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Abstract

This paper addresses the issue of price signaling in a model of vertical relationship

between a manufacturer and a retailer who share the same information about quality,

unlike consumers who do not observe it a priori. We show that delegating the price setting

task to a retailer and controlling it through a vertical contract (two-part tariff) helps

drastically reduce the number of price signaling equilibria available to the retailer. The

outcome of a unique price charged to consumers obtains without invoking the consumer

sophistication usually required by selection criterions. The vertical contract turns to be

the most effi cient way for the vertical chain to tie its hands on a unique final price. This

price may disclose or not information to consumers depending on their initial optimism

about quality. We prove that there also exists circumstances where consumers prefer ex

ante not to learn the true quality through price.
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1 Introduction

After Spence (1973) stated that firms could signal product quality by taking some costly

actions, a number of theoretical papers have explored the idea that prices have a specific role

to play in signaling quality. Following Bagwell and Riordan (1991), one important feature

of the market for experience goods is that firms set prices above the full information level

to signal high-quality new products. Indeed, like most signaling behaviors, price signaling

may entail some ineffi ciencies. To credibly inform consumers that quality is high, the firm

often needs to distort its price, either upward or downward, compared to what would prevail

under full information.1 More precisely, when a monopolist uses price as a signal of quality,

Bagwell and Riordan (1991) prove the need and existence of an upward distortion in price to

fully reveal that quality is high at the Riley separating equilibrium outcome.2

Building on this model, we open the black box of the monopoly to allow for a vertical

contract in the form of a two-part tariff between a manufacturer and a retailer. Both of them

know product quality better than consumers do, hence the vertical contract specifies a con-

sumer price which serves the same task of signaling quality as that investigated by Bagwell

and Riordan (1991). Our predictions somewhat complement their findings but also differ in

several respects. We still find that an upward-distorted price may fully reveal that quality is

high. Nevertheless, we show that such an information disclosure occurs provided that con-

sumer prior information does not involve too much optimism about quality. Moreover, in this

separating equilibrium outcome, the vertical contract does implement a unique price signal-

ing quality without the standard use of equilibrium refinement – specifically, the additional

restrictions imposed by Bagwell and Riordan (1991) on out-of-equilibrium beliefs in the spirit

1Besides Bagwell and Riordan (1998), Daughety and Reinganum (2008) also show that firms need to distort
prices upward to signal high quality in a continuum-type model where price is the only means of signaling
quality. When quality is environmental, Mahenc (2008) states that the price distortion due to signaling goes
upward provided that marginal costs increase with environmental quality. Nevertheless, prices may be driven
below the full-information levels when the firm uses an additional signaling instrument such as advertising
expenditures (see Milgrom and Roberts, 1986, Linnemer, 1998, Hertzendorf and Overgaard, 2001, and Fluet
and Garella, 2002).

2After Riley (1979), the so called Riley equilibrium is the only separating equilibrium outcome that is
Pareto undominated from the informed agent’s standpoint.
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of the “intuitive criterion”(see Cho and Kreps, 1987)– It turns out that the vertical contract

makes it possible to ignore consumer out-of-equilibrium beliefs, and the manufacturer uses

the franchise to commit the retailer on the (most profitable) Riley outcome.

However, the Riley outcome is Pareto dominated by pooling equilibrium outcomes when

consumers, before purchase, rather believe quality to be high. We show that, in this way,

the vertical contract implements the most profitable pooling price, thereby concealing in-

formation about quality. Although this result departs from the traditional concentration

on the Riley separating equilibrium outcome, it is economically appealing in the following

sense. If the vertical contract allows for a commitment on a particular signaling behavior, it

seems reasonable that the manufacturer ties the retailer’s hands on the signaling equilibrium

that Pareto dominates the other equilibria, even though it is pooling. The cost of disclosing

information through separating equilibrium prices may be a burden to the manufacturer,

especially when consumers are highly optimistic about the product quality. In that event,

the manufacturer is better off concealing information, contrary to standard predictions based

on the refinement of signaling equilibria.

Moreover, the vertical contract restores the continuity in pricing behaviors between games

of incomplete and complete information. If there is a very slight chance that quality is low,

the pooling price implemented through the vertical contract does not differ significantly from

that in a situation with no chance at all of low quality. Mailath et alii (1993) raise the

same continuity argument to motivate the selection of “undefeated” equilibria in signaling

games. Thanks to the vertical contract, we predict signaling behaviors similar to those

selected by their refinement, but once again, these predictions do not require restrictions on

out-of-equilibrium beliefs. In other terms, we do not need the assumption that uninformed

consumers are highly sophisticated in the way they build and update their beliefs in order

to get economically intuitive signaling behaviors. The only assumption made on consumer

inference here is that they revise their beliefs according to Bayes’ rule when observing a

price. Delegating the price setting task to the retailer and controlling it through the vertical
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contract drastically reduces the number of price signaling equilibria available to the retailer.

Finally, the analysis provides insight on the circumstances under which consumers prefer ex

ante to learn or not the true quality through price.

The paper is organized as follows. In the section 2, we lay down the model and the

assumptions. Then in section 3, we characterize the equilibria under full information and

asymmetric information in the case of no delegation. In section 4, we then examine the case

of delegation. Section 5 concludes. An appendix contains most of proofs.

2 Assumptions and notations

Consider a good produced by a manufacturer and sold by a retailer, both firms acting as a mo-

nopolist. In the following, we will consider two situations in turn: in the first one, both firms

form a vertically integrated structure and in the second one, both firms act independently.

The former case can be interpreted as a situation where the manufacturer totally controls the

distribution level while the latter one represents a situation where the manufacturer chooses

to delegate distribution to an independent seller.

Using the terminology of Nelson (1970), the product is assumed to be an “experience

good” in the sense that consumers cannot observe its actual quality before purchase. We

denote q the quality characteristic of the product and we further assume, for simplicity, that

q may be either high (q = H) or low (q = L) with H > L ≥ 0. Higher quality is more costly

to produce so that the manufacturer incurs constant marginal costs of production denoted

cq for q = H,L, with cH = c > 0 and cL = 0. In addition, the retailing activity does not

generate any specific cost related to the quality so that we normalize the cost of retailing to

zero.

A priori, consumers perceive the quality to be high with probability µ0 ≡ prob(q = H),

and low with probability 1 − µ0 ≡ prob(q = L), µ0 ∈ (0, 1). When deciding to purchase the

good, consumers observe the price p, they try to infer some information about quality and

thereby they update their beliefs. Let µ (p) : R+ → [0, 1] denote the consumers’posterior
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belief that quality of product 0 is H upon seeing p. For any belief µ, we denote q̃(p) =

µ(p)∆ +L ∈ [L,H] the expectation of quality formed by consumers, where ∆ = H −L is the

quality gap between a high and low-quality product. As there is a one to one relationship

between expectation q̃ and belief µ, we will use only q̃ in the following, to save on notations.

In particular, we denote q0 ≡ µ0∆ + L ∈ [L,H] the prior quality expectation.

We assume further that aggregate demand is a smooth and strictly decreasing function

of price when positive, cutting both axes, and is an increasing function of perceived quality,

that we denote D(p, q̃).3 Note that our assumption of a common prior and posterior beliefs

on quality does not impede heterogeneity in consumers’preferences.

For the rest of this section, we do as if the perceived quality q̃ were constant and thus

independent of the price p. This is done in order to define some functions of interest for the

analysis. First, denote by pmax
q̃ the reservation price for the perceived quality q̃, such that

D(p, q̃) = 0 for any p ≥ pmax
q̃ . Assume that pmax

H > c and pmax
L > 0, and it follows that:

D(c,H) > 0 and D(0, L) > 0 (1)

which ensures that both qualities priced at marginal cost can get a positive demand under

complete information about their characteristic, making their presence on the market socially

effi cient.4

We denote:

π(p;x, q̃) = (p− x)D(p, q̃) (2)

the (variable) profit that can be made on the market, as a function of the price p in
[
x, pmax

q̃

]
,

the marginal cost x ≤ pmax
q̃ and the quality q̃ ∈ [L,H] expected by consumers. The marginal

3Note that our general specification of demand encompasses several possibilities for how quality expectation
may affect the slope of demand with respect to price. Indeed, consider the popular Mussa Rosen preferences
specification: assume a continuum, with unitary mass, of heteregenous consumers indexed by y ∈ [0, 1]
following the uniform distribution, each one buying at most one unit. Then the individual utility is u = yq̃−p
and the aggregate demand is D(p, q̃) = 1 − p

q̃
. In that case, increasing quality makes the demand less price

elastic. Consider now a linear city where the product is located in 0 and consumers are indexed by their
location y in [−a, a], still following the uniform distribution and where a > 0 is large. Here the utility can be
specified as u = q̃ − ty − p where t is the transportation cost parameter. And the aggregate demand writes
D(p, q̃) = 2

t
(q̃ − p). where quality affects only the reservation price.

4As we will show in the next section, the condition D(0, L) > 0 is actually necessary for separation in the
signaling game with the vertically integrated firm.
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cost x will correspond to the marginal cost of production in a vertically integrated firm and

to the wholesale price when the manufacturer and the retailer are independent. As long as

demand D (p, q̃) is positive, we assume strict concavity of π(p;x, q̃) with respect to price.5

We also define the (unique) optimal price p̂(x, q̃) as:

p̂(x, q̃) ≡ arg max
p≥x

π(p;x, q̃) (3)

that is increasing in x and q̃, and we denote:

π̂(x, q̃) ≡ π(p̂(x, q̃);x, q̃) (4)

the corresponding maximized profit level.

In the analysis, we will often meet the following function:

f(p;x, q̃) ≡ π(p;x, q̃)− π̂(x, L) (5)

for any p in
[
x, pmax

q̃

]
, for any x ≤ pmax

q̃ and for any q̃ ∈ [L,H] . The function f(p;x, q̃)

represents the difference between the (variable) profit a seller, perceived as a q̃ quality seller,

can make by facing the cost x and when charging p, and the maximum profit π̂(x, L) it can

earn in the worst situation, that is, when consumers perceived it as a low-quality seller. A

number of interesting properties of f recorded in the following lemma will be useful for the

analysis.

Lemma 1 For any x ≤ pmax
q̃ and q̃ in [L,H], the function f(.;x, q̃) has exactly two roots on

the interval
[
x, pmax

q̃

]
, that we denote p(x, q̃) and p(x, q̃) with p(x, q̃) < p(x, q̃). The function

f(.;x, q̃) is also positive between the roots and negative either. Moreover, both roots are strictly

interior when π̂(x, L) > 0 and they are increasing in x. When π̂(x, L) = 0 then p(x, q̃) = x

and p(x, q̃) = pmax
q̃ .

Proof: See Appendix A.
5The weakest suffi cient condition for strict concavity is the mark-up in absolute terms, m(p) = p − x ≡

− D(p,q̃)
∂D
∂p

(p,q̃)
to be decreasing or not too increasing in price, that is m′(p) ≤ 1.
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As will be clear below, the threshold prices identified in Lemma 1 help characterize the

set of separating and pooling price equilibria in the signaling game. Specifically, this will

enable us to clearly define the Riley separating equilibrium price and determine whether it

is Pareto dominated or not by pooling equilibrium prices.

3 Signaling quality in the vertically integrated structure: the
case of no delegation

We consider in this section the situation where the manufacturer and the retailer form an

integrated vertical structure, that acts as a monopolist on the final market. Under complete

information, consumers are able to distinguish perfectly between both qualities and the price

p̂(c,H) (respectively p̂(0, L)) denotes the optimal price for a high-quality (resp. for a low-

quality) product. The monopolist is making π̂(c,H) if of high quality and π̂(0, L) otherwise.

Under asymmetric information, the integrated firm may choose either to disclose his

private information on quality through separating prices, or to conceal this information by

setting pooling prices. The monopolist maximizes profit with respect to price, given the beliefs

held by consumers after observing this price. This objective defines a signaling game similar

to that investigated by Bagwell and Riordan (1991). The monopolist’s pricing strategies

must be supported as a Perfect Bayesian Equilibrium (PBE). Many of the proof techniques

used by Bagwell and Riordan (1991) are readily adapted for characterizing the PBE in our

setting. We will consider in turn the issue of separating price equilibria and of pooling price

equilibria.

3.1 The set of separating outcomes

Consider a putative separating equilibrium
(
pIH , p

I
L

)
in the integrated structure. As usual,

such an equilibrium must satisfy two kinds of constraints: first, individual rationality (IR)

constraints and, second, incentive compatibility (IC) constraints. The IR constraints ensure

that the monopolist finds it profitable to choose an equilibrium price rather than the opti-

mal price associated with the worst belief that consumers can hold from the monopolist’s
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standpoint, i. e., q̃ = L.

The IR constraints are given for H and L, respectively, by:

π
(
pIH ; c,H

)
≥ π̂ (c, L) (IRH)

π
(
pIL; 0, L

)
≥ π̂ (0, L) . (IRL)

The IC constraints require that the price set for one quality would not be worth mimicking

if the quality were different. They are given for H and L, respectively, by:

π
(
pIH ; c,H

)
≥ π(pIL; c, L) (ICH)

π(pIL; 0, L) ≥ π(pIH ; 0, H). (ICL)

We simplify the analysis of the set of prices satisfying the above constraints by noting the

following two claims.

Claim 1 The constraint (IRL) is necessarily binding.

Indeed, by definition, the monopolist correctly identified as selling a low-quality product

cannot get more than by charging the price p̂(0, L). It follows that, at a separating equilib-

rium, the low-quality price is equal to the low-quality price under complete information:

pIL = p̂(0, L).

Claim 2 The constraint (ICH) is satisfied once (IRH) holds.

Indeed, this is because by definition π̂ (c, L) ≥ π(pIL; c, L) for all pIL.

Both results imply that the set of high-quality separating prices is described by the re-

maining constraints, (IRH) and (ICL) taken into account that pIL = p̂(0, L) and π(pIL; c, L) =

π̂ (c, L). It follows that (IRH) and (ICL) can be rewritten respectively as:

f(pIH ; c,H) ≥ 0 and f(pIH ; 0, H) ≤ 0. (6)

We fully characterize the set of prices pIH that satisfy (6), in the proof of the following

Proposition, that only exhibits the least-cost separating price equilibrium.
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Proposition 1 The least-cost separating price equilibrium for an integrated firm is a pair of

prices
(
pIL, p

I
H

)
given by:

pIL = p̂(0, L)

pIH =

{
p(0, H) whenever c < c̄
p̂(c,H) otherwise.

where c̄ > 0 denotes the (unique) cost value such that p(0, H) = p̂(c̄, H).

Proof: See Appendix B

Proposition 1 characterizes the separating equilibrium outcome that entails the minimum

loss in profit needed to fully reveal that quality is high: this is the so-called Riley separating

equilibrium outcome (after Riley, 1979). As a result, the equilibrium price of a low-quality

good is never distorted compared to the full information situation. By contrast, when c < c̄,

the separating price for high quality involves an upward distortion compared to the full

information price, that is, pIH = p(0, H) exceeds p̂(c,H). This upward distorted price is such

that it makes the low-quality monopolist indifferent between mimicking the high-quality

counterpart by charging p(0, H) and being correctly identified by consumers by choosing pIL.

However, whenever c ≥ c̄, then p̂(c,H) belongs to the set of separating prices and hence it

is always possible for the high-quality seller to signal its quality without cost. More precisely,

if pmax
H is suffi ciently large so that p̂(pmax

H , H) > p(0, H), then there always exists a range of

costs c for which signaling quality entails no distortion.

Throughout the proof of Proposition 1, we show that there exists an infinity of separat-

ing equilibrium prices. The presence of multiple equilibria is not surprising in a standard

monotonic signaling game such as the one investigated here. Clearly, this is a weakness in

terms of generating behavioral predictions. The solution proposed by the literature to this

problem is to employ refinements which impose additional restrictions on the beliefs held by

consumers out of equilibrium. For instance, a standard exercise here would be either to single

out the Riley outcome with the “intuitive criterion”proposed by Cho and Kreps (1987), or

to show that the Riley outcome “defeats” all the other separating equilibrium outcomes in
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the sense of Mailath et alii (1993). We do not need to perform the refinement exercise here

for one reason that will clearly appear in the next section: the vertical contract makes it

possible to single out a unique signaling price without invoking the consumer sophistication

in building and updating beliefs usually required by selection criterions.

Note that our assumption that D(0, L) > 0, i.e., consumers value positively the low

quality charged at marginal cost, is necessary for separation. Indeed, otherwise π̂ (0, L) = 0

and hence (ICL) cannot hold with a strictly positive price pIH .

3.1.1 The set of pooling outcomes

We now turn to the characterization of pooling equilibria if they exist. Let pI denote a pooling

equilibrium price in the integrated structure. Since the price charged by the monopolist is

the same regardless of quality, consumers’posterior beliefs after observing this price are the

same as their prior beliefs. Hence, the integrated firm with quality q earns π(pI ; cq, q0) in

equilibrium. To conceal information in equilibrium, any pooling price pI must give no less

profit than what the monopolist could get at best if its product were thought to be of low

quality with certainty, that is:

π(pI ; cq, q0) ≥ π̂ (cq, L) , for q = H,L. (7)

The set of prices pI such that (7) holds is the set P (q0) of pooling equilibrium prices.

Proposition 2 Whenever p(c, q0) ≤ p(0, q0), any price pI that belongs to P (q0) =
[
p(c, q0), p(0, q0)

]
is a pooling equilibrium price for the integrated firm.

Note that the condition for existence of pooling equilibria can be interpreted as an upper

bound of admissible cost c for high quality because p(c, q0) is increasing in c. Intuitively, if c is

high enough ceteris paribus, then any equilibrium of the signalling game involves separation.

Let us show that there exist circumstances under which a pooling equilibrium Pareto

dominates the Riley separating equilibrium, from the perspective of both types of manufac-

turer. Let us examine when this situation occurs. As π(pI ; 0, L) ≥ π̂ (0, L) by definition of
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a pooling equilibrium, the low-quality monopolist that chooses pI will always make at least

the equilibrium profit under separation.

The same is not always true for the high-quality monopolist but happens to be true

when the two following conditions are met. First, it must be that the price charged for

the high-quality product is distorted upward relative to the full information situation, i. e.,

pIH = p(0, H), which arises when p(0, H) > p̂(c,H). Otherwise, signalling quality would entail

no cost and the high-quality monopolist would never benefit from pooling since π̂ (c, q0) <

π̂ (c,H) as long as q0 < H. The second condition is that the high-quality monopolist is indeed

better off with the uninformative price pI than with the separating price p(0, H):

π(pI ; c, q0) ≥ π(p(0, H); c,H). (8)

Note that condition (8) holds for suffi ciently high values of q0. Indeed, because π̂ (c, q0) is

strictly increasing in q0, we can define q̂0 as the unique threshold in quality expectation such

that

π̂ (c, q̂0) = π(p(0, H); c,H). (9)

The left-hand side of (9) is the maximum profit that the high-quality monopolist can

make by holding back information, when consumers believe the expected quality to be q̂0.

The critical value q̂0 is the quality level such that the high-quality producer is indifferent

between signaling quality with the upward-distorted price p(0, H) and concealing information

about quality in the optimal way. We sum up our discussion of pooling equilibria with the

following result.

Proposition 3 For all q0 higher than q̂0, there exists at least one pooling equilibrium (actu-

ally an infinity of) that Pareto dominates the least-cost separating equilibrium regardless of

the actual quality.

Figure 1 depicts the pooling and separating equilibria for values of c lower than c̄, first

when q0 is lower than q̂0 in the upper panel, and then when q0 is larger than q̂0 in the
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pmax
H

p(c, q0)
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H
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p(0, q0)
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q00

p(0, H)

π̂(0, L)

Profits

π̂(c, L)

Figure 1: Pooling (thick curves with arrows) and separating (black points) equilibria for both
low and high quality firms when q0 < q̂0 (upper panel) and when q0 > q̂0 (lower panel).
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lower panel, in the special case of a linear demand D(p, q̃) = 1 − p/q̃.6 In both panels

and for both the low and high quality, the thick curves with arrows indicate the range of

pooling profits while the black points indicate the least-cost separating profits at the Riley

equilibrium outcome. The white point indicates the perfect information profit for a high-

quality monopolist.Clearly, no pooling equilibrium allows a high-quality monopolist to earn

more than at the least-cost separating price in the upper panel. On the contrary, there is

clearly a range of pooling equilibria that give more revenue to the high-quality monopolist

than the least cost separating price in the lower panel. Note that in both cases, the low-quality

monopolist is always better off when playing a pooling equilibrium price.

As previously mentioned, the presence of multiple equilibria, whether separating or pool-

ing, raises an issue which various authors address making use of equilibrium refinements. If

we were applying here the logic of the criterion proposed by Cho and Kreps (1987) to the

multitude of pooling equilibria depicted in Figure 1, we would eliminate all of them as be-

ing “unintuitive”. As usual, the Riley equilibrium outcome is the only signaling equilibrium

robust to the intuitive criterion regardless of the prior beliefs held by consumers. However,

there is some question of selecting the Riley equilibrium outcome as the most plausible, espe-

cially when it is Pareto dominated (from the monopolist’s standpoint) by pooling equilibria

as it happens here when q0 > q̂0. Roughly speaking, the idea is that both the high- and the

low-quality types should not be wastefully competitive with themselves. Another concern is

the following. When consumers are almost sure that quality is high, one expects the high-

quality monopolist to choose a price fairly close to the full information price p̂(c,H). In such

circumstances however, the intuitive criterion happens to emphasize signaling behaviors that

significantly differ from those prevailing under full information. As stated in Proposition 1,

if there is a very slight chance that quality is low, the Riley equilibrium outcome predicts

that the monopolist will set the upward-distorted price pIH = p(0, H) to signal high quality

6 In both panels, the dashed curves depict the family of profits curves for a low-quality monopolist, π(p; 0, q̃)
for q̃ ∈ {L, q0, H}. The solid curves depict the family of profit curves for a high-quality monopolist, π(p; c, q̃)
for q̃ ∈ {L, q0, H}.
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whenever c ≥ c̄, which exceeds p̂(c,H). By contrast, the pooling price p̂(c, q0) which Pareto

dominates the two prices involved in the Riley equilibrium outcome, tends to p̂(c,H) as q0

comes close to H. The interested reader will find further grounds for criticism of the intuitive

criterion in Mailath et alii (1993). The alternative refinement they propose would discard the

Riley equilibrium outcome when q0 > q̂0, because it is “defeated”by the Pareto dominating

pooling equilibrium outcomes in this parameter configuration. Further examination of the

vertical contract will show how it greatly simplifies the issue of selecting a reasonable price

in equilibrium, with no restriction on out-of-equilibrium beliefs.

To conclude the analysis, it is worth noting that consumers also benefit ex ante from

pooling equilibria under some circumstances. In such cases, there must be unanimity among

all participants (consumers and firms) not to distort price in order to reveal quality, but rather

to conceal information via a pooling price. For this, consumer surplus before purchase must

be higher at the pooling equilibrium price than at the expected price involved by the Riley

separating equilibrium outcome with costly signaling. We examine this possibility throughout

the following example. Assume again that preferences are of Mussa-Rosen type, i.e., consumer

with taste y has utility u = yq̃ − p when buying one unit of perceived quality q̃ at price p

and 0 either. Assuming that y is distributed uniformly on [0, 1] leads to a linear aggregate

demand D(p, q̃) = 1 − p/q̃. Consider now the parameter configuration such that, first, the

separating price intended to signal high quality is the upward-distorted price pIH = p(0, H),

and second, there exists a pooling price at which the monopolist earns more profit than at the

least-costly separating prices. The first condition requires that c < c̄, that is, c <
√
H∆ with

Mussa-Rosen preferences. The second condition requires that the pooling equilibrium price

p̂(c, q0) provides the high-quality monopolist with profit π̂ (c, q0) higher than π(p(0, H); c,H),

that is, q0 ≥ q̂0. Is it possible that, under these conditions, consumers find it ex ante cheaper

to buy the product at price p̂(c, q0), rather than at the Riley separating equilibrium prices?

Facing p̂(c, q0), a consumer with taste y has expected utility yq0− p̂(c, q0) that depends on

the prior quality expectation q0 = µ0H + (1− µ0)L. By contrast, the expected utility in the
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situation of costly revelation of quality is y(µ0H + (1− µ0)L)− µ0p(0, H)− (1− µ0)p̂(0, L).

Indeed, ex ante, with probability µ0, the consumer is charged p(0, H) that correctly reveals

that the product is of high quality and, with probability 1 − µ0, he is charged p̂(0, L) that

correctly reveals that the product is of low quality. As expected utility of quality is the same

in both situations, it remains to check whether the expected price under costly revelation can

be higher than p̂(c, q0). We finally obtain the following result.

Claim 3 Suppose q0 ≥ q̂0 and c ≤ c̄. With Mussa-Rosen preferences, the pooling price

p̂(c, q0) is cheaper than the expected price under revelation provided that c < µ0

√
H∆. Hence,

ex ante, for all µ0 ∈ ( c√
H∆

, 1), the pooling equilibrium price p̂(c, q0) is preferred by both firms

and consumers to revelation.

Proof: See Appendix C.

4 The vertically decentralized structure: the case of delega-
tion

We now consider a similar set-up but where the manufacturer M delegates the task of dis-

tributing and pricing the product on the market to an independent retailer R. Hence, it

is now the retailer R that signals the product quality by choosing its price. Nevertheless,

the decision of the retailer will be influenced via the procurement contract signed with the

manufacturer.

We consider in the following that the set of possible contracts is limited to the set of two-

part tariffs. More precisely, the good is exchanged between M and R at a per-unit price w,

while R is paying a franchise F to M. Furthermore, we make two simplifying assumptions: i)

M has all the bargaining power and hence proposes a take-it-or-leave-it offer (w,F ) to R, ii)

consumers know that the contract set is the set of two-part tariffs but do not observe the terms

of the contract that remain private information shared by M and R. Hence, consumers only

observe the final price set up by R. Finally, the rest of the notations and assumptions made
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in the vertically integrated structure case also hold in the vertically decentralized structure.

We investigate a four-period signaling game which proceeds as follows. In period one,

Nature selects quality q from the set {H,L} according to the commonly known probability

distribution µ0. In period two, both M and R learn the actual q and M makes a take-it-or-

leave-it offer (wq, Fq) to R which accepts or refuses. In period three, in case of acceptance,

R charges p. In period four, consumers observe p but not wq nor Fq, and update their

prior beliefs µ0 and hence their quality expectation q0, thereby making their choice between

products on the basis of this observation. Consumers’ posterior quality expectation after

observing p will also be denoted by q̃ (p) : R+ → [0, 1].

In the spirit of subgame perfection, equilibrium is characterized by first looking for the con-

sumer prices in the subgame G(w,F ) that starts in period three, (w,F ) = (wH , FH , wL, FL)

being the pair of accepted franchise fees and prices. Lastly, the contract choices are deter-

mined.

The profits of the manufacturer and the retailer can be defined as functions of their price,

given consumers’beliefs and the actual quality. The profits of M and R will be denoted

respectively, for q = H,L:7

ΠM = (wq − cq)D (p, q̃) + Fq

and

ΠR = (p− wq)D (p, q̃)− Fq (10)

= π(p;wq, q̃)− Fq

As before, from the viewpoint of both M and R, q̃ = L is the least favorable quality

expectation that consumers can form, regardless of the actual quality. Indeed, as the demand

is increasing in expected quality, so are the retailer’s and manufacturer’s profits. As long as

demand D (p, q̃) is positive, the optimal price that maximizes ΠR with respect to p and

considering q̃ fixed is p̂(wq, q̃) and the retailer’s maximized profit is π̂(wq, q̃)− Fq.
7To save on notations, we omit to condition the profit functions of firms of type q on the contract (wq, Fq).
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4.1 Full information

We record here the benchmark case of complete information. Not surprisingly, the manufac-

turer is able to extract the full surplus of the vertical structure using marginal cost pricing

and charging a fee equal to the corresponding monopoly profit, which makes the retailer in-

different between accepting or not the contract. Indeed, it is well known that, in our context,

delegating the pricing task to the retailer entails the emergence of double marginalization

and that two-part tariffs are suffi cient to eliminate this vertical externality.

To sum up, for q = H,L, the equilibrium wholesale price is equal to the marginal cost,

i.e., wq = cq, the retailer charges the complete information price p̂(cq, q) and gets zero profit

while the manufacturer earns the optimal fee equal to the monopoly profit π̂(cq, q).

4.2 Asymmetric information

Under asymmetric information, the quality of the product is supposed known to both the

manufacturer and the retailer, but not to the consumers. We start by defining the equilibrium

concept.

4.2.1 The equilibrium concept

A perfect Bayesian equilibrium of the whole game is a set of price strategies
{

(w∗q , F
∗
q , p
∗
q)q=H,L

}
and quality expectation q̃∗ (p) such that, at any period of the game, strategies must be optimal

given that the following player, if any, responds optimally, and given consumers’expectations.

Formally, the optimal condition for M requires that, for q = H,L,

w∗q , F
∗
q ∈ arg max

wq ,Fq
ΠM = (wq − cq)D

(
p∗q , q̃

∗(p∗q)
)

+ Fq

s.t. ΠR = π(p∗q ;wq, q̃
∗ (p∗q))− Fq ≥ 0. (FCq)

The feasibility constraint (FCq) means that the retailer of type q should accept the contract.8

8 In equilibrium, we expect the manufacturer of any type to always propose a contract that meets the
feasibility constraints. Suppose on the contrary that in equilibrium the contract offered by one type of M is
not accepted; then, this type of M can always secure a positive profit with an acceptable contract simply by
reducing her franchise without affecting the relationship between R and M of the other type.
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The perfection condition for R is for q = H,L,

p∗q ∈ arg max
p

ΠR = π(p;wq, q̃
∗ (p))− Fq. (11)

Bayes’consistency of beliefs demands that consumers form posterior expectations about

q from observing prices only by using Bayes’rule out of equilibrium. It follows that

if p∗H 6= p∗L, then q̃
∗(p∗H) = H and q̃∗(p∗L) = L, (12)

and if p∗H = p∗L, then q̃
∗(p∗H) = q̃∗(p∗L) = q0.

4.2.2 The set of separating outcomes in G(w,F )

In this section, we first characterize the set of separating equilibria if any, for a given pair

of wholesale prices and franchise fees, assuming that contracts have been accepted by the

corresponding type of retailer. Note that our search for separating equilibria in this subgame

amounts to generalize what has been done in the integrated case, to the procurement cost

configuration (wL, wH), provided that the franchises meet the feasibility constraints. In

particular, this requires to explore separating possibilities when the procurement cost of the

high-quality product is lower than the low-quality one.

Constraints for separating equilibria Consider a potential separating equilibrium (p∗H , p
∗
L)

of the subgame G (w,F ). Without loss of generality, let consumers’beliefs be the least fa-

vorable ones out of equilibrium from the retailer’s point of view, i. e., q̃∗(p) = L for all

p /∈ {p∗H , p∗L}. Such beliefs will generate all of the possible perfect Bayesian equilibrium paths.

Indeed, if the retailer of any type does not have an incentive to charge p when q̃∗(p) 6= L,

then he will not have an incentive when q̃∗(p) = L, since his profit is lower.

As for the integrated case, we now introduce the two individual rationality constraints.

A type H retailer who is clearly identified as a high-quality provider by consumers must find

profitable to choose p∗H instead of any other price that fool consumers, giving at best the

variable profit π̂(wH , L):

π(p∗H ;wH , H)− FH ≥ π̂(wH , L)− FH . (IRH)
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Similarly, the individual rationality constraint for a type L retailer is:

π(p∗L;wL, L)− FL ≥ π̂(wL, L)− FL (IRL)

which means that p∗L must be an optimal strategy when consumers correctly identify the

product as being a low-quality one.

We now turn to the incentive compatibility constraints. First, the type H retailer must

not find profitable to mimic the equilibrium price chosen by the type L retailer, that is:

π(p∗H ;wH , H)− FH ≥ π(p∗L;wH , L)− FH . (ICH)

Second, the type L retailer must not find profitable to behave as if he were the type H

retailer, that is:

π(p∗L;wL, L)− FL ≥ π(p∗H ;wL, H)− FL. (ICL)

Given that the contract has already been accepted, the franchise fees do not impact directly

individual rationality nor incentive compatibility constraints: only the wholesale prices mat-

ter.

Analysis We first establish similar claims as in the integrated case and for the same reasons.

Indeed, observe that the constraint (IRL) reduces to

π(p∗L;wL, L) ≥ π̂(wL, L)

and it is necessarily binding. Hence,

p∗L = p̂(wL, L)

that is the complete information equilibrium price corresponding to a procurement cost wL.

We assume that π̂(wL, L) > 0 or equivalently that wL < pmax
L , so that p̂(wL, L) is an interior

maximum. As will be clear below, this condition is necessary for (ICL) to hold.9

9Recall that in the integrated case, we have similarly assumed that π̂(0, L) > 0.
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Also, as before, the constraint (IRH) for a type H retailer implies constraint (ICH). We

are thus left with, first, the constraint (IRH):

π(p∗H ;wH , H)− FH ≥ π̂(wH , L)− FH (IRH)

and second the constraint (ICL):

π(p∗L;wL, L)− FL ≥ π(p∗H ;wL, H)− FL

together with the fact that p∗L = p̂(wL, L). We can rewrite (ICL) as

π̂(wL, L)− FL ≥ π(p∗H ;wL, H)− FL. (ICL)

Simplifying these constraints, we are thus looking for the set Σ of price p∗H such that the

two following constraints hold:

π(p∗H ;wH , H) ≥ π̂(wH , L) (13)

π̂(wL, L) ≥ π(p∗H ;wL, H). (14)

Note that the assumption π̂(wL, L) > 0 is needed for (14) to hold.

The set of separating price equilibria is characterized in the following Proposition.

Proposition 4 Consider a given pair of wholesale prices (wH , wL) such that wL < pmax
L .

Any separating price equilibrium (p∗H , p
∗
L) of G(w,F ) is such that:

p∗L = p̂(wL, L)

p∗H ∈ Σ

where the set Σ of high-quality separating prices is given by:

Σ =


[
max

(
p(wL, H), p(wH , H)

)
, p(wH , H)

]
when wH > wL{

p(wL, H), p(wL, H)
}
when wH = wL[

p(wH , H),min
(
p(wL, H), p(wH , H)

)]
when wH < wL

Proof: See Appendix D.

We also obtain straightforwardly the following Corollary.
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Corollary 5 The least cost separating price that signals quality H, whenever it exists, is

p∗H ∈ Σ such that

p∗H =


min

(
p(wL, H), p̂(wH , H)

)
if wH < wL,

p(wL, H) if wH = wL
max (p(wL, H), p̂(wH , H)) if wL < wH

.

Note first, that in the limit case where wH = wL, both separating prices give the same

gross revenue by definition,

p(wL, H)D(p(wL, H), H) = p(wL, H)D(p(wL, H), H)

but as p(wL, H) > p(wL, H), the corresponding profits are ranked accordingly so that

p(wL, H) is the least cost separating price for high quality.

The insight from Corollary 5 is twofold. First, to signal high quality, the retailer may

distort the consumer price relative to the full information situation, either downward (p∗H =

p(wL, H)) or upward (p∗H = p(wL, H)) depending on whether the wholesale price for high

quality falls short or not of the wholesale price for low quality. Second, to the extent that

p∗H is biased away from p̂(wH , H), p∗H becomes insensitive to changes in wH as shown by the

definitions of p(wL, H) and p(wL, H).

As the complete information price p̂(wH , H) is increasing in wH , there exists two threshold

values for wH , denoted wH and wH and defined by p̂(wH , H) = p(wL, H) and p̂(wH , H) =

p(wL, H).10 Figure 2 depicts p∗H as a function of wH and for a fixed wL, in the special case of

a linear demand D(p, q̃) = 1 − p/q̃ where the perfect information price p̂(wH , H) is a linear

increasing function of wH .

The sense of the signaling distortion necessary to signal high quality to consumers, if any,

is determined backward by the manufacturer. If the wholesale price discriminates on behalf

of low (resp. high) quality, i.e., wL ≤ wH , the manufacturer may induce the retailer to signal

high quality with a price higher (resp. lower) than what would prevail under full information.

10More precisely, wH is given by the solution in wH of the equation D(p(wL, H), H) + (p(wL, H) −
wH)

∂D(p(wL,H),H)
∂p

= 0. That is, wH = p(wL, H) +
D(p(wL,H),H)
∂D(p(wL,H),H)

∂p

. Similarly, the other threshold is wH =

p(wL, H) +
D(p(wL,H),H)

∂D(p(wL,H),H)

∂p

.
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Figure 2: Least cost separating price p∗H for high quality as a function of wH
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Setting a lower wholesale price to either quality amounts to reducing the retailer’s cost of

selling this quality. When the retailer considers changing consumer price away from the full

information level, he has to take into account both a direct and an indirect effects on his profit,

which play in opposite directions. First, the retailer directly modifies his gross revenue at the

current sale. But second, the retailer changes the demand for his product, thereby modifying

indirectly the profit from sales (net from the wholesale price). Thus, a downward deviation

from the full information price both reduces the gross revenue and increases the net profit by

boosting demand, whereas an upward deviation has the converse effects: it raises the gross

revenue but entails a loss in profit due to lower demand. If the wholesale price for the high

quality is lower than that for the low quality, the type H retailer has more incentive than the

type L to distort downward the consumer price because increased demand for the retailer’s

product is more profitable to the high quality due to less expensive sales. Conversely, if the

type H retailer must pay a wholesale price higher than that proposed to the type L retailer,

distorting upward the consumer price can successfully signal high quality because the global

effect of the foregone profit from adverse business switching on one hand, and the higher gain

from increased price on the other hand, is less damaging to the type H retailer, but also his

gain from increased price is higher. As shown by Figure 2, the cost of signaling is maximum

when wH and wL are alike.

4.2.3 The set of pooling outcomes in G(w,F )

In this section, we characterize the set of pooling equilibria p∗H = p∗L = p∗ if any, for a given

pair of wholesale prices w and franchise fees F . Consider a potential pooling price p∗ of the

subgame G (w,F ) such that q̃∗(p∗) = q0. Without loss of generality, let consumers’beliefs be

the least favorable ones out of equilibrium from the retailer’s point of view, i. e., q̃(p) = L for

all p 6= p∗. As for the separating prices case, individual rationality constraints should hold
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for a potential pooling price, that is:

π(p∗;wH , q0)− FH ≥ π̂(wH , L)− FH (IRH)

π(p∗;wL, q0)− FL ≥ π̂(wL, L)− FL (IRL)

The next Proposition characterizes the set P of pooling equilibrium.

Proposition 6 In the subgame G (w,F ), there may exist a continuum of pooling equilibrium

prices p∗ that conceal information about quality. More precisely, the set P (q0) of pooling

prices is given by:

P (q0) =

{ [
p(wH , q0), p(wL, q0)

]
6= ∅ iff p(wL, q0) > p(wH , q0) when wH ≥ wL[

p(wL, q0), p(wH , q0)
]
6= ∅ iff p(wL, q0) < p(wH , q0) otherwise.

Proof: See Appendix E.

4.3 The optimal contract

We now examine the contract chosen by the manufacturer. Given that the manufacturer

has all the bargaining power, the feasibility constraints should bind, that is for a separating

equilibrium:

π(p∗H ;wH , H)− FH = 0 (15)

π(p∗L;wL, L)− FL = 0 (16)

with p∗L = p̂(wL, L) and p∗H ∈ Σ and for a pooling equilibrium

π(p∗;wH , q0)− FH = 0

π(p∗;wL, q0)− FL = 0

with p∗ ∈ P (q0). Hence, for q = L,H, the profit of the type−q manufacturer writes as

ΠM = (wq − cq)D(p∗q , q) + π(p∗q ;wq, q)

= π(p∗q ; cq, q)
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for a separating equilibrium and

ΠM = (wq − cq)D(p∗, q0) + π(p∗;wq, q0)

= π(p∗; cq, q0)

for a pooling equilibrium.

The role of the wholesale price is to select a particular final price and the franchise helps

to recover any variable profit (or loss) made by the retailer.

Proposition 7 Optimal contracts set up by the manufacturer make it possible for the retailer

to commit on a unique final price for each quality level.

(i) If q0 ≤ q̂0, the manufacturer optimally sets up a contract that achieves separation at the

least cost, i. e., (p∗L, p
∗
H) =

(
pIL, p

I
H

)
. This contract involves the following wholesale

prices and franchises:

w∗L = 0, F ∗L = π̂(0, L)

and

w∗H =

{
∈ [0, c̄] when c ≤ c̄
c otherwise.

, F ∗H =

{
π(p(0, H);w∗H , H) when c ≤ c̄
π̂(c,H) otherwise.

(ii) If q0 > q̂0, and c ≤ c̄, the manufacturer optimally sets up a contract that conceals

information and leads to its best pooling price, namely p̂(0, q0) for low quality, and

p̂(c, q0) for high quality. If c > c̄ then the optimal contract implements separation

without distortion, as when q0 ≤ q̂0.

Proof: The proof proceeds by first assuming that the manufacturer seeks separation and

by finding the optimal contract. Second, we assume that the manufacturer wants to conceal

information and we characterize the optimal contract. Finally, we prove that separation is

more profitable than pooling when q0 ≤ q̂0. See appendix F.
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When separation is not costly (c > c̄), there is a unique contract that leads the retailer to

charge the complete information price for high quality. This constitutes the optimal policy

for the manufacturer whatever the prior q0 of consumers when c > c̄.

On the contrary, when separation is costly (c ≤ c̄), note that the manufacturer’s profit is

insensitive to the choice of wholesale price wH provided it belongs to [0, c̄]. As a consequence,

there is an infinite number of contracts that all lead the high-quality retailer to choose the

separating distorted price p(0, H). Implementing one of theses contracts would prove to

be optimal only if q0 ≤ q̂0. In that event, the vertical contract selects the signaling prices

involved in the Riley separating outcome. Not only is this the least costly way of disclosing

full information about quality, but also it pays more to disclose full information than to

conceal information.

By contrast, when q0 > q̂0, and separation is costly (c ≤ c̄), the manufacturer prefers

a contract that implements the best pooling price given its type, thereby concealing infor-

mation. As previously seen, if we compare this result to the predictions obtained by using

refinement criterions to select “reasonable” signaling equilibria in the vertically integrated

structure, we have that both pooling prices p̂(0, q0) and p̂(c, q0) would be eliminated as “un-

intuitive”by Cho and Kreps (1987), but would survive as being “undefeated”by Mailath et

alii (1993). Interestingly enough, there is a continuity in pricing behaviors between contracts

under complete and incomplete information. The pooling price p̂(c, q0) when quality is high

tends to p̂(c,H) as q0 approaches H.

As shown in section 3 with the example of Mussa-Rosen preferences, there also exists

circumstances where consumers prefer ex ante not to learn the true quality through price,

that is, q0 ≥ q̂0 and µ0 > c/
√
H∆.

5 Conclusion

This paper addresses the issue of price signaling in a model of vertical relationship between a

manufacturer and a retailer who share the same private information about quality, whereas
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consumers do not observe this characteristic a priori. We show that delegating the price

setting task to a retailer and controlling it through a vertical contract (actually a two-part

tariff) implements a unique price signaling quality, thereby solving the multiplicity problem

at the consumer level. The franchise paid by the retailer to the manufacturer allows the

latter to restrict the former’s choice of signaling prices to the most profitable outcome from

the manufacturer’s standpoint.

The outcome of a unique price charged to consumers emerges without invoking the con-

sumer sophistication usually required by selection criterions. In this paper, the only assump-

tion made on consumer behavior is that they revise their beliefs according to Bayes’rule when

observing a price. The vertical contract turns to be the most effi cient way for the vertical

chain to tie its hands on a unique final price. This price may disclose or not information to

consumers depending on their initial optimism about quality.

Using Mussa-Rosen preferences, we prove that there may be circumstances under which

consumers prefer ex ante not to learn the true quality through price. The result of concealing

information with the vertical contract is intriguing in that it proves socially effi cient when

consumers hold optimistic beliefs about quality before purchase. It raises the issue of what

would be the optimal anti-trust policy in such a context. Further research is needed to

examine this problem with more general consumer preferences.
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Appendix

A Proof of Lemma 1

First note that π̂(x, L) is strictly positive and decreasing on [0, pmax
L ) and π̂(x, L) = 0 on

[pmax
L , pmax

H ] . Also the strict concavity of profit function with respect to price implies that

the function f(.;x, q̃) is also strictly concave. Moreover, we have f(x;x, q̃) = f(pmax
q̃ ;x, q̃) =

−π̂(x, L) ≤ 0 and also maxp f(p;x, q̃) = maxp(p−x)D(p, q̃)−maxp(p−x)D(p, L) > 0 as long

as q̃ > L.

It follows that there exist two solutions in p to the equation f(p;x, q̃) = 0 and that

f(.;x, q̃) is positive between the roots. If π̂(x, L) = 0, the roots are equal to the bounds of

the interval [0, pmax
L ). On the contrary, if π̂(x, L) > 0, they are interior values.

Finally, if we denote a generic (interior) root p(x, q̃), for any x and q̃ :

f(p(x, q̃);x, q̃) = 0

Differentiating with respect to x, we get:

∂f

∂p

∂p

∂x
+
∂f

∂x
= 0 (17)

and when p(x) = p(x, q̃) (resp. p(x, q̃)), we have ∂f
∂p > 0 (< 0). Moreover,

∂f(p(x, q̃), x)

∂x
= −D(p(x, q̃), q̃)− ∂π̂(x, L)

∂x
.

Recall that ∂π̂(x,L)
∂x = −D(p̂(x, L), L) and then we have

∂f(p(x, q̃), x)

∂x
= D(p̂(x, L), L)−D(p(x, q̃), q̃)

From (17), it follows that ∂p(x,q̃)
∂x > 0 if and only if

D(p(x, q̃), q̃) < D(p̂(x, L), L) < D(p(x, q̃), q̃). (18)

But by definition, the roots p(x, q̃) and p(x, q̃) are such that:

(p(x, q̃)− x)D(p(x, q̃), q̃) = (p̂(x, L)− x)D(p̂(x, L), L)

= (p(x, q̃)− x)D(p(x, q̃), q̃)

28



and p(x, q̃) < p̂(x, L) < p(x, q̃). This implies that (18) holds true and hence, the generic root

is increasing in x, i.e. ∂p(x,q̃)
∂x > 0.

B Proof of Proposition 1

Let us denote the set of prices that satisfy f(p; c,H) ≥ 0 as PH and the set of prices that

satisfy f(p; 0, H) ≤ 0 as PL. The set of separating prices is P = PH ∩PL. A separating price

equilibrium exists whenever this set is non empty and entails some distortion compared to

complete information whenever the optimal price under complete information p̂(c,H) does

not belong to that set.

First of all, note that π̂(0, L) = maxp pD(p, L) is strictly positive because D(0, L) > 0

by assumption. Hence, following Lemma 1, the two roots of f(p; 0, H), namely p(0, H) and

p(0, H), are interiors and consequently the set PL is
[
0, p(0, H)

]
∪ [p(0, H), pmax

H ].

Now for PH , we have two cases that we examine in turn.

(a) π̂(c, L) = 0. This is equivalent to c ≥ pmax
L so that a high-quality producer, identified as

a low-quality one, cannot expect making any profits given the cost c. Therefore, the set

PH is simply [c, pmax
H ]. In other words, (IRH) always hold for the range of prices. Also,

it is easy to check that p(0, H) < pmax
L and hence we have p(0, H) < c.11 Consequently,

P = [max (c, p(0, H)) , pmax
H ].

(b) π̂(c, L) > 0. This is equivalent to c < pmax
L . This means that the set PH is now[

p(c,H), p(c,H)
]
⊂ [c, pmax

H ]. Also, using Lemma 1, we have that p(0, H) < p(c,H) and

p(0, H) < p(c,H). It follows that P =
[
max

(
p(0, H), p(c,H)

)
, p(c,H)

]
.

Finally, note that in both cases, if p̂(c,H) ∈ P , that is when p(0, H) < p̂(c,H), then the

least-cost separating price is p̂(c,H).12 Otherwise, that is when p(0, H) > p̂(c,H), then the

least-cost separating price is p(0, H).

11 Indeed, by construction, we have p(0, H) < p̂(0, L) and also p̂(0, L) < pmaxL , thus p(0, H) < pmaxL .
12When max

(
p(0, H), p(c,H)

)
= p(c,H), then obviously p̂(c,H) ∈ P . The same holds when

max(c, p(0, H)) = c.
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C Proof of Claim 3

Consider the parameter configuration such that, first, the separating price intended to signal

high quality is the upward-distorted price pIH = p(0, H)—which happens when c < c̄ —and

second, the pooling price p̂(c, q0) is more profitable to the high-quality monopolist than pIH =

p(0, H)—which happens when π̂ (c, q̂0) > π(p(0, H); c,H). In this parameter configuration,

consumers are ex ante better off with p̂(c, q0) than with the expected price under costly

revelation if and only if

p̂(c, q0) < µ0p(0, H) + (1− µ0)p̂(0, L)

With Mussa-Rosen preferences, we have p̂(0, L) = arg maxp p(1− p/L) = L/2, p(0, H) =

H+
√
H∆

2 , c̄ =
√
H∆ and p̂(c, q0) = q0+c

2 . Hence, the inequality above is equivalent to c <

µ0

√
H∆, which is more binding than c < c̄.

D Proof of Proposition 4

We have already seen that p∗L = p̂(wL, L). It remains to characterize P . Denote PH the set

of p∗H for which (13) holds. Similarly, denote PL the set of p∗H for which (14) holds. Hence,

P = PH ∩ PL.

Actually, the characterization of P is very similar to the integrated case, although wH can

be higher or lower than wL. Indeed, (13) and (14) write respectively:

f(p∗H ;wH , H) ≥ 0

f(p∗H ;wL, H) ≤ 0.

Using Lemma 1, we have PL =
[
wL, p(wL, H)

]
∪[p(wL, H), pmax

H ]. Also, when π̂(wH , L) >

0, or equivalently wH < pmax
L , then PH =

[
p(wH , H), p(wH , H)

]
⊂ [wH , p

max
H ]. If on the

contrary, π̂(wH , L) = 0, that is a high-quality producer identified as a low-quality one

cannot survive on the market given the procurement cost wH , then PH = [wH , p
max
H ] .
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Consequently, the set P depends on whether the procurement cost are positively cor-

related with quality or not.

(a) Suppose first that wH > wL, and use Lemma 1:

• if π̂(wH , L) > 0, then P =
[
max

(
p(wL, H), p(wH , H)

)
, p(wH , H)

]
,

• and if π̂(wH , L) = 0, then P = [max (p(wL, H), wH) , pmax
H ], because wH >

pmax
L > p(wL, H).

(b) Suppose now that wH < wL. Because the condition π̂(wL, L) > 0 is necessary for

an equilibrium to exist, this implies here that π̂(wH , L) is also strictly positive as

π̂(., L) is decreasing. Using Lemma 1, we have

p(wH , H) < p(wL, H) and p(wH , H) < p(wL, H)

because the roots are increasing and hence, by using Lemma 1, we get P =[
p(wH , H),min

(
p(wL, H), p(wH , H)

)]
.

(c) Suppose finally that wL = wH , then this implies that P is the set of prices such

that f(p∗H ;wH , H) = 0. In others words, P =
{
p(wL, H), p(wL, H)

}
.

E Proof of Proposition 6

The set of constraints can be rewritten as follows, for q = H,L,

π(p∗;wq, q0) ≥ π̂(wq, L).

It follows from Lemma 1 that the set of pooling prices is

P =
[
p(wL, q0), p(wL, q0)

]
∩
[
p(wH , q0), p(wH , q0)

]
.

Hence, when wH > wL, P =
[
p(wH , q0), p(wL, q0)

]
and when wH ≤ wL, P =

[
p(wL, q0), p(wH , q0)

]
.

F Proof of Proposition 7

The proof proceeds as follows. We first assume that the manufacturer seeks separation

and find the optimal contract. Then, we assume that the manufacturer wants to conceal
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information and we characterize the optimal contract. Finally, we prove that separation is

better than pooling when q0 ≤ q̂0.

1. At a separating equilibrium, the low-quality retailer plays as under perfect information.

The manufacturer has thus no incentives to deviate from the optimal contract under

perfect information, i.e., w∗L = 0 and thus F ∗L = π̂(0, L). The low-quality retailer

charges pIL and pays the franchise F
∗
L = π̂(0, L).

Now Corollary 5 with wL = 0 gives us the least-cost separating price for the high

quality:

p∗H =


min

(
p(0, H), p̂(wH , H)

)
if wH < 0,

p(0, H) if wH = 0
max (p(0, H), p̂(wH , H)) if 0 < wH

.

• We first show that choosing wH < 0 is dominated by choosing wH = 0. In

other words it does not pay to charge less than wH = 0 for the high quality.

Indeed, whenever wH is such that min
(
p(0, H), p̂(wH , H)

)
= p(0, H) then the

manufacturer earns (p(0, H)−c)D(p(0, H), H) which is clearly less than (p(0, H)−

c)D(p(0, H), H) because

p(0, H)D(p(0, H), H) = p(0, H)D(p(0, H), H)

by definition and because demand is downward sloping together with p(0, H) >

p(0, H). Hence the manufacturer can earn more by choosing wH = 0.

Also, whenever wH is such that min
(
p(0, H), p̂(wH , H)

)
= p̂(wH , H) then this

gives a positive profit to the manufacturer only if p̂(wH , H) > c. Hence the

relevant possible set for wH is such that p(0, H) > p̂(wH , H) > c. As p(0, H)

belongs to the set of prices where the profit function (p− c)D(p,H) is increasing

in p (see Figure 1 13), it follows that choosing wH that implements p̂(wH , H) is

13And recall that p(0, H) < p̂(0, H) < p̂(c,H).
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dominated by choosing wH that implements p(0, H), which itself is dominated by

choosing wH = 0 as shown above.

• Now we know that the best price for maximizing the high-quality manufacturer

profit (p − c)D(p,H) is p̂(c,H) by definition. This price can be implemented

through wH = c whenever c ≥ c̄. Indeed, in this situation we have

p∗H = max (p(0, H), p̂(c,H))

= p̂(c,H).

On the contrary, when c < c̄, we have max (p(0, H), p̂(c,H)) = p(0, H). It is still

possible to implement p̂(wH , H) by choosing wH > c̄ but in that case this price is

larger than p(0, H) and thus even more upward distorted than p(0, H) with respect

to p̂(c,H), thereby giving less profit. Alternatively, by choosing any wH lower than

c̄, the price p(0, H) is implemented.

• From this discussion, it follows that the optimum for the manufacturer can be

implemented through the following contract

w∗H =

{
∈ [0, c̄] when c ≤ c̄
c otherwise.

, F ∗H =

{
π(p(0, H);w∗H , H) when c ≤ c̄
π̂(c,H) otherwise.

2. We here characterize the optimal contract when the manufacturer wants to conceal

information about quality. A high-quality manufacturer then earns (p− c)D(p, q0) for

any price p and his best possible price is p̂(c, q0). A low-quality manufacturer would

earn pD(p, q0) and the best possible price is p̂(0, q0). It is possible in principle to have

both prices as part of the set of pooling prices P (q0). Indeed, it would be suffi cient to

have wH and wL ≤ wH such that

p(wH , q0) ≤ p̂(0, q0) < p̂(c, q0) ≤ p(wL, q0).

That is wL suffi ciently large and wH suffi ciently low.14

14Or the same condition with inverting wH and wL when wH ≤ wL.
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Note that compared to the vertical integrated case, here the set of pooling prices can

be enlarged as we can choose wL larger than 0 and wH smaller than c. This makes it

possible to reach p̂(0, q0) or p̂(c, q0) whereas this might not be possible under vertical

integration if both prices do not belong to
[
p(c, q0), p(0, q0)

]
.

In general, for given quality q, if the manufacturer offers a wholesale price wq the retailer

may want to implement p̂(wq, q0) if this price belongs to the pooling set P0. For this it

is suffi cient that the manufacturer asks for the franchise

Fq = (p̂(wq, q0)− wq)D(p̂(wq, q0), q0)

= π̂(wq, q0).

Given this franchise, the unique optimal choice of the retailer is to charge p̂(wq, q0).

Choosing any other price provides the retailer with negative profits.

3. As soon as the best pooling price for a high-quality manufacturer, p̂(c, q0), gives a

larger profit than the one the manufacturer can get with p(0, H), a pooling price will

be preferred. This happens when q0 ≥ q̂0 and when c ≤ c̄.
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