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Abstract

We analyze the incentives for competing two-sided platforms to

adopt a cost-reducing innovation. Our first step is to extend Arm-

strong (2006)’s duopoly model with two-sided singlehoming to incor-

porate asymmetries across the platforms.Using this extended model,

we then show that the presence of cross-group effects challenges the

conventional wisdom about incentives to innovate. In particular, the

profit incentive can be negative, the positive direct effect being more

than compensated by a negative strategic effect. Also, the competitive

threat may be smaller than the profit incentive.
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1 Introduction

Multisided platforms intermediate between distinct groups of economic agents

that benefit from interacting with one another but fail to organize this inter-

action by their own forces because of high transaction costs. Such platforms

are active in a large variety of settings: exchanges help ‘buyers’ and ‘sellers’

search for feasible contracts and for the best prices (e.g., eBay, Booking.com,

Cambridge Univeristy Press, edX, ...); hardware & software systems allow

applications developers and end users to interact (e.g., Mac OS, Android,

PlayStation, ...); matchmakers help members of one group to find the right

‘match’ within another group (e.g., Alibaba, Monster, Meetic, ...); peer-

to-peer marketplaces facilitate the exchange of goods and services between

‘peers’ (e.g., Uber, Airbnb, EatWith, ...); crowdfunding platforms allow en-

trepreneurs to raise funds from a ‘crowd’ of investors (e.g., Kickstarter,

Indiegogo, LendingClub, ...), transaction systems provide a method for pay-

ment to buyers and sellers that are willing to use it (Visa, Bitcoin, PayPal,

...).

The main function of multisided platforms is to internalize the various

external effects that the interaction between the groups generate. They do

so by making appropriate decisions about prices, design and governance

rules. Of particular interest are the cross-group effects (or indirect network

effects) that make the well-being of one group depend (positively or nega-

tively) on the participation of the other group(s). For instance, in the case

of hardware & software systems, each group benefiting from a stronger par-

ticipation of the other group: application developers welcome more users on

the platforms as they make their potential demand grow; end users enjoy

the presence of more developers as they enjoy a larger number and/or vari-

ety of applications. Within-group effects may also play and important role

(e.g., as application developers compete for the same demand, a platform

may become less attractive for them as their number increases).

Following the seminal contributions of Caillaud and Jullien (2003), Ro-

chet and Tirole (2003 and 2006), and Armstrong (20016), a new strand

of literature in industrial organization has developed to analyze mutisided

platforms. The focus was initially on pricing strategies in the presence of

cross-group effects. A larger set of issues was later studied: singlehoming ver-

sus multihoming (e.g., Armstrong and Wright, 2007), ownership structures

(e.g., Nocke, Peitz and Stahl, 2007), within-group effects (e.,g., Belleflamme
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and Toulemonde, 2009), investments by agents on one side of the platform

(e.g, Belleflamme and Peitz, 2010), two-part tariffs (Reisinger, 2014), etc

(think of others!)

In the vast majority of these papers, platforms are assumed to be sym-

metric. Even if this assumption does not fit what is observed in reality,

it serves as a convenient simplification to deal with the complexities of

multisidedness. However, models with symmetric platforms are ill-suited to

address strategic choices that may make platforms asymmetric. This is so

for investments by platforms aimed at decreasing their costs, fostering the

stand-alone benefits of users, modifiying the strength of the cross-group net-

work effects, or adopting different business models (e.g., about which sides

to take on board).

Our objective in this paper is to study platforms’ incentives to adopt

a process innovation, which has the effect of lowering the cost of serving

customers on one or the other side of the platform. As platforms become

asymmetric as soon as one of them adopts the innovation, we first need to

develop a model of price competition between asymmetric platforms. The

first contribution of this paper is thus to propose an extension of Armstrong

(2006) model of two-sided singlehoming by letting platforms differ in all

relevant parameters (costs, stand-alone benefits and cross-group network

effects). In spite of the number of parameters, we manage to solve the two-

stage game where platforms first choose access fees on both sides and, next,

agents on each side decide which platform to join. Moreover, we express the

equilibrium prices, number of agents and platforms’ profits in a perfectly

workable way. That allows us to propose a clear typology of how platforms

modify their equilibrium prices when asymmetry increases; we can also show

that platforms may have opposite “business models” (i.e., pricing structures)

insofar as they may choose different paying sides and subsidy sides.

Equipped with this extended model, we can then perform a number of

comparative statics exercises to measure platforms’ incentives to adopt a

cost-reducing innovation. Following the literature that examines such incen-

tives in one-sided markets (see Belleflamme and Vergari, 2011, for a unifying

approach), we consider two alternative measures: the ‘profit incentive’ and

the ‘competitive threat’. The two measures compute the variation in profit

induced by adoption of the innovation, but differ in terms of counterfactual

if the firm under review does not adopt the innovation: the ‘profit incentive’
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approach assumes that the rival firm does not adopt the innovation, while

the ‘competitive threat’ approach assumes that it does.

In a competitive framework, the profit incentive to innovate can be de-

composed into a direct and a strategic effect. While the first effect is nec-

essarily positive, the second effect may be positive or negative depending

on the nature of competition on the product market (which is affected by

the adoption of the innovation). Fudenberg and Tirole (1984) show that

the strategic effect is positive if product market decisions are strategic sub-

stitutes, or negative if they are strategic complements. In the latter case,

the strategic effect does not outweigh the direct effect and the incentive to

innovate remains positive.

Our analysis shows that the previous conclusions may no longer hold

in two-sided markets. First, the strategic effect may be positive although

platforms compete in prices (decisions can thus be seen as strategic comple-

ments). Second, and more importantly, when the strategic effect is negative,

it may outweigh the direct effect, leading to a disincentive to innovate. In

other words, platforms may refrain from investing in a cost-reducing inno-

vation altogether because the increased competition that such investment

would trigger would annihilate any direct benefit. Worse, the same result

implies that platforms may find it profitable to increase their cost. A direct

corollary of the latter result is that a platform may welcome the adoption of

an innovation by its rival. As a result, the competitive threat may provide

a platform with lower incentives to innovate than the profit incentive. This

finding reverses again the common wisdom in one-sided markets (where the

couterfactual used under the competitive threat is necessarily more detri-

mental to the innovator). Behind these results is the finding that cross-group

effects amplify the strategic effects of cost-reducing investments.

Compared to one-sided (monoproduct) markets, two-sided markets also

enlarge the set of potential innovations. In particular, platforms can decide

to reduce their cost on either side. To examine this issue, we consider a

simple simultaneous game where platforms choose to apply a cost-reducing

innovation of a given size either on side a on on side b. Assuming that the

platforms are initially identical, we show that the equilibrium depends on

whether the cost reduction generated by the innovation is below or above

some threshold: below the threshold (‘small’ innovations), both platforms

apply the innovation on the side where users value the interaction the most;
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above the threshold (‘large’ innovations), platforms apply the innovation on

different sides. Interestingly, the latter situation dominates the former not

only in terms of total profit but also in terms of consumer surplus. Welfare

therefore increases if platforms invest on opposite sides, thereby increasing

their asymmetry. This suggests in turn that the symmetric equilibrium on

which most of the literature has focused so far may be rather unstable.

Related literature (To be written and completed. Very few papers con-

sider asymmetric platforms. Close to us (introduction of vertical differentiation

in Armstrong, 2006): Ribeiro et al. 2014a. But different way to make platforms

asymmetric (they use the product differentiation model of Gabszewicz and Wau-

thy, 2012) and to make the model tractable, they impose symmetry on other

dimensions (e.g., the two sides see the two platforms as equally horizontally

differentiated and they exert the same cross-group effects on each other). Pos-

sibly, Ribeiro et al. 2014b (same idea as 2014a but now, vertical and horizontal

differentation across platforms is modelled à la Neven and Thisse, 1990; again,

to allow some asymmetry between platforms in one dimension, the authors have

to impose more symmetry on other dimensions; results are not very instructive

and hardly comparable with ours). Other papers with asymmetric two-sided

platforms: Viecens (2006), Lin, Li and Whinston (2011), Njoroge et al. (2009,

2010), Ponce (2012), Gabszewicz and Wauthy (2014), Gold (2010), Papers by

Yuzuke Zennyo?)

2 The model

We adapt the models of Armstrong (2006) and Armstrong and Wright

(2007). Two platforms are located at the extreme points of the unit in-

terval: platform U (for Uppercase, identified hereafter by upper-case letters)

is located at 0, while platform l (for lowercase, identified by lower-case let-

ters) is located at 1. Platforms facilitate the interaction between two groups

of agents, noted a and b. Both groups are assumed to be of mass 1 and

uniformly distributed on [0, 1]. We assume that agents of both sides can

join at most one platform (so-called ‘two-sided singlehoming’); in the real

world, singlehoming environments may result from indivisibilities and lim-

ited resources or from contractual restrictions.1

1For a discussion, see Case 22.4 in Belleflamme and Peitz (2010a, p. 633).
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An agent derives a net utility from joining a platform that is defined

as the addition of four components: (i) a cross-group external benefit, (ii)

a stand-alone benefit, (iii) a ‘transportation cost’, and (iv) an access fee.

The first two components enter the net utility function positively. They

correspond to two types of services that a platform offers to its users. Some

services facilitate the interaction with the other group; the utility they give

is the cross-group external benefit, which is assumed to increase linearly with

the number of agents of the other group present on the platform.2 A platform

also offers other services that do not relate to the interaction between the

groups; these services give a stand-alone benefit to users. The last two

components enter the net utility function negatively. In the usual Hotelling

fashion, a user incurs a disutility from not being able to use a platform

that corresponds to their ideal definition of a platform; this disutility is

assumed to increase linearly with the distance separating the user’s and the

platform’s location on the unit line (at a rate that can be interpreted as a

measure of the horizontal differentation between the platforms in the eyes

of a particular group of users). Finally, users have to pay a flat fee to access

the platform.3

The originality of our approach is that we allow all these components

to differ not only across sides but also across platforms. We therefore write

the net utility functions for an agent of group a and for an agent of group

b, respectively located at x and y ∈ [0, 1] as:

Ua (x) = EaNb +Ra − τax− Pa if joining platform U,

ua (x) = eanb + ra − τa (1− x)− pa if joining platform l,

Ub (y) = EbNa +Rb − τby − Pb if joining platform U,

ub (y) = ebna + rb − τb (1− y)− pb if joining platform l,

where Ej (resp. ej) measures the strength of the cross-group external effect

that users of group k exert on users of group j on platform U (resp. l),4 Nj

(resp. nj) is the mass of agents of group j that decide to join platform U

(resp. l), Rj (resp. rj) is the valuation of the stand-alone benefit by agents

2We focus in this paper on positive cross-group external effects; that is, each group pos-

itively values the participation of the other group on the platform. (Can we say something

with negative effects on one side? Do we want to?)
3Mention here that we do not consider usage fees, nor two-part tariffs. See Reisinger (2014)

showing that a continuum of equilibria exists with two-part tariffs.
4That is, Ej is the valuation by a group j user of the particpation of an extra group k

user.
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of group j on platform U (resp. l), τj is the ‘transport cost’ parameter for

group j, and Pj (resp. pj) is the access fee that platform U (resp. l) sets

for users of group j (with j, k ∈ {a, b} and j 6= k).

Let x̂ (resp. ŷ) identify the agent of group a (resp. b) who is indifferent

between joining platform U or platform l; that is, Ua (x̂) = ua (x̂) and

Ub (ŷ) = ub (ŷ). Solving these equalities for x̂ and ŷ respectively, we have

x̂ = 1
2 + 1

2τa
(EaNb − ea (1−Nb) +Ra − ra − (Pa − pa)) ,

ŷ = 1
2 + 1

2τb
(EbNa − eb (1−Na) +Rb − rb − (Pb − pb)) .

In what follows, we assume that stand-alone and cross-group external bene-

fits are sufficiently large to make sure that all agents join one plaform. Both

sides are then fully covered, so that Nj + nj = 1 (j = a, b). This entails the

following equalities: x̂ = Na = 1− na and ŷ = Nb = 1 − nb. Using these

equalities, we can solve the above systems of equations for Na and Nb:

Na =
1

2
+
τb
2

ρa + δa + pa − Pa
τaτb − σaσb

+
σa
2

ρb + δb + pb − Pb
τaτb − σaσb

, (1)

Nb =
1

2
+
τa
2

ρb + δb + pb − Pb
τaτb − σaσb

+
σb
2

ρa + δa + pa − Pa
τaτb − σaσb

, (2)

where we have introduced some additional notation (that will prove useful

in the rest of the analysis):

• σk ≡ 1
2 (Ek + ek) is the sum of the cross-group external benefits on

side k of platforms U and L when the agents on the other side split

equally;

• δk ≡ 1
2 (Ek − ek) is the difference of the cross-group external benefits

on side k between platforms U and L when the agents on the other

side split equally;5

• ρk ≡ Rk−rk is the difference in stand-alone benefits on side k between

platforms U and L.

To ensure that participation on each side is a decreasing function of the

access fee on this side, we assume the following:

τaτb > σaσb. (3)

5By definition, Ek = σk + δk and ek = σk − δk.
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This assumption, which is common in the analysis of competition between

two-sided platforms, says that the strength of cross-group external effects

(measured by σaσb) is smaller than the strength of horizontal differentiation

(measured by τaτb).

3 Equilibrium of the pricing game

Platforms simultaneously choose their access prices to maximize their profit,

given by Π = (Pa − Ca)Na+(Pb − Cb)Nb and π = (pa − ca)na+(pb − cb)nb.
We assume that they face constant costs per agent, which may also differ

across sides and across platforms (Ca and Cb for platform U ; ca and cb for

platform l). For future reference, we define γk ≡ Ck − ck as the difference

in costs on side k between platforms U and l (k = a, b). The first-order

conditions require
dΠ

dPa
=
dΠ

dPb
=

dπ

dpa
=
dπ

dpb
= 0,

whereas the second-order conditions require

τaτb > σaσb and τaτb >
1
4 (σa + σb)

2 .

We note that the first condition is equivalent to Assumption (3) and that
1
4 (σa + σb)

2− σaσb = 1
4 (σa − σb)2 > 0, which means that the second condi-

tion is more stringent than the first. We thus impose from now on

τaτb >
1
4 (σa + σb)

2 . (4)

We now solve the system of the four first-order conditions. To facilitate

the exposition, we define ∆k ≡ ρk−γk andD ≡ 9τaτb−(2σa + σb) (σa + 2σb);

∆k measures the (dis)advantage that platform U has with respect to plat-

form l on side k; D is positive according to Assumption (4). The equilibrium

price of platform U on side a is found as

P ∗a =

H︷ ︸︸ ︷
Ca + τa

A︷︸︸︷
−σb

Vs︷ ︸︸ ︷
+1

3∆a

Vn︷ ︸︸ ︷
+1

3δa

+
(σa − σb)

3

(2σa + σb) (∆a + δa) + 3τa (∆b + δb)

9τaτb − (2σa + σb) (σa + 2σb)︸ ︷︷ ︸
I

(5)

We can decompose it as the sum of five components: (i) H is the classic

Hotelling formula (marginal cost + transportation cost); (ii) A was identi-

fied by Armstrong (2006) as the price adjustment due to indirect network
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effects (the price is decreased by the externality exerted on the other side);

(iii) Vs is the effect of vertical differentiation in terms of stand-alone benefits

(or the effect of marginal costs differences);6 (iv) Vn is the effect of vertical

differentiation in terms of indirect network effects on the side under review;

(v) the last term I results from the interplay between vertical differentiation

and indirect network effects. If platforms are symmetric (∆k = δk = 0)

only H and A remain; absent external effects (σk = δk = 0), only H an Vs

remain. In the particular case where indirect externalities are (on average)

the same on the two sides (σa = σb), all terms but the last remain.

The equilibrium price on side b is found by analogy

P ∗b = Cb + τb − σa + 1
3∆b + 1

3δb (6)

+
(σb − σa)

3

(2σb + σa) (∆b + δb) + 3τb (∆a + δa)

9τaτb − (2σa + σb) (σa + 2σb)

By analogy, we express the equilibrium prices of platform l as

p∗a = ca + τa − σb − 1
3∆a − 1

3δa

−(σa − σb)
3

(2σa + σb) (∆a + δa) + 3τa (∆b + δb)

9τaτb − (2σa + σb) (σa + 2σb)

p∗b = cb + τb − σa − 1
3∆b − 1

3δb

−(σb − σa)
3

(2σb + σa) (∆b + δb) + 3τb (∆a + δa)

9τaτb − (2σa + σb) (σa + 2σb)

Let us evaluate how equilibrium prices change with asymmetry. Without

loss of generality, consider an improvement of platform U ’s position on side

a (i.e., an increase in ∆a) on P ∗a and P ∗b . For given prices, an increase in ∆a

allows platform U to attract more users of group a. In a one-sided market,

this advantage allows platform U to charge a higher price at equilibrium: this

is the effect that ∆a has on P ∗a through Vs. However, in two-sided markets,

an advantage on side a also confers an advantage on side b, meaning that

equilibrium prices depend on the strength of the cross-side network effects

(effect through I). If σa > σb (i.e., agents of group a are more willing to

interact with agents of group b than the opposite), we see from (5) and (6)

that P ∗a increases while P ∗b decreases: platform U amplifies its advantage on

side a by increasing participation on side b, which is highly valued by users

6In this model Rk and Ck play interchangeable roles. What matters is their difference:

∆k = ρk − γk = (Rk − Ck) − (rk − ck).
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of group a. The opposite prevails if σa < σb; in that case, P ∗b increases while

P ∗a may decrease if σb is sufficiently large.7

The previous conclusions are exactly reversed for platform l. It is indeed

readily checked that,

∂p∗a
∂∆a

= −∂P
∗
a

∂∆a
= −3τaτb − σb (2σa + σb)

D
,

∂p∗b
∂∆a

= −
∂P ∗b
∂∆a

=
τb (σa − σb)

D
(7)

Any change in asymmetry pushes platforms to vary their prices on a given

side in opposite directions by exactly the same amount. Moreover, on each

side, the sum of the equilibrium margins of the two platforms is independent

of ∆a and ∆b:

(P ∗a − Ca)+(p∗a − ca) = 2 (τa − σb) and (P ∗b − Cb)+(p∗b − cb) = 2 (τb − σa) ,

which generalizes what is observed in a one-sided Hotelling model (with

covered market and unit demand).

We can now use the equilibrium prices to compute the equilibrium mass

of agents of the two groups on the two platforms:

N∗a = 1
2 + 1

2D (3τb (∆a + δa) + (σa + 2σb) (∆b + δb)) , na = 1−N∗a ,
N∗b = 1

2 + 1
2D (3τa (∆b + δb) + (2σa + σb) (∆a + δa)) , nb = 1−N∗b .

To guarantee that the equilibrium mass is strictly positive and lower than

unity, we impose the following restrictions on the space of parameters:

3τb (∆a + δa) + (σa + 2σb) (∆b + δb) and

3τa (∆b + δb) + (2σa + σb) (∆a + δa) ∈ (−D,D). (8)

The conditions in (8) are drawn in Figure 1. The locus that satisfies the

four conditions is represented by the grey area.8

Figure 2 draws the equations Pa − Ca = 0, Pb − Cb = 0, pa − ca = 0

and pb − cb = 0 in the same axes. The sign of those expressions are also

7The exact condition is σb (2σa + σb) > 3τaτb, which is compatible with (4). For

instance, take σa = 0, and σ2
b < 4τaτb to satisfy (4). Then for σ2

b > 3τaτb, we have

dP ∗a /d∆a < 0.
8The four conditions have a negative slope in the plane ∆a,∆b. The intercept and the

absolute value of the slope of Na = 1 are smaller than the intercept and the absolute value

of the slope of Nb = 1. The lines Na = 1 and Nb = 1 cross at ∆a = 3τa − σa − 2σb,∆b =

3τb − σb − 2σa.
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represented, under the assumption that τk > σl ∀k, l ∈ (a, b) so that there

is no subsidy in the symmetric case. Without loss of generality, we also

assume that σa > σb. To draw those lines, note that

• pa−ca = 0 has a positive intercept, which is smaller than the intercept

of Na = 1. It passes through the intersection Na = 1, Nb = 1.

• Pa−Ca is a parallel to pa− ca, passing through the intersection Na =

0, Nb = 0.

• Pb−Cb = 0 has an intercept that is larger than the intercept of Na = 1.

Its slope is positive. It passes through the intersection Na = 0, Nb = 0.

• pb − cb is a parallel to Pb −Cb, passing through the intersection Na =

0, Nb = 0.

!

Δa+δa!

Δb+δb!

D/(2σa+σb)!

D/(3τb)!

+D/(2σa+σb)!

+D/(3τb)!

Na=1!

Na=0!

Nb=1!

Nb=0!

Figure 1: Interior solutions

We note that in the red areas, one platform subsidizes one side and

tax the other side whereas the other platform adopts an opposite business

model by taxing the first side and subsidizing the second one. In the central

diamond, both platforms tax both sides. In yellow, ie the rest of the figure,

one platform subsidizes one side and taxes the other side whereas the other
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!

pa$ca<0!

pa$ca>0!

Pa$Ca<0!

Pa$Ca>0!
Pb$Cb<0!

Pb$Cb>0!

pb$cb>0!

pb$cb<0!

Δa+δa!

Δb+δb!

Figure 2: Sign of the mark-ups

platform taxes both sides. There is no equilibrium in which both platforms

subsidize the same side; this is caused by our assumption that τk > σl

∀k, l ∈ (a, b) so that there is no subsidy in the symmetric case. Of course

none of the platform can profitably subsidize both sides.

More generally, Figure 3 represents two lines: one in which Pa − Ca =

pa−ca and the other with Pb−Cb = pb−cb. Those lines are parallel resp. to

Pa−Ca = 0 and Pb−Cb = 0 and pass through the origin. In the green areas

(North and South), one platform sets a higher markup on one side than the

other platform, whereas the other platform does the opposite on the other

side. They thus have different business models. In the two remaining areas,

one platform benefits from an advantage on both sides (e.g. ∆a+δa > 0 and

∆b + δa > 0 so that Capital has an advantage on both sides), which allows

her to benefit from higher markups on both sides. Note that here again, the

figure is drawn under the assumption that τk > σl ∀k, l ∈ (a, b).

3.1 Equilibrium profits

The profits of platforms U and l are, respectively:

Π = (Pa − Ca)Na + (Pb − Cb)Nb,

π = (pa − ca) (1−Na) + (pb − cb) (1−Nb) .
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!

Pb$Cb>!pb$cb!

Pb$Cb<!pb$cb!

Pa$Ca<!pa$ca!

Pa$Ca>!pa$ca!

Δa+δa!

Δb+δb!

Figure 3: Sign of the mark-ups

Using the equilibrium values of prices and number of agents, we find

Π =
1

2
(τa + τb − σa − σb)

+
1

2D

(
τb (∆a + δa)

2 + τa (∆b + δb)
2 + (σa + σb) (∆a + δa) (∆b + δb)

)
+

1

2D
(6τaτb + τb (σa − σb)− (σa + σb) (2σa + σb)) (∆a + δa) (9)

+
1

2D
(6τaτb − τa (σa − σb)− (σa + σb) (σa + 2σb)) (∆b + δb)

π =
1

2
(τa + τb − σa − σb)

+
1

2D

(
τb (∆a + δa)

2 + τa (∆b + δb)
2 + (σa + σb) (∆a + δa) (∆b + δb)

)
− 1

2D
(6τaτb + τb (σa − σb)− (σa + σb) (2σa + σb)) (∆a + δa) (10)

− 1

2D
(6τaτb − τa (σa − σb)− (σa + σb) (σa + 2σb)) (∆b + δb)

Total profit at equilibrium is computed as

Π + π = (τa + τb − σa − σb)

+
1

D

(
τb (∆a + δa)

2 + τa (∆b + δb)
2 + (σa + σb) (∆a + δa) (∆b + δb)

)
.

4 Incentives to innovate

We consider the adoption of a process innovation that reduces a platform’s

marginal cost to serve one of the two groups of customers by some positive
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amount x. Recalling that we defined ∆k = ρk − γk with ρk ≡ Rk − rk and

γk ≡ Ck − ck (k = a, b), we see that if platform U (resp. l) adopts the

innovation, we have ∆′k = ∆k + x (resp. ∆′k = ∆k − x).9 As explained in

the introduction, we examine two alternative measures of the incentives to

innovate: the profit incentive and the competitive threat. To define them

formally, consider (without loss of generality) platform U and an innovation

that is applied to side a. If platform U does not adopt the innovation, the

profit incentive approach poses that platform l does not either, while the

competitive threat approach poses that it does. In both approaches, the in-

centive is computed as the profit difference with and without the innovation.

We therefore define

PIa (x) = Π (Ca − x,Cb; ca, cb)−Π (Ca, Cb; ca, cb) ,

CTa (x) = Π (Ca − x,Cb; ca, cb)−Π (Ca, Cb; ca − x, cb) .
(11)

We can define accordingly PIb (x) and CTb (x) for platform U , as well as

pik (x) and ctk (x) for platform l. Note that in the competitive threat ap-

proach, we could have used as couterfactual the application of the innovation

by platform l on side b rather than on side a. As we will show below, this

distinction is not necessary for the point that we want to make.

4.1 Profit incentive

We focus here on the decomposition of the profit incentive into a direct and

a strategic effect. To facilitate the exposition, we consider an infinitesimal

descrease in cost (i.e., we let x tend to zero); all our results can be shown

to hold for positive values of x. (to be formally shown)

The total effect of a change in ∆a (i.e., the profit incentive) can be

decomposed as follows:

dΠ

d∆a
=

∂Π

∂∆a︸ ︷︷ ︸
DE

+
∂Π

∂Pa︸︷︷︸
=0

∂P ∗a
∂∆a

+
∂Π

∂Pb︸︷︷︸
=0

∂P ∗b
∂∆a

+
∂Π

∂pa

∂p∗a
∂∆a

+
∂Π

∂pb

∂p∗b
∂∆a︸ ︷︷ ︸

SE

The first term is the direct effect; the second and third terms are nil by the

envelope theorem; the fourth term is the strategic effect. The next lemma

derives the value of the first and fourth term.

Lemma 1 [DE] = N∗a and [SE] = −3τaτb−σb(2σa+σb)
D N∗a + τb(σa−σb)

D N∗b .

9We also note that in this model, an innovation that increases the stand-alone benefit

by x on side k would have exactly the same effect on a platform’s profit.
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Proof. The direct effect is defined as

[DE] =
∂Π

∂∆a
= N∗a

∂ (Pa − Ca)
∂∆a

+N∗b
∂ (Pb − Cb)

∂∆a
.

Solving (1) and (2) for Pa and Pb, we can express the inverse demand func-

tions as

Pa − Ca = ∆a + τa − σa + δa + pa − ca + 2σaNb − 2τaNa,

Pb − Cb = ∆b + τb − σb + δb + pb − cb + 2σbNa − 2τbNb.

Hence,
∂ (Pa − Ca)

∂∆a
= 1,

∂ (Pb − Cb)
∂∆a

= 0,

and, [DE] = N∗a .

The strategic effect is defined as

[SE] =
∂Π

∂pa

∂p∗a
∂∆a

+
∂Π

∂pb

∂p∗b
∂∆a

We know that

∂Π

∂pa
= (Pa − Ca)

∂Na

∂pa
+ (Pb − Cb)

∂Nb

∂pa

= −
[
(Pa − Ca)

∂Na

∂Pa
+ (Pb − Cb)

∂Nb

∂Pa

]
= N∗a

where the second line uses the fact that ∂Na/∂Pa = −∂Na/∂pa, ∂Nb/∂Pb =

−∂Nb/∂pb by (1) and (2), and where the third line uses platform U’s first-

order condition for profit maximization on side a (∂Π/∂Pa = 0). By analogy,

∂Π/∂pb = N∗b . Using (7), we know

∂p∗a
∂∆a

= −∂P
∗
a

∂∆a
= −3τaτb − σb (2σa + σb)

D
,

∂p∗b
∂∆a

= −
∂P ∗b
∂∆a

=
τb (σa − σb)

D

Hence

[SE] =
∂p∗a
∂∆a

N∗a +
∂p∗b
∂∆a

N∗b

= −3τaτb − σb (2σa + σb)

D
N∗a +

τb (σa − σb)
D

N∗b

Before deriving the total effect, we first examine the strategic effect.

15



4.1.1 Sign of the strategic effect

In one-sided markets, the strategic effect is negative when firms’ strategies

are complements. We can mimic one-sided markets in this model by setting

σa = σb = 0. In that case we check that [SE] is indeed negative. How-

ever, in a two-sided market, platforms choose two prices and it is not clear

how to define strategic complementarity or substitutability. In the present

case, it turns out that the strategic effect can be positive, implying that an

investment that makes platform U though is met by a favourable response

from platform l. First note that the strategic effect from an investment on

side a is more likely to be positive if σa > σb. Next, supposing σa > σb,

we know from our analysis of equilibrium prices, that platform l reacts by

decreasing its price on side a and increasing its price on side b. Other things

being equal, platform U welcomes such reaction as σa > σb implies that it

is more profitable to attract additional users on side b than on side a. Yet,

things are not equal: the price variations are not equal and apply to different

quantities. Obviously, [SE] is even more likely to be positive if N∗a is close

to zero and/or N∗b close to one. But the strategic effect can be positive even

if we start from a symmetric situation (N∗a = N∗b = 1/2). For instance, set

σa = 2, σb = 1, τa = 0.8 and τb = 3 (which satisfy the second-order condi-

tion) and compute [SE] = 0.4/D > 0. This example demonstrates that the

positivity of the strategic effect is not a pathological phenomenon.

4.1.2 Sign of the total effect

Combining the above results, we can now express the total effect as the sum

of the direct and strategic effects:

[TE] = N∗a −
3τaτb − σb (2σa + σb)

D
N∗a +

τb (σa − σb)
D

N∗b

=
6τaτb − (2σa + σb) (σa + σb)

D
N∗a +

τb (σa − σb)
D

N∗b

In one-sided markets (σa = σb = 0), the total effect is clearly positive: even

if a negative strategic effect may lead the firm to underinvest, the direct

effect is large enough to make the investment profitable. In contrast, in two-

sided markets, the presence of cross-group effects may challenge this result

as stated in the next proposition.

Proposition 1 Consider two platforms competing in prices and let one of
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them have access to a cost-reducing innovation. This platform may not adopt

this innovation as it would reduce its profit.

For instance, start from a symmetric situation (N∗a = N∗b = 1/2) and

set σa = 1, σb = 2, τa = 1.15 and τb = 2 (which satisfy the second-order

condition). We can then compute [TE] = −0.1/D < 0.

To understand this result, note first that [TE] is a negative function of

σb. Hence, an investment on side a becomes less profitable the more users on

side b value interactions. This is because the strategic effect becomes more

negative (see the discussion above for the opposite case when σa > σb). The

strategic effect might become larger than the direct effect as the value of σb

continues to grow.

It would be wrong to think that if a platform has no incentive to invest

on one side, it would necessarily have an incentive to invest on the other

side. It is indeed possible to show that both dΠ/d∆a and dΠ/d∆b can be

negative for the same configuration of parameters. Keeping for instance

the same values of the parameters that yielded a negative total effect of an

investment on side a (σa = 1, σb = 2, τa = 1.15 and τb = 2), we also find a

negative total effect of an investment on side b.10

4.2 Competitive threat

Our objective in this section is not to redo the previous analysis for this

alternative measure of the incentive to innovate. We just want to compare

the two measures and show that, contrary to the conventional wisdom in

one-sided markets, taking the competitive threat into account may decrease

a platform’s incentive to innovate. We also want to push the analysis a bit

further by analyzing a simple game of innovation adoption.

4.2.1 When the competitive threat becomes an opportunity

Using the definitions (11), we see that the competitive threat is smaller than

the profit incentive if (focusing again, without loss of generality, on platform

l and side a)

CTa (x) < PIa (x)⇔ Π (Ca, Cb; ca − x, cb) > Π (Ca, Cb; ca, cb) ;

10It suffices to switch the indices a and b in the expression of [TE]; doing so, we find

[TE] = −0.025/D.
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that is, if platform l’s profit increases when the rival platform reduces its

marginal cost. We have already demonstrated above that this possibility

exists. Indeed, the adoption of the innovation by platform l reduces ∆a

by x (as platform l’s marginal cost is reduced from ca to ca − x) and we

know that dΠ/d∆a can be negative when the strategic effect is sufficiently

negative. In this model with covered markets on both sides, it is the relative

efficiency of the two platforms that matters. Hence, a platform is affected in

the same way if it decreases its cost by some amount or if the rival platform

increases its by the same amount.

This apparently counter-intuitive result can be explained as above. Cross-

group externalities may amplify the strategic effects of a cost-reducing in-

vestment to such an extent that a investment meant to make a platform

tough (cost reduction) makes her eventually soft as it raises the profit of the

other platform.

4.2.2 On which side to innovate?

The competitive threat (based on the idea that if a firm does not adopt the

innovation, the other firm will do) naturally leads to the analysis of situations

where both firms simultaneously contemplate the possibility of adopting the

innovation. In the present context, platforms face a larger strategy set than

in traditional markets: if they decide to adopt the innovation, they still

have to decide on which side they will apply it. (Give here an example of a

multipurpose technology that can decrease the platform’s cost on either side of

the market.)

For simplicity, we focus on this second issue (assuming, for instance,

that the technology is very inexpensive). We also assume that platforms

are identical when the game starts; that is, we set ∆k and δk equal to zero

(on each side, platforms have the same marginal cost and offer the same

stand-alone benefits and marginal external effects). The innovation allows

platform to reduce marginal cost by x on the side of their choice. Each

platform decides thus whether to apply the innovation on side a or on side

b.11 We note by {A,B} and {a, b} the choices of, respectively, platform U

and platform l.

11Naturally, we assume here that both platforms have positive incentives to innovate:

dΠ/d∆k > 0 and dπ/d∆k > 0 (k = a, b). We could, more generally, allow platforms

to allocate the cost reduction x in any possible way between the two sides. We show

in the appendix that platforms would nevertheless find it optimal to concentrate the full
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Suppose first that both platforms decide to invest on the same side. That

is, Ck becomes Ck − x and ck becomes ck − x. This leaves γk unchanged:

γk = Ck − ck = (Ck − x)− (ck − x). As a result, ∆k remains equal to zero.

Using expressions (9) and (10), we have thus

Π (A, a) = π (A, a) = Π (B, b) = π (B, b) = 1
2 (τa + τb − σa − σb) .

Suppose now that platform U invests on side a and platform l on side b.

It follows that ∆a = x and ∆b = −x. Plugging these values in expressions

(9) and (10), we find

Π (A, b) = 1
2 (τa + τb − σa − σb) + 1

2D (τa + τb − σa − σb)x (x+ (σa − σb)) ,

π (A, b) = 1
2 (τa + τb − σa − σb) + 1

2D (τa + τb − σa − σb)x (x− (σa − σb)) .

In the reverse situation, we easily find by symmetry that Π (B, a) = π (A, b)

and π (B, a) = Π (A, b).

We can now characterize the Nash equilibrium of the game. For both

platforms to apply the innovation on side a, we need Π (A, a) ≥ Π (B, a) and

π (A, a) ≥ π (A, b). As Π (A, a) = π (A, a) and Π (B, a) = π (A, b), the two

conditions are equivalent; given that x > 0 and τa + τb > σa − σb, they boil

down to x ≤ σa − σb. By analogy, both firms choose side b at equilibrium

if x ≤ − (σa − σb). It is then clear that the equilibrium involves the two

platforms choosing different sides if x ≥ |σa − σb|. We have therefore proven

the following proposition.

Proposition 2 Suppose that the platforms can freely adopt an innovation

that reduces their marginal cost on one side by x and that they have to choose

on which side they apply this innovation. Suppose, without loss of generality,

that σa > σb (users on side a value more the intraction with the other group

than users on side b). At the Nash equilibrium, both platforms apply the

innovation on side a if x ≤ σa−σb; otherwise, they apply the innovation on

different sides.

Hence, if the innovation is sufficiently important, the platforms will ‘spe-

cialize’ by investing on different sides, which will break the initial symmetry.

It is important to note that such specialization increases total profits. Setting

δa = δb = 0, we have that total profits are equal to

Π + π = (τa + τb − σa − σb) +
1

D

(
τb∆

2
a + τa∆

2
b + (σa + σb) ∆a∆b

)
.

reduction on one side or on the other.
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Starting from the symmetric situation, ∆a = ∆b = 0 when both platforms

invest on the same side, or ∆a = x and ∆b = −x (or ∆a = −x and ∆b = x)

when they specialize. Substituting in the previous expression, we find

Π + π|Specialization − Π + π|Same side =
1

D
(τb + τa + (σa + σb))x

2 > 0.

We can also show (to be formally done) that the consumer surplus is also

larger under specialization.

(Comment on unstability of symmetric situation)

5 Discussion and concluding remarks

TBW

6 Appendix

(to be cleaned)

Start from symmetric situation: ∆a = δa = ∆b = δb = 0, implying that

N∗a = n∗a = N∗b = n∗b = 1/2. Suppose that the total effect is positive for

both platforms on both sides; that is,

[TE]a and [te]a > 0 ⇐⇒ 6τaτb + (σa − σb) τb − (σa + σb) (2σa + σb) > 0,

[TE]b and [te]b > 0 ⇐⇒ 6τaτb + (σb − σa) τa − (σa + σb) (σa + 2σb) > 0.

Platforms can reduce cost by x. This x has to be split among the two

sides. Platform U (resp. l) chooses 0 ≤ A ≤ 1 (resp. 0 ≤ a ≤ 1) as the

fraction of the cost reduction that goes to side a; the remaining fraction

goest to side b. As a result, ∆a = (A− a)x and ∆b = (1−A− (1− a))x =

− (A− a)x. Hence, for a given pair (A, a), platform U ’s equilibrium profit

at the price game is given by

Π (A, a) =
1

2D
(τa + τb − σa − σb)

(
D + (A− a)2 x2 + (σa − σb) (A− a)x

)
Platform U chooses A ∈ (0, 1) to maximize Π (A, a). We have

dΠ

dA
=

1

2D
(τa + τb − σa − σb)

(
2 (A− a)x2 + (σa − σb)x

)
d2Π

dA2
=

1

D
(τa + τb − σa − σb)x2 > 0.

From the SOC, we see that the platform will choose either A = 0 or A = 1.
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