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1 Introduction

Derivatives activity has grown strongly over the past fifteen years. For example, credit default

swaps (CDS), bilateral over-the-counter contracts used to insure credit risk, alone saw total

notional amounts outstanding increase from around $180 billion in 1998 to a peak of over

$60 trillion by mid-2008 (Acharya et al., 2012). But the insurance provided by derivatives

is effective only if counterparties can honor their contractual obligations and do not default.

When Lehman Brothers filed for bankruptcy protection in September 2008, it froze the

positions of more than 900,000 derivative contracts (about 5% of all derivative transactions

globally) in which Lehman Brothers was a party (Fleming and Sarkar, 2014). The sudden

awareness of the possibility of counterparty risk in derivatives and of the associated loss of

protection marked the beginning of the global financial crisis.

What are the interactions between counterparty—risk and derivatives activity? Can risk-

sharing via derivatives perversely lead to risk—taking by financial institutions? How can

derivatives activity be made more resilient to risk? In this paper, we explain how derivatives

positions affect risk—taking incentives. We show how margin deposits and clearing arrange-

ments can be designed to mitigate counterparty risk. We provide new empirical predictions

about the extent of derivatives activity in a given financial environment and the default risk

of institutions selling protection through derivatives.

Our model features risk-averse protection buyers who want to insure against a common

exposure to risk (any idiosyncratic component of risk can be diversified among protection

buyers themselves). To insure the common risk, they contact risk-neutral protection sellers

whose assets are risky, but who are not directly exposed to the risk buyers want to insure.

Because of limited liability, protection sellers can make insurance payments only if their

assets are suffi ciently valuable. The value of a protection seller’s assets is affected by her

actions. Specifically, we assume protection sellers can prevent downside risk, and hence

maintain a suffi cient value for their assets, by exerting costly effort. For example, when

choosing their investments they can carefully scrutinize their quality. Instead of careful and

costly own scrutiny, protection sellers can “shirk”and avoid the cost by relying on external,

ready-made credit ratings or simple backward—looking measures of risk, as pointed out by

Ellul and Yerramilli (2013). A failure of protection sellers to exert the risk-prevention effort
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(which we call “risk-taking”) leads to counterparty risk for protection buyers. Since financial

institutions’balance-sheets and activities are opaque and complex, lack of risk-prevention

effort is diffi cult to observe and to detect for outsiders. This creates a moral hazard problem

for protection sellers, the key friction in our model.

Our model builds on two important characteristics of derivatives activity. First, during

the life of a derivative contract, new information about the value of the underlying asset

becomes available. Such news affect the expected pay-offs of the contracting parties: it

makes the derivative position an asset for one party and a liability for the other. Second,

derivative exposures, and hence the associated potential liabilities, can be large. According

to the Quarterly Report on Bank Derivatives Activities by the Offi ce of the Comptroller of

the Currency, total credit exposure from derivatives reached more than $1.5 trillion in 2008.1

The total credit exposure of the top five financial institutions was two to ten times larger

than their risk-based capital.

A key insight of our analysis is that a large derivative exposure undermines a protection

seller’s incentives to exert the risk-prevention effort when news makes the derivative position

an expected liability for her. In that case, she bears the full cost of the risk-prevention effort

while the benefit of this effort partly accrues to her counterparty in the form of payments

from the derivative contract. This is reminiscent of debt-overhang (Myers, 1977) but there

is an important difference. In our analysis, the liability arises endogenously in the context

of an optimal contract and it only materializes when negative news occur.

The optimal contract takes one of two forms, depending on the severity of the moral-

hazard problem. Either the contract maintains protection sellers’risk—prevention incentives,

but this comes at the cost of less ex—ante risk-sharing for protection buyers. Or it promises

more risk—sharing but gives up on risk—prevention incentives, which creates counterparty risk

for protection buyers. Thus, our first contribution is to show how the risk-sharing potential

from derivatives contracts is limited either by just the potential or the actual presence of

endogenous counterparty risk.

1Total credit exposure is the sum total of net current credit exposure (NCCE) and potential future
exposure (PFE). NCCE is the gross positive fair value of derivatives contracts less the dollar amount of
netting benefits. PFE is an estimate of what the current credit exposure could be over time, based upon a
supervisory formula in the risk-based capital rules.
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Our second contribution is to identify a channel through which derivatives activity can

propagate risk. Without moral hazard, we assume for simplicity that the pay-offs from

protection seller assets and from protection buyer assets are independent. In contrast, with

moral hazard, bad news about protection buyer assets can increase the likelihood of low pay-

offs from protection seller assets, because bad news undermine the protection seller’s risk—

prevention incentives. Moral-hazard in derivatives activity can therefore generate contagion

(endogenous correlation) between two, otherwise unrelated, asset classes.

For example, prior to the recent crisis commercial banks frequently reduced their capital

requirements by purchasing derivatives.2 A bank exposed to sub-prime mortgages could

purchase CDS on those mortgages and save on regulatory capital. Conditional on the drop

in real estate prices (which started well in advance of the crisis), those CDS contracts became

expected liabilities for those institutions that sold them, typically investment banks. Our

model predicts that financial institutions with larger short CDS positions exposed their

balance sheets more to downside risks as bad news about the housing market emerged.

This creates correlation between the mortgage values and the values of financial institutions’

assets without direct exposure to mortgage default. By contrast, those same institutions

would not have increased their risk exposure after good news about the housing market.

Importantly, in our model the exposure to downside risk is not the consequence of mistakes

or incompetence. It is a calculated choice of trading-off ex—ante risk-sharing and downside

risk exposure after bad news.

The third contribution of our paper is to characterize the optimal design of margin calls

and central clearing, two institutional arrangements that aim to mitigate counterparty risk in

derivatives activity. Both margins and central clearing received much focus in the regulatory

overhaul of financial markets in the aftermath of the financial crisis. The Dodd-Frank Wall

Street Reform Act in the U.S. and the European Market Infrastructure Regulation in Europe

require certain derivative trades to occur via central clearing platforms (CCPs). There is,

however, still considerable debate about the optimal design of CCPs for derivatives (see, e.g.,

Dudley, 2014, and Economist, 2014).

To examine the effects of central clearing, our model features a CCP that interposes

272% of the CDS AIG had sold by December 2007 were used by banks for capital relief (European Central
Bank, 2009).
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between protection buyers and sellers. The benefit of the CCP is that it mutualizes the

idiosyncratic part of counterparty risk. In a bilateral contract, each protection buyer is

exposed to the counterparty risk of his own protection seller. The CCP instead pools the

resources from all protection sellers. Any losses from the default of individual sellers are

therefore shared across all protection buyers.

The CCP is also in charge of implementing margin calls. We emphasize the incentive role

of margins. The party subject to a margin call has to deposit assets with the CCP. She no

longer has control over the deposited assets, which are therefore “ring-fenced” from moral

hazard. Risk-prevention effort only concerns the remaining, now smaller fraction of assets

over which she still has control. The cost of risk-prevention effort is therefore lower, which

improves risk-prevention incentives. While ring—fencing is the benefit of margins, it comes at

a cost. The loss of control goes hand-in-hand with a loss of income. Safe assets on a margin

account earn a lower return than risky assets left on financial institutions’balance-sheets.

Margins will therefore be used only when the ring-fencing benefit outweighs their cost, e.g.,

when the moral hazard problem is severe, or when the opportunity cost of depositing assets

in the margin account is not too large.

Our analysis implies margins can be an attractive substitute to equity capital. Margins

improve incentives by making the asset side of the balance sheet less susceptible to moral-

hazard. With less moral-hazard, the assets can support larger liabilities. Consequently,

margins allow protection sellers to engage in incentive-compatible derivative trading with

less equity. An advantage of margins is their contingent nature. They are called only when

individual derivative positions deteriorate.

Our mechanism design approach clarifies how two important reform proposals to make

derivative markets more resilient, namely margins and central clearing, interact and need to

be designed together. While central clearing allows mutualizing counterparty risk, margins

provide incentives to avoid counterparty risk. Without margins, CCPs would bear too much

risk and without a CCP, contracting parties would have to put up higher margins. And

it is the CCP who must design and mandate the margin calls. Otherwise, there would be

free-riding on the insurance it offers.

Our model also generates new, testable implications. First, we predict that derivatives

4



contracts that offer ample insurance but increase exposure to downside risk (of protection

sellers) are likely to be underwritten in a “benign”macroeconomic and financial environ-

ment. Second, the relation between derivatives exposures and the pledgeability of a financial

institution’s assets (measured, e.g., by the effi ciency of its risk-management practices) is

U-shaped. Financial institutions with an intermediate level of risk-management effi ciency

choose small derivatives exposures while financial institutions on the other two sides of effi -

ciency spectrum choose large exposures. Third, optimal margins are higher when i) risk-free

rates are high compared to the return on productive investment opportunities, and ii) risk-

management costs increase strongly with the amount of assets under management.

While the financial insurance literature typically focuses on moral hazard on the part

of the buyer of protection,3 Thompson (2010) assumes moral hazard on the part of the

seller of protection. Our analysis shares this feature with that of Thompson (2010), but

the two papers consider very different information—asymmetry problems. In particular, in

our analysis, in contrast with Thompson (2010), moral hazard impedes the provision of

insurance.

Bolton and Oehmke (2013) rely on a modeling framework similar to ours but consider

different issues. They show that effective seniority for derivatives transfers credit risk to the

firm’s debtholders that could be borne more effi ciently by the derivative market.

Acharya and Bisin (2011) analyze the externalities arising between several protection

buyers contracting with the same protection seller. They show how centralized clearing can

internalize externalities among protection buyers, via optimally designed pricing schedules.

This differs from our moral hazard setting where externalities are not a key issue, and

quantities as well as prices must be controlled to restore incentives.4

Our paper explains how derivatives activity, through its effect on incentives, can gen-

erate contagion between asset classes whose risk is independent in the absence of incentive

problems. This novel form of contagion channel adds to the literature on shock propaga-

tion, which emphasized interregional financial connections (Allen and Gale, 2000, Freixas,

3See, e.g., Parlour and Plantin (2008) in the context of credit risk transfer in banking.
4In the context of a model with dividend externalities among interconnected banks, Acharya et al. (2013)

show how margin and capital requirements imposed by clearing-houses make banks internalize costs of their
default on each other.
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Parigi and Rochet, 2000), information contagion (Acharya and Yorulmazer, 2007, King and

Wadhwani, 1990) and fire sales (Allen and Carletti, 2006, Cifuentes, Ferrucci and Shin,

2005).

Margins can be interpreted as a form of collateral. Collateral is usually analyzed in mod-

els in which agents borrow to finance investments (see, e.g, Bolton and Scharfstein (1990),

Holmstrom and Tirole (1997), Acharya and Viswanathan (2011)). Our paper offers the first

analysis of the incentives role of collateral in derivatives trading. This new context brings

about new features that set margins apart from standard collateral. Standard collateral,

say a house that backs up a mortgage, is transferred from the borrower to the creditor after

decisions have been taken and pay-offs are realized, e.g., when the borrower defaults. By

contrast, margin calls in our analysis, as in derivatives markets, occur before contracts ma-

ture, i.e., final pay-offs are realized, and, importantly, before effort and risk—taking decisions

are made.

Our modelling of moral hazard, where the agent chooses between effort and shirking

is in line with Holmstrom and Tirole (1997, 1998), and we borrow from their analysis the

terminology “pledgeable income,” to refer to the future output that can be promised by

the agent without jeopardizing her incentives. In our setting, however, incentives can be

undermined by the arrival of information about the risk underlying the derivative contract

before effort decisions are made, and this problem can be mitigated with margin calls. These

key features of our model are absent from the standard moral—hazard model studied in

Holmstrom and Tirole (1997, 1998).

The remainder of the paper is organized as follows. The model is presented in Section

2, which also analyzes the benchmark case in which there is no moral—hazard problem.

Section 3 analyzes optimal contracting under moral hazard. Section 4 presents extensions

and discusses robustness. Section 5 contains empirical implications and Section 6 policy

implications of our analysis. Section 7 concludes. Proofs are in the Appendix.

6



2 Model and First—Best Benchmark

2.1 The model

There are three dates, t = 0, 1, 2, a mass—one continuum of protection buyers, a mass—one

continuum of protection sellers and a Central Clearing Platform, hereafter referred to as the

CCP. At t = 0, the parties design and enter the contract. At t = 1, investment decisions are

made. At t = 2, payoffs are received.

Players and assets. Protection buyers are identical, with twice differentiable concave

utility function u, and are endowed with one unit of an asset with random return θ̃ at t = 2.5

For simplicity, we assume θ̃ can only take on two values: θ̄ with probability π and θ with

probability 1 − π, and we denote ∆θ = θ̄ − θ. The risk θ̃ is the same for all protection

buyers.6

Protection buyers seek insurance against the risk θ̃ from protection sellers who are risk-

neutral and have limited liability. Each protection seller j has an initial amount of cash A.

At time t = 1, this initial balance sheet can be split between two types of assets: i) low

risk, low return assets such as Treasuries (with return normalized to 1), and ii) risky assets

returning R̃j per unit at t = 2. The protection seller has unique skills (unavailable to the

protection buyer or the CCP) to manage the risky assets and earn excess return. After this

initial investment allocation decision, the protection seller makes a risk-management decision

at t = 1. To model risk-management in the simplest possible way, we assume that each seller

j can undertake a costly effort to make her assets safer. If she undertakes the effort, the per

unit return R̃j is R with probability one. If she does not exert the effort, then the return

is R with probability p < 1 and zero with probability 1 − p. The risk-management process
reflects the unique skills of the protection seller and is therefore diffi cult to observe and

monitor by outside parties. Combined with limited liability, effort unobservability generates

moral—hazard.
5The concavity of the objective function of the protection buyer can reflect institutional, financial or

regulatory constraints, such as leverage constraints or risk—weighted capital requirements. For an explicit
modeling of hedging motives see Froot, Scharfstein and Stein (1993). Rampini and Viswanatan (2010)
examine how a firm’s hedging policy interacts with its financing policy in a dynamic context.

6At the cost of unnecessarily complicating the analysis, we could also assume that the risk has an idio-
syncratic component. This component would not be important as protection buyers could hedge this risk
among themselves, without seeking insurance from protection sellers.
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Exerting the effort costs C per unit of assets under management at t = 1.7 Because

protection seller assets are riskier without costly effort, we also refer to the decision not to

exert effort as “risk-taking”.8 Undertaking risk-management effort is effi cient,

R− C > pR, (1)

i.e., the expected net return is larger with risk-management effort than without it. We also

assume that when protection seller exerts risk management effort, return on his assets is

higher than the return on the safe asset,

R− C > 1, (2)

For simplicity, conditional on effort, R̃j is independent across sellers and independent of

protection buyers’risk θ̃. To allow protection sellers that exert effort to fully insure buyers,

we assume AR ≥ π∆θ.

Advance information. At the beginning of t = 1, before investment and risk manage-

ment decisions are made, a public signal s̃ about protection buyers’risk θ̃ is observed. For

example, when θ̃ is the credit risk of real—estate portfolios, s̃ can be the real—estate price

index. Denote the conditional probability of a correct signal by

λ = prob[s̄|θ̄] = prob[s|θ].

The probability π of a good outcome θ̄ for the protection buyer’s risk is updated to π̄ upon

observing a good signal s̄ and to π upon observing a bad signal s, where, by Bayes’law,

π̄ = prob[θ̄|s̄] =
λπ

λπ + (1− λ)(1− π)
and π = prob[θ̄|s] =

(1− λ)π

(1− λ)π + λ(1− π)
.

We assume that λ ≥ 1
2
. If λ = 1

2
, then π̄ = π = π and the signal is completely

uninformative. If λ > 1
2
, then π̄ > π > π, i.e., observing a good signal s̄ increases the

probability of a good outcome θ̄ whereas observing a bad signal s decreases the probability

of a good outcome θ̄. If λ = 1 the signal is perfectly informative.

7We show later that our results are unchanged when we allow the unit cost C to increase (linearly) with
assets under management, which makes the overall cost of risk-management effort convex.

8Here risk-management effort improves returns in the sense of first-order stochastic dominance. In an
earlier version of the paper we show that our results are robust when effort improves returns in the sense of
second—order stochastic dominance, so that lack of effort corresponds to risk—shifting.
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Central counterparty, contracts and margins.

In practice, protection buyers and protections sellers contract bilaterally, and the CCP

then interposes between contracting parties. Thus, the contract between the protection

buyer and protection seller is transformed into two contracts, one between the seller and

the CCP and another one between the buyer and the CCP (a process called novation).

In our model, for simplicity, we by-pass the first step (bilateral contracting), and analyze

directly the contracts between the CCP and protection buyers and sellers. This enables us

to approach the problem from a mechanism design viewpoint in which the CCP designs an

optimal mechanism for buyers and sellers.

Correspondingly, the CCP is modeled as a public utility designed to maximize the welfare

of its members (i.e., it acts as the social planner). For simplicity, we assume the CCP

maximizes expected utility of protection buyers subject to the participation constraint of

the protection sellers.9

At t = 0, the CCP specifies transfers τS between protection sellers and the CCP at

t = 2, and transfers τB between protection buyers and the CCP at t = 2. Positive transfers

τS, τB > 0 represent payments from the CCP to sellers and buyers, while negative transfers

represent payments from sellers and buyers to the CCP. The transfers τS and τB at t = 2

are contingent on all available information at that time. This information consists of the

buyers’risk θ̃, the signal s̃ and the set of all the protections sellers’asset returns R̃. Hence,

we write τS(θ̃, s̃, R̃) and τS(θ̃, s̃, R̃). Since the transfers are contingent on final asset values

as well as advance public information about those values (that could be conveyed, e.g., by

asset prices), we can think of them as transfers specified by derivative contracts.

The transfers between the CCP and its members reflect the initial underlying bilateral

contract, which is novated, and mutualization across all bilateral contracts. Hence, the

transfers depend not only on a protection seller individual asset return R̃j, as would be the

case in a bilateral contract without the CCP, but depend on all sellers’ asset returns R̃.

This is because the latter affect the amount of resources available to the CCP to insure its

members against counterparty risk.

9While this is only one point on the Pareto frontier, in the first-best all other Pareto optima would entail
the same real decisions, i.e., the same risk—sharing and productive effi ciency. In the second-best, changing
the bargaining does not alter our qualitative results.
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Figure 1 illustrates how the CCP sits in between protection buyers and sellers.

Insert Figure 1 here

The contract between the CCP and its members not only specifies transfers, it can also

request margin deposits. Because the CCP has no ability to manage risky, opaque assets,

it only accepts as margin deposits safe, transparent ones, such as cash or Treasuries that

are not subject to information asymmetry problems.10 One can therefore interpret margins

as an institutional arrangement that affects the time—1 split of the seller’s balance sheet

between transparent assets and opaque investments. Margins “ring-fence”a fraction of the

protection sellers’assets from moral-hazard. However, margins incur the opportunity cost of

foregoing the excess return of the risky asset, R− C − 1. The margin can be contingent on

all information available at time 1, i.e., the signal s̃. We denote the fraction of the protection

seller’s balance sheet deposited on the margin account by α(s̃).

The CCP is subject to budget-balance, or feasibility, constraints at t = 2. For each joint

realization of buyers’risk θ̃, the signal s̃ and sellers’asset returns R̃, aggregate transfers to

protection buyers cannot exceed aggregate transfers from protection sellers (the CCP has no

resources of its own):

τB(θ, s, R) ≤ −τS(θ, s, R), ∀(θ, s, R). (3)

Transfers from protection sellers are constrained by limited liability,

−τS(θ, s, R) ≤ α(s)A+ (1− α(s))AR, ∀(θ, s, R). (4)

A protection seller cannot make transfers larger than what is returned by the fraction (1−
α(s)) of assets under her management and by the fraction α(s) of assets she deposited on

the margin account. Finally, the fraction of assets deposited must be between zero and one,

α(s) ∈ [0, 1] ∀s. (5)

The sequence of events is summarized in Figure 2.

Insert Figure 2 here
10That assets with low information sensitivity are used as collateral is in line with Gorton and Pennacchi

(1990).
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2.2 First-best: observable effort

In this subsection we consider the case in which protection sellers’risk-management effort is

observable, so that there is no moral hazard and the first-best is achieved. While implausible,

this case offers a benchmark against which we will identify the ineffi ciencies arising when

protection seller’s risk-management effort is not observable.

Protection sellers are requested to exert risk-management effort when offering protection

since doing so increases the resources available for risk-sharing (see (1)). Margins are not

used since they are costly (see (2)) and offer no benefit when risk-management effort is

observable. The CCP chooses transfers to buyers and sellers, τB(θ̃, s̃, R̃) and τS(θ̃, s̃, R̃), to

maximize buyers’utility

E[u(θ̃ + τB(θ̃, s̃, R̃)] (6)

subject to the feasibility (3) and limited liability (4) constraints, as well as the constraint

that protection sellers participate and join the CCP. By joining (and exerting effort), sellers

obtain E[τS(θ̃, s̃, R̃)] + A(R − C). If they do not join and thus do not sell protection, they

obtain A(R−C).11 The protection sellers’participation constraint in the first-best therefore

is

E[τS(θ̃, s̃, R̃)] ≥ 0. (7)

Proposition 1 states the first-best outcome. Since protection sellers exert risk-management

effort, the return R̃ is always equal to R and we drop the reference to the return in the trans-

fers τB and τS for ease of notation.

Proposition 1 When effort is observable, the optimal contract entails effort, provides full

insurance, is actuarially fair and does not react to the signal. Margins are not used. The

transfers are given by

τB(θ̄, s̄) = τB(θ̄, s) = E[θ̃]− θ̄ = − (1− π) ∆θ < 0

τB(θ, s̄) = τB(θ, s) = E[θ̃]− θ = π∆θ > 0

τB(θ, s) = −τS(θ, s),∀(θ, s)
11Without derivative trading, protection sellers always exert effort since it is effi cient to do so (see condition

(2)).
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The first-best contract fully insures protection buyers. Their marginal utility, and hence

their consumption, is the same across all realizations of their risky asset θ and the signal

s. The transfers are independent of the signal and ensure a consumption level equal to the

expected value of the risky asset, E[θ̃]. The first-best insurance contract is actuarially fair

since the expected transfer from protection sellers to protection buyers is zero, E[τB(θ̃, s̃)] =

−E[τS(θ̃, s̃)] = 0. We assume

AR > π∆θ, (8)

so that, in the first—best, the aggregate resources of the protection sellers are large enough

to fully insure the protection buyers.

In our simple model, when effort is observable, each transfer to a protection buyer τB is

matched by an opposite transfer from a protection seller and margins are not needed. Thus

the contract can be implemented bilaterally and the CCP is not needed. Of course, this

reflects our simplifying assumption that, under effort, R is obtained for sure. If protection

sellers could default, even with high effort, the CCP would be useful, in the first best, to

mutualize default risk. As shown in the next sections, even in the simple case where effort

precludes default, with moral hazard, the CCP plays a useful role.

The first best transfers, τB(θ, s) and τS(θ, s), can be implemented with forward contracts.

The protection buyer sells the underlying asset forward, at price F = E[θ̃]. When the final

value of the asset is worth θ̄, the protection buyer must deliver at the relatively low forward

price F . But, when the final value of the asset is low θ, the forward price is relatively high.

This provides insurance to the protection buyer.

While we only consider transfers at t = 2, and not explicitly at t = 1, this is without

loss of generality, because any other trading arrangement can be replicated with transfers

at t = 2 and margins. Consider for example spot trading in which at t = 1, before the

realization of the signal, the protection seller uses some of his initial assets A to acquire

the protection buyers’asset at price S. Because there is no discounting, this is equivalent

for the protection buyer to a constant transfer S at time 2. This can be achieved within

the mechanism we analyze, by depositing S on the margin account at t = 1 and letting

τB(θ, s) = S, irrespective of the realization of θ and s. Proposition 1 shows, however, that

this is dominated by forward trading. Forward trading is more effi cient, because it makes it
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possible to keep the assets under the management of the protection seller until t = 2 and

earn a larger return (R− C) than when investing in the risk free asset.

3 Protection-seller moral-hazard

In the previous section, we examined the hypothetical case in which protection sellers’risk-

management effort is observable and can therefore be requested by protection buyers. We

now move on to the more realistic situation in which risk-management effort is not observable

and there is moral-hazard on the side of protection sellers.

If protection buyers want protection sellers to exert risk-management effort, then it must

be in sellers’own interest to do so after observing the signal s about buyers’risk θ̃. The

incentive compatibility constraint under which a protection seller exerts effort after observing

s is:

E[τS(θ̃, s̃, R̃) + α(s̃)A+(1− α(s̃))A(R̃− C)|e = 1, s̃ = s]

≥ E[τS(θ̃, s̃, R̃) + α(s̃)A+ (1− α(s̃))AR̃|e = 0, s̃ = s].

The left-hand side is a protection seller’s expected payoff if she exerts risk-management effort.

The effort costs C per unit of assets she still controls, (1 − α(s))A. The right-hand side is

her (out-of-equilibrium) expected payoff if she does not exert effort and therefore does not

incur the cost C.

Without effort, her assets under management return R with probability p and zero with

probability 1 − p. In order to relax the incentive constraint, the CCP requests the largest
possible transfer from a protection seller when R̃ = 0: −τS(θ̃, s̃, 0) = α(s̃)A. This rationalizes

the stylized fact that, in case of default of the protection seller, the CCP seizes her deposits

and uses them to pay protection buyers.

With effort, the protection seller’s assets under management are safe, with R̃ = R. For

brevity, we write τS(θ̃, s̃, R) as τS(θ̃, s̃). The incentive constraint after observing s is then

E[τS(θ̃, s̃)|s̃ = s] + α(s)A+(1− α(s))A(R− C)

≥ p
(
E[τS(θ̃, s̃)|s̃ = s] + α(s)A+ (1− α(s))AR

)
,
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or, using the notion of “pledgeable return”P (see Tirole, 2006),

P ≡ R− C

1− p, (9)

the incentive compatibility constraint rewrites as

α(s)A+ (1− α(s))AP ≥ E[−τS(θ̃, s̃)|s̃ = s]. (10)

The right—hand side is what protection sellers expect to pay to the CCP after seeing the

signal about buyers’ risk.12 The left-hand side is the amount that protection sellers’can

pay (or pledge) to the CCP without undermining their incentive to exert risk-management

effort. The left-hand side is positive since the assumption that effort is effi cient, condition (1),

ensures positive pledgeable return, P > 0. The right—hand side is positive when, conditional

on the signal, a protection seller expects, on average, to make transfers to the CCP. If

after seeing the signal she expects, on average, to receive transfers from the CCP, then the

right-hand side is negative and the incentive constraint does not bind. This is an important

observation to which we return later.

When the pledgeable return P is suffi ciently high, then protection sellers’incentive prob-
lem does not matter because the first-best allocation (stated in Proposition 1) satisfies the

incentive-compatibility constraint (10) after any signal. The exact condition is given in the

following lemma.

Lemma 1 When risk—management effort is not observable, the first-best can be achieved if

and only if the pledgeable return on assets is high enough:

AP ≥ (π − π)∆θ = E[θ̃]− E[θ̃|s̃ = s]. (11)

The threshold for the pledgeable return on assets, beyond which full risk-sharing is pos-

sible despite protection seller moral-hazard, is given by the difference between the uncondi-

tional expectation of buyers’risk θ̃ and the conditional expectation of this risk after a low

signal (indicating a bad outcome is more likely). The threshold increases, making it more

12In our simple model this promised payment reflects a single trade. With multiple trades, the relevant
expected payment would reflect the net exposure of the protection seller. In addition, when several trades
are conducted with several counterparties, contractual externalities may arise. In this context a potential
benefit of centralized clearing is to internalize externalities (see Acharya and Bisin, 2013).
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diffi cult to attain the first-best, when buyers’assets are riskier (larger ∆θ) and, interestingly,

when there is better information about this risk (larger λ leading to a lower π). Thus, Lemma

1 has the following corollary.

Corollary 1 When the signal is uninformative, λ = 1
2
, the first-best is always reached since

(π − π)∆θ = 0.

In what follows, we focus on the case in which protection seller moral-hazard matters

and full insurance is not feasible, as (11) does not hold.

3.1 Effort after both signals

In this section, we study the contract providing the protection seller the incentives to exert

risk-management effort both after positive and after negative signals. While margins were

not useful without moral-hazard (as discussed in Subsection 2.2), they may be useful now.

When a protection seller exerts risk-management effort after both signals, her participation

constraint is

E[α(s̃)A+ (1− α(s̃))A(R̃− C) + τS(θ̃, s̃, R̃)|e = 1] ≥ A(R− C).

Since, on the equilibrium path, the protection sellers exert effort, we have R̃ = R and again,

for brevity, we write the transfer to a protection seller as τS(θ̃, s̃). Collecting terms, the

participation constraint is

E[τS(θ̃, s̃)] ≥ E[α(s̃)]A(R− C − 1), (12)

The expected transfers from the CCP to a protection seller (left-hand-side) must be high

enough to compensate her for the opportunity cost of the expected use of margins (right-

hand-side). Thus, if margins are used, the contract is not actuarially fair.

The CCP chooses transfers to protection buyers τB(θ̃, s̃) and protection sellers, τS(θ̃, s̃),

as well as margins α(s̃), to maximize buyers’utility (6) subject to the feasibility constraints

(3), the constraint that the fraction α be in [0, 1] (5), and the incentive (10), limited liability

(4), and participation (12) constraints.

The next proposition collects first results on how resources are optimally transferred

between protection sellers and protection buyers.
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Proposition 2 In the optimal contract with risk-management effort, the feasibility con-

straints (3) bind for all (θ, s), the limited liability constraints (4) are slack in state (θ̄, s) for

each s, and the participation constraint (12) binds.

Protection sellers earn no rents and all resources available for insurance are passed on

to protection buyers. Protection sellers’limited liability is not an issue when the value of

the protection buyers’asset is θ̄, since in that state risk-sharing implies positive transfers to

protection sellers.

Using the binding feasibility constraints, we can rewrite the incentive constraint (10) as

α (s)A+ (1− α (s))AP ≥ E[τB(θ̃, s̃)|s̃ = s] (13)

Incentive compatibility implies that the expected transfers to the protection buyer be no

larger than the sum of the returns on i) the assets deposited on the margin account and on

ii) those left under the protetction seller’s management. The pledgeable return on assets

under management is smaller than the physical net return, P < R − C, because there is

moral hazard when exerting effort to manage the risk of those assets. The pledgeable return

on assets deposited on the margin account is equal to their physical return of one since they

are “ring-fenced”from moral-hazard in risk-management. When the moral hazard is severe,

P < 1, then depositing assets on the margin account relaxes the incentive constraint and

thus allows for higher transfers to protection buyers. This is the benefit of margins. But

assets deposited on the margin account incur an opportunity cost R − C − 1 to protection

sellers. This basic tradeoff leads to the following proposition:

Proposition 3 In the optimal contract with risk-management effort, margins are not used

after s if the incentive constraint given s is slack or if the moral-hazard is not severe, i.e.,

P ≥ 1.

When the incentive constraint after s is slack, then depositing assets on the margin

account offers no incentive benefit and only incurs the opportunity cost. When the pledgeable

return of assets under management (weakly) exceeds the pledgeable return of assets deposited

on the margin account, then margins also do not offer any incentive benefit since they actually

tighten the incentive constraint.
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To keep the next steps of the analysis tractable, we make the following simplifying as-

sumption:

AR > π̄∆θ − prob[s]

prob[s̄]
AP , (14)

The assumption guarantees, as we will show, a slack limited liability constraint for trans-

fers from a protection seller to the CCP when there is a good signal, s̄, but buyers’asset

return is low, θ. We discuss this assumption in more detail once we have solved for the opti-

mal transfers, τB(θ̃, s̃) and τS(θ̃, s̃). Given (14) and Proposition 2, we only need to consider

the limited liability constraint in state (θ, s).

The next proposition states that moral-hazard problem matters only after a bad signal.

Proposition 4 In the optimal contract with risk-management effort, the incentive constraint

(13) binds after a bad signal, but is slack after a good signal. Hence there is no margin call

after a good signal, i.e., α(s̄) = 0.

After observing a bad signal about the underlying risk, a protection seller’s position

is a liability to her, E[τS(θ̃, s̃)|s̃ = s] < 0. This undermines her incentives to exert risk-

management effort. She has to bear the full cost of effort while the benefit of staying solvent

accrues in part to protection buyers in the form of the (likely) transfer to the CCP. This is

in line with the debt-overhang effect (Myers, 1977).

In contrast, there is no moral-hazard problem for a protection seller after observing a

good signal. A good signal indicates that her position is an asset at this point of time,

E[τS(θ̃, s̃)|s̃ = s̄] > 0. This strengthens her incentives to exert risk-management effort. In a

sense, after a good signal, since the protection seller’s position has become an asset for her,

it increases the income she can pledge. In contrast, the loss she expects after a bad signal

reduces her pledgeable income.

We are now ready to characterize the optimal contract between the CCP, protection

buyers and protections seller that exert risk management effort. It is convenient to first

characterize optimal transfers as a function of the margin after a bad signal, α(s), and later

examine the optimal margin call after a bad signal. Expected transfers conditional on the

signal (as a function of α(s)) are given by the binding participation constraint (Proposition
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2) and the incentive constraint after a bad signal (Proposition 4),

E[τB(θ̃, s̃)|s̃ = s] = A [α(s) + (1− α(s))P ] (15)

E[τB(θ̃, s̃)|s̃ = s̄] = −prob[s]

prob[s̄]
A [α(s) (R− C) + (1− α(s))P ] (16)

The next proposition characterizes the transfers in each possible state:

Proposition 5 The transfers to protection buyers are

τB(θ̄, s̄) = (E[θ̃|s̄]− θ̄)− prob[s]
prob[s̄]

A [α(s) (R− C) + (1− α(s))P ] < 0, (17)

τB(θ, s̄) = (E[θ̃|s̄]− θ)− prob[s]
prob[s̄]

A [α(s) (R− C) + (1− α(s))P ] > 0,

so that (14) implies the limited liability constraint does not bind in state (θ, s̄). Furthermore,

if the limited liability constraint is slack in state (θ, s), the transfers to protection buyers

after a bad signal are

τB(θ̄, s) = (E[θ̃|s]− θ̄) + A [α(s) + (1− α(s))P ] < 0 (18)

τB(θ, s) = (E[θ̃|s]− θ) + A [α(s) + (1− α(s))P ] > 0.

Otherwise, the transfers after a bad signal are

τB(θ̄, s) = α(s)A− (1− α(s))A
(1− π)R− P

π
(19)

τB(θ, s) = α(s)A+ (1− α(s))AR > 0.

In the optimal contract, if the limited liability constraint is slack in state (θ, s), then

there is full risk sharing given the signal. That is, for a given signal s, the consumption

of the protection buyer is the same irrespective of whether θ̄ or θ realizes. On the other

hand, in contrast with the first best, transfers vary with the signal. This is because, after

a bad signal, it is diffi cult to provide incentives to the agent. Thus, incentive compatibility

reduces the transfers that can be requested from the protection seller. Correspondingly, due

to incentive problems, the protection buyer is exposed to signal risk, as her consumption

is larger after a good signal than after a bad signal. Cross—subsidization across signals

mitigates that effect, but only imperfectly, due to incentive constraints. Cross—subsidization
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across realizations of the signal is possible because the parties commit to the contract at time

0, before advance information is observed. If the contract was written after that information

had been observed, such cross—subsidization would be not be possible. This would reduce

the scope for insurance, in the line with the Hirshleifer (1971) effect.

To further analyze these effects consider the structure of the transfers in Proposition (5).

Each of the transfers in (17) has two components. The first one is the transfer implementing

full risk—sharing conditional on a good signal. The second one reflects cross—subsidization

across signals. Transfers in (18) have the same structure except that the first component

now reflects full risk—sharing conditional on a bad signal.

The expectation of the first component of these transfers, taken over signals and final

realizations of θ is 0. This is what would arise with actuarially fair insurance. But the

insurance offered by the protection seller is not actuarially fair. It involves a premium, to

compensate the protection seller for the effi ciency loss induced by margins: prob[s]α(s)(R−
C − 1). This premium is equal to the expectation of the second component of the transfers

in (17) and (18).

The structure of the transfers in (19) is different. When limited liability binds in state

(θ, s), full risk—sharing conditional on the signal is no longer possible, as protection sellers’

resources in state (θ, s) are insuffi cient. Conditional on a bad signal, the transfers in (19)

implement whatever risk—sharing is still possible given the binding limited liability constraint.

Now, turn to the determination of the optimal margin call after a bad signal. We first

note that putting all the assets of the protection seler in the margin account cannot be

optimal.

Proposition 6

α∗(s) < 1. (20)

The logic underlying Proposition 6 is the following. When assets are put in the margin

account, they earn lower return than under the management of the protection seller exerting

effort. This reduces the resources available to pay insurance to the protection buyer. To

cope with this dearth of resources, when α∗(s) = 1 all the assets in the margin account

must be transferred to the protection buyer when θ realizes. In this case, as can be seen
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by inspecting (19) for α∗(s) = 1, the structure of transfers is highly constrained. In fact, it

is so constrained that very little risk sharing can be achieved. Hence, a contract requesting

α∗(s) = 1 is suboptimal.

To analyze the precise amount of margin the calls, it is useful to consider the ratio of the

marginal utility of a protection buyer after a bad and a good signal. Denoting this ratio by

ϕ, we have

ϕ =
u′(θ̄ + τB(θ̄, s))

u′(θ̄ + τB(θ̄, s̄))
(21)

In the first-best, there is full insurance and ϕ is equal to 1. With moral hazard, the protection

buyer is exposed to signal risk. This makes insurance imperfect and drives ϕ above one.

Given the transfers in Proposition 5, ϕ is a known function of exogenous variables and

α(s). (17) implies that τB(θ̄, s̄) is decreasing in α(s). Hence the denominator of φ is increasing

in α(s). On the other hand, the numerator of is decreasing in α(s) (irrespective of whether

the limited liability condition in state (θ, s̄) binds or not). Hence, ϕ is decreasing in α(s).

Higher margins reduce ϕ, as they reduce the wedge between consumption after a good signal

and after a bad one, i.e., they improve insurance against signal risk. Optimal margins tradeoff

this benefit with their cost: assets in the margin account are less profitable than under the

management of the protection seller exerting effort. This tradeoff gives rise to the following

proposition.

Proposition 7 If P > 1, margins are not used. Otherwise, we have the following: If

ϕ (0) < 1 + R−C−1
1−P , then it is optimal not to use margins. Otherwise, there are two cases. If

ϕ(1− π∆θ

A (R− P)
) < 1 +

R− C − 1

1− P , (22)

the limited liability constraint is slack in state (θ, s) and the optimal margin solves

ϕ(α∗(s)) = 1 +
R− C − 1

1− P , (23)

while, if (22) does not hold, the optimal margin solves

ϕ(α∗(s)) = 1 +
R− C − 1

1− P +
1− π
1− P

u′(θ + τB(θ, s))− u′(θ̄ + τB(θ̄, s))

u′(θ̄ + τB(θ̄, s̄))
. (24)
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The right-hand side of (23) reflects the tradeoffbetween the costs and benefits of margins.

The numerator, R−C−1, is the opportunity cost of depositing a margin. The denominator

goes up as P decreases, i.e., as the incentive problem gets more severe.

When margins are as in (23), consistency requires that there be enough resources to

provide full insurance conditional on the signal. This is the case if (22) holds. Consistent

with intuition, this is the case if R is large enough. When there is full risk sharing conditional

on the signal, the last term on the right hand—side of (24) is 0. In that case, (24) simplifies

to (23). This case is illustrated in Figure 3. The figure is useful to examine graphically

the effect an increase in p, reducing pledgeable income P. The decrease in P shifts curve ϕ
upwards while shifting 1 + R−C−1

1−P downwards. This raises the optimal margin in (23). When

incentive problems become more severe, margins are needed more, to relax the incentive

constraint.

Insert Figure 3 here

On the other hand, when the limited liability constraint binds in state (θ, s), full risk—

sharing conditional on the signal is not achievable, so that u′(θ+ τB(θ, s)) > u′(θ̄+ τB(θ̄, s)).

The last term on the right hand—side of (24) is strictly positive, and, correspondingly, margins

are lower than when the limited liability condition is slack. Again, this is because (taking

as given that there is effort) margins reduce the amount of resources eventually available

to pay insurance. When limited liability binds, these resources are sorely needed. So it is

perferable to reduce margins, in order to increase the amount of resources available. The

following corollary gives a suffi cient condition for (22) to hold.

Corollary 2 A suffi cient condition for the limited liability condition to be slack in state

(θ, s) is

1− π∆θ

A (R− P)
>

(1− π)R− P
π + (1− π)R− P . (25)

Condition (25) holds if π∆θ is not too large. In that case, full risk—sharing after a bad

signal does not request too large resources, and can thus be implemented.

In the first-best the transfers depend only on the realization of θ and the optimal contract

can be implemented with a simple forward contract. In contrast, with moral-hazard and risk-

management effort after both signals, the transfers depend on the realizations of θ and s.
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The optimal contract can be implemented by the sale of a forward contract on the underlying

asset θ by protection buyers (as in the first-best) together with the purchase of a forward

contract on the signal s. The forward contract on s generates a gain for protection sellers

in state s. This gain increases their pledgeable income after a bad signal and thus restores

incentive compatibility in the light of the liability from the forward contract on θ.13

3.2 No effort after a bad signal (risk-taking)

Incentive compatibility after a bad signal reduces risk—sharing. Protection buyers may find

this reduction in insurance too costly. They may instead choose to accept shirking on risk

prevention effort (risk-taking) by protection sellers in exchange for a better sharing of the risk

associated with θ̃. In this subsection, we characterize the optimal contract with risk-taking

after a bad signal.

After a good signal, protection sellers exert risk-management effort so that R̃j = R for

all j. After a bad signal, protection sellers do not not exert risk-management effort so that

R̃j = R for a proportion p of sellers and R̃j = 0 for a proportion 1− p of sellers. Hence, the
transfer τS from the CCP to a protection seller must now be contingent on the realization

of R̃j. By contrast, the transfer τB from the CCP to a protection buyer does not have to be

contingent on the realization of a particular R̃j. The CCP can mutualize counterparty risk

and provide insurance to risk-averse protection buyers. However, the aggregate amount of

resources protection sellers generate differs after a good signal and after a bad signal. After

a bad signal, only proportion p of protection sellers generate return R while proportion 1−p
of sellers generate a zero return and cannot make any payments to the CCP as they are

protected by limited liability.

The CCP chooses transfers to buyers and sellers, τB(θ̃, s̃, R̃) and τS(θ̃, s̃, R̃), to maximize

buyers’utility

πλu(θ̄ + τB(θ̄, s̄, R)) + (1− π)(1− λ)u(θ + τB(θ, s̄, R)) (26)

+ π(1− λ)u(θ̄ + τB(θ̄, s, pR)) + (1− π)λu(θ + τB(θ, s, pR))

13While this implementation is plausible, it is not unique. Other financial contracts with gains for protec-
tion sellers after s such as options can be used.
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where, after a bad signal, τB is written as a function of pR to indicate mutualization of

counterparty risk by the CCP.

The feasibility constraints of the CCP after good and a bad signal, respectively, are given

by

τB(θ, s̄) ≤ −τS (θ, s̄, R) ∀(θ, s̄) (27)

τB(θ, s) ≤ −pτS (θ, s, R)− (1− p)τS (θ, s, 0) ∀(θ, s) (28)

The limited liability constraints for sellers whose assets generate R and for those whose

assets generate 0, respectively, are given by:

−τS(θ, s, R) ≤ α(s)A+ (1− α(s))AR for Rj = R (29)

−τS(θ, s, 0) ≤ α(s)A for Rj = 0 (30)

The seller’s incentive constraint after a good signal is, as before,

α (s̄)A+ (1− α (s̄))AP ≥ −E[τS(θ, s̄, R)], (31)

whereas after a bad signal, the seller must prefer not to exert effort

E[τS(θ, s, R)] + α (s)A+ (1− α (s))A (R− C) ≤

pE[τS(θ, s, R)] + (1− p)E[τS(θ, s, 0)] + α (s)A+ (1− α (s))pAR,

or, equivalently,

(1− α (s))AP ≤ −E[τS(θ, s, R)] + E[τS(θ, s, 0)]. (32)

Finally, the seller’s participation constraint with risk-taking is

prob[s̄]α (s̄)A (R− C − 1) + prob[s]α (s)A(pR− 1) + prob[s](1− p)AP (33)

≤ prob[s̄]E[τS(θ, s̄, R)] + prob[s](pE[τS(θ, s, R)] + (1− p)E[τS(θ, s, 0)])

The expected transfer from the CCP to a protection seller (right-hand side) is positive. If a

seller enters the position, she must be compensated for the potential effi ciency loss (left-hand

side). The loss is due to two factors: 1) costly margins after good and a bad signal (where

R − C − 1 is the opportunity cost of margins when a seller exerts effort and pR − 1 is the
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opportunity cost of margins when she does not) and 2) the loss of pledgeable income in the

event of default, which occurs with probability prob[s](1 − p). Thus, the contract with no
effort after a bad signal is actuarially unfair. The higher the pledgeable income, the greater

the effi ciency loss generated by risk-taking after a bad signal, the more actuarially unfair the

contract.

We can re-write the seller’s participation constraint with risk-taking as

Aprob[s̄]α (s̄) (R− C − 1) + Aprob[s] [R− C − (α (s) + (1− α (s))pR)] (34)

≤ prob[s̄]E[τS(θ, s̄, R)] + prob[s](pE[τS(θ, s, R)] + (1− p)E[τS(θ, s, 0)])

On the left-hand side, there is again the effi ciency loss from entering the contract with

risk-taking. After a good signal, the seller exerts effort but there is an opportunity cost

of margins, given by R − C − 1. After a bad signal, the seller does not exert effort and

the effi ciency loss is given by the difference between R − C, the return on assets when not
entering the contract and doing effort, and α (s) + (1− α (s))pR, the expected return under

the contract with risk-taking.

We first show that in the optimal contract with risk-taking, the feasibility constraints and

the participation constraint must bind, i.e., protection sellers earn no rents and all resources

available for insurance are passed on to protection buyers.

Proposition 8 In the optimal contract with risk-taking after a bad signal, the feasibility

constraints bind for all (θ, s) and the participation constraint binds.

The next proposition characterizes the use of margins in the contract with risk-taking and

narrows down the parameter space for which risk-taking after a bad signal can be optimal:

Proposition 9 In the optimal contract with risk-taking after a bad signal, margins are not

used after signal s̄ if the incentive constraint given s̄ is slack or if the moral-hazard is not

severe, i.e., P ≥ 1. After signal s, margins are not used if pR ≥ 1. If pR < 1, then

α∗(s) = 1. Such contract is, however, dominated by the one with effort after a bad signal.

Without effort after a bad signal, the expected per-unit return on the seller’s balance sheet

is pR. If pR < 1, this is lower than what assets return on the margin account. Hence, it is
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more profitable to deposit all of the protection seller’s assets in the margin account, α = 1,

where they earn a greater return and are ring-fenced from moral hazard. But protection

buyers can do at least as well by requesting effort after a bad signal since, there too, α = 1

can be selected (but, as we know from Proposition 6, it is never optimal). It follows that the

contract with margins and no effort after a bad signal can only be strictly optimal if pR ≥ 1.

The next proposition characterizes the optimal transfers in the contract with risk-taking

after a bad signal.

Proposition 10 If pR < 1, then risk—taking is suboptimal. Otherwise, the optimal contract

with risk-taking after a bad signal provides full insurance to protection buyers if and only if

pAR ≥ π∆θ − (1− p) prob[s]AP . (35)

The transfers are given by

τB(θ̄, s̄) = τB(θ̄, s) = −(1− π)∆θ − prob[s](1− p)AP < 0,

τB(θ, s̄) = τB(θ, s) = π∆θ − prob[s](1− p)AP > 0.

In contrast to the contract with effort after a bad signal, the contract with risk-taking

does not react to the signal, i.e., τB(θ̃, s̄) = τB(θ̃, s). The consumption of the buyer is

equalized across states (i.e., there is full insurance, as in the first-best) as long as the amount

of resources generated under risk-taking (by the protection sellers who succeed), equal to

pAR, is suffi ciently high. However, since protection buyers must compensate protection

sellers for the effi ciency loss due to risk-taking (given by the loss of pledgeable income in

the event of default after a bad signal, prob[s](1 − p)AP), the consumption of protection
buyers falls short of the first-best consumption levels. Condition (35) ensures that the limited

liability constraints are slack under full insurance. On the left-hand side are the aggregate

resources generated by protection sellers. On the right—hand side is the transfer that would

be paid in the first-best, minus the payment requested by protection—sellers to offset the

effi ciency loss they incur due to risk—taking.

Risk—taking can be optimal only if it is not too ineffi cient, i.e., if pR ≥ 1. In that

case, margins are not used. Since protection sellers engage in risk—taking after a bad signal,

margins do not help with incentives. Margins are also not needed to insure buyers against
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counterparty risk since it is mutualized by the CCP. Thus, mutualization tackles ex—post

counterparty risk in the contract with risk-taking, while margins tackle ex—ante incentives

in the contract with effort.

Condition (35) can be re-written as

A [(1− prob[s]) pR + prob[s] (R− C)] ≥ π∆θ.

Since R − C > 1 and pR ≥ 1 (the latter condition is necessary for the contract with risk-

taking to be optimal), it follows that

A [(1− prob[s]) pR + prob[s] (R− C)] > A.

Hence, a suffi cient condition for (35) to hold is

A ≥ π∆θ. (36)

In the optimal contract with risk-taking after bad news, thanks to the mutualization

of counterparty risk by the CCP, transfers are not contingent on signals or on individual

protection seller’s returns. Hence the optimal contract can be implemented with a single

forward contract (as in the first-best) provided it is insured by the CCP (unlike in the first—

best). The forward contract, however, is sold at a discount relative to the expected value of

the underlying risk, in order to compensate the protection sellers for the loss of pledgeable

income in default.

3.3 Risk-sharing and risk-taking

The contract under which protection sellers exert effort after both signals entails limited risk-

sharing for buyers but entails no risk-taking by sellers (Subsection 3.1), while the contract

with no effort after a bad signal entails full risk-sharing for protection buyers but is actuarially

unfair and falls short of the first-best due to the loss of resources in default (Subsection 3.2).

The next proposition characterizes the optimal choice between the two contracts as a function

of the probability of success under risk-taking, p.

Proposition 11 Assume (36) holds. There exists a threshold value of the success probability

under no effort p̂ such that risk—prevention effort after bad news is optimal if and only if

p ≤ p̂.
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The logic of the proposition is illustrated in Figure 4. Consider the expected utility of the

protection buyer when effort is requested after bad news. It decreases when p increases. For

this contract, indeed, the only effect of an increase in p is to tighten the incentive constraint,

and thus reduce risk—sharing. Now turn to the expected utility of the protection buyer when

effort is not requested after bad news. In contrast with the previous case, it increases when

p increases. Indeed, for this contract, the only effect of an increase in p is to increase the

amount of resources available after bad news. Hence the result, stated in the proposition,

that risk—prevention effort after bad news is optimal if and only if p is lower than a threshold.

Insert Figure 4 here

4 Extensions and Robustness

4.1 Renegotiation

The optimal contract inducing effort after both good and bad news is contingent on the signal

s. One may wonder whether the optimal outcome could also be achieved by renegotiating -

at time 1 after s is observed - an initial contract, τB(θ), independent of the signal.

For brevity and simplicity, rather than offering a general treatment of this question, we

discuss the underlying economic forces in the context of an example. Suppose we start

from an initial contracttual transfer τB(θ) independent of the signal. For example, suppose

we take it to be the transfer prevailing in the optimal contingent contract after good news

τB(θ, s̄). Would both parties (protection buyer and protection seller) agree to switch from

τB(θ) = τB(θ, s̄) to τB(θ, s) after observing bad news?

First consider the protection seller. Sticking to τB(θ, s̄) after a bad signal violates her

incentive compatibility constraint. Thus, she does not exert risk-management effort and fails

with probability 1− p. Her expected gain is then:14

πp
(
AR− τB(θ̄, s̄)

)
+ (1− π)p

(
AR− τB(θ, s̄)

)
. (37)

If instead she switches to τB(θ, s), and thus exerts risk-management effort, she expects to

obtain
14Recall that with probability 1− p, R̃j = 0 and that τB(θ, s̃, 0) = 0.

27



π
(
AR− τB(θ̄, s)

)
+ (1− π)

(
AR− τB(θ, s)

)
− AC. (38)

By switching, the protection seller increases the expected payoff on her assets. She also

reduces the payment to the protection buyers as τB(θ, s) < τB(θ, s̄). Thus, switching is

quite attractive for her, as we now establish more formally. Substituting for the transfers

and re-arranging, (38) is larger than (37) if and only if

AP < E[θ]− prob[s̄]E[θ̃|s] (39)

which is satisfied under our assumption that (11) does not hold.

Now turn to protection buyers. Sticking to τB(θ, s̄) after a bad signal implies higher

transfers from the CCP, but undermines the incentives of the protection seller. When the

CCP insures against counterparty risk, the protection buyer does not internalize the cost of

default of his counterparty. Consequently, the protection buyer does not accept to switch

from the initial contract to τB(θ, s) after bad news. Thus, the simple renegotiation game we

proposed does not implement the optimal contract. This negative result extends to a larger

class of renegotiation games. To the extent that they are insured against counterparty risk,

investors are not willing to downscale initially generous insurance promises to preserve incen-

tives. This suggests that, with centralized clearing, the adjustment of transfers, contingent

on the arrival of information, should be factored in the initial contract.

What if, instead, trading occurs bilaterally over-the-counter and there is no centralized

clearing? Then, in the simple renegotiation game proposed above, after observing bad news

the protection buyer knows he will be exposed to counterparty risk if he sticks to τB(θ, s̄).

In this case his expected utility is

πu(θ̄ + τB(θ̄, s̄)) + (1− π)pu(θ + τB(θ, s̄)). (40)

If instead he switches to τB(θ, s), the protection buyer’s expected utility is

πu(θ̄ + τB(θ̄, s)) + (1− π)u(θ + τB(θ, s)). (41)

Substituting for the transfers, (41) is larger than (40) if and only if

p <

u(E(θ|s)+AP)

u(E(θ|s̄)− prob [s]
prob [s̄]

AP)
− π

1− π . (42)
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If (42) holds, i.e., if effort strongly improves productive effi ciency, then although they

started from an initial noncontingent contract τB(θ), both parties are happy to switch to

τB(θ, s) after bad news, in order to preserve incentives. This suggests that, with bilateral

trading and non—centralized clearing, initially non—contingent contracts could, in some cases,

be successfully renegotiated to the optimal contract.

On the other hand, if p is relatively large and (42) does not hold, protection buyers don’t

find it very attractive to renegotiate to lower insurance payments after bad news. In that

case, renegotiation is unlikely to implement the optimal contract.

4.2 Derivative’s payoffs

The payoff from an interest rate swap is symmetric, while the payoff from a credit-default

swap is highly skewed: most of the time, protection sellers collect a small insurance premium

but in the rare case of default, they have to make large payments to protection buyers. Does

this skewness in the payoff have an effect on incentives?

To analyze the effect of an increase in the skewness of the hedged risk on incentives

formally, we increase the probability π of a good outcome for the protection buyer’s risk θ

while keeping its mean and the standard deviation constant.15 An increase of π increases the

amount of risk to be hedged, ∆θ. Consequently, protection buyers demand more insurance,

which increases the incentive problem for protection sellers. There is, however, a counterveil-

ing effect when the skewness π is already large. In that case, the good outcome of the hedged

risk is quite likely and the information content of a bad signal s is low. Thus, at high levels

of π, a further increase of skewness mutes the negative effect of bad news on incentives. But,

as long as π < λ (the precision of the signal s), the negative effect on incentives from larger

amounts of risk dominates and more skewness leads to more severe incentive problems. In

this case, it is more diffi cult to maintain risk-management incentives when the underlying

risk is skewed.
15The mean µ and the standard deviation σ of θ̃ are µ = πθ̄+(1− π) θ and σ =

√
π (1− π)∆θ, respectively.

We can therefore write θ̄ and θ as a function of π as follows: θ̄ = µ+ σ
√

1−π
π and θ = µ− σ

√
π
1−π . Holding

the mean and standard deviation constant, an increase in π leads to more skewness (when π > 1
2 ).
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4.3 Non-linear cost of risk-management effort

Up to now, we assumed the cost of risk—management effort increased linearly in the assets

under management. We now relax this assumption and allow the cost of effort to be convex in

assets under management.16 This reflects the notion that, while controlling and preventing

risk is relatively easy when the amount of assets under management is low, it gets more

complex and costly when this amount is large.17 Thus, we assume the cost of risk—prevention

effort, when assets under management are (1− α)A, is equal to

c(1− α)A+ γ(1− α)2A2. (43)

In the analysis above we had γ = 0. γ > 0 gives rise to a new effect: as margins increase,

assets under management decrease, and so does the marginal cost of risk—management. We

hereafter analyze the optimal contract arising in this case. Since margins do not play any

role in the contract without risk-management effort after bad news, we need only consider

the contract with effort. As in Section 3.1, the feasibility and participation constraints bind:

there is no reason to have idle resources or to leave rents to protection sellers. Moreover, the

incentive constraint is slack after a good signal,and there is no margin call, while it binds

after a bad signal, in which case there may be a margin call. As in Section 3, the incentive

compatibility condition after bad news simplifies to

α(s)A+ (1− α(s))AP(α(s)) ≥ E[τB(θ̃, s̃)|s̃ = s]. (44)

The difference with Section 3 is that now the pledgeable return now depends on the size of

the margin call after a bad signal:

P(α(s)) ≡ R− c+ γ(1− α(s))A

1− p . (45)

Margins improve risk-sharing when they relax the incentive constraint after a bad signal,

i.e., when the left—hand—side of (44) is increasing in α, i.e.,

P(α(s))− (1− α(s))P ′ < 1. (46)

16Cost convexity is a classical assumption in micro—economics. It leads to well behaved problems, in
contrast with cost concavity for which optimality is more diffi cult to characterize.
17This is in line with Berk and Green (2004)’s assumption that funds’marginal returns decrease with

assets under management.
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It is easier to satisfy condition (46) when the cost of effort is convex (so that P ′ > 0) than

when it is linear (and P ′ = 0). This reflects the above mentioned effect that, as margins

increase, the marginal cost of risk—management decreases.

To determine the optimal margin with convex costs, we proceed as in Section 3.1. The

transfers τB and τS have the same structure as in Proposition 5, except that P is now given
by (45). We obtain the following proposition (where, as before, ϕ denotes the ratio of the

marginal utility of a protection buyer after a bad and a good signal).

Proposition 12 With a convex cost of risk-management effort, γ > 0, an optimal interior

margin after a bad signal α∗(s) is given by

ϕ(α∗(s)) = 1 +
R− C − 1

1− [P(α∗(s))− (1− α∗(s))P ′] . (47)

As in Proposition 7, the optimal interior margin reflects the tradeoff between improved

risk-sharing across signals and the opportunity cost of margin deposits. But now P ′ > 0,

which lowers the right—hand—side of the inequality. Holding P fixed (to reason other things
equal) this increases the value of α∗(s) (the solution of (47)). Thus, we obtain the following

comparative static result:

Proposition 13 Other things equal, the greater the convexity of the cost of risk prevention,

the larger the optimal margin.

5 Empirical implications

According to our theory, a strong and pledgeable asset base (AP) helps maintaining protection—
sellers’ risk—prevention incentives.18 Asset pledgeability decreases with the cost of risk—

prevention, the ineficiency of risk-management practices,19 and the opacity and complexity

of financial institutions and their activities. Our model (in particular Propositions 5 and 10)

predicts a non-linear, U-shaped, relation between derivatives exposures and the pledgeability

of assets:
18While for simplicity protection sellers have no initial debt in our model, to gauge this implication

empirically one should consider assets net of liabilities.
19Ellul and Yerramili (2013) propose a Risk Management Index measuring the organizational strength and

independence of the risk management function within financial insititutions.
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Empirical implication 1. Financial institutions with effi cient risk-management and

transparent activities optimally choose large derivatives exposures; financial institutions with

less effi cient risk-management and more opaque activities choose small derivatives exposures;

financial institutions with very ineffi cient risk management and opaque activities choose large

exposures (associated with significant counterparty risk).

Derivatives exposure and protection sellers’incentives also depend on the macroeconomic

and financial environment in which financial institutions operate. For example, an environ-

ment characterized by a low probability of failure even when there is no risk-management

effort (high p) can be viewed as a “benign”/low-risk economic situation. Derivatives con-

tracts that offer ample insurance but undermine risk-management incentives will be traded

in such a benign environment (see Proposition 11). This resonates with the notion that risk

builds up in “good”times (see, e.g., Borio, 2011).

In this context, consider the effect of bad news. For example, when the underlying

risk insured is that of mortgage defaluts, declining house prices convey bad news. After

bad news, protection sellers give up on risk—prevention. Hence they become more likely to

default. This creates correlation between the mortgage values and the values of financial

institutions’assets without direct exposure to mortgage default.

An increase in the precision of the public information signal (λ) increases this endogenous

correlation. Information about the performance of mortgage-backed securities and CDS

contracts written on them was unavailable before 2006.20 The ABX.HE indices providing

this information were introduced only in January 2006. As of early 2007, the prices for

the index on AAA securitizations and those on BBB securitizations, which were virtually

identical until then, started to diverge. Our theoretical analysis implies that the information

then conveyed by the ABX.HE undermined the incentives of protection sellers. To the

extent that ample insurance kept being written, it came at the expense of risk-taking. We

summarize this discussion in our next empirical implication:

Empirical implication 2. Derivatives contracts with large exposures are more likely to

be underwritten when the economic environment seems benign. In this context, after bad news

about the hedged risk, the expected value of the other assets of protection sellers decreases.

20Although the issuance of mortgage-backed securites was around $ 2 trillion in every year from 2002 until
2006 (see, e.g., Fender and Scheicher, 2008).
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The more accurate the information about the hedged risk, the stronger this contagion.

The use of margins depends on their opportunity cost and the degree to which they

alleviate protection sellers’incentive problem. The opportunity cost of margins depends on

the risk-free rate (normalized to one in our analysis) since this is the rate assets on the

margin account earn. When risk-free rates are low compared to the return on productive

investment opportunities, the opportunity cost of margins increases and the optimal margin

is lower.

Empirical implication 3. When risk-free rates are low compared to the return on

productive investment opportunities, the optimal margin deposit is lower.

In terms of alleviating the incentive problem, margins are particularly beneficial when

the cost of risk-management effort is convex, and the optimal margin is higher the more

convex risk-management costs are (see Proposition 13). Convexity in risk-management costs

implies that the risk of each additional unit of assets is more costly to manage. This could

be a feature of complex and opaque (information-sensitive) assets which require intense

monitoring and information collection, which becomes more expensive as the size of assets

under management increases. Convexity in risk-management cost could also be related to

liquidity of assets under management, with larger positions being more illiquid (e.g., due to

a larger price impact and higher execution costs in case the position needs to be closed).

The above discussion is summarized in our next implication:

Empirical implication 4. The more risk-management costs increase with assets under

management, the higher the optimal margin.

6 Policy implications

6.1 Margins and equity capital

We showed that margins allow for more incentive-compatible insurance as they ring-fence

assets from protection seller moral-hazard. Would capital requirements offer alternative

mechanisms to reduce moral-hazard? What are the similarities and the differences between

margins and equity capital in the context of our analysis? These questions are particularly

relevant since the regulatory overhaul in the aftermath of the 2007-2009 financial crisis
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includes both margins and capital requirements. As argued below, our theoretical analysis

implies margins can be an attractive substitute to capital.

Margins reduce the need for equity capital: In our model, at t = 0, protection

sellers have assets A and no liabilities. Hence, the book value of their equity capital (the

difference between assets and liabilities) is A. Its market value, reflecting rationally antic-

ipated future cash flows, is AR. At t = 1, after a good signal, the derivative position is

an expected asset for a protection seller, and the value of her equity increases. After a bad

signal, however, the derivative position is an expected liability for a protection seller. The

optimal contract with effort limits this liability to

A[α(s) + (1− α(s))P)], (48)

to preserve protection seller’s incentives to exert risk-management effort (see (15)). Thus,

the value of a protection seller’s equity capital after a bad signal at t = 1 is

(1− α(s)) (R− P)A > 0, (49)

which is the difference between the value of protection seller’s assets, A [α(s) + (1− α(s))R],

and the value of her liability, (48). The interpretation is that the optimal contract with

effort requires protection sellers to hold a minimum amount of equity (i.e., keep enough skin

in the game) to make sure the incentive compatibility constraint holds.

Without margin calls (e.g., if there was no enforcement mechanism for margins), the

incentive compatibility condition would be more demanding. Hence protection sellers would

need to have a higher amount of equity (more skin in the game) to ensure that effort remains

incentive compatible. In that sense, margins are a substitute to equity capital. Margins

improve incentives by making the asset side of the balance sheet less susceptible to moral-

hazard. With less moral-hazard, the assets can support larger liabilities. Consequently,

margins allow protection sellers to engage in incentive-compatible derivative trading with

less equity.

Higher capital is an alternative to margins, but can be infeasible. Another way

to relax the incentive-compatibility constraint after a bad signal would be to increase the

protection seller’s initial equity capital. This could be diffi cult to implement, however. In our

simple agency-theoretic framework, raising capital from dispersed outside investors doesn’t
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improve the incentives of the manager. Quite to the contrary, it dilutes her ownership of the

firm and reduces her incentives to exert effort. Thus, increasing capital relaxes incentive-

compatibility only if the additional capital belongs to the agent (increasing her skin in the

game) or to investors closely monitoring the agent (which reduces the severity of the moral

hazard problem.) When these conditions cannot be met, margin requirements are more

effective than capital requirements.

Moreover, margins, unlike equity, are linked to derivative positions. A margin call only

occurs when the derivative position turns into a liability (which depends on information

about the underlying asset). Capital requirements, independent of the development of deriv-

ative positions, could be wasteful, as they would require equity capital even when derivative

positions are profitable.

6.2 CCP design

The key advantage of the CCP over bilateral contracting is the mutualization of counterparty

default risk. By insuring protection buyers, it makes them more eager to contract with

protection sellers. At the same time, it makes each of them less eager to take costly action

to reduce protection sellers’default risk. Margin calls, in our analysis, are one of the key

instruments to reduce that risk. Thus, to implement the optimal contract characterized

in this paper, one cannot delegate to the trading parties the task of designing their own

individual margin calls. Such decentralization would lead to insuffi cient margining and

excessive counterparty default. To see this, consider the case where the optimal contract

calls for high effort even after bad news. Suppose the CCP offers the optimal transfers

τS(θ, s̄) and τB(θ, s) described above, while letting each protection—seller/protection—buyer

pair choose their own margin call. A limited—liability protection seller and a protection buyer

insured by the CCP against counterparty risk, both prefer to set α(s) = 0, ∀s. This implies
the incentive-compatibility condition of the protection seller does not hold, and results in

excessive counterparty default risk. This is a form of free-riding, since the cost of that default

is borne by all the other members of the CCP. To avoid such free-riding, margin calls must

be mandated by the CCP.
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7 Conclusion

We analyze optimal contracts in the context of hedging with derivatives. We show how

contracts designed to engineer risk-sharing can generate incentives for risk-taking. When

the position of the protection seller becomes a liability for her, it undermines her incentives

to exert risk prevention effort. The failure to exert such effort may lead to the default of the

protection seller. Thus, a bad signal about derivative positions can propagate to other lines

of business of financial institutions and, when doing so, create endogenous counterparty risk.

When the seller’s moral hazard is moderate, margins enhance the scope for risk-sharing.

Our emphasis on the positive consequence of margins contrasts with the result that margins

can be destabilizing, as shown by Gromb and Vayanos (2002) and Brunnermeier and Pedersen

(2009). The contrast stems from differences in assumptions. Gromb and Vayanos (2002) and

Brunnermeier and Pedersen (2009) take margin constraints as given and, for these margins,

derive equilibrium prices. Greater margins force intermediaries to sell more after bad shocks,

which pushes prices down and can generate spirals. In contrast, we endogenize margins, but

take as given the value of assets a protection seller deposits on a margin account. It would

be interesting in future research to combine the two approaches and study how endogenous

margins could destabilize equilibrium prices. This would be in the line of Acharya and

Viswanathan (2011)’s analysis of the equilibrium price at which borrowers liquidate assets

and the corresponding fire-sales negative externality.
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8 Appendix

Proof of Proposition 1 Form the Lagrangian using the objective (6), the feasibility

constraints (3) with multiplier µFC and the participation constraint (7) with multiplier µ. For

the moment we ignore the limited liability constraints (4) in the first-best. We then show

that first-best transfers do not violate limited liability given our assumption AR > π∆θ.

Since R̃ = R under effort, we do not explicitly write the dependence of the transfers on R̃.

The first-order conditions of the Lagrangian with respect to τB(θ, s) and τS(θ, s) are,

respectively,

prob[θ, s]u′(θ + τB(θ, s))− µFC (θ, s) = 0 ∀(θ, s) (50)

µprob[θ, s]− µFC (θ, s) = 0 ∀(θ, s). (51)

Since marginal utility is strictly positive, it follows from (50) that µFC (θ, s) > 0 for all

(θ, s) and hence the feasibility constraints bind. Since µFC (θ, s) > 0, it follows from (51)

that the participation constraint binds. After substituting (50) into (51), it follows that

buyers’marginal utility is the same across all states. That is, there is full risk-sharing.

From equal marginal utility across all states, we obtain, first, that θ + τB(θ, s̄) = θ +

τB(θ, s) and hence τB(θ, s̄) = τB(θ, s) for θ = θ̄, θ. Second, we obtain that θ̄ + τB(θ̄, s) =

θ + τB(θ, s) and hence τB(θ, s)− τB(θ̄, s) = ∆θ for s = s̄, s.

Using τS(θ, s) = −τB(θ, s) (from the binding feasibility constraints) and τB(θ, s̄) =

τB(θ, s), we can write the binding participation constraint as

−(prob[θ̄, s̄] + prob[θ̄, s])τB(θ̄, s̄)− (prob[θ, s̄] + prob[θ, s])τB(θ, s̄) = 0 (52)

Using τB(θ, s̄)−τB(θ̄, s̄) = ∆θ to substitute for τB(θ̄, s̄) and since prob[θ̄, s̄]+prob[θ̄, s] =

prob[θ̄] = π (and similarly for 1− π), the binding participation constraint yields τB(θ, s̄) =

π∆θ, from which the remaining transfers in the proposition follow immediately. QED

Proof of Lemma 1 Plugging the first-best transfers from Proposition 1 into the in-

centive conditions (10) and using α(s̃) = 0 yields AP ≥ (π − π̄)∆θ and AP ≥ (π − π)∆θ.

When the signal is informative, λ > 1
2
, we have π̄ > π > π. The result in the lemma follows.

QED
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Proof of Proposition 2 Form the Lagrangian using the objective (6), the feasibility

constraints (3) with multiplier µFC (θ, s), the limited liability constraints (4) with multipliers

µLL (θ, s), the feasibility constraints on margins (5) with µ0 (s) for α (s) ≥ 0 and µ1 (s)

for α (s) ≤ 1, the incentive compatibility constraints (10) with multipliers µIC(s) and the

participation constraint (12) with multiplier µ.

The first-order conditions of the Lagrangian with respect to τB(θ, s) and τS(θ, s) are

prob[θ, s]u′(θ + τB(θ, s))− µFC (θ, s) = 0 ∀(θ, s) (53)

µprob[θ, s] + µLL(θ, s) + prob[θ|s]µIC(s)− µFC (θ, s) = 0 ∀(θ, s). (54)

Since marginal utilities are positive, it follows from (53) that µFC (θ, s) > 0 and hence

all feasibility constraints bind:

τB(θ, s) = −τS(θ, s),∀(θ, s). (55)

Using (53) to substitute for µFC (θ, s) in (54) and rearranging, we obtain

u′(θ + τB(θ, s)) = µ+
µLL(θ, s)

prob[θ, s]
+
µIC(s)

prob[s]
∀(θ, s) (56)

where we used that prob[θ|s]prob[s] = prob[θ, s].

We next show that the limited liability constraint in state (θ̄, s) is slack for each s. The

proof proceeds in two steps. First, we show that the limited liability constraints cannot

bind for both the state (θ̄, s) and the state (θ, s). Suppose not. Since both limited liability

constraints after the signal s bind, we have−τS(θ̄, s) = α(s)A+(1−α(s))AR and−τS(θ, s) =

α(s)A+ (1− α(s))AR. Hence,

E[−τS(θ̃, s̃)|s̃ = s] = α(s)A+ (1− α(s))AR ∀s

But since R > P, this violates the incentive compatibility constraint (10) after the signal s.
Hence, at least one limited liability constraint after the signal s must be slack.

Second, we show that the limited liability constraint in state (θ̄, s) is always slack for

each s. Suppose not, so that −τS(θ̄, s) = α(s)A+(1−α(s))AR. We have just shown that at

least one limited liability constraint after the signal s must be slack. Hence, we must have

that −τS(θ, s) < α(s)A + (1 − α(s))AR and µLL(θ, s) = 0. Using the binding feasibility
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constraints (55), we therefore have τB(θ̄, s) > τB(θ, s) ∀s, which implies u′(θ̄+ τB(θ̄, s)) <

u′(θ + τB(θ, s)), ∀s, since θ̄ > θ. However, using µLL(θ, s) = 0 in (56) implies u′(θ̄ +

τB(θ̄, s)) ≥ u′(θ + τB(θ, s)), ∀s. A contradiction. Hence, the limited liability constraint is
slack in state (θ̄, s) and µLL(θ̄, s) = 0 for all s.

Finally, we show by contradiction that the participation constraint (12) binds. Suppose

not. Plugging µ = 0 and µLL(θ̄, s) = 0 (just shown above) into (56) implies that µIC(s) > 0

for all s. Hence, both incentive constraints bind, −E[τS(θ̃, s̃)|s̃ = s] = α(s)A+(1−α(s))AP
for s = s̄, s. Therefore,

E[τS(θ̃, s̃)] = E[E[τS(θ̃, s̃)|s̃]] = −E[α(s̃)A+ (1− α(s̃))AP ] (57)

From the participation constraint, we have

0 ≤ E[τS(θ̃, s̃)]− E[α(s̃)]A(R− C − 1)

= −E[α(s̃)A+ (1− α(s̃))AP ]− E[α(s̃)]A(R− C − 1) [using (57)]

= −E[(1− α(s̃))AP + α(s̃)A(R− C)].

The last expression is strictly negative since R − C > P > 0 and 0 ≤ α(s̃) ≤ 1. A

contradiction. Hence, the participation constraint binds and also µ > 0. QED

Proof of Proposition 3

The first-order conditions of the Lagrangian from the proof of Proposition 2 with respect

to α(s) are

µ0 (s)− µ1 (s)

A
+ µIC(s)(1− P) = µprob[s] (R− C − 1) + (R− 1)µLL(θ, s) ∀s, (58)

where we have used µLL(θ̄, s) = 0 for all s (Proposition 2).

The right-hand side of (58) is strictly positive since R−C > 1 and µ > 0 (see the end of

the proof of Proposition 2). If the incentive constraint is slack for a signal s, then µs = 0,

implying that µ0 (s) > 0 must hold and α(s) = 0. Similarly, if P ≥ 1, then µ0 (s) > 0 for

each s must hold and α(s) = 0 for all s. QED

Proof of Proposition 4

It cannot be that both incentive constraints are slack since we assume that the first-best

is not attainable, AP < (π − π)∆θ. It also cannot be that both incentive constraints bind

(see the argument that the participation constraint binds in the proof of Proposition 2).
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We now show by contradiction that the incentive constraint following a bad signal binds.

Suppose not and hence µIC (s) = 0. After the good signal, the limited liability constraints

are slack, µLL(θ̄, s̄) = 0 by Proposition 2 and µLL(θ, s̄) = 0 since we are considering a relaxed

problem - see condition (14)). Equations (56) for s = s̄ then imply that u′(θ̄ + τB(θ̄, s̄)) =

u′(θ+ τB(θ, s̄)). There is full risk-sharing conditional on the good signal. For transfers after

a good signal we thus have

τB(θ, s̄)− τB(θ̄, s̄) = ∆θ > 0 (59)

After the bad signal, limited liability constraint in state (θ̄, s) is slack, µLL(θ̄, s) = 0

by Proposition 2. In state (θ, s), we have two cases to consider, depending on whether the

limited liability constraint is slack or whether it binds.

Consider first the case when the limited liability constraint in state (θ, s) is slack, µLL(θ, s) =

0. Equations (56) for s = s then imply that there is also full risk-sharing conditional on the

bad signal, u′(θ̄ + τB(θ̄, s)) = u′(θ + τB(θ, s)), and thus

τB(θ, s)− τB(θ̄, s) = ∆θ > 0 (60)

Since µIC (s) = 0 and µLL(θ, s) = µLL(θ, s̄) = 0, it follows from equations in (56) that

u′(θ + τB(θ, s)) ≤ u′(θ + τB(θ, s̄)), and thus

τB(θ, s) ≥ τB(θ, s̄). (61)

From the binding participation constraint

prob[s̄]E[τS(θ̃, s̃)|s̃ = s̄] + prob[s]E[τS(θ̃, s̃)|s̃ = s] = E[α(s̃)]A(R− C − 1) ≥ 0

and E[τS(θ̃, s̃)|s̃ = s̄] < 0 (binding incentive constraint after a good signal), we know that

E[τS(θ̃, s̃)|s̃ = s] > 0 (62)

Using full risk-sharing conditional on the signal (equations (59) and (60)) we can write

E[τS(θ̃, s̃)|s̃ = s] = πτS(θ̄, s) + (1− π) τS(θ, s)

= τS(θ, s) + π
[
τS(θ̄, s)− τS(θ, s)

]
= τS(θ, s) + π

[
τS(θ̄, s̄)− τS(θ, s̄)

]
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Using (61) and the binding feasibility conditions (55), we have τS(θ, s) ≤ τS(θ, s̄). And since

π < π̄ (the signal is informative), we have

E[τS(θ̃, s̃)|s̃ = s] ≤ τS(θ, s̄) + π
[
τS(θ̄, s̄)− τS(θ, s̄)

]
< τS(θ, s̄) + π̄

[
τS(θ̄, s̄)− τS(θ, s̄)

]
and thus E[τS(θ̃, s̃)|s̃ = s] < E[τS(θ̃, s̃)|s̃ = s̄]. But since E[τS(θ̃, s̃)|s̄] < 0 (by the binding

incentive constraint after a good signal), we have a contradiction with (62).

Now, consider the case when the limited liability constraint in state (θ, s) binds. Since

µLL(θ̄, s) = 0 (by Proposition 2) and µIC(s) = 0, equations (56) for s = s imply that

u′(θ + τB(θ, s)) ≥ u′(θ̄ + τB(θ̄, s)), and thus

τB(θ, s)− τB(θ̄, s) ≤ ∆θ. (63)

Since α(s) = 0 (incentive constraint after a bad signal is slack in contradiction), the

binding limited liability constraint is AR = −τS(θ, s). Together with (63) in conjunction

with the binding feasibility constraints (55), we then have

−E[τS(θ̃, s̃)|s̃ = s] = −
[
πτS(θ̄, s) + (1− π) τS(θ, s)

]
= −τS(θ, s)− π

[
τS(θ̄, s)− τS(θ, s)

]
≥ AR− π∆θ

Since π < π (informative signal) and AR > π∆θ (limited liability constraints are slack in

the first-best), we have −E[τS(θ̃, s̃)|s̃ = s] > (π − π)∆θ. But since the incentive constraint

after a bad signal is slack, AP > −E[τS(θ̃, s̃)|s̃ = s], this would mean that AP > (π− π)∆θ

and the first-best can be reached, which is a contradiction.

Consequently, the incentive constraint after a bad signal binds and the incentive con-

straint after a good signal must be slack. QED

Proof of Proposition 5

After a good signal, we have full risk-sharing (see the derivation of equation (59) in the

proof of Proposition 4). Using (59) and (16), we obtain the transfers τB(θ̄, s̄) and τB(θ, s̄).

After a bad signal, we have to distinguish two cases, depending on whether the limited

liability constraint in state (θ, s) is slack or not. If it is slack, then we have full risk-sharing
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(see the derivation of equation (60) in the proof of Proposition 4). Using (60) and (15), we

obtain the transfers τB(θ̄, s) and τB(θ, s). If the limited liability constraint binds, we have

α(s)A+ (1− α(s))AR = −τS(θ, s), which we plug into (15) to obtain τB(θ̄, s).

Finally, we check that, under (14), the limited liability constraint in (θ, s̄) is slack. Since

α(s̄) = 0, the limited liability constraint (4) writes as τB(θ, s̄) < AR. Now, Proposition 5

implies that τB(θ, s̄) decreases in α(s). So τB(θ, s̄) < AR for all α(s) if and only if it is for

α(s) = 0. After simplifications, τB(θ, s̄) < AR for α(s) = 0 is equivalent to (14).

QED

Proof of Proposition 6

We claim that α∗(s) < 1. Suppose not and α∗(s) = 1. First, note that µLL(θ, s) > 0 must

hold in this case. Suppose not, and µLL(θ, s) = 0. Then, equations (56) for s = s imply that

that there is full risk-sharing conditional on the bad signal. Hence, the individual transfers

after the bad signal are given by (18) so that τB(θ, s) = −τS(θ, s) = π∆θ+A > A. But the

limited liability constraint requires −τS(θ, s) ≤ A, a contradiction. Since µLL(θ, s) > 0, the

limited liability constraint binds and the individual transfers after a bad signal are as in (19).

In particular, τB(θ̄, s) = A > 0. Equations (56) and binding incentive constraint after a bad

signal imply that τB(θ̄, s̄) ≥ τB(θ̄, s) = A > 0. However, by equation (17), τB(θ̄, s̄) < 0. A

contradiction.

QED

Proof of Proposition 7

Since the incentive constraint after a good signal is slack (see Proposition 4), it follows

from Proposition 3 that α∗(s̄) = 0. It remains to characterize the optimal margin after a

bad signal.

We now derive the optimal margin after a bad signal, α∗(s). Using equations (56) to

subsitute for µ, µIC (s) and µLL(θ, s) in equation (58), we get

u′(θ̄ + τB(θ̄, s))

u′(θ̄ + τB(θ̄, s̄))
= 1 +

R− C − 1

1− P +
µ1 (s)− µ0 (s)

u′(θ̄ + τB(θ̄, s̄))prob[s] (1− P)A
(64)

+
1− π
1− P

u′(θ + τB(θ, s))− u′(θ̄ + τB(θ̄, s))

u′(θ̄ + τB(θ̄, s̄))

where we used µIC (s̄) = 0 (Proposition 4).
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Denote the RHS of (64) by ϕ. Note that ∂τ
B(θ̄,s̄)
∂α

= −prob[s]
prob[s̄]

A (R− C − P) < 0. For P < 1,
∂τB(θ̄,s)

∂α
> 0. (When the limited liability constraint is slack, we have ∂τB(θ̄,s)

∂α
= A (1− P) > 0

and when the limited liability constraint binds, we have ∂τB(θ̄,s)
∂α

= A
[
1 + (1−π)R−P

π

]
> 0

since R− P > R− 1 > π(R− 1)). Hence, ϕ is decreasing in α. If ϕ (0) < 1 + R−C−1
1−P , then

ϕ (0) < 1 +
R− C − 1

1− P +
1− π
1− P

u′(θ + τB(θ, s))− u′(θ̄ + τB(θ̄, s))

u′(θ̄ + τB(θ̄, s̄))

for any α ∈ [0, 1] (since the last term is non-negative). By equation (64) we have µ0 > 0 and

hence α∗(s) = 0.

Otherwise, there are two cases depending on whether or not the limited liability constraint

in state (θ, s) is slack. If it is slack, then marginal utilities after the bad signal are equalized

(equation (60)), and the last term in equation (64) vanishes. The optimal margin α∗(s) ∈
(0, 1) is given by ϕ (α∗(s)) = 1 + R−C−1

1−P in this case. If the limited liability constraint binds,

then the optimal margin α∗(s) ∈ (0, 1) solves

u′(θ̄ + τB(θ̄, s))

u′(θ̄ + τB(θ̄, s̄))
− 1− π

1− P
u′(θ + τB(θ, s))− u′(θ̄ + τB(θ̄, s))

u′(θ̄ + τB(θ̄, s̄))
= 1 +

R− C − 1

1− P

We now check under what conditions the limited liability constraints are slack. By Propo-

sition 2, we only need to check limited liability constraints in states (θ, s̄) and (θ, s). First,

consider the case when P ≥ 1 and margins are not used. The limited liability constraints are

slack if and only if: AR > −τS(θ, s, R) = τB(θ, s, R), ∀(θ, s, R). Since τB(θ, s̄) ≥ τB(θ, s),

we only need to check when the limited liability constraint is slack in state (θ, s̄). It is slack

if and only if:

π̄∆θ − prob[s]

prob[s̄]
AP < AR (65)

or, equivalently,

AR− π∆θ >
prob[s]

prob[s̄]
[(π − π) ∆θ − AP ] > 0.

Now consider the case when P < 1. The limited liability constraints in this case are

slack if and only if: α(s)A + (1 − α(s))AR > −τS(θ, s, R), ∀(θ, s, R), with α∗ (s̄) = 0 and

α∗(s) ≥ 0. The limited liability constraint in state (θ, s̄) is slack if and only if:

π̄∆θ − prob[s]

prob[s̄]
A [α∗(s) (R− C) + (1− α∗(s))P ] < AR
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Since R− C > P > 0, we have:

π̄∆θ − prob[s]

prob[s̄]
A [α∗(s) (R− C) + (1− α∗(s))P ] < π̄∆θ − prob[s]

prob[s̄]
AP

Hence, condition (65) is suffi cient for the limited liability constraint to be slack in state (θ, s̄).

The limited liability constraint in state (θ, s) is slack if and only if:

α∗(s) < 1− π∆θ

A (R− P)

Since the optimal interior margin when the limited liability constraint is slack is given by

α∗(s) = ϕ−1

(
1 +

R− C − 1

1− P

)
,

the constraint in state (θ, s) is slack if and only if

ϕ−1

(
1 +

R− C − 1

1− P

)
< 1− π∆θ

A (R− P)
.

Note that if the limited liability constraint in state (θ, s) is slack, it must be that

τB(θ̄, s) < 0 (equation (18)) implying that

α∗(s) <
(1− π)∆θ − AP

A (1− P)

must hold if the limited liability constraint in state (θ, s) is slack.

In case the limited liability constraint binds, it also must be that τB(θ̄, s) < 0. This is

because equations (19) imply that

τB(θ, s) = α(s)A+ (1− α(s))AR >

E[τB(θ̃, s̃)|s̃ = s] = α(s)A+ (1− α(s))AP [since R > P and α∗(s) < 1]

> 0 > τB(θ̄, s) [since E[τB(θ̃, s̃)|s̃ = s] = πτB(θ̄, s) + (1− π) τB(θ, s)]

For τB(θ̄, s) to be negative if the limited liability constraint in state (θ, s) binds, it must be

that

α∗(s)

[
1 +

(1− π)R− P
π

]
<

(1− π)R− P
π

or, equivalently,

α∗(s) <
(1− π)R− P

π + (1− π)R− P < 1
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It follows that a suffi cient condition for the limited liability constraint in state (θ, s) to

be slack is

1− π∆θ

A (R− P)
>

(1− π)R− P
π + (1− π)R− P .

QED

Proof of Proposition 8

Form the Lagrangian using the objective (26), the feasibility constraints (27) and (28)

with multipliers µFC (θ, s), the limited liability constraints (29) and (30) with multipliers

µLL (θ, s, R), the feasibility constraints on margins (5) with µ0 (s) for α (s) ≥ 0 and µ1 (s)

for α (s) ≤ 1, the incentive compatibility constraints (31) and (32) with multipliers µIC(s)

and the participation constraint (33) with multiplier µ.

The first-order conditions of the Lagrangian with respect to τB(θ, s) are

prob[θ, s]u′(θ + τB(θ, s))− µFC (θ, s) = 0 ∀(θ, s) (66)

The first-order conditions of the Lagrangian with respect to τS(θ, s̄, R), τS(θ, s, R) and

τS(θ, s, 0) are

µprob[θ, s̄] + µLL(θ, s̄, R) + prob[θ|s̄]µIC(s̄)− µFC (θ, s̄) = 0 ∀(θ, s̄, R) (67)

µprob[θ, s] +
µLL(θ, s, R)

p
− prob[θ|s]µIC(s)

p
− µFC (θ, s) = 0 ∀(θ, s, R) (68)

µprob[θ, s] +
µLL(θ, s, 0)

1− p + prob[θ|s]µIC(s)

1− p − µFC (θ, s) = 0 ∀(θ, s, 0) (69)

Since marginal utilities are positive, it follows from (66) that µFC (θ, s) > 0 and hence

the feasibility constraints (27) and (28) bind.

Using (66) to substitute for µFC (θ, s) in (67)-(69) and rearranging, we obtain

u′(θ + τB(θ, s̄)) = µ+
µLL(θ, s̄, R)

prob[θ, s̄]
+
µIC(s̄)

prob[s̄]
∀(θ, s̄, R) (70)

u′(θ + τB(θ, s)) = µ+
µLL(θ, s, R)

pprob[θ, s]
− µIC(s)

pprob[s]
∀(θ, s, R) (71)

u′(θ + τB(θ, s)) = µ+
µLL(θ, s, 0)

(1− p) prob[θ, s]
+

µIC(s)

(1− p)prob[s]
∀(θ, s, 0) (72)

where we used that prob[θ|s]prob[s] = prob[θ, s].
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Combining (71) and (72) yields

(1− p)µLL(θ, s, R)− pµLL(θ, s, 0) = prob[θ|s]µIC(s) ∀(θ, s) (73)

We next show that the limited liability constraint in state (θ̄, s̄, R) is slack. The proof

proceeds in two steps. First, we show that the limited liability constraints cannot bind for

both the state (θ̄, s̄, R) and the state (θ, s̄, R). Suppose not. Since both limited liability

constraints after the signal s̄ bind, we have −τS(θ̄, s̄, R) = α(s̄)A + (1 − α(s̄))AR and

−τS(θ, s̄, R) = α(s̄)A+ (1−α(s̄))AR. Hence, E[−τS(θ, s̄, R)] = α(s̄)A+ (1−α(s̄))AR. But

since R > P, this violates the incentive compatibility constraint (31) after the good signal.
Hence, at least one limited liability constraint after the signal s̄ must be slack.

Second, we show that the limited liability constraint in state (θ̄, s̄, R) is always slack.

Suppose not, so that −τS(θ̄, s̄, R) = α(s̄)A+(1−α(s̄))AR. We have just shown that at least

one limited liability constraint after the signal s̄ must be slack. Hence, we must have that

−τS(θ, s̄, R) < α(s̄)A + (1 − α(s̄))AR and µLL(θ, s̄, R) = 0. Using the binding feasibility

constraints (27), we have τB(θ̄, s̄, R) > τB(θ, s̄, R), which implies

u′(θ̄ + τB(θ̄, s̄, R)) < u′(θ + τB(θ, s̄, R))

since θ̄ > θ. However, using µLL(θ, s̄, R) = 0 in (70) implies

u′(θ̄ + τB(θ̄, s̄, R)) ≥ u′(θ + τB(θ, s̄, R)).

A contradiction. Hence, the limited liability constraint is slack in state (θ̄, s̄, R) and µLL(θ̄, s̄, R) =

0.

Third, we show by contradiction that µ > 0 and the participation constraint (33) binds.

Suppose not, i.e. µ = 0. Using µ = 0 in (71), it follows that µLL(θ, s, R) > 0 must hold

for θ = θ̄, θ. Using µ = 0 and µLL(θ̄, s̄, R) = 0 (just shown above) in (70), it follows that

µIC(s̄) > 0 and the incentive constraint in state s̄ binds. Now, there are two possibilities in

state s: either the incentive constraint binds or it is slack.

Consider first the case when the incentive constraint in state s binds. Using the binding

limited liability constraints in states (θ̄, s, R) and (θ, s, R) in the incentive constraint in state

s, we get

(1− α (s))AP = α(s)A+ (1− α(s))AR + πτS(θ̄, s, 0) + (1− π)τS(θ, s, 0)
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or, equivalently,

α(s)A+ (1− α (s))A (R− P) = −πτS(θ̄, s, 0)− (1− π)τS(θ, s, 0) (74)

If the limited liability constraints (30) are slack, we have−τS(θ̄, s, 0) < α(s)A and−τS(θ, s, 0) <

α(s)A so that the right-hand side of (74) is strictly smaller than α(s)A. Since (1−α (s))A (R− P) ≥
0, the left-hand side of (74) is greater or equal to α(s)A. A contradiction. If the limited

liability constraints (30) are binding, then all limited liability constraints in state s bind.

Using the binding limited liability constraints in state s and the binding incentive constraint

in state s̄ in the (weakly slack) participation constraint (33), we get

prob[s̄]α (s̄)A (R− C − 1) + prob[s]α (s)A(pR− 1) + prob[s](1− p)AP

≤ −prob[s̄] (α(s̄)A+ (1− α(s̄))AP)− prob[s](p (α(s)A+ (1− α(s))AR) + (1− p)α(s)A)

Simplifying yields

prob[s̄] [α (s̄)A (R− C) + (1− α(s̄))AP ] + prob[s]A [(1− p)P + pR] ≤ 0 (75)

Since both terms on the right-hand side of (75) are strictly positive, we have a contradiction.

Now consider the case when the incentive constraint in state s is slack so that µIC(s) =

0. Since µLL(θ̄, s, R) > 0 and µLL(θ, s, R) > 0, using µIC(s) = 0 in (73) implies that

µLL(θ̄, s, 0) > 0 and µLL(θ, s, 0) > 0 must hold. Hence, all limited liability constraints in

state s bind. But we have just shown in the previous step that this is incompatible with the

weakly slack participation constraint. A contradiction.

We conclude that µ > 0 and the participation constraint must bind.

Fourth, we show that µLL(θ̄, s, R) = 0 and −τS(θ̄, s, R) ≤ α(s)A + (1 − α(s))AR. The

proof proceeds in two steps. First, we show that it cannot be that both µLL(θ̄, s, R) > 0 and

µLL(θ, s, R) > 0. Suppose not. When both µLL(θ̄, s, R) > 0 and µLL(θ, s, R) > 0, then

−τS(θ̄, s, R) = −τS(θ, s, R) = α(s)A+ (1− α(s))AR (76)

Using (76) in the incentive constraint after a bad signal (32) yields

−E[τS(θ, s, 0)] + (1− α (s))AP < α(s)A+ (1− α(s))AR
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since −E[τS(θ, s, 0)] ≤ α(s)A and P < R. Hence, the incentive constraint after a bad signal

is slack and µIC(s) = 0. Since µLL(θ̄, s, R) > 0 and µLL(θ, s, R) > 0, using µIC(s) = 0 in

(73) implies that µLL(θ̄, s, 0) > 0 and µLL(θ, s, 0) > 0 must hold. Hence, all limited liability

constraints in state s bind. Using the binding limited liability constraints in state s in the

binding participation constraint (33), we get

prob[s̄]α (s̄)A (R− C − 1) + prob[s]α (s)A(pR− 1) + prob[s](1− p)AP

= prob[s̄]E[τS(θ, s̄, R)]− prob[s](p (α(s)A+ (1− α(s))AR) + (1− p)α(s)A)

Simplifying yields

prob[s̄]α (s̄)A (R− C − 1) + prob[s]ApR + prob[s](1− p)AP = prob[s̄]E[τS(θ, s̄, R)] (77)

For equation (77) to hold, it must be that E[τS(θ, s̄, R)] > 0. By the binding feasibil-

ity constraint (27), this is equivalent to E[τB(θ, s̄, R)] < 0. There can be two cases:

either the incentive constraint after a good signal binds or it is slack. First, consider

the case when the incentive constraint after a good signal binds. Then, E[τS(θ, s̄, R)] =

− (α(s̄)A+ (1− α(s̄))AP) < 0. A contradiction with (77). Second, consider the case when

the incentive constraint after a good signal is slack. Then, µIC(s̄) = 0. Using µLL(θ, s̄, R) = 0

and µIC(s̄) = 0 in (70) and µLL(θ̄, s, R) > 0 and µIC(s) = 0 in (71), we have

u′(θ̄ + τB(θ̄, s̄)) < u′(θ̄ + τB(θ̄, s))

implying that τB(θ̄, s̄) > τB(θ̄, s). So, we have:

τB(θ̄, s̄) > τB(θ̄, s) = −pτS(θ̄, s, R)− (1− p)τS(θ̄, s, 0) [using binding feasibility constraint]

= p [α(s)A+ (1− α(s))AR] + (1− p)α(s)A [using binding LL constraints in state s]

= α(s)A+ p(1− α(s))AR > 0 (78)

Now, there are two cases to consider: either the limited liability constraint in state (θ, s̄, R)

binds or it is slack. If it binds, then τB(θ, s̄) = α(s̄)A + (1 − α(s̄))AR > 0. Together with

(78), this implies that E[τB(θ, s̄, R)] > 0, a contradiction with (77). If the limited liability

constraint in state (θ, s̄, R) is slack, then µ(θ, s̄, R) = 0. Then, there is full risk-sharing after

a good signal, θ̄ + τB(θ̄, s̄, R) = θ + τB(θ, s̄, R), and τB(θ, s̄, R) = τB(θ̄, s̄, R) + ∆θ > 0.
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Together with (78), this implies that E[τB(θ, s̄, R)] = −E[τS(θ, s̄, R)] > 0, a contradiction

with (77).

Hence, we showed that at least one of the µLL(θ, s, R)’s must be zero. We now show

that it is µLL in state (θ̄, s, R). Suppose not, i.e., µLL(θ̄, s, R) > 0 and µLL(θ, s, R) = 0.

Using µLL(θ, s, R) = 0 in (73), it follows that µLL(θ, s, 0) = 0 and µIC(s) = 0. Using

µLL(θ̄, s, R) > 0 and µIC(s) = 0 in (73), it follows that µLL(θ̄, s, 0) > 0. Hence,

τB(θ̄, s) = p (α(s)A+ (1− α(s))AR) + (1− p)α(s)A (79)

Using µLL(θ̄, s, R) > 0 and µLL(θ, s, R) = 0 in (71), we have u′(θ̄+τB(θ̄, s)) > u′(θ+τB(θ, s)),

implying that θ̄ + τB(θ̄, s) < θ + τB(θ, s). Since θ̄ > θ, this means that

τB(θ̄, s) < τB(θ, s) (80)

must hold. However, we also have that

τB(θ, s) = −pτS(θ, s, R)− (1− p)τS(θ, s, 0) [using binding feasibility constraint]

≤ p (α(s)A+ (1− α(s))AR) + (1− p)α(s)A [using limited liability constraints]

= τB(θ̄, s) [using (79)]

which contradicts (80). Hence, we must have that µLL(θ̄, s, R) = 0.

Fifth, we claim that µLL(θ̄, s, 0) = 0 and µIC(s) = 0. This claim follows immediately

from substituting µLL(θ̄, s, R) = 0 in (73).

QED

Proof of Proposition 9

The first-order conditions of the Lagrangian from the proof of Proposition 8 with respect

to α(s̄) and α(s) are

µ0 (s̄)− µ1 (s̄)

A
+ µIC(s̄)(1− P) = µprob[s̄] (R− C − 1) + (R− 1)µLL(θ, s̄, R) (81)

µLL(θ, s, 0) +
µ0 (s)− µ1 (s)

A
= µprob[s] (pR− 1) + (R− 1)µLL(θ, s, R) (82)

where we have used µLL(θ̄, s̄, R) = 0, µLL(θ̄, s, R) = 0, µLL(θ̄, s, 0) = 0 and µIC(s) = 0 (all

shown in the previous Proposition).
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Consider first state s̄. The right-hand side of (81) is strictly positive since R − C > 1

and µ > 0 (see Proposition 8). If the incentive constraint is slack after a good signal, then

µIC(s̄) = 0 , implying that µ0 (s̄) > 0 must hold and α∗(s̄) = 0. Similarly, if P ≥ 1, then

µ0 (s̄) > 0 must hold and α∗(s̄) = 0.

Consider now state s. Using µIC(s) = 0 (as shown in the previous Proposition) in (73)

yields

µLL(θ, s, 0) =
1− p
p

µLL(θ, s, R)

Substituting for µLL(θ, s, 0) in (82) yields

µ0 (s)− µ1 (s)

A
= (pR− 1)

[
µprob[s] +

µLL(θ, s, R)

p

]
(83)

If pR ≥ 1, then the right-hand side of (83) is non-negative, implying that µ0 (s) ≥ 0 and

α∗(s) = 0. If pR < 1, then the right-hand side of (83) is negative, implying that µ1 (s)) > 0

and α∗(s) = 1. We now claim that the contract with risk-taking and α∗ (s) = 1 is dominated

by the contract with effort after a bad signal. Note that α (s) = 1 is also feasible under the

contract with effort. However, it is never chosen (Proposition 6), implying that the optimal

contract with effort is strictly preferred to the contract with risk-taking and α (s) = 1.

QED

Proof of Proposition 10

The optimal transfers follow from asserting full risk-sharing across all states and using

the binding participation constraint. Condition (35) follows from checking that all limited

liability constraints are satisfied for these transfers. It remains to check that, in the proposed

contract, the incentive constraint after a good signal is slack and margins are not used. Using

α(s̄) = 0 and the transfers in state s̄ in the incentive constraint (31) we have:

AP > 0 > − (π̄ − π) ∆θ − prob[s](1− p)AP =E[τB(θ, s̄, R)] = −E[τS(θ, s̄, R)]

so that the incentive constraint after s̄ is indeed slack at α(s̄) = 0. Since pR ≥ 1, it is not

optimal to use margins after a bad signal either (Proposition 9).

QED

Proof of Proposition 11

We first show that for p < max
{
R−C−1
R−1

, 1
R

}
the contract with effort is optimal. First,

consider p ≤ R−C−1
R−1

. In this case, we have that P ≥ 1. Combining with condition (36) yields
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AP ≥ A ≥ π∆θ > (π − π)∆θ. By Lemma 1, the first-best (which entails effort) is reached.

Second, consider p < 1
R
. By Proposition 9, the contract with effort strictly dominates the

contract with risk-taking in this case.

We now consider the case when p ≥ max
{
R−C−1
R−1

, 1
R

}
. Note that p must always be lower

than R−C
R

since we require that P > 0.

We now show that the expected utility of the contract with effort is decreasing in p.

Consider first the case when the limited liability constraint in state (θ, s) is slack. Then,

there is full risk-sharing conditional on the signal and, using Proposition 5, the expected

utility of the protection buyer under effort is given by

prob[s̄]u

(
E[θ̃|s̄]− prob[s]A [α∗(s) (R− C) + (1− α∗(s))P ]

prob[s̄]

)
+

prob[s]u
(
E[θ̃|s] + A [α∗(s) + (1− α∗(s))P ]

)
The derivative of the expected utility with respect to p is given by

− prob[s̄]ú

(
E[θ̃|s̄]− prob[s]A [α∗(s) (R− C) + (1− α∗(s))P ]

prob[s̄]

)
prob[s]

prob[s̄]
A(1−α∗(s))∂P

∂p
+

prob[s]ú
(
E[θ̃|s] + A [α∗(s) + (1− α∗(s))P ]

)
A(1− α∗(s))∂P

∂p
= prob[s]A(1− α∗(s))∂P

∂p
×[

ú
(
E[θ̃|s] + A [α∗(s) + (1− α∗(s))P ]

)
− ú

(
E[θ̃|s̄]− prob[s]A [α∗(s) (R− C) + (1− α∗(s))P ]

prob[s̄]

)]
where we have used the envelope theorem to claim ∂α∗(s)

∂p
= 0. We know that 1− α∗(s) > 0

since α∗(s) < 1 (Proposition 6). Due to the binding incentive constraint after a bad signal

(Proposition 4), the protection buyer’s consumption is larger after a good signal than after a

bad signal implying that the term in the square brackets above is positive. Since P = R− C
1−p ,

we have ∂P
∂p
< 0 implying that the expected utility under effort decreases in p when the limited

liability constraint in state (θ, s) is slack.

Now consider the other possibility, i.e., that the limited liability constraint in state (θ, s)

is binding. Then, there is still full risk-sharing conditional on a good signal but there is no

longer full risk-sharing conditional on a bad signal. Using Proposition 5, the expected utility
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of the protection buyer is given by

prob[s̄]u

(
E[θ̃|s̄]− prob[s]A [α∗(s) (R− C) + (1− α∗(s))P ]

prob[s̄]

)
+

π (1− λ)u

(
θ̄ + α∗(s)A− (1− α∗(s))A(1− π)R− P

π

)
+(1− π)λu (θ + α∗(s)A+ (1− α∗(s))AR)

The derivative of the expected utility with respect to p is given by

− prob[s̄]ú

(
E[θ̃|s̄]− prob[s]A [α∗(s) (R− C) + (1− α∗(s))P ]

prob[s̄]

)
prob[s]

prob[s̄]
A(1−α∗(s))∂P

∂p
+

π (1− λ)

π
ú

(
θ̄ + α∗(s)A− (1− α∗(s))A(1− π)R− P

π

)
A(1−α∗(s))∂P

∂p
= prob[s]A(1−α∗(s))∂P

∂p
×[

ú

(
θ̄ + α∗(s)A− (1− α∗(s))A(1− π)R− P

π

)
− ú

(
E[θ̃|s̄]− prob[s]A [α∗(s) (R− C) + (1− α∗(s))P ]

prob[s̄]

)]
where we used π(1−λ)

π
=prob[s] and we again made use of the envelope theorem to claim

∂α∗(s)
∂p

= 0. Since α∗(s) < 1 (Proposition 6), 1−α∗(s) > 0. Using (56), and the fact that the

limited liability constraints in states (θ̄, s̄) and (θ̄, s) are always slack (Proposition 2) and the

incentive constraint after a bad signal binds (Proposition 4), we have that ú
(
θ̄ + τ(θ̄, s)

)
>

ú
(
θ̄ + τ(θ̄, s̄)

)
or, equivalently, that the term in the square brackets above is positive. Since

∂P
∂p
< 0, the expected utility under effort decreases in p when the limited liability constraint

in state (θ, s) is binding.

We now show that the expected utility of the contract with risk-taking is increasing in

p. Under risk-taking, the consumption of the protection buyer is equalized across all states.

Therefore, using the optimal transfers from Proposition 10 in (26), the expected utility

of the protection buyer under no effort is given by: u
(
E[θ̃]− prob[s](1− p)AP

)
. Using

(1 − p)AP = R − C − pR, we have that the derivative of the expected utility with respect
to p is given by

prob[s]ARú
(
E[θ̃]− prob[s](1− p)AP

)
> 0

Lastly, note that as p → R−C
R

(or, equivalently, as P → 0), the expected utility under

risk-taking is strictly higher than the expected utility under effort. This is because the

expected utility under risk-taking is approaching u
(
E[θ̃]

)
, which is the first-best level of

utility, while the expected utility under effort is strictly smaller than the first-best level of
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utility since AP < (π − π)∆θ and hence it is not possible to reach the first-best with effort

after bad news (Lemma 1).

In sum, for p < max
{
R−C−1
R−1

, 1
R

}
, the contract with effort is optimal. For p→ R−C

R
, the

contract with risk-taking is optimal. For max
{
R−C−1
R−1

, 1
R

}
≤ p < R−C

R
, the expected utility

under effort is decreasing in p while the expected utility under risk-taking is increasing in p.

Therefore, there exists a threshold value of p, denoted by p̂, such that effort after bad news

is optimal if and only if p ≤ p̂.

QED

Proof of Proposition 12

With protection seller effort, there is full risk-sharing conditional on the realization of

the signal s̃ and we can write the objective function (6) as

U = prob[s̄]u(E[θ̃ + τB(θ̃, s̃)|s̃ = s̄]) + prob[s]u(E[θ̃ + τB(θ̃, s̃)|s̃ = s]). (84)

Using the binding incentive and participation constraints, equations (15) and (16) express

the expected transfer to protection buyers conditional on the signal, E[τB(θ̃, s̃)|s̃ = s] and

E[τB(θ̃, s̃)|s̃ = s̄], as a function of the margin α(s) (recall that there is no margin call after a

good signal). Writing the problem in terms of the expected transfers after a signal simplifies

the exposition of the proof.

The first partial derivative of the objective function with respect to the margin is (for

notational ease, we drop the reference to the s in α(s)):

∂U

∂α
= prob[s̄]

∂E[τB(θ̃, s̃)|s̃ = s̄]

∂α
ū′ + prob[s]

∂E[τB(θ̃, s̃)|s̃ = s]

∂α
u′, (85)

where u′ and ū denote the marginal utility conditional on the bad and the good signal,

respectively. The partial derivative of the expected transfer after a bad signal with respect

to the margin is

∂E[τB(θ̃, s̃)|s̃ = s]

∂α
= A [1− P(α) + (1− α)P ′(α)] . (86)

When the derivative is positive, margins relax the incentive constraint. Define

X ≡ 1− P(α) + (1− α)P ′(α) (87)
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The derivative is positive if and only if X > 0. This is condition (46) in the text.

The partial derivative of the expected transfer after a good signal with respect to the

margin is
∂E[τB(θ̃, s̃)|s̃ = s̄]

∂α
= −prob[s]

prob[s̄]
A [(R− C − 1) +X] (88)

The derivative is negative when X > 0 since R − C > 1 (condition (2)). When X < 0,

then the derivative may either be positive or negative, depending on how X compares to the

opportunity cost of margins, R− C − 1.

Combining (86), (87) and (88), we can write (85) as

∂U

∂α
= prob[s]Aū′

[
u′

ū′
−
(
R− C − 1

X
+ 1

)]
X

When X > 0 then ∂U
∂α

= 0 yields the condition for an optimal interior margin in the

proposition (when X < 0 then ∂U
∂α

< 0 for sure since u′

ū′ ≥ 1). (Note that as in the linear cost

case, it may be optimal not to use margins).

We now show that when γ < 0, then the optimization problem may not be well-behaved.

The second partial derivative of the objective function (84) with respect to margins is

∂2U

∂α2
= prob[s̄]

ū′′(∂E[τB(θ̃, s̃)|s̃ = s̄]

∂α

)2

+ ū′
∂2E[τB(θ̃, s̃)|s̃ = s̄]

∂α2


+ prob[s]

u′′(∂E[τB(θ̃, s̃)|s̃ = s]

∂α

)2

+ u′
∂2E[τB(θ̃, s̃)|s̃ = s]

∂α2


The first term in each squared bracket is negative (because of concave utility). A suffi cient

condition for a local maximum is therefore

prob[s̄]ū′
∂2E[τB(θ̃, s̃)|s̃ = s̄]

∂α2
+ prob[s]u′

∂2E[τB(θ̃, s̃)|s̃ = s]

∂α2
≤ 0

Using (86), (87) and (88) the condition becomes

prob[s]A
∂X

∂α
(u′ − ū′) ≤ 0.

Since u′ − ū′ ≥ 0 (protections buyers may bear signal risk), the suffi cient condition holds

when ∂X
∂α
≤ 0 or, equivalently, when γ ≥ 0. When γ < 0 we cannot be sure that the

first-order condition identifies a local maximum.
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Finally, note that when γ ≥ 0 then 1 > R− c
1−p is suffi cient for X > 0 for all α.

QED

Proof of Proposition 13

The first-order condition stipulates ∂U(α∗,γ)
∂α

= 0 (for simplicity we consider only interior

solutions, α∗ ∈ (0, 1)). After total differentiation of this implicit function we obtain

dα∗

dγ
= −

∂2U
∂α∂γ

∂2U
∂α2

When α∗ is a local maximum, then a more convex cost of effort leads to larger optimal

margins, dα
∗

dγ
> 0, if and only if ∂2U

∂α∂γ
> 0. This cross-partial derivative is

∂2U

∂α∂γ
= prob[s̄]

[
ū′′
∂E[τB(θ̃, s̃)|s̃ = s̄]

∂γ

∂E[τB(θ̃, s̃)|s̃ = s̄]

∂α
+ ū′

∂2E[τB(θ̃, s̃)|s̃ = s̄]

∂α∂γ

]

+ prob[s]

[
u′′
∂E[τB(θ̃, s̃)|s̃ = s]

∂γ

∂E[τB(θ̃, s̃)|s̃ = s]

∂α
+ u′

∂2E[τB(θ̃, s̃)|s̃ = s]

∂α∂γ

]

Using (86), (87) and (88), the cross-partial derivative becomes

∂2U

∂α∂γ
= prob[s]A×[
−ū′′∂E[τB(θ̃, s̃)|s̃ = s̄]

∂γ
[(R− C − 1) +X] + u′′

∂E[τB(θ̃, s̃)|s̃ = s]

∂γ
X +

∂X

∂γ
(u′ − ū′)

]

Moreover,

∂E[τB(θ̃, s̃)|s̃ = s̄]

∂γ
=
prob[s]

prob[s̄]

(1− α)2A2

1− p > 0

∂E[τB(θ̃, s̃)|s̃ = s]

∂γ
= −(1− α)2A2

1− p < 0

∂X

∂γ
= 2

(1− α)A

1− p > 0

When γ ≥ 0 then α∗ is a local maximum and R − c
1−p < 1 is suffi cient for X > 0. And

when X > 0, the cross-partial derivative is positive.

QED
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Figure 1: Centralized clearing
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Figure 2: Timing
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Figure 3: Optimal margins
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Figure 4: Optimal effort level
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