production occurs (inclusion) and production is optimal in all states k with kvH + (N −
k)vL − C ≥ 0, that is, k ≥ ñ∗ = (C − NvL)/(vH − vL). So, whenever n∗ = dñ∗e < N ,
inclusion of L-types is necessary and exclusion is suboptimal. However, taking exclusion as
given, crowdfunding does maximize total welfare.

We now turn to the case of q ≤ q̂. Here the entrepreneur adopts an inclusive strategy, both
under standard finance (posted prices) and crowdfunding. For C ≤ NvL, standard finance
leads to production for sure and this maximizes both consumer and total welfare because n∗ =

0 on this low cost range. Given this low cost, crowdfunding can only do harm: to extract rent,
the entrepreneur may raise the threshold T above C, thereby restricting production to states
k ≥ nI > 0. On the convex green region with low C and q, crowdfunding would involve nI =
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0, so the impact is neutral; in any case, here the entrepreneur would be content with posted-
prices rather than crowdfunding. But on the adjacent purple region, crowdfunding lowers
welfare by restricting production. For higher costs, C > NvL, depicted by the blue rectangle,
crowdfunding is strictly advantageous because standard funding implies no production. The
H-type buyers are strictly better off, as is the entrepreneur. Total and consumer surplus
may not be maximized, because the inequality nI ≥ n∗ may be strict.20

[Figure 3 about here.]

4 Relaxing threshold commitment and bid restrictions

In the analysis so far, we assumed that the entrepreneur could commit to any production
threshold T and could restrict buyers’ bids. In this section, we investigate how our re-
sults change on weakening these commitment powers. Fixing bidding behavior, removing
threshold commitment increases welfare because adaptation improves, but weakening either
commitment power shifts buyers’ bidding incentives. Removing commitment powers obvi-
ously cannot help the entrepreneur, but we identify when profits are strictly reduced and
how consumer and total welfare change. We find that, in our model, threshold commitment
is more important than bid restrictions.

Threshold commitment is nontrivial for two reasons. First, the entrepreneur might use
a pseudonym or a confederate to bid up the funds on her own project as a way to ensure
that she can implement the project and use the sum of funds from legitimate crowdfunding
when this sum exceeds her cost. If the platform cannot prevent the entrepreneur from doing
this, the effective threshold triggering production is equal to cost and the stated threshold
is mere cheap talk. Second, the entrepreneur may try to use the crowdfunding information
to implement the project independently.21

Bid restrictions, standard in general mechanism design, seem relatively easy to impose.
Indeed, crowdfunding platforms often permit entrepreneurs to offer multiple purchase options
(even for a fixed reward) at different prices. But it could be difficult to prevent buyers from
bidding for additional units using pseudonyms. Even with unit demand, buyers might buy
extra units to increase the probability of production (as in Romano, 1991). Recall that in
our analysis of the inclusion option with two permitted prices, the H-type buyers pay the
high price exactly for this reason. The question is whether allowing more than two options,

20It is straightforward to verify that 1− ñI/N = (1− q)(1− ñ∗/N), which implies ñI > ñ∗.
21The entrepreneur might implement the project on her own or using standard finance if her crowdfunding

proposal fails to attract enough funds, but this is less problematic if the entrepreneur then forfeits the right
to sell to all the participating funders.
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specifically allowing bids to be unrestricted, would upset the equilibrium analyzed under bid
restrictions.22 After setting the minimal price equal to the low bid, shaving down from the
high bid is the main concern, as opposed to shaving up from the low bid.

Of course, the entrepreneur can still use the minimal price p. Does she perhaps raise
p, making consumers worse off? Then strategies and policies supporting the bid restriction
option would certainly raise social surplus. Or do bid restrictions make consumers worse
off? Some platforms, like Kickstarter, do always allow the buyer to voluntarily pay more,
which implies bids are unrestricted above the minimum price. Imposing unrestricted bids
in this way would make sense if bid restrictions hurt the platform’s long-run interests by
harming consumers. Another reason could be enforcement costs or simplicity and possibly
unawareness of the benefits. Our analysis helps to identify which motives are plausible.

Before we analyze in detail how the lack of threshold commitment and bid restrictions
may change the outcome, we first identify the cases where these powers are in fact irrelevant.

The case nI = N arises when C > CN−1(q) and q < q̂. Though not excluded by the
minimal price, no L-type buyer ever consumes because production requires all N buyers to
be H-type. So it is equivalent for the entrepreneur to directly exclude L-type buyers with
p = vH and to set T = C, which here implies nE = N . In sum, the inclusive outcome with
nI = N is equivalent to the exclusive one with nE = N .

In the case of q ≥ q̂ or q < q̂ but nI = 0, the optimal solution with full commitment has a
singleton bid restriction, B = {b} with b = vH and b = vL, respectively. Meanwhile, as noted
above when nI = N , the optimal solution was equivalent to exclusion with n = N (since
production never arises with any L-type). Now a singleton bid restriction B = {b} can be
perfectly substituted for by a minimal price p = b because this dissuades underbidding and
higher bids were never a problem. Threshold commitment is also irrelevant in these three
cases, because T = C was already an optimal solution under exclusion and under inclusion
with nI = 0.

Next, we need to consider the cases where under full commitment inclusion is optimal
with 0 < nI < N . So the rest of this section treats q < q̂ and the intermediate cost range
(C0(q), CN−1(q)]. We first show in Section 4.1 that bid restrictions are actually irrelevant
so long as the entrepreneur has threshold commitment. However, when the entrepreneur
lacks threshold commitment it proves critical to distinguish the cases of unrestricted and
restricted bids. We do so in Sections 4.2 and 4.3, respectively.

22If bid restriction is only partially compromised, as by pseudonyms permitting all positive integer com-
binations of legitimate bids, reducing bids from vH without reaching vL is still possible for 2vL < vH .
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4.1 Threshold commitment, no bid restrictions

Recall that under full commitment, profit-maximizing mechanisms required bids in B =

{vL, b̄nI}, a minimum price not exceeding vL and a threshold in the range
(
T nI − δ̄nI , T nI

]
.

Without bid restrictions, it is necessary to use precisely the maximal threshold T nI and the
maximum minimal price, vL. It is then still an equilibrium for high type buyers to bid b̄nI
and for low type buyers to bid vL. Clearly, L-type buyers have no profitable deviation and
H-types bid at least vL. As before, H-types are indifferent between bidding vL and b̄nI . Now
bidding something in between vL and b̄nI is strictly worse than bidding vL. Proposition 3
proves that bidding above b̄nI can also be ruled out.

Moreover, the optimal outcome is still uniquely implemented by pure strategy Pareto
undominated equilibrium. The only candidates for alternative Pareto undominated equilibria
are where n 6= nI H-types are needed who all bid b′n = (T nI − (N − n)vL)/n. It is readily
verified that when n < nI this candidate is not an equilibrium because it does not satisfy
H’s IC. When n > nI , the candidate is an equilibrium but it is worse for the entrepreneur
and for H-types, and thus Pareto dominated. Namely, a H-type buyer expects to obtain
(vH − b′n)SN−1

n−1 < (vH − vL)SN−1
n−1 (as b′n > vL) while in the optimal equilibrium he obtains

(vH − b̄nI )SN−1
nI−1 = (vH − vL)SN−1

nI
≥ (vH − vL)SN−1

n−1 .

Proposition 3. With threshold commitment, bid restrictions are superfluous.

We used bid restrictions, which are standard in mechanism design, for expositional clarity;
this result proves that the specific choices of maximal threshold (T = T nI ) and maximal
minimum price (p = vL) makes bid restrictions unnecessary for achieving the optimal profit.
In practice, bid restrictions or suggested prices may help buyers coordinate.

4.2 No threshold commitment, no bid restrictions

We now consider NTC (no threshold commitment), defined as the case where the en-
trepreneur can neither restrict bids nor make production commitments; in particular, she
cannot commit against producing when the total sum of bids covers the fixed cost C and
will produce precisely when this happens.23

23This is distinct from having no threshold, or more precisely, a threshold forced to equal zero. There, the
entrepreneur always keeps the funds even when they do not reach the stated goal. Indiegogo is a prominent
example offers this format known as “keep-it-all” or flexible funding. This format obliges a credit-constrained
entrepreneur to break the production commitment in our fixed-cost setting, but it can make sense when
projects are scalable, in that a lower quality good could be produced at a lower cost; see Mollick (2014)
who emphasizes charitable projects and other not-for-profits, and Cumming et al. (2014)for a comparison of
“keep-it-all” and AON models in the context of scalable projects and risk averse funders and entrepreneurs.

18



The entrepreneur is strictly worse off. The optimal payoff under commitment requires
H-types to bid b̄nI (and L-types to bid vL) but this is no longer an equilibrium without
commitment. An H-type can shave his bid down to b̄nI − ε, knowing that the entrepreneur
still produces with nI or more H-types because nI b̄nI − ε+ (N − nI)vL = T nI − ε > C.

Non-commitment therefore strictly reduces profits. To quantify by how much, we impose
the local incentive compatibility of not shaving down from bH which requires equality in the
n-pivotality condition with T = C (from lack of threshold commitment): nbH +(N −n)bL =

C. Surprisingly, it is no longer optimal to extract maximal rents from L-types by using
p = vL to force bL = vL. Lowering p to p′ < vL, with L-types willingly bidding bL = p′,
raises the gap, T − NbL = C − NbL, that induces H-type’s to raise their bids. Lowering p
substitutes for the inability to raise T above C. So, denoting the corresponding high bid bH
and its excess over p′, by b′n and δ′n, local incentive compatibility and n-pivotality require
nb′n + (N − n)p′ = C, or equivalently,

δ′n = (C −Np′)/n (8)

which falls with p′. From (2), the entrepreneur’s profit for n ≥ 1 is now,

π′n = SNn (E[k|k ≥ n]− n) δ′n

For a given n, the entrepreneur chooses p′ to maximize δ′n, under the individual rationality
constraint of the L-type, p′ ≤ vL, and incentive compatibility of H-types not deviating to
bid p′,

δ′n ≤ hn(vH − p′) (IC′)

In this case, solving (8) and the binding (IC′) gives the optimal p′:

p′n =
C − nhnvH
N − nhn

(9)

which is readily seen to decrease with n. This n-type strategy is feasible only if p′n ≤ vL

which in turn is equivalent to C ≤ NvL + nhn(vH − vL) = T n. Of course, the entrepreneur
may prefer to switch to the inclusive strategy n = 0 with bH = p′0 = vL, yielding profit
π′0 = NvL − C. The entrepreneur’s optimal n from all these feasible inclusive strategies,
denoted n′I , trades off higher rent extraction against a lower probability of production. The
entrepreneur’s overall optimal strategy then compares the payoff from this optimal inclusive
strategy against the optimized exclusive payoff.

Proposition 4. Suppose that under full commitment, maximal profit equals πInI with 0 <
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nI < N . With unrestricted bids and no threshold commitment, the entrepreneur compares
the optimal profit from exclusion (πEnE) with that from inclusion (π′n′I ). Compared to full
commitment (threshold plus bid restrictions), profit is strictly lower and:
(a) if inclusion remains optimal, consumer surplus is strictly higher and total surplus and
the success rate also rise – n′I ≤ nI ≤ nE – strictly if n′I ≤ nI ;
(b) if exclusion becomes optimal, consumer surplus is strictly lower and total surplus and the
success rate also fall – strictly if nI < nE.

The subtle and technical part of the proof of this proposition lies in showing that the
entrepreneur’s optimal inclusion strategy has a lower minimal number of H-types: n′I ≤ nI .
The simplest intuition behind this result is that, unable to commit to a threshold above
her fixed cost, the entrepreneur’s new constraint implied by (8) encourages her to lower n.
Taking into account her optimal choice of the minimal price p complicates the argument,
but as p′n is decreasing, her incentive to reduce n does turn out to dominate.24

The reduced minimal number of H-types reveals that, in this case, the lack of threshold
commitment is good for total welfare, at least weakly. Since the entrepreneur cannot gain
from lost commitment power and in fact strictly loses, consumer surplus is strictly higher.
Indeed, even L-types now get a strict positive surplus because they pay less than vL. So
total and consumer welfare rise provided that inclusion remains optimal, which holds for low
values of q and C.25 If instead, q or C is relatively high, exclusion becomes optimal and
consumer surplus falls to zero.

The results are illustrated in Figure 4. The dotted black curves represent the loci
C = T 1 through C = T 4. These indicate which inclusive strategies are feasible without
threshold commitment. Note that type n = 4 is often feasible, but never optimal because
it is dominated by exclusion. Clearly, in the orange subregion below q = q̂ where exclusion
becomes optimal, consumer surplus falls to zero and profits also fall since πInI was strictly
preferred here. In the other regions below q = q̂, consumer surplus is strictly higher because
H-types pay strictly less, L-types pay weakly less, and the probability of production is weakly
higher.26

24A mild further complication is that there now exist multiple Pareto undominated equilibria with p < vL.
H-types prefer the equilibrium where L-types bid bL = vL (and n is minimized at a value weakly lower
than n′I) whereas the entrepreneur and the L-types prefer the equilibrium with n′I in which L-types bid p.
Standard mechanism design assumes that the entrepreneur selects her preferred equilibrium, but note that
even if the H-type’s preferred equilibrium is played, our key results are robust: n ≤ nI and NTC raises
welfare provided the entrepreneur does not switch to exclusion.

25Of course, inclusion never arises when exclusion was optimal with commitment because threshold com-
mitment has no impact on the optimal exclusion strategy.

26In fact, generically low type buyers pay strictly less when n′I ≥ 1: L-types pay vL only along the dotted
curve, C = Tn′

I
. In the green region marked πI

0 , all buyers pay vL so NTC does not benefit L-typed strictly.
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[Figure 4 about here.]

4.3 No threshold commitment, restricted bids

Finally, we consider the case where the entrepreneur cannot commit to not produce when the
pledged sum strictly exceeds the cost C, but is able to restrict the feasible bids. Allowing for
bid restrictions the entrepreneur need not worry about the local incentive constraint because
buyers cannot shave their bids downwards. The entrepreneur may therefore do better than
under no commitment at all. In fact, in some cases the entrepreneur can obtain the outcome
optimal under full commitment, even with no threshold commitment. When restricting bids
to B = {vL, b̄n}, it is still an equilibrium strategy for a H-type buyer to bid b̄n if and only if
C is a threshold in some mechanism implementing this outcome, that is, when

T n ≥ C > T n − δ̄n (10)

In particular, when (10) holds for n = nI , the entrepreneur can obtain the same maximal
payoff as under full commitment. In other cases, this is not possible because a H-type then
has an incentive to bid vL since such a unilateral deviation does not affect the probability
that the sum of bids is below cost. The entrepreneur then either chooses to exclude L-types,
or to use one of two alternative inclusive strategies.

The first alternative inclusive strategy is to implement the payoff πIn for some n 6= nI

where n satisfies (10). This implies n < nI .27 Clearly, in this case consumer and total surplus
are higher than under full commitment, because success rate is higher and H-types pay less.

The second alternative inclusive strategy is similar to the one considered in Section 4.2.
In an n-type equilibrium, L-types will pay some p′′ ≤ vL and H-types will pay some b′′n, but,
because of the bid restrictions, H-types cannot shave down their bids and no local incentive
compatibility constraint need be imposed. Instead, n-pivotality means, as always,

(n− 1)b′′n + (N − n+ 1)p′′ < T ≤ nb′′n + (N − n)p′′

but lack of threshold commitment implies that production must occur when the pledged sum
strictly exceeds C, so that

(n− 1)b′′n + (N − n+ 1)p′′ ≤ C (11)

These conditions are compatible by setting T slightly above C such that no N bids from
27For example, it will be optimal to implement payoff πI

n when n = nI − 1 satisfies (10) and where πI
nI

is
only slightly higher than πI

n.
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{0, p′′, b′′n} combine to an amount in (C, T ). For given n, the entrepreneur chooses p′′ so as
to maximize δ′′n = b′′n − p′′. Both (11) and the global incentive constraint δ′′n ≤ hn(vH − p′′)
must be binding, so that the optimal minimum price is given by

p′′n =
C − (n− 1)hnvH
N − (n− 1)hn

Feasibility of this n-type strategy requires p′′n ≤ vL which is equivalent to C ≤ T n− δ̄n. Note
that p′′n > p′n. This implies that the optimal inclusive strategy will now have n′′I ≥ n′I so
that total welfare can be reduced by allowing for bid restrictions when there is no threshold
commitment. On the other hand, because profits are higher when using bid restrictions,
there will be less exclusion in this case, so bid restrictions may also improve total welfare.
In comparison with the full commitment case, we have nI ≥ n′′I so that lack of threshold
commitment is again beneficial for total welfare as long as the entrepreneur does not exclude
L-types. Both types of buyers gain when p′′n < vL because H-types pay b′′n = hnvH + (1 −
hn)p′′n < b̄n.

In summary, bid restrictions are sometimes a powerful – and in some cases even perfect
– substitute for threshold commitment. They help the entrepreneur extract more consumer
surplus. This also generates additional total surplus when the project succeeds more often.
Of course, there are regions in the parameter space where the entrepreneur still opts for
exclusion. In this case consumer and producer surplus are strictly reduced by the lack of
threshold commitment, even when bid restrictions are feasible. However, these regions are
smaller than those when bid restrictions are not feasible.

Figure 5 illustrates these findings. Consider for example the region where nI = 3, that
is between the curves C2 and C3. For relatively high cost (above the dotted line indicating
C = T 3 − δ̄3) the entrepreneur can use the bid restrictions to obtain her optimal payoff,
despite the lack of threshold commitment. Below this line she cannot and must switch to an
alternative strategy. For relatively low cost (close to the curve C2) she switches to πI2 or π′′2
(depending on which one is feasible) or to π′′3 (if that is more profitable), increasing consumer
surplus. For high q she switches to exclusion, reducing consumer and total welfare.

[Figure 5 about here.]

5 Multiple types and general mechanisms

By restricting the baseline model to two types of buyer, we were able to fully characterize
the optimal crowdfunding mechanism, both with and without threshold commitment and
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bid restrictions. We now: (1) generalize to settings with more than two types (J > 2) and
(2) solve for the optimal general mechanism. The general mechanism removes crowdfund-
ing’s twin restrictions, that buyers know their prices (BKP) and aggregate funds determine
production. We first characterize this general optimum for a general number of types J .
With this benchmark, we verify that crowdfunding is in fact optimal within the general
class of mechanisms in our baseline setting, that is, for J = 2. We state necessary and
sufficient conditions for crowdfunding to achieve the general optimum. Example 1 illus-
trates how crowdfunding profits can be strictly lower. We also show: crowdfunding may
set a below-cost threshold, requiring a positive production commitment and entrepreneur
liquidity or alternative finance (example 2); bid restrictions can matter even with threshold
commitment (example 3); crowdfunding may set a higher price than the general optimum
and standard selling (example 4).

5.1 Notation

Each buyer’s valuation is now an independent draw from v = (v1, ..., vJ) with probabilities
q = (q1, ..., qJ) where

∑J
j=1 qj = 1, each qj ∈ (0, 1), and 0 ≤ v1 < . . . < vJ ; bold letters

denote 1 × J vectors. The demand state is now summarized by k where kj is the number
of buyers with valuation vj for each j = 1, ..., J . We also define: cumulative probabilities,
Qj =

∑
j′≤j qj′ ; the j’th unit vector, ej; for M = N − 1, N , ΩM = {k ∈ NJ : k · 1 = M}

where 1 = (1, ..., 1).28 The probability of a state k ∈ ΩM is given by:

fMk (q) =

(
M

k

) J∏
j

q
kj
j (12)

where
(
M
k

)
= M !/k1!...kJ !,

(
0

0,...,0

)
= 1 and

(
M
k

)
= 0 if any kj < 0 or > M . We suppress q where

not confusing and for non-trivial production, we assume: C < NvJ .

5.2 Optimal general mechanism

Our analysis uses virtual valuations, following techniques developed by Myerson (1981) and
applied by Cornelli (1996) to the case of a seller with a fixed cost. As our type space is
discrete instead of a continuum, type j’s virtual valuation is defined by,29

wj = vj − (vj+1 − vj)
1−Qj

qj
.

28States in ΩN represent realized demands; states in ΩN−1 are relevant for a buyer estimating how other
buyers behave. Both sets lie in NJ and ∀j, k ∈ ΩN−1 =⇒ k + ej ∈ ΩN .

29See Bergemann and Pesendorfer (2007) for details.
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We assume strict monotonicity: w = (w1, ..., wJ) has w1 < w2 < ... < wJ .30 Noting that
wJ = vJ > 0, we define j∗ = min{j : wj ≥ 0} and w+ replaces negative values in w by zero.

In the general optimal solution, types j < j∗ are excluded and pay nothing, higher types
get the good in states k in the production set, K∗ = {k ∈ ΩN : w+ · k ≥ C}. Maximal
expected transfers Tj from types j ≥ j∗ then follow recursively from incentive compatibility
and the equilibrium probabilities Pj with which a type j buyeranticipates getting the good.
Pj = 0 for all j < j∗. For j ≥ j∗, defining K∗−j = {k ∈ ΩN−1 : k + ej ∈ K∗}, the set of other
buyer demands for which production occurs if j plays the equilibrium,

Pj =
∑

k∈K∗−j

fN−1
k (q).

Without loss of generality, Pj is strictly increasing on j ≥ j∗.31 For all j < j∗, individual
rationality implies Tj = 0 as Pj = 0. For j ≥ j∗, Tj is given recursively by: Tj∗ = vj∗Pj∗

(individual rationality) and Tj+1 = Tj + (Pj+1 − Pj)vj+1 (incentive compatibility that j + 1

is just willing to not masquerade as type j).
These expected payoffs can always be implemented with buyers stating bids they pay

when production occurs. So, imposing the crowdfunding restriction BKP alone does not
preclude the general optimal outcome. An optimal indirect mechanism satisfying BKP has
buyers choose bids from the set {0, b∗j∗ , b∗j∗+1, . . . , b

∗
J} where b∗ is the unique bid strategy b:

bj = 0 for j < j∗ as Pj = 0; bj∗ = vj∗ ; bj = Tj/Pj for j > j∗. Defining Hj = 1 − Pj−1/Pj on
j > j∗, bj = bj−1(1 −Hj) + Hjvj > bj−1 as Pj’s monotonicity implies Hj > 0; higher types
pay strictly higher prices. The profile of N bids exactly reveals the demand state k ∈ ΩN

and the entrepreneur must produce if and only if k ∈ K∗, then providing the good to all
buyers with a strictly positive bid. But in crowdfunding, some threshold on aggregate funds
must determine production. This potentially loses relevant demand information. The next
subsection investigates whether crowdfunding precludes implementing K∗.

5.3 Optimal crowdfunding

In addition to BKP, crowdfunding requires the production set to satisfy a threshold rule
on aggregate funds. So it is possible to implement the general optimum if and only if
{k ∈ ΩN : b∗ · k ≥ T} = K∗ for some T ; any price in (0, bj∗) then allocates goods optimally,
given production. If any such T exists, T = mink∈K∗{b · k} is one such threshold. Together
with B = {bj∗ , . . . , bJ} and p = bj∗ , this defines a crowdfunding mechanism that achieves

30Ironing techniques readily deliver similar results for the general case.
31Virtual valuations are increasing, so k+ej ∈ K∗ ⇒ k+ej+1 ∈ K∗ so Pj+1 ≥ Pj ∀j ≥ j∗ and if Pj+1 = Pj ,

these types’ identical pivotalities imply that combining all j + 1’s into j’s gives identical outcomes.
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the general optimum. As we prove in the Appendix, this is always possible in our baseline
setting of J = 2:32

Proposition 5. Crowdfunding can achieve the general optimum when J = 2.

This result proves that two of Cornelli’s (1996) claims do not apply to the two-type case.
Namely, Cornelli (1996) states that the production rule must depend on the composition of
individual bids, not just the bid aggregate, and she states that the optimum must sometimes
commit to ex-post losses in certain states (the optimality of T ≥ C in Section 3.3 precludes
losses in optimal crowdfunding and hence in the general optimum for J = 2). However, her
claim does apply to our discrete type scenario on just raising J to 3.

Example 1: Crowdfunding cannot always achieve the general optimum

Let J = 3, N = 2, v = (0, 1, 2) and q = (1/4, 1/2, 1/4), with 1 < C < 2. Then w =

(−3, 1/2, 2) so the general optimum excludes type 1 and has production in states in K∗ =

{(0, 0, 2), (1, 0, 1), (0, 1, 1)}. Type-wise bids are b = (0, 1, 7/4) and the expected profit is (18−
7C)/16. Crowdfunding cannot implement this outcome because threshold T = mink∈K∗{b ·
k} = 7/4 just reached in state k = (1, 0, 1) also generates production success in state (0, 2, 0).
Figure 6 illustrates this.

[Figure 6 about here.]

Notice that the general optimum requires the entrepreneur to produce in state (1, 0, 1),
despite making a loss if C > 7/4 as she then earns only 7/4 from the single type 3 buyer.
The positive commitment to produce in this state allows her to extract a high rent in other
states in the production set K∗. This feature of incurring a loss in some states can also occur
with crowdfunding now that J > 2, as we show next.

Example 2: Crowdfunding may involve losses

Let J = 3, N = 2, v = (0, 7, 10) and q = (2/5, 2/5, 1/5), with 9.4 < C < 10. Then
w = (−10.5, 5.5, 10) so the general optimum excludes type 1’s and has production set
K∗ = {(0, 0, 2), (1, 0, 1), (0, 1, 1), (0, 2, 0)}. Type-wise bids are (0, 7, 9.4). The crowdfund-
ing mechanism with p = 7, T = 9.4 and B = {7, 9.4} is optimal since it can implement this.
Notice that it has the entrepreneur produce at a loss, b3 − C < 0, in state (1, 0, 1).

32We provide a constructive proof in the Appendix, but the intuition for why crowdfunding rules are not
restrictive when J = 2 is that aggregating bids then loses no relevant information: ΩN is then 1-dimensional,
so the production set K∗ is too, and can be represented by a threshold rule on aggregate funds b∗ · k, as
both are monotone increasing in k2 (general optimal exclusion is also monotone decreasing in j).
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Example 3: Crowdfunding may be more exclusive

Let J = 3, N = 2, v = (0, 1, 2) and q = (19/64, 26/64, 19/64), with C = 15/16. Then w =

(−45/19, 7/26, 2). K∗ is as in example 1 and again crowdfunding cannot achieve the general
optimum. To better extract rent from type 3 buyers under the crowdfunding restrictions, the
entrepreneur optimally excludes type 2’s, setting T = p = v3 and earning profit q2

3(2v3−C)+

2q3(1 − q3)(v3 − C). Under standard posted-prices, the entrepreneur would sell at v2 since
2(q2+q3)v2−C > 2q3v3−C. Indeed, a posted-price of v3 is unprofitable, unlike crowdfunding
with minimal price v3 which avoids producing when there are no type 3 buyers.

Example 4: Bid restrictions may matter for crowdfunding when J > 2

Let J = 3, N = 3, v = (2, 3, 14) and q = (0.5, 0.49, 0.01), with C = 6. Then w =

(1, 136/49, 14), so the general optimum sells to all types when production occurs, namely in
all states except (3, 0, 0) and (2, 1, 0). Type-wise bids are b = (2, 199/75, 549/100) and the
expected profit is 33/40. Crowdfunding with p = 2,B = {b1, b2, b3} and threshold T = b1+2b2

implements this outcome. Bid restrictions are necessary as type 3 buyers would prefer to
bid just below b3 = 5.49.33 Note that even with bids restricted to B, a type 3 buyer might
try to set up two bidding accounts to buy two units of the good at price b1 = 2. As the
other two buyers pay at least 2 each, this would guarantee reaching the threshold at lower
cost 2b1 < b3. Crowdfunding platforms must then try to prevent multiple pseudonyms.

6 Market size

The popular press and many crowdfunding platforms draw attention to projects, such as
PebbleWatch and Star Citizen, that attract contributions from huge numbers of funders.
Such projects starkly demonstrate how small contributions from many people can add up to
significant amounts, but they are far from representative, lying in a small upper tail of the
distribution for number of funders. The representative crowdfunding project is far smaller.
For Kickstarter projects, the average number of funders is 101.3 and this number falls to
56.2 on excluding the top one percent.34 So most projects are moderate-sized. Nonetheless,
we want to know which of our results are relevant for moderately large and large projects.

In our baseline model with independent individual demands, crowdfunding’s advantage
33The minimal type 3 probability, chosen to stay close to the baseline, limits the expected gain from bid

restriction, but losses can be substantial, for example, with q = (1/2, 3/8, 1/8), v = (2, 3, 8) and C = 21/6.
34To be precise, this excludes projects with over a thousand funders, constituting 1.3 percent of projects.

We use the Kickstarter data from 2005-2014 that U.C. Berkeley’s Fung Institute made publicly available at
http://rosencrantz.berkeley.edu/crowdfunding/index.php.
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over standard finance disappears in the limit, because aggregate uncertainty becomes in-
significant relative to expected demand. Entrepreneurs with mass-interest projects of this
type would self-select into standard finance to avoid the fees, plus usual transactions costs,
of using crowdfunding platforms. However, as illustrated in the introduction, we find that
crowdfunding is important for projects that expect to interest moderately large crowds,
especially if their net expected profits from standard finance are low or negative.

We also show that when the crowd is composed of a small number of large groups of buyers
with intra-group correlated valuations (but valuations that are independent across groups),
aggregate uncertainty remains and crowdfunding can adapt to it, even though rent-extraction
is then no longer helpful. In fact, this latter point can be sustained in a very general model
of buyer demand; by contrast, our baseline model assumes only two types and Belleflamme
et al. (2014), Sahm (2015), and Kumar et al. (2015) assume uniform distributions. Moreover,
we show that even rent-extraction is feasible with large groups when group members have a
group-ethic. We borrow this notion from models successfully used to explain turnout data
in large elections. It has some relevance for groups of fans with a strong group identity, but
the adaptation result has much more general relevance.

6.1 A large crowd with independent valuations

When the number of buyers is very large, there is little aggregate demand uncertainty and
the advantage of crowdfunding over standard finance by avoiding fixed costs in particularly
bad states of demand or producing in particularly high states of demand is limited because
those are very unlikely events. Furthermore, the probability of being pivotal is very small and
while the rent-extracting advantage of crowdfunding over standard finance depends instead
on hn thanks to the refund property, this also converges to zero, albeit slowly. Proposition
6 makes this precise.

Proposition 6. The advantage of crowdfunding over standard finance, πCF−πSF , converges
exponentially to zero as N →∞.

Although the advantage of crowdfunding over standard finance disappears in the limit,
it is always strictly positive. This would suggest that all products with fixed cost of pro-
duction should be marketed through crowdfunding. Of course, this is not the case because
crowdfunding campaigns have costs and disadvantages we have ignored sofar. Most impor-
tantly, platforms usually charge a fee to entrepreneurs and buyers. For example, Kickstarter
pockets 5 per cent of revenues of successful projects and buyers pay a commission for pay-
ing with credit cards. Pitching and maintaining a campaign is also time-consuming for the
entrepreneur as she has to keep updating to inform backers on project progress. Hence, one
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should expect some selection bias under entrepreneurs who do choose to use crowdfunding.
First of all, entrepreneurs with tight credit constraints and no easy access to external funding
must choose crowdfunding as they lack an alternative. Similarly, projects with negative net
expected profits under standard finance only have a chance to see the light when it is possible
to produce by adapting to demand. Similarly, entrepreneurs will choose crowdfunding for
projects that are viable under standard finance but only deliver moderate expected profits.
This all suggests a bias towards projects with relatively high fixed costs.

To be more specific, let us now consider the case of a moderately large crowd. For
large N the number of buyers with high value is approximately distributed according a
normal distribution with mean µ = qN and standard deviation σ =

√
Nq(1− q). Projects

with relatively high fixed cost require a number of high types, nE or nI , above the mean.
Those projects are not viable under standard finance so crowdfunding is the only alternative.
Projects with small negative expected profits under standard finance require a number of
high buyers above but close to the mean, and thus have a chance of almost 50 per cent
chance of success. If the required number is less than two standard deviations above the
mean, there is at least a 2.5 per cent chance that the project will succeed. Projects with
huge costs that require, four standard deviations above the mean have such a small chance
of succeeding (about 0.05 per cent) that it is not worthwhile for the entrepreneur to do the
effort of pitching her project. The platform may also not like to flood her site with many
projects that will almost surely fail and may set an upper bound on the threshold.

On the other hand, projects with relatively low cost require a number of high types below
the mean, and are thus viable under standard finance as well. Entrepreneurs may choose
crowdfunding for these projects in order to adapt to demand (when q > q̂) and to extract
more rents (when q < q̂). The gain from doing so is small for projects where the required
number of high types is far below the mean. In the case of exclusion and low cost so that
the required fraction of high types is two standard deviations below the mean, crowdfunding
only brings a small expected benefit: it avoids investing the low fixed cost in the 2.5 per
cent chance event that demand is insufficient. In the case of inclusion, crowdfunding comes
with the risk of failure in order to try to extract rents from relatively few high types. For
example, a project that requires the fraction of high types to be one standard deviation from
the mean, has a chance of failing of 16 per cent.

6.2 A large crowd with correlated valuations

We now consider the possibility that the crowd consists of N large groups with m members
each. Let the valuation of each member of a group be drawn from some distribution G on
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R+. We assume that there is perfect intra-group correlation but independence across groups.
Rent-extraction through crowdfunding is difficult when m is large, as seen previously.35 For
simplicity we now abstract away from this possibility and focus exclusively on adaptation to
demand. The entrepreneur can now only set a minimal price p and must set T = C. When
valuations across groups are independent, aggregate uncertainty remains. Crowdfunding can
still adapt to demand and yield substantial private and social benefits compared to standard
finance. This is most easily verified in the case where the valuations are taken again from
a two point distribution, as in our baseline model. The entrepreneur can then either set
the inclusive price p = vL yielding NmvL − C, or the exclusive price p = vH , yielding πE.
Whenever exclusion is optimal, conditional production yields substantial gains over standard
finance.

Because the entrepreneur now has only one strategic instrument, the minimal price p,
we can characterize the optimal price for any (well-behaved) distribution from which the
valuations for each group are drawn. This does not go only far beyond our baseline model,
but also beyond the ones employing a uniform distribution. When the entrepreneur sets
minimum price equal to p, the demand will be equal to k ·m with probability fNk (q) where
q = 1−G(p). The profit for the entrepreneur is then

π(p) =
N∑

k=n(p)

fNk (kmp− C)

where n(p) = dC/(mp)e. In a region where n(p) ≡ n, the optimal minimum price must
satisfy the first-order condition, which can be written as

0 = q + pq′ + hnq
′((n− 1)p− cN

)
where c = C/Nm denotes the per capita cost. It follows that, in this region, the minimal
price strictly increases in cost, in contrast to the case of standard finance with a posted-price
that is independent of cost. Under standard finance, the entrepreneur would set the price
pPP = arg max pq(p) as long as this yields a positive expected profit, and would not produce
otherwise. The minimal price in crowdfunding is strictly higher than the posted-price for
any c > 0. As c increases, the entrepreneur finds it optimal to increase n at some cutoff,
at which point the minimal price jumps down, to compensate for the reduced probability of
success.

35Cremer and McLean (1988) show that with correlated valuations the optimal mechanism is able to
extract full surplus, but this is not possible using a mechanism with the attractive features of crowdfunding
where buyers know what they pay and never suffer a loss.
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Proposition 7. For N groups of buyers, each with m members sharing a common valuation
that is drawn, independently for each group, from G(·) on R+, the entrepreneur is effectively
restricted to use single price crowdfunding mechanism as m gets large. She then uses T = C,
optimally adapting production to demand, given her price. Her price strictly exceeds the opti-
mal posted-price, but total welfare and profits are strictly higher than under standard finance.
This price rises with cost except for discrete downward jumps, despite which, production is
always decreasing in cost.

Notice, as a corollary, that the results of Proposition 7 hold for any m, including the
baseline model where m = 1, if the entrepreneur chooses to only allow a single price in her
crowdfunding mechanism. This might be relevant for moderately large N if buyers greatly
value simplicity or approximate small pivotality probabilities by zero; note however that
people also appear to over-estimate pivotality probabilities.

This group-preference model demonstrates that crowdfunding can generate important
adaptation benefits for projects of arbitrarily large scope: that is, for goods that are attractive
to any size of market. The point is even more general: so long as aggregate uncertainty is
significant, crowdfunding has a valuable role to play in market-screening to adapt production
to demand. We offer another instance of this general point in Section 7 where projects differ
in their likely attractiveness, q. But before leaving the group-preference model, two remarks
are in order.

First, note that the perfect intra-group correlation assumed here is purely to simplify the
algebra. The insights would continue to hold if member types were noisy variations on a
group prototype. Second, rent-extraction may be significant in this group model even with
large m if group members identify so strongly with their group’s interest as to remove intra-
group free-riding on the cost of bidding to trigger production. Indeed, the formalization of
this group-based model by Coate and Conlin (2004) for tackling costly turnout in elections
re-generates exactly our baseline model.36

7 Ex-post market

Many buyers are completely unaware of potentially attractive projects until crowdfunded.
Entrepreneurs naturally want to sell to such buyers after running the crowdfunding mecha-
nism. We call this the “ex-post” or after-market. Even when all potential buyers are present
“ex-ante,” as crowdfunding participants, the entrepreneur, as monopoly seller of a durable

36Coate and Conlin (2004) builds on Feddersen and Sandroni (2006); see Feddersen (2004) for a survey,
including related models with group leaders and experimental support (e.g., Schram and Sonnemans, 1996).
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good, may be tempted to sell ex-post at a lower price.37 Extending the model to include
ex-post sales offers several new insights.

First, without price commitment, the entrepreneur may switch to more inclusive crowd-
funding; multiple prices during funding substitute for a falling minimum price; exclusive
crowdfunding becomes less effective both for rent-extraction and market-screening.38 Sec-
ond, new buyers arriving ex-post can motivate an entrepreneur to produce even when ex-ante
sales revenues fail to cover her fixed cost. So crowdfunding, even with advance payments,
may complement standard finance. Third, the demand signals from crowdfunding can inform
the entrepreneur’s subsequent pricing strategy. We establish a pricing dynamic beyond the
well-known decreasing price of a durable good monopolist: the entrepreneur actually has an
incentive to raise her price ex-post whenever crowdfunding reveals sufficiently high demand.
Crowdfunding now serves to adapt price, as well as production, to demand.

Two selling periods. We extend the model to two selling periods.39 There are N1

crowdfunding participants or “funders” who can fund by buying in period one, ex-ante, and
N2 “new buyers” who can only buy in period two, ex-post. Note that the labels refer to
ability, not choice: funders can buy in period two or not buy instead of funding. Neither
funders nor new buyers ever buy more than one unit of the product as it is durable.40

7.1 Baseline with ex-post sales

The baseline model revisited. The baseline model set N2 = 0 and admitted no ex-post
selling. Nothing can be gained by opening an ex-post market when all potential buyers
are present ex-ante, have the same time-discount rate, and can choose from multiple prices.
Nonetheless, before turning to non-commitment, it is instructive to study the hypothetical
scenario where crowdfunding must set a unique price, as other studies implicitly assume.

Recall that, for q < q̂, our baseline inclusive solution featured two crowdfunding prices,
b̄nI and vL, paid ex-ante by H and L type funders. The entrepreneur can generate the same

37The baseline model implicitly assumed there is no after-market. This is justified when the entrepreneur’s
reputation lets her commit against price reduction or the good is non-durable (as when fans care to “hear it
first”), or if she already preferred an inclusive crowdfunding strategy (see below).

38Also, thanks to multiple ex-ante prices, assumed away in Sahm (2015) and Kumar et al. (2015), we prove
that the entrepreneur always prefers to commit against ex-post sales if able to reach all buyers ex-ante.

39Additional periods further pressure towards inclusive crowdfunding.
40We also make two standard assumptions: (1) the entrepreneur lacks the information or legal right to

price-discriminate ex-post between funders who did not yet buy and new buyers; (2) the entrepreneur cannot
sell to funders if the project fails. (2) rules out renegotiation. Even under NTC where the entrepreneur can
effectively lower her threshold to ensure success, she cannot explicitly break or cancel her crowdfunding
contract and still access funders to offer a new sales contract. Renegotiation with funders complicates rent-
extraction. It would also allow entrepreneurs to evade paying the platform its share of sales revenues. So
platforms have a strong enforcement incentive.
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payoff outcome with the unique crowdfunding price p1 = b̄nI if she adjusts to threshold
T = nIp1, and sells ex-post at p2 = vL when her project succeeds. But imposing a single
crowdfunding price is, in general, distortionary. First, J > 2 buyer types may require more
than two prices. Second, the entrepreneur cannot use ex-post sales revenues to L-types
to fund her fixed cost. So, if alternative credit is restricted and C > nI b̄nI , the optimum
needs multi-price crowdfunding. Moreover, even without credit constraints, ex-post sales
may inefficiently delay consumption.

Price commitment problems in the baseline. Ex-post selling might occur anyway
when the entrepreneur is unable to commit against lowering her price ex-post. Sahm (2015)
and Kumar et al. (2015) model this no-price-commitment scenario; we denote it NPC to
distinguish from no-threshold-commitment, NTC.41 The inclusive solution is unaffected by
ex-post sales as funders were already buying at p = vL ex-ante, but NPC does bind when
q > q̂. We now study q > q̂ with threshold commitment under NPC.

In a baseline exclusive equilibrium, only L-types remain with a demand ex-post, so
the entrepreneur would want to set p2 = vL after selling to the k < N ex-ante H-type
funders. But anticipating this price cut, H-types would delay to buy ex-post. This forces
the entrepreneur to switch to an inclusive strategy or accept a mixed strategy equilibrium
in which H-types only buy ex-ante with a probability r < 1, low enough to make p2 = vH

credible.
In the mixed strategy solution, each funder is: a H-type who funds, with probability qr;

a H-type who buys ex-post, with probability q(1−r); a L-type, who buys ex-post if p2 = vL,
with probability 1 − q. Conditional on not buying ex-ante, a given funder is H-type with
probability q(1−r)

1−qr ; this rises with q, falls with r and is independent of the number of funders
the entrepreneur observes buying ex-ante, denoted k′ to distinguish from the actual number
of H-type funders, k. So ex-post, exclusion remains credible for any r ≤ r̂ = 1−q̂/q

1−q̂ ∈ (0, 1)

if she sets p2 = vH when indifferent ex-post. The entrepreneur prefers r as close to r̂ as
possible, so she induces r = r̂. She thereby maintains full exclusion, but at a cost: she
can only adapt production to the noisy signal k′ of the true number k of high types.42 The
distorted adaptation reduces both welfare and profits under exclusion. On the other hand,
when NPC lowers exclusion profits by enough, as when q just exceeds q̂, the entrepreneur
switches to inclusion so that the price commitment problem can instead raise total welfare.

41NPC and NTC imply an effective threshold of T = C in Sahm (2015), but combining crowdfunding with
external finance or personal wealth, this would be C minus expected ex-post revenues or T = C− (N −k)vL.

42The optimal exclusive solution has a crowdfunding minimal price, p1 = vH and a minimal number of
ex-ante buyers nNPC

E = d C
vH

1−q̂(N1vH/C)
1−q̂ e, below nE = d C

vH
e of the baseline because of anticipated ex-post

sales to H-types funders who delay. The noise and inefficiency is decreasing in r̂ and non-trivial since r̂ < 1.
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7.2 New buyers

Price dynamics with new buyers. As is now well-understood from the literature on
Coasian pricing dynamics, the arrival of new buyers facilitates price commitment. Indeed,
in the relevant case, q > q̂ of our model, the entrepreneur needs no reputational power to
commit to p2 = vH if enough new buyers arrive ex-post; that is, when N2 is large enough.
More interestingly, we now show how crowdfunding can also help the entrepreneur choose
her price. That is, we reveal a market testing role for adapting price, as well as production,
to demand, even under no price commitment, NPC.43

Case I. New buyers are independent of, and identically distributed to, the funders.
We first consider q > q̂ and the entrepreneur seeking an exclusive solution with p1 = vH

and H-types buying ex-ante with probability r. If k′ funders buy ex-ante, then N1 +N2− k′

buyers have a demand ex-post and an expected fraction q
(

(N1−k′)(1−r)/(1−qr)+N2

N1−k′+N2

)
of these are

H-type. If the ex-post market is relatively large, N2/N1 ≥ q̂/(q−q̂), then p1 = p2 = vH is feasible
even after k′ = 0 with r = 1. Exclusion is then optimal as well as credible.

Complementarity with standard finance. The price dynamic here is trivial but
this scenario offers a simple demonstration of how crowdfunding can complement standard
finance, because the maximal optimal threshold is T = C − N2qvH < C. All funders buy
ex-ante so k′ = k but additional finance is strictly valued to help cover the fixed cost in states
d C
vH
− N2qe < k < d C

vH
e. Moreover, this can arise for (N1 + N2)vHq < C, where standard

selling implies non-production, so crowdfunding raises the demand for standard finance. We
state this formally as a simple case of strict complementarity.44

Proposition 8. Crowdfunding strictly complements standard finance when N2 > 0 and C
is relatively large, e.g., when q > q̂, N2/N1 ≥ q̂/q−q̂ and C/(qvH) ∈ (N1 +N2,N1/q +N2).

An endogenous crowdfunding-contingent price. When instead the ex-post market
is relatively small, N2/N1 < q̂/(q−q̂), if all H-types still buy in advance, r = 1, and L-types
are still initially excluded, then the ex-post price depends non-trivially on k′ or equivalently
the funds raised in crowdfunding. Using nH to denote the cut-off value of k′ at which p2

switches from vL to vH , we have nH = dN1− q−q̂
q̂
N2e, which exceeds 0 here. The entrepreneur

must now reduce her ex-ante minimum price to p1 given by a H-type incentive compatibility
condition,

(vH − p1)SN1−1
nE(N2)−1 = (vH − vL)(SN1−1

nE(N2) − S
N1−1
nH

)

43We focus on NPC, since the interesting results with price commitment are qualitatively similar, com-
mitting either to a lower bound on the ex-post price or a price contingent on total funds raised during
crowdfunding.

44We discuss debt and equity -based crowdfunding below. As Footnote 42 makes clear, the entrepreneur
may also strictly value additional finance when N2 is low and a mixed strategy solution is optimal.
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where we make the dependence of nE on N2 explicit simply to distinguish from its definition
in the baseline model; nH depends on N1 and N2. This represents the binding incentive
compatibility constraint on H-types: paying p1 raises project success and buying cheap
ex-post is not always an option.45

This price dynamic reflects how a greater number of funders not buying in period 1 signals
a higher fraction of low types among the pool of possible ex-post buyers. Setting a high price
ex-post is more attractive, the more funds the entrepreneur collects during crowdfunding.
We now study a similar, but economically more important pricing dynamic (one that is
significant even when N2 � N1) by allowing for correlation between the demands of funders
and new buyers. In this extension, buyer valuations are correlated through their common
dependence on the state of the project.46

Case II. Again all buyers, both funders and new buyers, have independent and identically
distributed valuations, but now q depends on whether the entrepreneur’s project is good G
or bad B: 0 < qB < qG < 1. The good and bad states of the project have equal probability
and are not observed by entrepreneur or buyers, but each buyer observes his valuation on
inspecting the project (ex-ante for funders, ex-post for new buyers).

Adaptation. Before moving on to pricing, notice how crowdfunding is again valuable
for arbitrarily large markets for adapting to demand. If max{qBvH , vL} < C/N2 < qGvH and
N1 � N2, the entrepreneur would like to produce in the good state and not the bad state.
By setting a crowdfunding mechanism with p = vH and threshold T = nvH , if p2 = vH is
credible, then all H-types buy ex-ante and the entrepreneur produces whenever k ≥ n. Now
the number k of H-types signals a posterior probability that the project is good, given by

ηG(k) =
1/2fN1

k (qG)
1/2fN1

k (qG) + 1/2fN1
k (qB)

=
fN1
k (qG)

fN1
k (qG) + fN1

k (qB)
(13)

which is always increasing in k. Picking the least k for which this posterior exceeds (C −
kvH)/(N2vH) gives the optimal crowdfunding solution. Crowdfunding is valuable for adapt-
ing production no matter how large is N1. Indeed, a higher N1 raises the accuracy of
crowdfunding as a signal of the project’s type, allowing better adaptation.

Under the plausible assumption that buyers find it harder to inspect a crowdfunding
project’s good ex-ante than to learn its value once the good has been produced and put
up for sale ex-post, entrepreneurs may have to attract crowdfunders by offering a discount.
Extending the model to capture this point would allow one to endogenize the relative sizes

45The entrepreneur potentially prefers to have H-types set r < 1 so that she can credibly commit to a
lower nH , but for a range of parameter values, this is an optimal solution.

46Technically, buyer valuations are still private (other buyer’s signals have no impact on a given buyer’s
expected value given his signal), but their signals are affiliated.
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of N1 and N2. We expect the following tradeoff: lowering the minimal price in crowdfund-
ing may reduce average revenues per funder but attract more inspection and permit more
accurate market-screening or adaptation.47

To illustrate how crowdfunding can affect price dynamics when there is an after-market,
we now suppose qB < (qB + qG)/2 < q̂ < qG and a cost so small that, with ex-post sales at
a fixed price, the entrepreneur cannot do better than sell to all buyers at vL, as in standard
finance, and obtain a profit of (N1 + N2)vL − C. There is no role for demand adaptation,
because the entrepreneur wants to produce for sure and costs are so low that rent-extraction
is undesirable. But crowdfunding can be used as a means of market testing and learning how
to price when many buyers are present ex-ante and ex-post. For example, the entrepreneur
can offer prices vL and bH > vL, and make production contingent on at least one high type
buyer, thereby learning the number of high types.

To satisfy the IC of the high type, bH ≤ b̄1 = h1vh+(1−h1)vL. When N1 is large, h1 and
rent-extraction are minimal while production occurs with probability close to one. What the
entrepreneur gains, however, is the signal provided by the pledged sum. For large N1 this
signal is very accurate and she will learn whether her project is G or B and set her ex-post
price optimally. Her overall expected profit is approximately N1vL+ 1

2
N2(vL+vH)−C, much

larger than (N1 +N2)vL − C when N2 is large.
Interestingly, the adaptation of price in this example may actually lead to a higher price

ex-post for instance, PicoBrew Zymathic’s automatic beer brewing appliance sold at 1599
dollars or less during crowdfunding on Kickstarter and then sold ex-post for 1999 dollars.

In general, the optimal crowdfunding design must carefully trade off demand adaptation,
rent-extraction and market-testing. Characterizing the optimal design is beyond the scope
of the present paper.

8 Extensions

In this section we discuss two extensions of our baseline model. First, we show that crowd-
funding is useful for entrepreneurs who do not seek to maximize profits, but instead, are
interested in maximizing success, audience or welfare under various liquidity constraints.
We also show that our baseline model readily applies to the case where backers do not con-
sider themselves as mere buyers but receive warm-glow from participating in crowdfunding
project. Second, we argue that our qualitative insights about demand-adaptation and rent-
extraction are robust to having buyers bid sequentially rather than simultaneously, although

47Platforms play an important role in this strategic interaction because pre-inspection uncertainty intro-
duces additional commitment difficulties, placing funders at risk of entrepreneurial hold-up.
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rent-extraction is reduced. We also show that when buyers can choose when to bid, they
would all bid in the same period, justifying our assumption of simultaneous bidding.

8.1 Alternative objectives

So far, we analyzed how crowdfunding works when entrepreneurs are profit-maximizers and
buyers are purely self-interested. We now explain how crowdfunding is helpful when en-
trepreneurs or buyers have other motives.

We start with buyers. Suppose they consider their primary role to be active participants,
supporters, vital contributors, into a creative process rather than mere buyers. Do our key
effects of adaptation and extraction apply when buyers are thus motivated? It turns out
that the answer is an emphatic “yes.” We describe a quick if highly specialized case in point,
that works well even when the good is fully public, being non-excludable as well as non-rival.

Suppose buyers value the project at vH or vL, but only if they contribute to the project
with a bid of at least the minimum. So buyers value participating in the project. They may
no longer receive a physical consumption good, as when the project is to deliver charitable
goods to distant, third-party beneficiaries. Or the project may produce a good like news
or music that will be subsequently distributed freely to everyone. In the charity example,
buyers are donors who get a warm-glow from giving. In the news or music example, one can
view the private value from contributing as a “community benefit” (Belleflamme et al., 2014).
Donors and contributors may also be motivated by receiving recognition, as in film credits
or donor list publications. With these assumptions, our model, despite having excludability,
applies exactly, because contribution to a successful project becomes the private “good” that
can be produced and is excludable even if the project’s basic good is entirely public.

We now show how entrepreneurs with non-profit motivations can also gain from crowd-
funding. We consider three new cases: success, audience and welfare maximizers.48 Without
a new constraint, the first pair make production always optimal. We treat two canonical con-
straints: ex-post budget balance (BB) requires that funds raised always cover costs C (i.e.,
no loss in any state k); non-negative (expected) profit (NNP) requires that the entrepreneur
breaks even on average. BB is appropriate when the entrepreneur, such as an artist, has
no access to credit and no personal wealth, but also when she is unable or unwilling to risk
suffering a loss in any demand state. NNP, sometimes called ex-ante budget balance, is
appropriate when the entrepreneur can access credit subject to breaking even on average.
NNP and welfare-maximization can capture an ideal not-for-profit, but publicity motivations
make audience or success maximization plausible too. Relatedly, success-maximization with

48Hansmann (1981) argues that not-for-profit organizations in the performing arts may seek to maximize
audience or quality. Arguably, quality can be interpreted as success probability in our context.
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BB can capture an unproven entrepreneur who aims to maximize long-run profits but must
break even with her project as vital stepping stone to an entrepreneurial career.

We treat the baseline case with full commitment and J = 2. So neither constraint BB nor
NNP affects outcomes under profit-maximization. That is, the new constraints do not make
profit-maximization infeasible. In fact, for a given n, the entrepreneur will set prices so as
to maximize profits, as it relaxes the additional constraints. But in determining the optimal
n-type strategy, the entrepreneur will be guided by her not-for-profit motives. To study BB,
we assume C > NvL else the entrepreneur can guarantee maximum success, audience and
total welfare, by setting p = vL and T = C. For NNP, we assume C > max{NvL, qNvH}
else a posted-price can guarantee maximum success and audience.

8.1.1 Balanced Budget (BB)

If the entrepreneur cannot make a loss in any demand state k, then she can only produce
if raised funds cover her fixed costs C. Fixing whether a strategy is inclusive or exclusive,
it is then optimal to set p to maximize profit to relax her credit constraint and minimize n
subject to maintaining T ≥ C. This clearly maximizes success and expected audience, but
also expected welfare: the budget balance constraint implies non-negative profit, ensuring
that production is welfare optimal in all demand states with T ≥ C. So n = nE is optimal
among exclusive strategies and n = nBBI = min{n : C ≤ T n} gives the optimal inclusive
strategy.

Success maximization. Success-maximizers only care about minimizing n. This makes
them more inclusive than profit-maximizers: they certainly select inclusion for any q ≤ q̂,
since then nBBI ≤ nI ≤ nE. If both latter inequalities are weak, inclusion is favored as it
produces more goods. When either is strict, the overall optimal strategy is also inclusive
for a range of q strictly above q̂. Exclusion may remain optimal for sufficiently high q. In
sum, we predict more inclusion when the entrepreneur seeks to maximize success under a
balanced-budget constraint.

Audience and welfare maximization. For a given success rate, audience maximizers
always strictly prefer inclusion of L-types into their audience, and welfare maximizers do
so too once cost C is sunk. So, in either case, inclusion becomes yet more likely and is
certainly optimal if nBBI ≤ nE.49 The two cases can differ on the inclusion/exclusion choice
for nBBI > nE: (a) pure audience-maximizers gain more from inclusion as they value L-
types as much as H-types, unlike welfare-maximizers who value H-type consumption more;

49Of course, inclusion is always optimal for the unconstrained welfare-maximizer; see Section 3.4 where
we derived n∗, readily seen to be lower than both nBB

I and nE .
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(b) welfare-maximizers care about the expected cost of production which is higher under
exclusion given nBBI > nE. We can express expected audience and welfare, respectively, as
qNSN−1

nE−1 and πE under exclusivity, and as NSN
nBBI

and SN
nBBI

(
NvL − C + E[k|k ≥ nBBI ]vH

)
under inclusivity. From this, we characterize when these qualitative differences are strict:

Proposition 9. All three alternative objectives raise inclusivity compared to the profit-
maximizing baseline where inclusion was optimal on q ≤ q̂. The inclusion region expands to
nBBI ≤ nE for success-maximizers and further expands to include parameters with nBBI < nE

and, respectively, qSN−1
nE−1 < SN

nBBI
for audience maximizers and qSN−1

nE−1−q̂SNnNNPI
−qSN−1

nNNPI −1
≤

c(SNnE − S
N
nNNPI

) for welfare maximizers.

In addition, for all three objectives, success rates rise if q ≤ q̂, strictly so if nBBI < nE.
In our introductory example with N = 500, q = 1/5, vL = 5, vH = 20 and C = 2650,
nBB = nBBI = 103, yielding a success rate of 38.6% . This more than doubles the 17%
rate under profit-maximization. What about welfare? All three objectives also raise welfare,
perhaps weakly, except possibly in a special case that has to have audience-maximizers select
inclusion and welfare-maximizers prefer exclusion.

8.1.2 Non-negative profit (NNP)

NNP is a weaker constraint than BB. So entrepreneurs advance their objectives more ef-
fectively. The qualitative implications are similar, but there is one important twist in
the analysis compared to that for BB: welfare-maximizers no longer minimize n among
exclusion strategies, nor potentially among inclusion strategies. We again compute the
minimal feasible values for n. For exclusion, this can now be less than nE, so we de-
note it nNNPE , nNNPE = min{n : C ≤ E[k|k ≥ n]vH}. For inclusion, the value is now
nNNPI = min{n : C ≤ NvL + E[k|k ≥ n](vH − vL)}. Observe that given the more relaxed
constraint, nNNPI ≤ nBBI and nNNPE ≤ nBBE .

Success and audience maximization. Success-maximizers only care about minimiz-
ing n which makes them again more inclusive than profit-maximizers: they certainly select
inclusion for any q ≤ q̂, since then nNNPI ≤ nNPPE . If the inequality is weak, inclusion is
favored as it produces more goods. When the inequality is strict, the overall optimal strategy
is also inclusive for a range of q strictly above q̂. Exclusion may remain optimal for suffi-
ciently high q. In sum, we predict more inclusion when the entrepreneur seeks to maximize
success under a non-negative profit constraint.

Audience-maximizers choose inclusion whenever qNSN
nNNPE

< NSN
nNNPI

. Clearly, audience-
maximizers choose inclusion more often than success-maximizers do.
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Welfare maximization. A welfare-maximizer can obtain the first-best in the (rare)
event when πIn∗ ≥ 0. If πIn∗ < 0, she chooses inclusion of type nNNPI > n∗ whenever
SN
nNNPI

(NvL − C + qNvH
1−(1−q)h

nNNP
I

) ≥ SNnE(−C + qNvH
1−(1−q)hnE

). Note that the welfare-maximizer

prefers exclusive strategy of type nE over the one of type n̂E. Hence, if she optimally chooses
exclusion under NNP, then she would also under BB and the more relaxed constraint does not
help. Also, she may choose exclusion when success- or audience-maximizers choose inclusion.
However, if inclusion is optimal under BB, then it is also optimal under NNP.

8.2 Sequential bidding

Our baseline model assumes that buyers bid simultaneously. In practice, crowdfunding
campaigns last for several weeks and buyers receive information about the sum of money
pledged so far. Kuppuswamy and Bayus (2015) show that most pledges occur at the start
and near the end of a campaign. Agrawal et al. (2015) find that family and friends of
the entrepreneur are among the first to contribute, possibly providing a signal of quality
to other potential backers. Potters et al. (2007), using experimental methods, show that
in a setting with informed and uninformed contributors to a public good, (endogenous)
sequential provision is better because of social learning. In our model, valuations are private
and independent, so the role of learning is limited but timing may affect pivotality. Varian
(1994) shows that in a complete information setting of voluntary donations to a public good,
bidding reduces the amount of the public good provided in comparison with simultaneous
bidding, as it exacerbates free-riding. Bag and Roy (2011) characterize when sequential
bidding increases voluntary donations in a private information setting. Romano and Yildirim
(2001) show that sequentiality can be better in a warm-glow setting.50

In this section, we analyze how and when sequentiality matters in our setting with private
information and a discrete excludable public good. We show that adaptation and rent-
extraction remain valuable instruments of crowdfunding. Rent-extraction is reduced because
late-movers will not pay more than the minimal price once the threshold is reached. We also
argue that our simultaneous bidding assumption is justified when buyers decide when to
pledge. This is relevant in practice because buyers can easily delay bidding or cancel pledges
before the deadline and threshold are reached.51

Suppose buyers bid sequentially rather than simultaneously. In particular, assume that
buyers enter sequentially and observe the total amount pledged up to the point in time they
are required to decide, and that buyers know their place in the queue (that is, they know

50Note that in their setting strategies are strategic complements while in ours they are strategic substitutes.
51Kickstarter facilitates both options, for instance, by offering automated deadline reminders.
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how many buyers come after them).
The exclusive outcomes are not affected by sequential bidding. When the minimum price

is set at p > vL and the threshold equals C, all H-type buyers bidding p, independent of their
place in the queue and the amount pledged sofar, constitutes a subgame perfect equilibrium.
Hence, the entrepreneur will set p = vH in this case.

It is also clear that the π̄0 outcome is not affected by sequential bidding. With the
minimal price set at vL and the threshold at C ≤ NvL, all buyers will bid the minimal
price, independent of the place in the queue. However, in general the inclusive outcomes
where L and H-types pay different prices, are affected by sequential bidding. Late moving
H-type buyers will not bid the high price when the threshold is already reached (or when the
threshold will for sure be reached given that all buyers after him bid at least vL). Moreover,
early moving H-type buyers may bid low and free-ride on late movers. Hence, the H-type
buyers have different incentives under sequential bidding, and the entrepreneur must change
the mechanism to take these altered incentives into account.

To illustrate these issues let us analyze the case of N = 2 in detail. We assume the
entrepreneur has threshold commitment and sets a minimum price p.52 We already argued
that the optimal exclusive outcome under simultaneous bidding can be replicated under
sequential bidding by setting the minimal price equal to p = vH . In case of inclusion the
minimal price will be p = vL. We now analyze how the bidding will proceed for different
threshold values.

We restrict attention to T ≤ 2vH so that the threshold can be reached and the en-
trepreneur can make a profit. Clearly, if T ≤ 2vL, buyers foresee that the threshold will be
reached and so everybody bids the minimal price vL, and the entrepreneur collects profits
πI0 = 2vL − C. If the threshold is set strictly above T > vL + vH , buyers foresee that the
threshold can only be reached when both buyers have high type. The first buyer (when
H-type) thus bids T − vH , knowing that the second buyer (when H-type), will bid vH . The
entrepreneur then collects expected profits q2(T − C). The entrepreneur sets the threshold
at the maximum value and obtains profit πE2 .

Now let us consider the remaining case where 2vL < T ≤ vL + vH . If the first buyer
bids b1 ≥ vL, the threshold is reached (exactly) if and only if the second buyer is H-type,
because he is willing to bid T − b1 ≤ vH . In order to increase the probability of production
the first buyer needs to bid (at least) T − vL, in which case the threshold will be reached for
sure. A H-type buyer thus bids T − vL if vH − (T − vL) > (vH − vL)q, or, equivalently, if
T − vL < b̄1. The entrepreneur’s expected profit in this case equals (T − C)(1 − (1 − q)2).

52It can be shown that bid restrictions do not matter in this case, and the exposition is in fact easier in
the case without bid restrictions.
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In the complementary case where T − vL > b̄1, the H-type buyer bids vL and the expected
profit of the entrepreneur is then (T − C)q. Assuming that the buyer bids T − vL also
in case of indifference, the entrepreneur will choose the highest T consistent with these
cases and thus sets either T = vL + b̄1 (letting late H-types free-ride sometimes), yielding
π̄1 = (vL + b̄1 − C)(1 − (1 − q)2) or T = vL + vH (letting early H-types free-ride), yielding
expected profit π̂1 = q(vL + vH − C).

The entrepreneur compares the payoffs from the different inclusive and exclusive options
and chooses the one that yields the highest profit. Under sequential bidding the payoff
πI1 is not attainable. Hence, for the (C, q)-pairs where πI1 was the optimal payoff under
simultaneous bidding, the entrepreneur must change the mechanism. Figure 7 illustrates.
The entrepreneur strictly loses in comparison with the simultaneous bidding. For relatively
low values of q and C, the entrepreneur switches to selling to all at vL. This improves
consumer surplus and total welfare. For relatively high values of q and low values of C, the
entrepreneur switches to the exclusive strategy yielding payoff πE1 . This lowers consumer
surplus but leaves total welfare unaffected because the project succeeds whenever at least
one buyer is H-type. For lower values of q, the entrepreneur uses the same threshold as
under simultaneous bidding (as T 1 = vL + b̄1) but her profit is lower because a second H-
type free-rides. Consumer surplus is higher but total welfare is again unaffected. Finally, for
very high values of C the entrepreneur sets threshold T = vL + vH , which lets a first-moving
H-type free-ride (and bid vL) but extracts the full rent from late moving H-types. This
lowers the expected consumer surplus and total welfare, because the project succeeds only
if the second buyer has H-type.

Note that under the “late-comers free-ride” strategy, the project succeeds when at least
one buyer has H-type. That is, it succeeds in the same demand states as the exclusive
strategy with threshold C ≤ vH . This explains the horizontal line segment dividing the
areas marked πE1 and π̄1 in Figure 7. Note that the curve separating the areas marked π̂1

and πE1 is the same as the one that separates the areas where πI1 and πI2 are optimal under
simultaneous bidding. Namely, π̂1 = πE2 if and only if q = (vL + vH − C)/(2vH − C), while
straightforward calculations show that πI1 = πE2 also if and only if q = (vL+vH−C)/(2vH−C).

[Figure 7 about here.]

In the discussion so far, we assumed that buyers enter one by one in an exogenously given
order. Suppose now that buyers endogenously decide on whether to move early or late.53 It is
obvious that this endogeneity does not affect the outcome when the entrepreneur implements

53See Hamilton and Slutsky (1990) for a general discussion of endogenous timing, and Romano and
Yilderim (2001) for an application to charities.
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an exclusive outcome, or the outcome where everybody just pays vL. If the entrepreneur sets
a threshold strictly above b̄1 + vL, H-types want to move first in order to free-ride. However,
all H-types moving first and trying to free-ride leads to a very undesirable outcome, namely
failing to reach the high threshold and the project will necessarily fail. On the other hand,
if the entrepreneur sets a threshold equal to (or below) b̄1 + vL, all buyers will want to move
late and the outcome is as under simultaneous bidding. In particular, if both buyers happen
to have H-type they will both pay b̄1 and the entrepreneur’s profit equals π̄1. Hence, the
model with endogenously moving buyers replicates the results under of our baseline model
with simultaneous moves.

9 Concluding remarks

We have characterized the optimal design of crowdfunding in a private value environment,
showing that reward-based crowdfunding is optimal for entrepreneurs who may be either
profit-maximizing or success-maximizing (or other not-for-profits), even if consumers have
standard motivations. We demonstrated the twin roles of the crowdfunding threshold mech-
anism in adapting production and pricing to the crowd’s revealed demand, and in price-
discrimination, which usually further improves adaptation but can involve an excessive
threshold that wastes trade opportunities. We found that crowdfunding, as a market-test,
can inform subsequent pricing and also provides a signal of future profitability to traditional
financiers. So that with many buyers arriving later, crowdfunding tends to complement
rather than substitute for traditional finance.

An investment-based element of crowdfunding can also increase funds, but standard
financiers may have advantages in centralizing monitoring (Diamond, 1984) and providing
expert advice (Gompers and Lerner, 2001) that complement credible information from crowd-
funding, plus funders’ feedback and “word of mouth” advertising. The most important part
of crowdfunding is “crowd,” not “funding”. “Crowd-commitment” can suffice: enough people
committing to buy the product at high enough bids provide a valuable signal to motivate
finance. Of course, the most effective way to enforce a purchase commitment is to have buy-
ers put their money where their mouth is, and platforms like Kickstarter do require buyers
to pay their bids in advance, so that it is natural to have buyers fund the entrepreneurs. So
funding is a typical feature of crowdfunding, albeit not fundamental.

While no other paper models multiple prices within crowdfunding, the idea that con-
sumers volunteer to pay different prices for the same good is not new. Hansmann (1981)
marshals the evidence in Baumol and Bowen (1968) to argue convincingly that this “voluntary
price discrimination” is critical in the world of culture and performing arts for the survival of
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theatres, museums and opera. We formalize his verbal argument that self-interested buyers
pay extra to raise the chance that the theatre survives.54 He also argues that the not-for-
profit organizational form of many cultural institutions helps achieve this goal, consistent
with our results in 8.1. Hansmann (1981) and Baumol and Bowen (1968) also give evidence
that not-for-profit organizations set very low minimal prices, in effect subsidizing low valua-
tion consumers, in order to convince high valuation buyers to pay extra, thereby guaranteeing
sufficient funds to cover the fixed costs. This intentional underpricing is consistent with our
results in 4.2 without threshold commitment.

We made a number of simplifications that, while common in mechanism design, may
appear restrictive. First, we assumed that N , the number of people participating in crowd-
funding, is known. All that is actually crucial is that there is uncertainty about aggregate
demand, which we generate from preferences.55 Second, we assumed that the fixed cost C
is known. This is innocuous in our baseline model as buyers only care about the cost in so
far as it affects the threshold, but they observe the threshold directly. Finally, we assumed
that product quality is known and that valuations are private. In particular, buyers know
their value for the product conditional on project success. Despite entrepreneur’s goodwill
and effort in reducing buyers’ uncertainty about quality by providing product videos, sample
songs, and relevant personal information, some doubt about delivery of the good may remain.
In fact, the majority of successful projects suffers from delivery delay, although receiving no
good at all is very rare (Mollick, 2014). So moral hazard is in practice not much of a prob-
lem and delivery delays can easily be accounted for with net present private valuations. The
private value assumption is related to this. Variable quality affects all buyers, generating a
common value element when buyers observe private signals of quality. Fortunately, crowd-
funding can generate important benefits in the common value setting that complement those
analyzed here.56

In the model, we have taken participation in crowdfunding as exogenous, but participation
requires entrepreneurs to invest in creating and presenting their projects and it requires
buyers to spend time searching and inspecting projects. Since both entrepreneurs and funders
are crucial to project success, it is necessary to ensure that both parties earn sufficient rents
after sinking their costs of participation. Entrepreneurs may have difficulty committing
to give buyers a reasonable rent because they are tempted to hold up buyers once their

54His reduced-form model simply assumes that buyers bid above the minimal price in proportion to their
net value from consumption at the minimal price.

55Adding a third type of buyer who values the good at zero generates an uncertain number of non-trivial
participants. As shown in Section 5, our main insights remain valid when there are more than two types.

56Case II in Section 7.2 considered an extension with correlated preferences. See also Hakenes and Schlegel
(2014) and Chang (2015) on crowdfunding in a common value environment.
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search and inspection costs are sunk. The sequential nature of crowdfunding, omitted from
our baseline model, helps solve this problem since the dynamic funding process tends to
punish entrepreneurs who offer too little rent: their projects attract fewer early buyers and
later potential buyers who observe this can respond by staying away without having to sink
substantial inspection costs.

Crowdfunding platforms can help further by promoting projects that seem more promis-
ing. This is immediate when simply observing minimal price and threshold is costly for
buyers. When the important inspection costs are those of evaluating common value elements
of projects, platforms may find evaluation difficult too, but they can exploit entrepreneurs’
past behavior and learn from and complement the dynamic processes in the sequential case.
Notice that platforms have a stronger incentive to build a reputation for doing this than do
individual entrepreneurs to promise high rents, because they typically host large numbers of
entrepreneurs. Another simple policy that would limit rent-extraction would be to rule out
threshold commitments, but our results show that this is risky since it can even lower buyer
welfare, even aside from dissuading entrepreneurial participation and reducing innovation
incentives.

In sum, we have explained the success of reward-based (and charitable) crowdfunding
via its potential for market-testing and rent-extraction, on top of its simplicity and the reas-
suring property that buyers lose no money when thresholds are not reached. Our results on
threshold commitment and welfare have clear policy implications for regulators and platform
design but a full-fledged two-sided model is needed to draw precise conclusions. A possible
concern for the future of this two-sided market is that strong network effects may prevent
healthy ongoing competition between crowdfunding platforms and a dominant platform like
Kickstarter may be able to charge inefficiently high fees, perhaps shifting the fee structure
which also merits analysis. An exciting related topic is the study of equity- and lending-
based crowdfunding which are currently growing even faster than the reward-based model.
Extending our analysis to a pure common value environment will be valuable in this respect.
Given that multiple prices are also a feature of investment-based crowdfunding, our binary
model may be very useful for representing buyers with good and bad pieces of information.

44



Appendix A Proofs

We let SMn (q) =
∑M

k=n f
M
k (q) so that hn(q) = fN−1

n−1 (q)/SN−1
n−1 (q). Mostly omitting argument

q, we state and prove some simple relations between these expressions for use in later proofs.

Lemma B.1.
(i) fNk = qfN−1

k−1 + (1− q)fN−1
k

(ii) SNn = SN−1
n−1 − (1− q)fN−1

n−1

(iii)
∑N

k=n kf
N
k = qNSN−1

n−1 , for all N ≥ 1 and 0 ≤ n ≤ N .

(iv)
∑N

k=n(N − k)fNk = (1− q)NSN−1
n , for all N ≥ 1 and 0 ≤ n ≤ N .

(v) ∂fMk (q)

∂q
= fMk

k−Mq
q(1−q)

(vi) ∂SNn (q)
∂q

= NfN−1
n−1

(vii) hn is strictly increasing in n for 0 ≤ n ≤ N , with h0 = 0 and hN = 1.

(viii) For 0 < n < N , ∂hn(q)
∂q

< 0.

(ix) n(1− q)hn ≥ n− qN where the inequality is strict when q > 0 and n < N

Proof of Lemma B.1.
(i) is immediate on expanding on any one draw and N − 1 other independent draws.
(ii) Summing (i) from k = n to N and recalling that fN−1

N = 0

SNn = qSN−1
n−1 + (1− q)SN−1

n

= qSN−1
n−1 + (1− q)

(
SN−1
n−1 − fN−1

n−1

)
= SN−1

n−1 − (1− q)fN−1
n−1

(iii)
N∑
k=n

kfNk =
N∑
k=n

kqk(1− q)N−k N !

(N − k)!k!

= Nq
N∑
k=n

qk−1(1− q)N−1−(k−1) (N − 1)!

(N − 1− (k − 1))!(k − 1)!

= Nq
N∑
k=n

fN−1
k−1 = Nq

N−1∑
k=n−1

fN−1
k = NqSN−1

n−1
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(iv) Using (ii) and (iii),

N∑
k=n

(N − k)fNk (q) = N
(
(1− q)

(
SN−1
n−1 − fN−1

n−1

))
−NqSN−1

n−1

= N(1− q)(SN−1
n−1 − fN−1

n−1 )

= N(1− q)SN−1
n

(v) Differentiating, ∂fMk (q)/∂q =

(
M

k

)
qk−1(1− q)M−k−1

[
k(1− q)− (M − k)q

]
=

(
M
k

)
qk(1− q)M−k

q(1− q)
(k −Mq) = fMk

k −Mq

q(1− q)

(vi) Differentiating the summation that defines SNn using (v) gives,

∂SNn (q)/∂q =
N∑
k=n

(k −Nq)fNk
/
q(1− q)

= (NqSN−1
n−1 −NqSNn )

/
q(1− q) (from (iii))

=
(
SNn + (1− q)fN−1

n−1 − SNn
)
N
/

(1− q) (from (ii))

= NfN−1
n−1

(vii) From the definition it is clear that h0 = 0 and hN = 1. We will show that hn is
strictly increasing by induction. As a first step, note that hN = 1 > hN−1 since fNN−1 > 0,
for all q ∈ (0, 1). Now suppose that hN > hN−1 > ... > hn+2 > hn+1 for N − 1 ≥ n+ 1 ≥ 0.
We have to show that hn+1 > hn follows.

Note that

hn+2 > hn+1 ⇔
fN−1
n+1

SN−1
n+1

>
fN−1
n

SN−1
n

⇔ SN−1
n

fN−1
n

>
SN−1
n+1

fN−1
n+1

(*)

Next observe that for any N − 1 ≥ k ≥ 0,

fN−1
k+1

fN−1
k

=

(
N−1
k+1

)
qk+1(1− q)N−k−2(

N−1
k

)
qk(1− q)N−k−1

=
q

1− q
N − k − 1

k + 1

This is clearly decreasing in k so that in particular,

fN−1
n

fN−1
n−1

>
fN−1
n+1

fN−1
n
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Combined with the induction hypothesis expressed as (*), we have

SN−1
n

fN−1
n−1

>
SN−1
n+1

fN−1
n

Adding 1 to both sides of the inequality yields

SN−1
n−1

fN−1
n−1

>
SN−1
n

fN−1
n

which is precisely 1/hn > 1/hn+1, completing the proof by induction.

(viii)
∂hn(q)

∂q
=
[
(∂fN−1

n−1 /∂q)
N−1∑
k=n−1

fN−1
k − fN−1

n−1

N−1∑
k=n−1

(∂fN−1
k /∂q)

]/
(SN−1

n−1 )2

= fN−1
n−1

[
(n− 1− (N − 1)q)

N−1∑
k=n

fN−1
k −

N−1∑
k=n

fN−1
k (k − (N − 1)q)

]/
q(1− q)(SN−1

n−1 )2

=
fN−1
n−1

∑N−1
k=n f

N−1
k (n− 1− k)

q(1− q)(SN−1
n−1 )2

< 0

The inequality follows from the facts that the summation is over k > n − 1, fN−1
k > 0 on

the summation range and fN−1
n−1 > 0 for n ≥ 1 and the summation range is non-trivial for

n ≤ N − 1. Note that when n takes its extremal values of n = 0 and n = N , the derivative
equals zero since hn is then fixed at 0 and 1, respectively.

(ix) Clearly the inequality holds when q = 0 or n = N . Observe next that for all n < N ,
n < E[k|k ≥ n] = (

∑N
k=n kf

N
k )/SNn . Hence, using Lemma B.1(iii) and (ii)

qNSN−1
n−1

SNn
> n⇔ qNSN−1

n−1 < nSNn = n(SN−1
n−1 − (1− q)fN−1

n−1 )⇔ qN > n(1− (1− q)hn)

Proof of Lemma 1.
From (5) and E[k|k ≥ n] = qNSN−1

n−1 /S
N
n we have

πIn − πIn+1 = (NvL − C)fNn + (vH − vL)qN
(
fN−1
n−1 − fN−1

n

)
= q(NvH − C)

(
fN−1
n−1 − fN−1

n

)
+ (NvL − C) fN−1

n by Lemma B.1(i)

> 0⇔ n(1− q)
(N − n)q

=
fN−1
n−1

fN−1
n

>
C −NvL + q(NvH − C)

q(NvH − C)

The statements follow because n(1− q)/((N − n)q) is increasing in n.
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Proof of Lemma 2.
We show that for all n < N and q > 0, Cn(q) < T n.

N(vL − qvH) + n(vH − vL)

1− q
< NvL + nhn(vH − vL)

⇔ N(vL − qvH) + n(vH − vL) < N(1− q)vL + nhn(1− q)(vH − vL)

⇔ n(vH − vL)(1− hn(1− q)) < qN(vH − vL)

The result follows from Lemma B.1(ix).

Proof of Proposition 1.
It remains to show that πInI (q) ≥ πEnE(q) if and only if q < q̂ with a strict inequality

on q < q̂ when nI < N and on q > q̂ when nE < N . Below we prove the stronger
claim that for any N and any 0 ≤ n < N , πIn(q) > πEn (q) if and only if q < q̂. The
result for optimized strategies follows quickly from this. Consider the case with q < q̂. If
nI < N and nE = N then πInI > πIN = (NvH − C)qN = πEN = πEnE .

57 If nI , nE < N then
πInI ≥ maxn<N{πIn} > maxn<N{πEn } = πEnE . The proof for q > q̂ is an exact parallel. We
now prove the stronger claim.

πIn(q)− πEn (q) =
N∑
k=n

fNk (q)
[
(N − k)vL − k(vH − b̄n)

]
= N

[
(1− q)SN−1

n vL − qSN−1
n−1 (1− hn)(vH − vL)

]
(using respectively Lemma B.1(iv),(iii) and Section 3.2)

= NSN−1
n

[
(1− q)vL − q(vH − vL)

]
= NSN−1

n (vL − qvH)

> 0⇔ q < q̂

for any n ∈ {0, 1, ..., N − 1} since then SN−1
n > 0.

Proof of Proposition 2.
Part (i). For parameter regions where exclusion is optimal, the highly intuitive result that

57This statement holds generically, but the inequality is replaced by an equality at the knife-edge case
where nI = N − 1 and n = N deliver identical payoffs. That is, the statement holds almost everywhere,
but not at the atom where ñI = N − 1. This trivial complication is just a result of the fact that profits are
continuous in C, q but the integer-valued nI is not.
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profits are decreasing in C and increasing in q is easily verified from the profit expression:

πEnE =
N∑

k=nE

fNk (kvH − C) = Ek[max{0, kvH − C}]

where Ek denotes the expectation operator. Since an increase in q induces a first-order
stochastic dominating distribution of k, and the expectation is taken over an increasing
(utility) function, the expectation is increasing in q. The impact of C is more immediate:
profits fall at the rate SNnE .

From the proof of Lemma 1 we know that πIn = (NvL−C)SNn +(vH−vL)qNfN−1
n−1 . Taking

derivatives with respect to q yields

∂πIn
∂q

= (NvL − C)(
∂SNn
∂q

) +N(vH − vL)

(
fN−1
n−1 +

∂fN−1
n−1

∂q
q

)
= (NvL − C)NfN−1

n−1 +N(vH − vL)fN−1
n−1

(
1 + q

n− 1− (N − 1)q

q(1− q)

)
(by Lemmas B.1(vi) and (v))

= (NvL − C)NfN−1
n−1 +N(vH − vL)fN−1

n−1

(
n−Nq
1− q

)
=

NfN−1
n−1

1− q

(
(NvL − C)(1− q) + (vH − vL)(n−Nq)

)
=

N(vH − vL)fN−1
n−1

1− q

(
n− ñI

)
Recall that ñI = C−NvL+q(NvH−C)

vh−vL
and nI = dñIe. So nI > ñI except at critical values of q

at which nI = ñI . These exceptional values have measure zero; they occur on the boundary
between strategy types. It follows that the maximal profit πInI is strictly increasing in q.

Proof of Proposition 3.
In general, bidding above p = vL can be attractive only if it increases the probability

of production. In a candidate equilibrium where L-types bid p = vL, H-types bid b̄n and
threshold equals T n = nδ̄n + NvL, an individual buyer bidding b ≥ p generates the project
success rate SN−1

` where ` = d b−p
δ̄n
e. Bidding above p reduces by ` the number of the

other N − 1 buyers who need to be H-type for the project to succeed. Notice that bid
increments that do not raise ` are weakly dominated, so we need only consider bids of the
form b = vL + `δ̄n for integer values of `. For the same equilibrium choices to remain valid
without bid restrictions, we need to check that H-types are willing to set ` = 1. Deviating
to ` = 0 is not a problem by incentive compatibility in the full-commitment solution. It
remains to verify that deviating to a bid b = vL + `δ̄n is weakly inferior for integer values of
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` ≥ 2 in the case of n = nI , but it is as simple to prove it for all n so we do.
In the putative equilibrium without bid restrictions, with p = vL and T = NvL +

nδ̄n, if the two types continue to make respective bids, bH = vL + δ̄n and bL, then the
production probability is SNn . From the perspective of a single buyer of the H-type playing
the equilibrium strategy, this probability is higher at SN−1

n−1 , and falls to SN−1
n if he deviates

to bid vL, but rises to SN−1
n−` if he deviates to the proposed bid with some ` ≥ 2. The first two

options give this buyer the same expected utility because inequality (IC) binds as Section 3.2;
this payoff is (vH − vL)SN−1

n The deviation option gives,

(
vH − vL − `δ̄n

)
SN−1
n−`

So, substituting for δ̄n = hn (vH − vL) and dividing by (vH − vL)SN−1
n−` , we seek to show that,

(1− `hn) ≤ SN−1
n

/
SN−1
n−` , ∀` ≥ 2

Now the right-hand side can be written as the product of (1− hn) (1− hn−1) .... (1− hn−`),
but hn is increasing in n, so this expression weakly exceeds (1− hn)`. Now hn ∈ [0, 1] so
defining a = 1− hn, we have a ∈ [0, 1], so for any ` ≥ 1,

1− a` = (1− a)
(
1 + ...+ a`−1

)
≤ (1− a)`

Rearranging terms and substituting back for a, this gives 1 − `hn ≤ (1− hn)`, concluding
the proof.

Proof of Proposition 4. We prove that n′I ≤ nI . The statements about profits,
consumer and total welfare follow from this.

Recall that nI = arg minn{C ≤ Cn(q)} where Cn(q) was defined in (7). Also recall that
feasibility of the n-type strategy required C ≤ T n. In particular, feasibility is guaranteed for
all n ≥ 1 when C = NvL. It follows from Lemma 2 that the nI-type strategy is feasible.

Next we show that there exist unique values 0 < q′1 < · · · < q′N−1 so that the entrepreneur
is indifferent between strategies of type n and n + 1 (as long as both are feasible) when
q = q′n, independently of C. Note that π′n = (qNSN−1

n−1 − nSNn )δ′n where δ′n = hn(vH − p′n) =

hn(NvH −C)/(N − nhn). Hence,
[
π′n+1 − π′n

]
/(NvH −C) is independent of C. There must

exist a q′n where the entrepreneur is indifferent, because the difference is strictly negative
when q > 0 is very small while it is strictly positive when q < 1 is close to one. Tedious
calculations show that a marginal increase in q above q′n increases the difference π′n+1 − π′n,
and the uniqueness result follows.

Some more tedious calculations show that at qn = n/N , π′n(qn) > π′n+1(qn), which implies
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that q′n > qn. It then follows that the optimal inclusive strategy is of type n′I where n′I is the
smallest n such that both q ≤ q′n and C ≤ T n.

Proof of Proposition 5. The general optimum has exclusion (j∗ = 2) when 0 > w1 =

v1 − (v2 − v1)q2/q1, which is equivalent to v1/v2 > q2, in which case production occurs in
state (N − k, k) if and only if kv2 ≥ C, that is when k ≥ C/v2. This is readily implemented
by crowdfunding with p = v2 and T = C.

The general optimum has inclusion (j∗ = 1) when v1/v2 ≤ q2. Production occurs in states
(N−k, k) for which (N−k)w1+kw2 ≥ C. That is, when (N−k)(v1−(v2−v1)q2/q1)+kv2 ≥ C.
Substituting q1 = 1− q2 this can be rewritten as

k ≥ C −Nv1 + q2(Nv2 − C)

v2 − v1

= ñI ,

so that production occurs when at least nI = dñIe are of the high type v2. The probabilities
of obtaining the good for type j = 1, 2 are P1 = SN−1

nI
(q2) and P2 = SN−1

nI−1(q2). Expected
transfers are T1 = v1P1 and T2 = T1 +(P2−P1)v2. Type-wise bids are thus b1 = v1 and b2 =

hnIv2 + (1−hnI )v1. Crowdfunding can implement this with threshold T = nIb2 + (N −nI)v1

and minimal price p = v1.

Proof of Proposition 6.
To simplify notation let us normalize vH = 1 and define c = C/N as the cost per potential

buyer. Note that now q̂ = vL and 0 ≤ c ≤ 1.
Let us first consider the case q > q̂ where exclusion is optimal. Recall that nE =

dC/vHe = dNce.
The profit from a posted-price mechanism using standard funding is equal to πSF =

max{0, (q − c)N}. The profit from crowdfunding is equal to πCF = πnE =
∑N

k=nE
fNk (k −

cN) =
∑N

k=nE
kfNk − SNnEcN = qNSN−1

nE−1 − SNnEcN . Using Lemma B.1 we can write πCF =

N(q − c)SN−1
nE−1 +Nc(1− q)fN−1

nE−1. We thus see that, if c < q

πCF − πSF = (c− q)N(1− SN−1
nE−1) + (1− q)cNfN−1

nE−1.

For large N (and q(N − 1) > 5, (1− q)(N − 1) > 5) we can use the normal approximation
to the Binomial to quantify this advantage. In particular, let Φ(·) denote the CDF of the
Normal distribution with mean µ = q(N−1) and standard deviation σ =

√
(N − 1)q(1− q).
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Let φ(·) denote the corresponding density function. Then

πCF − πSF ≈ (q − c)NΦ(nE − 1.5) + (1− q)cN
(
Φ(nE − 0.5)− Φ(nE − 1.5)

)
= (q − c)N

∫ cN−1.5

−∞

1

σ
√

2π
e−

(x−µ)2

2σ2 dx+ (1− q)cN
∫ cN−0.5

cN−1.5

1

σ
√

2π
e−

(x−µ)2

2σ2 dx

=
(q − c)N√

(N − 1)q(1− q)2π

∫ cN−1.5

−∞
e−

(x−q(N−1))2

2(N−1)q(1−q)dx

+
(1− q)cN√

(N − 1)q(1− q)2π

∫ cN−0.5

cN−1.5

e−
(x−q(N−1))2

2(N−1)q(1−q)dx

=
(q − c)N√

(N − 1)q(1− q)2π

∫ c+ c−1.5
N−1

−∞
(N − 1)e−(N−1)

(y−q)2
2q(1−q)dy

+
(1− q)cN√

(N − 1)q(1− q)2π

∫ cN−0.5

cN−1.5

e−
(x−q(N−1))2

2(N−1)q(1−q)dx = O(N3/2e−N)→ 0

Similarly, if c ≥ q,

πCF − πSF ≈ (q − c)N(1− Φ(nE − 1.5)) + cN(1− q)
(
Φ(nE − 0.5)− Φ(nE − 1.5)

)
→ 0

Let us now consider the case with q ≤ q̂ so that inclusion is optimal. The profit from
standard funding is πSF = max{0, (vL − c)N}. The profit from crowdfunding equals πCF =

N(vL− c)SNnI + qNSN−1
nI−1(vH − vL)hnI = N(vL− c)SNnI + qN(1− vL)fN−1

nI−1 = N(vL− c)SN−1
nI−1 +

NfN−1
nI−1(q − q̂ + (1− q)c).
Note that ñI/N =

(
c − vL + q(vH − c)

)
/(vH − vL) so that if c < vL = q̂, then nI < qN

while if c > vL = q̂, nI > qN , for large N . Hence, if c < vL

πCF − πSF ≈ −(vL − c)NΦ(nI − 1.5) +N(q − q̂ + (1− q)c)
(
Φ(nI − 0.5)− Φ(nI − 1.5)

)
and the advantage converges to zero at an exponential rate. If c > vL

πCF − πSF ≈ (vL − c)N(1− Φ(nI − 1.5)) +N(q − q̂ + (1− q)c)
(
Φ(nI − 0.5)− Φ(nI − 1.5)

)
and the advantage converges to zero at an exponential rate.
Proof of Proposition 7.

Using Lemma B.1 (iii) and (ii) one can rewrite the profit expression as

π(p) = −SNn C +mpqNSN−1
n−1 =

(
mpqN − C

)
SNn +mpqN(1− q)fN−1

n−1
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Using Lemma B.1 (vi) and (v), the optimal p must satisfy———- FOC...

0 =
∂π

∂p
=

(
mpqN − C

)
NfN−1

n−1 q
′ + (mqN +mpq′N)SNn

+mpqN(1− q)fN−1
n−1

n− 1− (N − 1)q

q(1− q)
q′

+
(
mqN(1− q) +mpN(1− 2q)q′

)
fN−1
n−1

Using again Lemma B.1 (ii), and defining c = C/Nm, this is equivalent to

0 =
(
pqN − cN

)
fN−1
n−1 q

′ + (q + pq′)
(
SN−1
n−1 − (1− q)fN−1

n−1

)
+pfN−1

n−1

(
n− 1− (N − 1)q

)
q′

+
(
q(1− q) + p(1− 2q)q′

)
fN−1
n−1 .

Taking out a factor SN−1
n−1 and rearranging yields

0 = q + pq′ + hnq
′((n− 1)p− cN

)
.

Note that n = dcN/pe so that (n−1)p−cN < 0 while q′ = −g(p) < 0 when G has a positive
density. Hence, a marginal increase in c that leaves n fixed leads to a strict increase in p.
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Figure 1: Optimal selling strategies in (C, q)-space (N = 5, vL = 1, vH = 1.6).
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Figure 2: Optimal funding threshold correspondence of q for C = 5.2, N = 5, vL = 1,
vH = 1.6.
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Figure 3: Welfare effects of crowdfunding relative to standard finance, with adaptation of
production (to higher demand states to avoid losses) and rent-extraction (where threshold
effect induces price-discrimination) indicated.
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Figure 4: Optimal selling strategies in (C, q)-space under no threshold commitment with
just a minimal bid (N = 5, vL = 1, vH = 1.6).
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Figure 5: Optimal selling strategies in (C, q)-space under no threshold commitment but with
bid restrictions (N = 5, vL = 1, vH = 1.6).
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Figure 6: Crowdfunding cannot implement the general optimum.
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Figure 7: Optimal selling strategies for sequential bidding in (C, q)-space (N = 2, vL = 1,
vH = 1.6).
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