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Abstract

We provide a generalized definition of evolutionary stability of heritable types in ar-

bitrarily large symmetric interactions under random matching that may be assortative.

We establish stability results when these types are strategies in games, and when they

are preferences or moral values in games under incomplete information. We show that

a class of moral preferences, with degree of morality equal to the index of assortativ-

ity are evolutionarily stable. In particular, selfishness is evolutionarily unstable when

there is positive assortativity in the matching process. We establish that evolutionar-

ily stable strategies are the same as those played in equilibrium by rational but partly

morally motivated individuals, individuals with evolutionarily stable preferences. We

provide simple and operational criteria for evolutionary stability and apply these to

canonical examples.
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1 Introduction

Economics provides a rich set of powerful theoretical models of human societies. Since these

models usually feature individuals whose motivations– preferences and moral values– are

given, their predictive power depends on the accuracy of the assumptions regarding these

motivations. However, if the motivations of the members of a society are inherited from

past generations, the formation of these motivations may itself be studied theoretically. In

particular, one may use evolutionary logic to ask what preferences and moral values have a

survival value, and thus ask: what preferences and moral values should humans be expected

to have from first principles?

It is of general interest, not the least for economics, to understand if and when selfish-

ness may be favored by evolution, and if not, what kind of preferences are likely to emerge

instead. Past research has identified two factors that pull preferences away from pure self-

ishness. First, as observed already by Schelling (1960), it may be advantageous in strategic

interactions to be known or believed to be committed to certain behaviors, or to have prefer-

ences or values, even if these commitments or values appear to be at odds with one’s material

self-interest.1 The literature on preference evolution confirms this intuition by showing that

when interactions occur under incomplete information, selfishness prevails,2 whereas when

interactions occur under complete information this is no longer the case.3 Secondly, until re-

cently the economics literature has largely disregarded another factor, which has been known

and studied in biology for decades, namely that natural selection favors unselfish behaviors

between relatives, and more generally, between individuals in structured populations, where

most interactions take place within subpopulations.4

We propose a general model for the study of the evolutionary foundations of human

motivation in strategic interactions in arbitrarily large groups. The model can be applied to

1For example, a manager of a firm in Cournot competition, with complete information about managers’

contracts, will do better, in terms of equilibrium profits, if the contract rewards both profits and sales, rather

than only profits (a literature pioneered by Fershtman and Judd, 1987).

2See Ok and Vega-Redondo (2001) and Dekel, Ely and Yilankaya (2007) for analyses of such environments.

3See Heifetz, Shannon, and Spiegel (2007a) for a particularly general such result. See also the literature

overview in Section 2 for references.

4The seminal work on this is Hamilton (1964a,b). For models using game theory, see Grafen (1979, 2006),

Hines and Maynard Smith (1979), Bergstrom (1995, 2009), and Day and Taylor (1998).
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strategy evolution and to evolution of preferences and/or moral values both under complete

and incomplete information, and the random matching may be assortative (as in structured

populations). We define evolutionary stability as a property of abstract types that can

be virtually any characteristic of an individual, such as a behavior pattern or strategy, a

goal function, preference, moral value, belief, or cognitive capacity etc. The types may be

visible/known or invisible/unknown to others. However, we do not allow that the types

directly affect the material payoff consequences of given action profiles. Individuals live in

a infinite (continuum) population and are randomly matched in groups of size n, to play a

symmetric n-player game with “material”payoffs. Each player’s strategy set may be simple,

such as in a simultaneous-move game, or very complex, such as in a sequential game with

many time periods and information sets. Strategies may be pure or mixed. The game has

to be ex ante symmetric (in a sense to be defined), but may be ex post asymmetric, as

long as each player is equally likely to be in any one of the n player roles. The random

matching may be assortative, that is, the type distribution of others in the matchings of any

given individual may depend on the individual’s own type. Individuals of types that result

in high payoffs in these random matchings are taken to have a higher survival probability

than individuals of types that result in low payoffs. In the model we apply Bergstrom’s

(2003) algebra of assortative pairwise encounters and show how his index of assortativity,

a one-dimensional measure of the extent of the assortativity, can be extended to n-player

encounters.5

We apply the general model to, in turn, evolutionary stability of strategies (Section 3),

and evolutionarily stable preferences under incomplete information (Section 4), leaving the

study of the evolutionary stability of other types, notably to preferences under complete

(or noisy) information, for future research. In Section 5 we illustrate these two applications

within several commonly studied games in which an individual’s material payoff depends

on own strategy and some aggregate measure of the others’ strategies. These games are

examples of aggregative games, and we believe that our results can be fruitfully applied to

other such games.6

5We refer to Bergstrom (2013) and Alger and Weibull (2013) for further discussions of assortativity when

n = 2.

6The notion of aggregative games is, to the best of our knowledge, due to Dubey, Mas-Colell and Shubik

(1980). See also Corchón (1996). The key feature is that the payoff to a player depends only on the players’

own strategy and some (symmetric) aggregation of others’ strategies. For a recent paper on aggregative

games, see Acemoglu and Jensen (2013). For work on aggregative games more related to ours, see Haigh and
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Two main results are established. First, although we impose minimal restrictions on

the set of potential preferences or moral values, our analysis of preference evolution under

incomplete information shows that evolution favors a particular class of preferences, namely,

a generalization from 2-player games to n-player games of the homo moralis preferences

defined in Alger and Weibull (2013). For this generalization, one needs to generalize (a) the

notion of game symmetry, (b) the notion of assortative matching, and (c) the notion of homo

moralis. For arbitrary n ≥ 2, a homo moralis evaluates her strategy choice in the light of its

effect on her own material welfare as well as on the material welfare that would arise if others

were to probabilistically choose the same strategy. We show that generalized homo moralis

preferences with a degree of morality equal to the index of assortativity are evolutionarily

stable. Furthermore, any preferences such that equilibrium behaviors differ from those of

homo moralis with the right degree of morality are evolutionarily unstable. This generalizes

the result in Alger and Weibull (2013) from 2-player to n-player interactions, and the present

instability result is somewhat stronger (even for two-player games), since we here allow for

multiple equilibria.

Our second main result is that behaviors selected for under strategy evolution are the

same as the equilibrium behaviors among homo moralis with degree of morality equal to

the index of assortativity. This result establishes that evolutionarily stable strategies (under

uniform or assortative random matching) need not be interpreted only as resulting when

individuals are “programmed” to certain strategies, but can also be interpreted as result-

ing when individual are rational and free to choose whatever strategy they like, but whose

preferences have emerged from natural selection. Together with a first- and second-order

characterization result for games in euclidean strategy spaces, with arbitrary index of as-

sortativity, we obtain easy and transparent methods to find the (symmetric) equilibria of

n-player games between homo moralis with that degree of morality, methods we illustrate

in various canonical examples.

2 Literature

When introduced by Maynard Smith and Price (1973) the concept of evolutionary stability

was defined as a property ofmixed strategies in finite and symmetric two-player games played

under uniform random matching in an infinite population, where uniform random matching

Cannings (1989) and Koçkesen, Ok and Sethi (2000a,b).
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means that the probability for an opponent’s strategy does not depend on one’s own strat-

egy. Broom, Cannings and Vickers (1997) generalized Maynard Smith’s and Price’s original

definition to finite and symmetric n-player games, for n ≥ 2 arbitrary, while maintaining

the assumption of uniform random matching in an infinite population.7 They noted the

combinatorial complexity entailed by this generalization, and reported some new phenom-

ena that can arise when interactions involve more than two parties. Evolutionary stability

and asymptotic stability in the replicator dynamic, in the same setting, was further analyzed

in Bukowski and Miekisz (2004). Schaffer (1988) extended the definition of Maynard Smith

and Price to the case of uniform random matching in finite populations, and also considered

interactions involving all individuals in the population (“playing the field”). Grafen (1979)

and Hines and Maynard Smith (1979) generalized the definition of Maynard Smith and Price

from uniform random matching to the kind of assortative matching that arises when strate-

gies are genetically inherited and games are played among kin. Our model generalizes most

of the above work within a unified framework.

In a pioneering study, Güth and Yaari (1992) defined evolutionary stability for para-

metrized utility functions, assuming uniform random matching and complete information.8

This approach is often referred to as “indirect evolution.”The literature on preference evo-

lution now falls into four broad classes, depending on whether the focus is on interactions

where information is complete9 or incomplete10, and whether non-uniform random matching

is considered.11 Few models deal with interactions involving more than two individuals. Like

here, the articles in this category focus exclusively on interactions that are symmetric in ma-

terial payoffs, the payoffs that drive evolution. Unlike us, they restrict attention to uniform

random matching. Koçkesen, Ok, and Sethi (2000a,b) show that under complete informa-

7Precursors to their work are Haigh and Cannings (1989), Cannings and Whittaker (1995) and Broom,

Cannings and Vickers (1996).

8See also Frank (1987).

9See Robson (1990), Güth and Yaari (1992), Ockenfels (1993), Huck and Oechssler (1996), Ellingsen

(1997), Bester and Güth (1998), Fershtman and Weiss (1998), Koçkesen, Ok and Sethi (2000a,b), Bolle

(2000), Possajennikov (2000), Sethi and Somanathan (2001), Heifetz, Shannon and Spiegel (2007a,b), Akçay

et al. (2009), Alger (2010), and Alger and Weibull (2010, 2012).

10See Ok and Vega-Redondo (2001), Dekel, Ely and Yilankaya (2007), and Alger and Weibull (2013).

11In the literature cited in the preceding two footnotes, only Alger (2010), Alger and Weibull (2010, 2012,

2013) allow for non-uniform random matching. Bergstrom (1995, 2003) also allows for such assortative

matching, but he restricts attention to strategy rather than preference evolution.
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tion about opponents’preferences, players with a specific kind of interdependent preferences

fare better materially than players who seek to maximize their material payoff. Sethi and

Somanathan (2001) go one step further and characterize suffi cient conditions for a popula-

tion of individuals with the same degree of reciprocity to withstand the invasion of selfish

individuals, again in a complete information framework. By contrast, Ok and Vega-Redondo

(2001) analyze the case of incomplete information. They identify suffi cient conditions for a

population of selfish individuals to withstand the invasion by non-selfish individuals, and for

selfish individuals to be able to invade a population of identical non-selfish individuals.

3 Model

Consider an infinite (continuum) population of individuals who are randomly matched into

groups of n ≥ 2 individuals to interact according to some game given in normal form Γ =

〈X, π, n〉, where X is the set of strategies available to each player (individual in the group)

and π : Xn → R is the material payoff function. The set X is a non-empty, compact and

convex set in topological vector space, and the function π is continuous.12 The material

payoff to any player i ∈ {1, .., n} from using strategy xi ∈ X against the strategies xj ∈ X
(j 6= i) of the others in the group, is denoted π (xi,x−i), where π is symmetric in x−i, the

strategy profile of all other individuals in the group, in the sense that the payoff π (xi,x−i)

is invariant under permutations of the components of x−i. These games may thus be called

aggregative.13

Each individual has some type (or trait) θ ∈ Θ, which may influence his/her choice of

strategy, or behavior in the material game, where Θ is the set of potential types. Consider a

population in which at most two types from Θ are present. For any types θ and τ , and any

ε ∈ (0, 1), let s = (θ, τ , ε) be the population state in which the two types are represented in

population shares 1− ε and ε, respectively. Let S = Θ2× (0, 1) denote the set of population

states. We are particularly interested in states s = (θ, τ , ε) in which ε is small, then calling θ

the resident type, being predominant in the population, and τ , being rare, the mutant type.

In a given population state s ∈ S, the behavioral outcomes, or, more precisely, strategy

12All assumptions are not needed for all our claims, but are made at the outset in order to ease the

exposition. All results apply, mutatis mutandis, also to n = 1, in which case Γ is a decision problem.

13More precisely: for any xi ∈ X and x−i ∈ Xn−1, and any bijection h : {2, 3, ..., n} → {2, 3, ..., n}:
π
(
xi, xh(2), xh(3), ..., xh(n)

)
= π (xi,x−i).
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profiles used, may, but need not, be uniquely determined. For each population state s, let

V (s) ⊂ R2 be the set of (average) material-payoff pairs that can arise in population state
s, where, for any v = (v1, v2) ∈ V (θ, τ , ε), the first component, v1, is the average material

payoff to individuals of type θ, and the second component, v2, that to individuals of type τ .

We assume that V (s) is non-empty and compact for all states s = (θ, τ , ε). Then

f (θ, τ , ε) = min
(v1,v2)∈V (θ,τ ,ε)

v1 − v2 (1)

is well-defined. This is the material payoffdifference, in the residents’worst possible outcome

as compared with mutants (in terms of material payoffs), across all behavioral outcomes that

are possible in state s = (θ, τ , ε). In particular, f (s) > 0 if and only if the residents earn a

(strictly) higher (average) material payoff than the mutants in all possible outcomes in that

state.14 By definition, f (θ, θ, ε) = 0 for all θ ∈ Θ and ε ∈ (0, 1).

The following definitions of evolutionary stability and instability are generalizations of

the definitions in Alger and Weibull (2013), from n = 2 to n ≥ 2, and from preference

evolution under incomplete information to arbitrary types.

Definition 1 A type θ is evolutionarily stable against a type τ if there exists an ε̄ > 0

such that f (θ, τ , ε) > 0 for all ε ∈ (0, ε̄). A type θ is evolutionarily stable if it is

evolutionarily stable against all types τ 6= θ. A type θ is evolutionarily unstable if there

exists a type τ and a sequence 〈εt〉 from (0, 1) such that εt → 0 and f (θ, τ , εt) < 0 for all t.

Clearly, by this definition no type is both evolutionarily stable and unstable, and there

may, in general, exist types that are neither stable nor unstable.

Before proceeding, let us briefly consider how these definitions relate to Maynard Smith’s

and Price’s (1973) original definition of an evolutionarily stable (mixed) strategy in a sym-

metric and finite two-player game under uniform random matching. Suppose thus that X is

the unit simplex of mixed strategies in such a game and let Θ = X, that is, let a type be

a mixed strategy (as if individuals were “programmed”to strategies). For any population

state s = (x, y, ε) ∈ X2 × (0, 1), the set V (s) of possible material-payoff pairs is then a

singleton. Its unique element v ∈ V (s) has components v1 = (1− ε) π (x, x) + επ (x, y) =

π [x, (1− ε)x+ εy] and v2 = (1− ε) π (y, x) + επ (y, y) = π [yx, (1− ε)x+ εy]. In other

14The function f is a generalization of the so-called score function in evolutionary game theory, see, e.g.,

Bomze and Pötscher (1989).
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words, v1 (resp. v2) is the “post-entry”expected material payoff to strategy x (resp. y). By

Definition 1, x is evolutionarily stable against y if f (x, y, ε) > 0 for all ε > 0 suffi ciently

small, which is equivalent with being evolutionarily stable in the sense of Maynard Smith

and Price (1973). Suppose a strategy x is unstable in the sense of Definition 1. Since f is

here continuous, there then exists a strategy y 6= x such that f (x, y, ε) < 0 for all ε > 0 suf-

ficiently small, that is, such that this mutant’s post-entry expected material payoff exceeds

that of the resident strategy x whenever the mutant appears in suffi ciently small population

shares.

3.1 Matching

The matching process is exogenous. In any population state s = (θ, τ , ε) ∈ S, the number
of mutants– individuals of type τ– in a group that is about to play the n-player game π,

is a random variable that we will denote T . For any resident drawn at random from the

population let pm (ε) be the conditional probability Pr [T = m | θ, s] that the total number
of mutants in the resident’s group is m, for m = 0, 1, .., n − 1.15 Likewise, for any mu-

tant, also drawn at random from the population, let qm (ε) be the conditional probability

Pr [T = m | τ , s] that the total number of mutants in his or her group is m, for m = 1, .., n.

We assume that all functions pm and qm are continuous, and that each such function has a

limit as ε→ 0 (for any given m).

It follows that p0 (ε) converges to 1 as ε tends to 0 (and hence limε→0 pm (ε) = 0 for all

m > 0). In other words, residents almost never meet mutants when the latter are vanishingly

rare. To formally establish this, we use the algebra of assortative encounters developed by

Bergstrom (2003) for pairwise interactions. For a given population state s = (θ, τ , ε), let

Pr [θ|θ, ε] denote the conditional probability for an individual of type θ that another, uni-
formly randomly drawn member of his or her group also is of type θ. Likewise, let Pr [θ|τ , ε]
denote the conditional probability for an individual of type τ that any other uniformly ran-

domly drawn member of his or her group has type θ. Let φ (ε) be the difference between the

two probabilities:

φ (ε) = Pr [θ|θ, ε]− Pr [θ|τ , ε] . (2)

15The first random draw cannot, technically, be uniform, in an infinite population. The reasoning in this

section is concerned with matchings in finite populations in the limit as the total population size goes to

infinity. We refer the reader to the appendix for a detailed example.
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This defines the assortment function φ : (0, 1) → [−1, 1]. We assume that, as ε tends to

zero, φ (ε) converges to some limit σ ∈ R, the index of assortativity of the matching process
(Bergstrom, 2003). Moreover, by setting φ (0) = σ we extend the domain of φ from (0, 1) to

[0, 1).

The following equation is a necessary balancing condition:

(1− ε) · [1− Pr [θ|θ, ε]] = ε · Pr [θ|τ , ε] . (3)

Each side of the equation equals the probability for the following event: draw at random an

individual from the population at large and then draw at random another individual from

the first individual’s group, and observe that these two individuals are of different types.

Equations (2) and (3) together give{
Pr [θ|θ, ε] = φ (ε) + (1− ε) [1− φ (ε)]

Pr [θ|τ , ε] = (1− ε) [1− φ (ε)] .
(4)

Now let ε → 0. Then, from (3), Pr [θ|θ, ε] → 1, and hence, as claimed, p0 (ε) → 1.

Without loss of generality we may thus uniquely extend the domain of pm from (0, 1) to

[0, 1), while preserving its continuity, by setting p0 (1) = 1.

Turning now to the limit of qm (ε) as ε tends to zero (for m = 1, ..., n), we first note that

in the special case n = 2,

lim
ε→0

q2 (ε) = lim
ε→0

Pr [τ |τ , ε] = 1− lim
ε→0

Pr [θ|τ , ε] = 1− lim
ε→0

φ (ε) = σ.

However, for n > 2 there remains a statistical issue, namely whether or not, for a given

mutant, the types of any two other members in her group are statistically dependent or

not (in the given population state). Under conditional independence among other group

members’types, given the mutant’s type, one obtains

lim
ε→0

qm (ε) = lim
ε→0

(
n− 1

m− 1

)
(Pr [τ |τ , ε])m−1 (Pr [θ|τ , ε])n−m

=

(
n− 1

m− 1

)
σm−1 (1− σ)n−m (5)

for all m ∈ {1, .., n}. We will refer to this as the conditionally independent case.16 This

generalizes the limit result for group size n = 2. In the appendix we present a matching

16To be precise, we only require conditional independence in the limit, as expressed in (5).
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process with the conditional statistical independence property. We finally note that it follows

from (4) that σ ∈ [0, 1].17

3.2 Homo moralis

In Alger and Weibull (2013), we analyzed a similar model, but for pairwise interactions, and

showed that natural selection favors a particular class of preferences that we called homo

moralis. The utility for a homo moralis, with degree of morality κ ∈ [0, 1], from playing

strategy x ∈ X against y ∈ X in a symmetric two-player game with material payoff function

π : X2 → R is
uκ (x, y) = (1− κ) · π (x, y) + κ · π (x, x) . (6)

Such an individual thus attaches the weight (1− κ) to own material payoff and the weight

κ to the material payoff that would arise should both players use the same strategy x.

While it is not obvious how one should define such preferences for interactions between

more than two individuals, we will see below that natural selection again points in a particular

direction. Accordingly, for any player i ∈ {1, .., n}, any degree of morality κ ∈ [0, 1], and

any strategy profile x ∈ Xn, let x̃ : Ω → Xn be a vector-valued random variable with

statistically independent components x̃j such that Pr [x̃j = xi] = κ and Pr [x̃j = xj] = 1− κ
for all j ∈ {1, .., n}. We write utility functions in the same form as the material payoff

function, that is, with the player’s own strategy as the first argument and the profile of

others’strategies as the second argument.

Definition 2 Player i is a homo moralis with degree of morality κ ∈ [0, 1] if his or her

utility function uκ : Xn → R satisfies

uκ (xi,x−i) = Eκ [π (xi, x̃−i) | x] ∀x ∈ Xn. (7)

We note that x̃i is a degenerate random variable that always takes the constant value xi,

and thus

uκ (xi,x−i) = (1− κ)n−1 · π (xi,x−i) + κn−1 · π (xi, xi, ..., xi)

+
[
1− (1− κ)n−1 − κn−1

]
· Eκ [π (x̃) | x̃ 6= x, x̃ 6= (xi, xi, ..., xi)] .

17This contrasts with the case of a finite population, where negative assortativity can arise for population

states with few mutants (see Schaffer, 1988).
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At one extreme, κ = 0, the individual’s goal is to choose a strategy xi that maximizes her

own material payoff, given the strategy profile x−i for all other participants. At the opposite

extreme, κ = 1, her goal is “to do the right thing”according to Kant’s categorical imperative

applied to material payoffs, that is, to choose a strategy xi that would maximize material

payoff if all others were to choose that same strategy. We refer to the first case as homo

oeconomicus and the second as homo kantientis. For arbitrary degrees of morality, 0 ≤ κ ≤ 1,

the individual’s goal is to maximize her expected material payoff if others were to choose

that same strategy with probability κ (and statistically independently of each other).18

Since the random variables x̃j are statistically independent, the utility uκ (xi,x−i), for

any given strategy profile x ∈ Xn, is a polynomial function of the degree of morality κ,

taking the value π (x) at κ = 0 and the value π (xi, xi, .., xi) at κ = 1.19 For n = 2 and any

strategy pair (x, y) ∈ X2 one obtains the same expression for uκ as in (6). For n = 3 and

any strategy triplet (x, (y, z)) ∈ X3, where x is the player’s own strategy, one obtains

uκ (x, (y, z)) = (1− κ)2 · π (x, (y, z)) + (1− κ)κ · π (x, (x, z))

+ (1− κ)κ · π (x, (y, x)) + κ2 · π (x, (x, x)) .

While the expression in (7) is quite involved, it is easy to determine the set of symmetric

Nash equilibrium strategies in a game between n homo moralis with the same degree of

morality. For any κ ∈ [0, 1], let βκ : X ⇒ X be defined by

βκ (x) = arg max
y∈X

uκ
(
y,x(n−1)

)
. (8)

The set of symmetric Nash equilibrium strategies is the set Xκ ⊆ X of fixed points under

βκ,

Xκ = {x ∈ X : x ∈ βκ (x)} . (9)

By symmetry of π the condition x ∈ βκ (x) can be written more explicitly as

x ∈ arg max
y∈X

n∑
m=1

(
n− 1

m− 1

)
κm−1 (1− κ)n−m π

(
y,y(m−1),x(n−m)

)
. (10)

18In his Grundlegung zür Metaphysik der Sitten (1785), Immanuel Kant wrote “Act only according to that

maxim whereby you can, at the same time, will that it should become a universal law.”In this vein, homo

moralis of degree of morality κ can be said to “act according to that maxim whereby you can, at the same

time, will that others should do likewise with probability κ.”For a discussion of several ethical principles,

see Bergstrom (2009).

19From a mathematical viewpoint, homo moralis defines a homotopy (see e.g. Munkres, 1975), parame-

trized by κ ∈ [0, 1], between selfishness and Kantian morality.
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Before applying our general model to preference evolution, in the next subsection we

apply it to strategy evolution, the framework used in classic evolutionary game theory. Given

the analytical simplicity of strategy evolution, in comparison with preference evolution, a

question of interest is whether strategy evolution gives guidance to behavioral predictions

under preference evolution.

4 Strategy evolution

Here we adopt the assumption that was used for the original formulation of evolutionary

stability (Maynard Smith and Price, 1973), namely, that an individual’s type is a strategy

that she always uses. Formally, let the set of potential types be Θ = X, the strategy set for

the material game Γ = 〈X, π, n〉. Thus, in a population where some types θ = x and τ = y

are present, the unique behavioral outcome is the strategy pair (x, y), where x is played by

all individuals of type θ = x and y is played by all individuals of type τ = y. By symmetry

of π, the material payoff to an individual of type x who belongs to a group where a total of

n−m individuals have the same, resident, type x, andm individuals have the mutant type y,

can be written π
(
x,x(n−m−1),y(m)

)
, where x(n−m−1) is the (n−m− 1)-dimensional vector

whose components equal x, and y(m) is the m-dimensional vector whose components equal

y. Likewise, the material payoff to an individual of type y who belongs to such a group can

be written π
(
y,y(m−1),x(n−m)

)
. Hence, given a pair of types (x, y), for each ε the average

material payoff to a resident is uniquely determined and equal to

F (x, y, ε) =
n−1∑
m=0

pm (ε) · π
(
x,x(n−m−1),y(m)

)
, (11)

and likewise for a mutant, whose average material payoff is

G (x, y, ε) =
n∑

m=1

qm (ε) · π
(
y,y(m−1),x(n−m)

)
. (12)

Both F and G are continuous by virtue of the assumed continuity of the conditional proba-

bilities for the number of mutants with respect to the population share of mutants.20

20The functions F and G are generalizations, from uniform to assortative matching, of the functions used

by Broom, Cannings and Vickers (1997) in their definition of an evolutionarily stable strategy in symmetric

and finite n-player games (here x and y may be mixed strategies in a finite game).
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Under strategy evolution, then, the set of (average) material-payoff pairs that can arise

in population state s, V (s) ⊂ R2, is a singleton for all s ∈ S = X2 × (0, 1), and

f (x, y, ε) = F (x, y, ε)−G (x, y, ε) .

Furthermore, for any x, y ∈ X, f (x, y, ε) converges (to some real number) as ε tends to zero.

By continuity of F and G, f is continuous, and a necessary condition for x to be an

evolutionarily stable strategy is

lim
ε→0

f (x, y, ε) ≥ 0 ∀y ∈ X. (13)

In other words, it is necessary that the residents on average do not earn a lower material

payoff than the mutants when the latter are virtually absent from the population. Likewise,

a suffi cient condition for evolutionary stability is that this inequality holds strictly for all

strategies y 6= x.

Let H : X2 → R be the function defined by

H (y, x) = lim
ε→0

G (x, y, ε) . (14)

The function value H (y, x) is the average material payoff to a mutant with strategy y in a

population where the resident strategy is x and where the population share of mutants is van-

ishingly small. Since H (x, x) = limε→0G (x, x, ε) = limε→0 F (x, x, ε) = limε→0 F (x, y, ε),

the necessary condition (13) for a strategy x to be evolutionarily stable may be written

H (x, x) ≥ H (y, x) ∀y ∈ X, (15)

or, equivalently,

x ∈ arg max
y∈X

H (y, x) . (16)

This condition says that for a strategy x to be evolutionarily stable, its users have to earn the

same average material payoff as the “the most threatening mutants”, those with the highest

average material payoff that any vanishingly rare mutant can obtain against the resident.

In a sense, thus, an evolutionarily stable type preempts entry by rare mutants, rather than

doing what would be best (in terms of material payoff) for the residents if there were no

mutants around.21

21See also Alger and Weibull (2013) and Robson and Szentes (2014) for a similar observation. Importantly,

this logic is very different from that of group selection.
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A suffi cient condition for a strategy x to be evolutionarily stable is that

H (x, x) > H (y, x) (17)

for all y 6= x. Interestingly, then, irrespective of n, evolutionarily stable types may be

interpreted as Nash equilibrium strategies in a derived two-player game, where “nature”

plays strategies against each other:

Proposition 1 Let Θ = X. If x is an evolutionarily stable strategy in a population where

individuals are randomly matched to play the symmetric n-player game in material payoffs

Γ = 〈X, π, n〉, then (x, x) is a Nash equilibrium of the symmetric two-player game in which

the strategy set is X and the payoff function is H. If (x, x) is a strict Nash equilibrium of

the latter game, then x is an evolutionarily stable strategy in Γ = 〈X, π, n〉, while if (x, x) is

a not a Nash equilibrium, then x is evolutionarily unstable.

This proposition allows us to make a first connection between strategy evolution and homo

moralis preferences. Indeed, while under strategy evolution each individual mechanistically

plays a certain strategy– is “programmed”to execute a certain strategy– we will now see

that any evolutionarily stable strategy may be viewed as if emerging from individuals’free

choice, as if they were striving to maximize a specific utility function.

To see this, consider the conditionally independent case, for which

H (y, x) =
n∑

m=1

(
n− 1

m− 1

)
σm−1 (1− σ)n−m π

(
y,y(m−1),x(n−m)

)
. (18)

The expression on the right-hand side is the same as the one in (10) when κ = σ. Combining

this observation with Proposition 1 and the fixed-point equation (16), we obtain:

Corollary 1 Assume conditionally independent random matching. Let Θ = X (strategy

evolution). If x is an evolutionarily stable strategy, then it belongs to Xκ for κ = σ. Every

strategy x ∈ Xσ for which βσ (x) is a singleton is evolutionarily stable. Every strategy x /∈ Xσ

is evolutionarily unstable.

This corollary establishes that the behavior induced under strategy evolution and con-

ditionally independent assortative matching is as if individuals were equipped with homo

moralis preferences with degree of morality equal to the index of assortativity. But what if,
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instead, evolution were to operate at the level of preferences, thereby “delegating”the strat-

egy choice to the individual? In the next section we apply our general model to preference

evolution. Compared with strategy evolution, this introduces two main challenges. First,

whereas under strategy evolution the set of potential types is identical with the strategy set,

under preference evolution there is a priori no given set of potential types. Second, whereas

under strategy evolution the behavioral outcome is uniquely determined in each population

state, under preference evolution this need not be the case.

5 Preference evolution under incomplete information

From now on, we take each type θ ∈ Θ to uniquely determine a continuous and symmetric

utility function uθ : Xn → R, a function that its "host" strives to maximize. We focus
on the case of incomplete information, where each individual knows only his/her own type.

In other words, each individual’s utility function is his or her private information. Then

an individual’s behavior cannot be conditioned on the types of the others with whom (s)he

interacts. However, individual behavior may be adapted to the population state at hand (that

is, the types present in the population, and their population shares). Arguably, Bayesian Nash

equilibrium is a natural criterion to delineate the set V (s) of (average) material-payoff pairs

that can arise in a population state s.

More precisely, in any given state s = (θ, τ , ε) ∈ Θ2×(0, 1), a (type-homogenous Bayesian)

Nash equilibrium is a pair of strategies, one for each type, such that each strategy is a best

reply for any player of that type in the given population state. In other words, all players

of the same type use the same strategy, and each individual player finds his or her strategy

optimal, given his or her utility function.

Definition 3 In any state s = (θ, τ , ε) ∈ Θ2 × (0, 1), a strategy pair (x̂, ŷ) ∈ X2 is a

(type-homogenous Bayesian) Nash Equilibrium if{
x̂ ∈ arg maxx∈X

∑n−1
m=0 pm (ε) · uθ

(
x, ŷ(m), x̂(n−m−1)

)
ŷ ∈ arg maxy∈X

∑n
m=1 qm (ε) · uτ

(
y, ŷ(m−1), x̂(n−m)

)
.

(19)

Let BNE (s) ⊆ X2 denote the set of (type-homogenous Bayesian) Nash equilibria in

state s = (θ, τ , ε), that is, all solutions (x̂, ŷ) of (19). For given types θ and τ , this defines

an equilibrium correspondence BNE (θ, τ , ·) : (0, 1) ⇒ X2 that maps mutant population
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shares ε to the associated set of equilibria. As discussed above, under the assumption that

all probabilities in (19) are continuous in ε and converge as ε → 0, the domain of these

probabilities was continuously extended to [0, 1). This allows us to likewise extend the

domain of BNE (θ, τ , ·). By a slight generalization of the arguments in the proof of Lemma
1 in Alger and Weibull (2013) one obtains:

Lemma 1 The set BNE (θ, τ , ε) is compact for each (θ, τ , ε) ∈ Θ2 × [0, 1), and the corre-

spondence BNE (θ, τ , ·) : [0, 1) ⇒ X2 is upper hemi-continuous. Moreover, BNE (θ, τ , ε) 6= ∅
if uθ and uτ are concave in their first arguments.

We will henceforth focus on types θ and τ such that BNE (θ, τ , ε) is non-empty for all

ε ∈ [0, 1). This holds, for example, if all functions uθ are concave in their first argument,

the player’s own strategy. Given a population state s = (θ, τ , ε) and some Nash equilib-

rium (x̂, ŷ) ∈ BNE (s), the average equilibrium material payoffs to residents and mutants,

respectively, equal F (x̂, ŷ, ε) and G (x̂, ŷ, ε), where F and G are defined in (11) and (12),

respectively.

For each type θ ∈ Θ let βθ : X ⇒ X denote the best-reply correspondence,

βθ (y) = arg max
x∈X

uθ
(
x,y(n−1)

)
∀y ∈ X,

and Xθ ⊆ X its set of fixed points,

Xθ = {x ∈ X : x ∈ βθ (x)} .

Given the unrestricted nature of the set of potential types, for any resident type there

may be other types such that, if appearing in rare mutants, would give rise to the same

behavior as that of the residents. We define the behavioral clones to a type θ as those types

that, as vanishingly rare mutants among residents of type θ, are behaviorally potentially

indistinguishable from residents in the sense that there exists some equilibrium in which

they, as rare mutants, behave just as a resident could rationally do. Formally, for any given

type θ ∈ Θ, this is the subset22

Θ̃ (θ) =
{
τ ∈ Θ : (x∗, y∗) ∈ BNE (θ, τ , 0) for some x∗ ∈ Xθ and y∗ ∈ βθ (x∗)

}
. (20)

22This definition labels a slightly wider range of types as “behavioral clones” than according to our de-

finition in Alger and Weibull (2013); Θθ ⊆ Θ̃ (θ). This slight weakening permits a slightly more powerful

stability claim.
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Examples of such “behavioral alikes”are individuals with utility functions that are positive

affi ne transformations of the utility function of the residents, and also individuals for whom

some strategy in Xθ is dominant.23

The second statement in the result below will use the following definition (from Alger and

Weibull, 2013): the type set Θ is rich if for each strategy x ∈ X there exists some type θ ∈ Θ

for which this strategy is strictly dominant. Such a type θ will be said to be committed to its

strategy x. The following result is a generalization of Theorem 1 in Alger and Weibull (2013)

from pairwise interactions (n = 2) to interactions with an arbitrary number of participants

(n ≥ 2); furthermore, the instability result now also applies to types for which there are

multiple equilibria.

Theorem 1 Assume conditionally independent assortativity. Homo moralis with degree of

morality κ = σ is evolutionarily stable against all types τ /∈ Θ̃ (θ). If Θ is rich and Xθ∩Xσ =

∅, then θ is evolutionarily unstable.

Proof : Since π is continuous, and, given θ, τ ∈ Θ, all functions pm and qm are continuous

in ε by hypothesis, also the two functions F,G : X2 × [0, 1) → R (given θ, τ ∈ Θ) are

continuous.

For the first claim, let θ = σ (homo moralis of degree of morality σ) and τ /∈ Θ̃ (σ), and

suppose that (x, y) ∈ BNE (σ, τ , 0). Then x ∈ Xσ so uσ
(
x,x(n−1)

)
≥ uσ

(
y,x(n−1)

)
. Since

τ /∈ Θ̃ (σ): y /∈ βσ (x). Hence, uσ
(
x,x(n−1)

)
> uσ

(
y,x(n−1)

)
, or, equivalently, F (x, y, 0) >

G (x, y, 0). Let g : X2 → R be defined by g (x, y) = F (x, y, 0)−G (x, y, 0). By continuity of

F and G, g is continuous. Since BNE (σ, τ , 0) is compact and g (x, y) > 0 on BNE (σ, τ , 0),

we have min(x,y)∈BNE(σ,τ ,0) g (x, y) = δ for some δ > 0. Again by continuity of F and G,

there exists a neighborhood U ⊆ X2× [0, 1) of the compact set BNE (σ, τ , 0)×{0} such that
F (x, y, ε)−G (x, y, ε) > δ/2 for all (x, y, ε) ∈ U . Since BNE (σ, τ , ·) : [0, 1) ⇒ X2 is compact-

valued and upper hemi-continuous, there exists an ε̄ > 0 such that BNE (σ, τ , ε)× [0, ε] ⊂ U

for all ε ∈ [0, ε̄). It follows that F (x, y, ε) − G (x, y, ε) > δ/2 for all ε ∈ [0, ε̄) and all

(x, y) ∈ BNE (σ, τ , ε). Setting V (σ, τ , ε) = BNE (σ, τ , ε) we thus have f (σ, τ , ε) > δ/2 for

all ε ∈ [0, ε̄), establishing the first claim.

For the second claim, let θ ∈ Θ be such that Xθ ∩ Xσ = ∅ and suppose that xθ ∈ Xθ.

Then uσ
(
x̂,x

(n−1)
θ

)
> uσ

(
xθ,x

(n−1)
θ

)
for some x̂ ∈ X. If Θ is rich, there exists a type τ ∈ Θ

23For example, if x∗ ∈ Xθ, let u (xi,x−i) ≡ − (xi − x∗)2.
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for which x̂ is strictly dominant, so individuals of that type will always play x̂. By definition

of uσ,

G (xθ, x̂, 0) = uσ

(
x̂,x

(n−1)
θ

)
> uσ

(
xθ,x

(n−1)
θ

)
= F (xθ, x̂, 0) .

Let 〈xt, yt, εt〉t∈N be any sequence from X2 × (0, 1) such that εt → 0, xt → xθ ∈ Xθ, and

(xt, yt) ∈ BNE (θ, τ , εt) for all t ∈ N. Such a sequence exists by upper hemi-continuity of
BNE (θ, τ , ·). Then yt = x̂ for all t ∈ N. Since F and G are continuous, G (xt, x̂, εt) >

F (xt, x̂, εt) for all t suffi ciently large. Let v(t) = (F (xt, x̂, εt) , G (xt, x̂, εt)). For V (θ, τ , ε) =

BNE (θ, τ , ε) we thus have v(t) ∈ V (θ, τ , εt) and thus f (θ, τ , εt) < 0 for all t large enough.

Q.E.D.

This result has implications for a question of particular interest for economists, namely,

whether the common assumption of selfishness is justifiable from an evolutionary perspective.

To see this, note that a homo moralis with degree of morality κ = 0 is selfish, for (s)he cares

only about own material welfare. The theorem implies that if there is some assortativity (σ >

0) and if the equilibrium strategy in a n-player group consisting solely of selfish individuals

differs from that in a n-player group consisting solely of homo moralis with degree of morality

κ = σ, the selfishness type would not be evolutionarily stable; it would be vulnerable to small-

scale invasions of other, less selfish types. Instead, homo moralis with degree of morality

equal to the index of assortativity stands out as being favored by evolution. Not only are

these preferences (or any other preferences such that residents with such preferences, in

a population with no mutants, are behaviorally indistinguishable from homo moralis with

κ = σ) evolutionarily stable; preferences that induce behavior that differs from that of homo

moralis with κ = σ are evolutionarily unstable, granted the set of potential types is rich.

The following result obtains by combining the previous results and observations.

Corollary 2 Assume conditionally independent assortativity. In material games Γ = 〈X, π, n〉
where homo moralis with degree of morality κ = σ has a unique best reply to each strategy

in Xσ, preference evolution under incomplete information induces the same behaviors as

strategy evolution.

This corollary establishes a second connection between strategy evolution and homo

moralis preferences, a connection that was established for the case n = 2 in Alger and

Weibull (2013): evolutionarily stable strategies may be viewed as emerging from prefer-

ence evolution when individuals are not programmed to strategies but are rational and play

equilibria under incomplete information.
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6 Games in euclidean spaces

How does homo moralis behave, in particular when compared to homo oeconomicus? More

precisely, what are the equilibrium strategies among homo moralis of the same degree of

morality κ ∈ [0, 1]? We answer this question first for symmetric games in euclidean spaces

in general, then in more detail in several canonical such games. In force of Corollaries 1

and 2, under certain regularity conditions it is suffi cient to identify the evolutionarily stable

strategies.

Suppose that X is a non-empty subset of Rk for some k ∈ N. We will say that x is strictly
evolutionarily stable (SES) if (17) holds for all y 6= x, and we will call a strategy x ∈ X

locally strictly evolutionarily stable (LSES) if (17) holds for all y 6= x in some neighborhood

of x. If, moreover, π : Xn → R is differentiable, then so is H : X2 → R, and standard
calculus can be used to find evolutionarily stable strategies. Let ∇yH (y, x) be the gradient

of H with respect to y. We call this the evolution gradient ; it is the gradient of the (average)

material payoff to a mutant strategy y in a population state with residents playing x, and

vanishingly few mutants. Writing “·” for the inner product and boldface 0 for the origin,
the following result follows from standard calculus:24

Proposition 2 Let X ⊂ Rk for some k ∈ N, and let x ∈ int (X). If H : X2 → R
is continuously differentiable on a neighborhood of (x, x) ∈ X2, then condition (i) below

is necessary for x to be LSES, and conditions (i) and (ii) are together suffi cient for x to

be LSES. Furthermore, any strategy x for which condition (i) is violated is evolutionarily

unstable.

(i) ∇yH (y, x)|y=x = 0,

(ii) (x− y) · ∇yH (y, x) > 0 for all y 6= x in some neighborhood of x.

The first condition says that there should be no direction of marginal improvement in

material payoff for a rare mutant at the resident type. The second condition ensures that

if some nearby rare mutant y 6= x were to arise in a vanishingly small population share,

then the mutant’s material payoff would be increasing in the direction leading back to the

resident type, x.

24See, e.g., Theorem 2 in Section 7.4 of Luenberger (1969), which also shows that Proposition 2 in fact

holds when the gradient is the Gateaux derivative in general vector spaces
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Conditions (i) and (ii) in Proposition 2 can be used to obtain remarkably simple and

operational and conditions for evolutionarily stable strategies if the strategy set X is one-

dimensional (k = 1) and π is continuously differentiable. Writing πh for the partial derivative

of π with respect to its hth argument, one obtains:25

Proposition 3 Assume conditionally independent matching with index of assortativity σ,

and suppose that π is continuously differentiable on a neighborhood of x̂ ∈ Xn, where X ⊆ R.
If x̂ ∈ int (X) is evolutionarily stable, then

π1 (x̂) + σ · (n− 1) · πn (x̂) = 0, (21)

where x̂ is the n-dimensional vector whose components all equal x̂. If x̂ ∈ int (X) does not

satisfy (21), then x̂ is evolutionarily unstable.

Proof : If π is continuously differentiable, H is continuously differentiable. Hence, if

x ∈ int (X), Proposition 2 holds, and the following condition is necessary for x to be an

evolutionarily stable strategy:

∇Hy (y, x)|y=x =
n∑

m=1

(
n− 1

m− 1

)
σm−1 (1− σ)n−m

[
m∑
k=1

πk
(
y,y(m−1),x(n−m)

)]
|y=x

= 0.

By symmetry of π, this equation may be written

n∑
m=1

(
n− 1

m− 1

)
σm−1 (1− σ)n−m [π1 (x) + (m− 1) πn (x)] = 0, (22)

where x is the n-dimensional vector whose components all equal x. Now, since

n∑
m=1

(
n− 1

m− 1

)
σm−1 (1− σ)n−m (m− 1) = (n− 1) · σ,

the expression in (22) simplifies to π1 (x) + (n− 1) · σ · πn (x) = 0. Q.E.D.

Next we study several canonical interactions for which we can use (21) to determine the

set of evolutionarily stable strategies. We conclude by briefly considering a game where not

all regularity conditions are met.26

25Symmetry of π implies that πn (x̂) = πj (x̂) for all j > 1.

26For examples with n = 2, see also Sections 4 and 6 in Alger and Weibull (2013).
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6.1 Public goods

Consider a material game in which each individual makes a contribution (or exerts an effort)

at some personal cost, and where the sum of all contributions give rise to a benefit to all.

More specifically, letting xi ≥ 0 denote the contribution of individual i, x−i the vector of

others’contributions, and with X = R+, let

π (xi,x−i) = B

(
n∑
j=1

xj

)
− C (xi)

for some continuous (benefit and cost) functions B,C : R+ → R+ that are twice differentiable
on R++ with B′, C ′ > 0, B′′ ≤ 0 and C ′′ ≥ 0. Under conditionally independent assortativity,

the associated functionH (see (18)) is concave, implying that (21) is a necessary and suffi cient

condition for an individual contribution x̂ > 0 to be evolutionarily stable. The relevant

partial derivatives are

π1 (x̂) = B′ (nx̂)− C ′ (x̂) and πn (x̂) = B′ (nx̂) ,

so a contribution x̂ > 0 is evolutionarily stable if and only if

[1 + (n− 1)σ] ·B′ (nx̂) = C ′ (x̂) . (23)

This equation has at most one solution, and it has a unique solution x̂ > 0 if [1 + (n− 1)σ] ·
B′ (0) > C ′ (0), an arguably natural condition in many applications, and which we henceforth

assume to be met.27 Under this condition, the unique evolutionarily stable contribution

is increasing in the index of assortativity. For σ = 0, equation (23) is nothing but the

standard formula according to which “own marginal benefit” equals “own marginal cost”;

x̂ then corresponds to what homo oeconomicus would do when playing against other homo

oeconomicus. At the other extreme, for σ = 1, the benevolent social planner’s solution

obtains; then x̂ solves maxx∈X [B (nx)− C (x)]. For intermediary values of σ, intermediary

values of x̂ obtain, and this may or may not be decreasing in group size n.

To see this, consider the case when both B and C are power functions; let B (x) ≡ xb

for some b ∈ (0, 1) and C (x) ≡ xc for some c ≥ 1. Then the unique evolutionarily stable

individual contribution is

x̂ =

(
b

c
·
[

1

n
+

(
1− 1

n

)
σ

]
nb
)1/(c−b)

27We also note that this holds true even if B would be linear, granted C ′′ > 0. For although others’

contributions are then strategically irrelevant for the individual player, a positive index of assortativity

makes the individual willing to contribute more than under uniform random matching.
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This contribution is decreasing (increasing) in group size when the index of assortativity is

zero (one). See diagram below, showing x̂ as a function of n for σ = 0, 0.25, 0.5, 0.75 and 1

(higher curves for higher σ).

1 2 3 4 5 6 7 8 9 10
0.0

0.2

0.4

0.6

0.8

1.0

n

x

Figure 1: The evolutionarily stable individual contribution in the public-goods game.

The fact that for low σ, the evolutionarily stable individual contribution is decreasing

in n is not surprising, since as n increases, the marginal benefit to an individual’s material

payoff of her contribution decreases as the sum of others’contributions increases. What is

more surprising, perhaps, is that the total contribution is increasing in n. To see this, note

that whenever C is a power function, (23) can be written as

[1 + (n− 1)σ] · nc−1 ·B′ (nx̂) = C ′ (nx̂) .

Given n, the left-hand side is decreasing, and the right-hand side increasing, in the evolution-

arily stable aggregate contribution, nx̂. The factor before the marginal benefit is increasing

in n. The intuition for this is that, beyond the direct, detrimental effect of n on the mar-

ginal benefit of a contribution, there is an indirect, beneficial effect, which is related to risk.

Indeed, a vanishingly rare mutant faces uncertainty as to the contributions his opponents

will make. For n = 2, the uncertainty is hefty; a mutant’s opponent either makes the same

contribution or the resident contribution. As n increases, the mutant’s uncertainty becomes

less hefty, since then the (empirical) average contribution from other group members is ran-

domly distributed between his own contribution and the resident contribution, with less and

less variance as n increases. Hence, adjusting for the direct effect of the higher n on the

marginal benefit of making a contribution, the risk associated with mutating decreases as n

increases, and hence, a higher total contribution can be sustained.
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Remark 1 The public goods interaction described here is symmetric. However, as noted

before, our general model also applies to asymmetric interactions as long as these are ex

ante symmetric, i.e. such that each individual at the outset is just as likely to be cast in

either player role (as, for instance, in a laboratory experiment). To illustrate, suppose that

only some individuals are free to give a contribution. More precisely, let Ã ⊂ {1, ..., n}
denote the random set of active players. Suppose further that ex ante, each individual faces

the same probability p ∈ (0, 1) to get an active player role, that is, to be in the set Ã. A

player’s strategy, is then a contribution to make if called upon to be active (without being

told who else is active). Let xi denote player i’s strategy so defined. We may then write the

ex ante payoff function of any player i in the symmetric form

π (xi,x−i) = p ·E

B
∑

j∈Ã

xj

 | i ∈ Ã
−p ·C (xi)+ (1− p) ·E

B
∑

j∈Ã

xj

 | i /∈ Ã
 ,

where the expectation is taken with respect to the random draw of the subset Ã.

6.2 Team work

Suppose instead that the jointly produced good in the previous example is a private good,

split evenly between the members of the group or team. The same analysis applies, with the

only difference that the individual benefit be divided by n. One then obtains the following

necessary and suffi cient condition for the evolutionarily stable individual contribution:[
1

n
+

(
1− 1

n

)
σ

]
·B′ (nx̂) = C ′ (x̂) .

Comparing this with the public goods case (equation (23)), we note that the evolution-

arily stable individual contribution now is smaller, that it is still increasing in the index of

assortativity, and that it is now necessarily decreasing in group size.

6.3 Contests

Many real interactions involve competing for a prize. Examples include competition between

job seekers for a vacancy, between firms for a contract, between employees for promotion, etc.

Such interactions may be modeled as a contest in which each participant makes a nonnegative

effort at some personal cost, and where each participant’s effort probabilistically translates
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to a “result,”and the participant with the “best”result wins the prize. More specifically, let

xi ≥ 0 be participant i′s effort, x−i the vector of efforts of the others, and let ỹi = xi + εi be

participant i’s result (as valued by the "umpire"). With absolutely continuously distributed

random terms, ties occur with probability zero. For quadratic costs of effort, the material

payoff to participant i is:

π (xi,x−i) = b · Pr [ỹi > ỹj ∀j 6= i]− 1

2
x2i (24)

where b > 0 is the value of the prize in question. This defines a continuously and (infinitely)

differentiable function on Xn = Rn+. For Gumbel distributed random terms, the winning

probability for each participant i satisfies28

Pr [ỹi > ỹj ∀j 6= i] =
exi∑n
j=1 e

xj
∀x ∈ Xn.

From this it is easily verified that a necessary condition (21) for an effort level x̂ > 0 to be

evolutionarily stable boils down to

x̂ =
1− σ
n
·
(

1− 1

n

)
· b. (25)

The evolutionarily stable individual effort is proportional to the value b of the price, linearly

decreasing (towards zero) in the index of assortativity, σ, and decreasing in n (recall that

n ≥ 2). Aggregate effort, however, is increasing in n. See diagram, drawn for b = 2 and

σ = 0.5.
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Figure 2: The evolutionarily stable indidividual effort in the contest game.

28This is a standard result in random utility theory, see, e.g., Anderson et al. (1992).
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6.4 Cournot competition

Consider material payoff functions of the following linear-quadratic form:

π (xi,x−i) = axi − b ·
(∑

j 6=i

xj

)
· xi − c · x2i , (26)

for positive a, b and c, where xi ≥ 0 is player i’s “action”. For b = c this is the profit to a

firm in Cournot competition among n identical firms facing linear demand with intercept a

and slope −b, with zero production cost, and with xi ≥ 0 being player i’s output. Material

payoff functions of this form may also represent “common pool” interactions in which the

total use by the others affect negatively each individual’s benefit from using the common

pool.

The material payoff to each player is strictly concave in the player’s own strategy, and

equation (23) gives

x̂ =
a

2c+ (1 + σ) (n− 1) b
. (27)

The standard result whereby individual (aggregate) output decreases (increases) in n obtains

here also, for any σ ∈ [0, 1]; the more competitors, the less individual output or pool usage

but the more aggregate output or usage. Moreover, individual and aggregate output or

usage is decreasing in the index of assortativity σ. Interpreted in terms of standard Cournot

oligopoly (each firm striving to maximize its profit and b = c), the individual output level

when there are n firms in the market is then a/ (n+ 1), a result we obtain when σ = 0.

See diagram below, showing the evolutionarily stable output per firm as a function of the

number of firms in the market, for a = b = c = 1 and σ = 0, 0.5 and 1 (higher curves for

higher σ).
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Figure 3: The evolutionarily stable firm output in the Cournot competition game.
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By contrast, aggregate output nx̂ (or aggregate usage of the common pool) is increasing

in the number of firms (users), from a/ (2c) towards the limit a/ (b+ σb) that obtains as the

number of firms (users) tends to infinity.

6.5 Helping others

People often help others, also when no reward or reciprocation is expected. To model such

behaviors, consider a group of n ex ante identical individuals, and suppose that with some

exogenous probability p ∈ (0, 1) exactly one individual loses one unit of wealth, with equal

probability for all individuals when this happens. The n− 1 others observe this event, and

each of them may then help the unfortunate individual by transferring some personal wealth.

These decisions are voluntary and simultaneous. For any individual level of wealth w ≥ 0, let

v (w) be the individual’s indirect utility from consumption, where v meets the usual Inada

conditions.

We model this as a game where initial wealth is normalized to unity:

π (xi,x−i) = (1− p) · v (1) + p ·
[(

1− 1

n

)
v (1− xi) +

1

n
v

(∑
j 6=i

xj

)]
Here xi ≥ 0 is i’s voluntary transfer in case another individual is hit by the wealth loss.

Applying equation (23), for an individual transfer x̂ ∈ (0, 1) to be evolutionarily stable, it

must satisfy

v′ (1− x̂) = σ · v′ [(n− 1) x̂] . (28)

This equation uniquely determines x̂ ∈ (0, 1), since the left-hand side is continuously and

strictly increasing in x̂, from v′ (1) towards plus infinity, and the right-hand side is contin-

uously and strictly decreasing in x̂, from plus infinity to v′ (n− 1). It follows immediately

from (28) that this transfer is an increasing function of the index of assortativity σ and a

decreasing function of group size n. Both effects are intuitively expected; higher assortativ-

ity makes helpfulness more worthwhile and more individuals watching the wealth-loss makes

free-riding among them the more severe. In the special case when indirect utility is a power

function, v (w) ≡ wa for some a ∈ (0, 1), one obtains

x̂ =
σ1/(1−a)

n− 1 + σ1/(1−a)
.

The diagram below shows the evolutionarily stable transfer as a function of group size,

for a = 0.5 and σ = 0.25, 0.5 and 1 (higher curves for higher σ). While no transfers are
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given under uniform random matching (σ = 0), post-transfer wealth levels are equalized

when σ = 1, so full insurance then holds, while partial insurance obtains for intermediate

values of σ.
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Figure 4: The evolutionarily stable transfer in the helping game.

Furthermore, it is easy to verify that the aggregate transfer, nx̂, is increasing in n and

converges to σ1/(1−a) as n→∞.

6.6 Coordination

Many strategic interactions involve some element of coordination and thus the possibility

of multiple equilibria. In order to clarify whether or not homo moralis then has unique or

multiple best replies, we carry out this analysis directly in terms of equilibrium play among

homo moralis. Consider the symmetric two-by-two game with material payoffs(
a, a 0, c

c, 0 b, b

)

for 0 < b < a and c < a. There are three Nash equilibria and two strict equilibria, with

payoffs (a, a) and (b, b).29 Let x be a player’s probability for playing the first pure strategy.

Then X = [0, 1] and

π (x, y) = a · xy + b · (1− x) (1− y) + c · (1− x) y

29The first strict equilibrium thus payoff dominates the second, and the second risk dominates the first iff

b ≥ a− c.
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We proceed to identify the homo moralis fixed-point set Xκ for all κ ∈ [0, 1]. For κ = 0

one immediately obtains

X0 =

{
0,

b

a+ b− c, 1
}
.

For 0 < κ ≤ 1,

uκ (x, y) = (1− κ)·(axy + b (1− x) (1− y) + c (1− x) y)+κ·
(
ax2 + b (1− x)2 + c (1− x)x

)
,

so
∂uκ (x, y)

∂x
= (1− κ) · (ay − b (1− y)− cy) + κ · (2ax− 2b (1− x) + c− 2cx)

and ∂2uκ (x, y) /∂x2 = 2κ · (a+ b− c) > 0; the utility function of homo moralis of any

positive degree of morality is strictly convex in his/her own strategy. Hence, Xκ ⊆ {0, 1}
when 0 < κ ≤ 1. As is easily verified,

uκ (1, 1) = a+ 4bκ+ (1− κ) c > κb+ (1− κ) c = uκ (0, 1)

so 1 ∈ Xκ for all κ ∈ [0, 1]. Likewise, uκ (0, 0) = b and uκ (1, 0) = aκ, so that 0 ∈ Xκ if and

only if κ ≤ b/a. Hence, Xκ has three elements when κ = 0, two elements when 0 < κ ≤ b/a

and one elements when κ > b/a.

Applying Corollary 1, we conclude that no mixed strategy is evolutionarily stable when

κ > 0, and that x = 1 is the unique evolutionarily stable strategy when κ > b/a. For κ = 0

it is well-known (see e.g. Weibull, 1995), that both pure strategies are evolutionarily stable

while the mixed Nash equilibrium strategy is not. From Corollary 2, we deduce that both

pure strategies are evolutionarily stable when κ < b/a.

In sum: All evolutionarily stable strategies are pure. For κ < b/a both pure strategies are

evolutionarily stable while for κ > b/a only the first pure strategy is evolutionarily stable.

7 Conclusion

To understand human societies it is necessary to understand human motivation. In this

paper we build on a large literature in biology and in economics, initiated by Maynard

Smith and Price (1973), to propose a theoretical framework within which one may study

the evolution of human motivational types by way of natural selection. The framework is

based upon a general definition of an evolutionarily stable type, where an individual’s type

guides his or her behavior in interactions in groups of any size. The framework may be
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applied to interactions where others’preferences are known or unknown, and it allows for

assortativity in the process by which individuals are matched together to interact. Since our

analysis focuses on whether a homogenous population may withstand a small-scale invasion

of individuals of a different type, a key factor is the probability with which mutants are

matched with other mutants when these are vanishingly rare. In this paper we focus on

matching processes in which such assortativity may be conveniently expressed in terms of

the probability that another individual with whom a mutant interacts also is a mutant (the

index of assortativity; Bergstrom, 2003).

As a benchmark, we first apply the framework to strategy evolution. We then apply the

model to preference evolution under incomplete information with few assumptions about the

nature of preferences. As in our model with pairwise interactions (Alger and Weibull, 2013)

we find that the class of homo moralis preferences stands out as a winner in the evolutionary

race. Indeed, we find that (a) within the class of utility functions that are continuous in the

strategy profile, homo moralis preferences are evolutionarily stable, and (b) under quite weak

assumptions, any preferences that lead to different behaviors from that of homo moralis with

the “right”degree of morality are evolutionarily unstable. Furthermore, equilibrium behavior

in a homogeneous population consisting of homo moralis with this degree of morality is the

same as under strategy evolution.

Our model clarifies how group size affects the evolutionarily stable types and the ensuing

behaviors. As shown above, group size has no effect on evolutionarily stable types when

these are preferences under incomplete information; homo moralis preferences with degree

of morality equal to the index of assortativity stand out as the winner in the evolutionary

race, independent of group size and of the (material) game played. By contrast, group size

does affect equilibrium behavior, in groups consisting of identical homo moralis, as illustrated

in the examples.

Although general, our model relies on a number of simplifying assumptions. Relaxation

of these is a task that has to be left for future research. Moreover, we only apply our general

definition of evolutionary stability to two cases, strategy evolution and preference evolution

under incomplete information. Applications to complete or partially incomplete information

are called for, in particular in settings where the random matching is not exogenous, as here,

but at least partly endogenous. This is a major analytical challenge, however, opening the

door to signalling and mimicry, a very rich, important and exciting research area.
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8 Appendix: A class of matching processes

The matching process to be outlined here is a variant of the model of pairwise matching

sketched in Section 5.2 of Alger and Weibull (2013). Let n, k and N be integers greater

than one, and imagine a finite population of individuals i ∈ {1, 2, ..., N}. The population
is divided into “islands” of equal size, each island consisting of k > n individuals (and

N is some multiple of k). Initially all individuals are of type θ. Suddenly there is an

outburst of mutation to τ on one of the islands, and only there. Each individual on that

island has probability µ of mutating and individual mutations are statistically independent.

Hence, the random number M of mutants is binomially distributed M ∼ Bin (k, µ). We

note that in this mutation process the same random number M is also the total number of

mutants in the population at large, so the population share M/N of mutants is a random

variable with expectation ε = E [M/N ] = µk/N . A group of size n is now formed (to play

our game) as follows, and this is an event that is statistically independent of the above-

mentioned mutation. First, one of the islands is selected, with equal probability for each

island. Secondly, n individuals from the selected island are randomly recruited to form the

group, drawn as a random sample without replacement from amongst the k islanders and

with equal probability for each islander to be sampled.

Consider an individual i who has been recruited to the group, and assume that the only

information we have about her is her type. If the individual is of type τ , it is necessary

that M > 0 and that she is from the island where the mutation occurred, so the random

number of other mutants in her group is binomially distributed Bin (n− 1, µ). With Xi

denoting the type of individual i, and T the total number of mutants in the group, we have,

for m = 1, 2, ..., n:

Pr [T = m | Xi = τ ] =

(
n− 1

m− 1

)
µm−1 (1− µ)n−m . (29)

If “our”individual i instead is of the resident type θ, then M = 0 is possible and she may

well be from another island than where the mutation occurred. We thus have

Pr [T = m | Xi = θ] ≤ k

N
·
(
n− 1

m

)
µm (1− µ)n−m−1

for all m > 0. Moreover, for any two group members i and j:

Pr [Xj = τ | Xi = τ ] = µ and Pr [Xj = τ | Xi = θ] ≤ µk/N.
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Keeping µ, n and k constant, we may write Pr [θ|θ, ε] for Pr [Xj = θ | Xi = θ] and Pr [θ|τ , ε]
for Pr [Xj = θ | Xi = τ ], and these are continuous functions of ε = µk/N . In addition, we

have 1 − ε ≤ Pr [θ|θ, ε] ≤ 1 and Pr [θ|τ , ε] = 1 − µ. Letting N → ∞, we obtain ε → 0

and Pr [θ|θ, ε] → 1. Hence, limε→0 φ (ε) = µ, so σ = µ. Moreover, in our general notation:

limε→0 pm (ε) = 0, and

qm (ε) =

(
n− 1

m− 1

)
σm−1 (1− σ)n−m

for all ε ∈ (0, 1) and m = 1, .., n, so (5) follows immediately.
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Bukowski, M., and J. Miękisz (2004): “Evolutionary and asymptotic stability in sym-

metric multi-player games”, International Journal of Game Theory 33, 41-54.

Cannings, C., and J.C. Whittaker (1995): “The Finite Horizon War of Attrition", Games

and Economic Behavior 11, 193-236.

Corchón, L. (1996): Theories of Imperfectly Competitive Markets. Berlin: Springer Ver-

lag.

Day, T., and P.D. Taylor (1998): “Unifying Genetic and Game Theoretic Models of Kin

Selection for Continuous types,”Journal of Theoretical Biology, 194, 391-407.

Dekel, E., J.C. Ely, and O. Yilankaya (2007): “Evolution of Preferences,” Review of

Economic Studies, 74, 685-704.

Dubey, P., A. Mas-Colell, and M. Shubik (1980): “Effi ciency Properties of Strategic

Market Games”, Journal of Economic Theory 22, 339-362.

Duffi e, D. and Y. Sun (2012): “The Exact Law of Large Numbers for Independent Ran-

dom Matching", Journal of Economic Theory 147, 1105-1139.

Ellingsen, T. (1997): “The Evolution of Bargaining Behavior,” Quarterly Journal of

Economics, 112, 581-602.

Fershtman, C. and K. Judd (1987): “Equilibrium Incentives in Oligopoly,”American

Economic Review, 77, 927—940.

Fershtman, C., and Y. Weiss (1998): “Social Rewards, Externalities and Stable Prefer-

32



ences,”Journal of Public Economics, 70, 53-73.

Frank, R.H. (1987): “If Homo Economicus Could Choose His Own Utility Function,

Would He Want One with a Conscience?”American Economic Review, 77, 593-604.

Grafen, A. (1979): “The Hawk-Dove Game Played between Relatives,”Animal Behavior,

27, 905—907.

Grafen, A. (2006): “Optimization of Inclusive Fitness,”Journal of Theoretical Biology,

238, 541—563.

Güth, W., and M. Yaari (1992): “An Evolutionary Approach to Explain Reciprocal Be-

havior in a Simple Strategic Game,”in U.Witt. Explaining Process and Change —Approaches

to Evolutionary Economics. Ann Arbor: University of Michigan Press.

Haigh, J., and C. Cannings (1989): “The n-Person War of Attrition”, Acta Applic. Math.

14, 59-74.

Hamilton, W.D. (1964a): “The Genetical Evolution of Social Behaviour. I.”Journal of

Theoretical Biology, 7:1-16.

Hamilton, W.D. (1964b): “The Genetical Evolution of Social Behaviour. II.”Journal of

Theoretical Biology, 7:17-52.

Heifetz, A., C. Shannon, and Y. Spiegel (2007a): “The Dynamic Evolution of Prefer-

ences,”Economic Theory, 32, 251-286.

Heifetz, A., C. Shannon, and Y. Spiegel (2007b): “What to Maximize if You Must,”

Journal of Economic Theory, 133, 31-57.

Hines, W.G.S., and J. Maynard Smith (1979): “Games between Relatives,”Journal of

Theoretical Biology, 79, 19-30.

Huck, S., and J. Oechssler (1999): “The Indirect Evolutionary Approach to Explaining

Fair Allocations,”Games and Economic Behavior, 28, 13—24.

Koçkesen, L., E.A. Ok, and R. Sethi (2000a): “The Strategic Advantage of Negatively

Interdependent Preferences,”Journal of Economic Theory, 92, 274-299.

Koçkesen, L., E.A. Ok, and R. Sethi (2000b): “Evolution of Interdependent Preferences

in Aggregative Games,”Games and Economic Behavior 31, 303-310.

Luenberger, D.G. 1969. Optimization by Vector Space Methods. New York: John Wiley

& Sons.

33



Maynard Smith, J., and G.R. Price (1973): “The Logic of Animal Conflict,”Nature,

246:15-18.

Munkres, James (1975): Topology, a First Course. London: Prentice Hall.

Ockenfels, P. (1993): “Cooperation in Prisoners’Dilemma– An Evolutionary Approach”,

European Journal of Political Economy, 9, 567-579.

Ok, E.A., and F. Vega-Redondo (2001): “On the Evolution of Individualistic Preferences:

An Incomplete Information Scenario,”Journal of Economic Theory, 97, 231-254.

Possajennikov, A. (2000): “On the Evolutionary Stability of Altruistic and Spiteful Pref-

erences”Journal of Economic Behavior and Organization, 42, 125-129.

Robson, A.J. (1990): “Effi ciency in Evolutionary Games: Darwin, Nash and the Secret

Handshake,”Journal of Theoretical Biology, 144, 379-396.

Robson, A.J., and B. Szentes (2014): “A Biological Theory of Social Discounting,”forth-

coming, American Economic Review.

Schaffer, M.E. (1988): “Evolutionarily Stable Strategies for Finite Populations and Vari-

able Contest Size,”Journal of Theoretical Biology, 132, 467-478.

Schelling, T. (1960): The Strategy of Conflict. Cambridge: Harvard University Press.

Sethi, R., and E. Somanathan (2001): “Preference Evolution and Reciprocity”Journal

of Economic Theory, 97, 273-297.

Weibull, J.W (1995): Evolutionary Game Theory. Cambridge: MIT Press.

34


	wp_iast1410_couv
	nplayers 140623 WP

