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Abstract 
Because of the uncertainty about how to model the growth process of our economy, there is still 
much confusion about which discount rates should be used to evaluate actions having long-lasting 
impacts, as in the contexts of climate change, social security reforms or large public infrastructures 
for example. We characterize efficient discount rates when the growth of log consumption follows 
a random walk with uncertain parameters. We examine different models in which the parametric 
uncertainty affects the trend and the volatility of growth, or the frequency of catastrophes. This 
uncertainty implies that the term structures of the risk free discount rate and of the aggregate risk 
premium are respectively decreasing and increasing. It also implies that the discount rate is 
increasing with maturity if the beta of the investment is larger than half of relative risk aversion. 
Another important consequence of parametric uncertainty is that the risk premium is not 
proportional to the beta of the investment. Finally, we apply our findings to the evaluation of 
climate change policy. We argue in particular that the beta of actions to mitigate climate change is 
relatively large, so that the term structure of the associated discount rates should be increasing.  
 
Keywords: asset prices, term structure, risk premium, decreasing discount rates, parametric 
uncertainty, CO2 beta, rare events, macroeconomic catastrophes.   
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1. Introduction 

Do we do enough for the distant future? This question is implicit in many policy debates, from 

the fight against climate change to the speed of reduction of public deficits, investments in 

research and education, or the protection of the environment and of natural resources for 

example.  The discount rate used to evaluate investments is the key determinant of our individual 

and collective efforts in favor of the future. Since Weitzman (1998), an intense debate has 

emerged among economists about whether one should use different discount rates for different 

time horizons t. It is however well-known that the term structure of efficient discount rates is flat 

if we assume that the representative agent has a constant relative risk aversion and that the 

growth rate of consumption follows a random walk. In this benchmark specification, if a rate of 

3% is efficient to discount cash flows occurring in 12 months, it is also efficient to use that rate of 

3% to discount cash flows occurring in 200 years. This yields an exponentially decreasing present 

value of a given benefit as a function of its maturity. 

Compared to this benchmark, a decreasing term structure of discount rates would bias the 

economic evaluation of investments towards those with more distant benefits.  Weitzman (1998, 

2001) and Newell and Pizer (2003) justified such a decreasing structure by relying on the 

observation that the return of capital is risky. Gollier (2002, 2008, 2012) and Weitzman (2007) 

used standard consumption-based asset pricing theory to explore the same question. The basic 

idea is that the large uncertainty associated to aggregate consumption in the distant future should 

induce the prudent representative agent to use lower rates to discount more distant cash flows.2 

Under constant relative risk aversion (CRRA), the various dynamic processes that support this 

result include for example mean-reversion, Markov regime-switches, and parametric uncertainty 

on the trend of a Brownian motion.3 Gollier (2008) demonstrates that the positive serial 

correlation (or persistence) of the growth of consumption that is inherent to these stochastic 

processes is the driving force of the result, together with prudence. For growth processes with 

persistent shocks, aggregate uncertainty accumulates faster with respect to longer time horizons 

                                                            
2 Prudence is a concept defined by Kimball (1990) to characterize the willingness to save more when the future 
becomes more uncertain. 
3 Persistent movements in expected growth rates of aggregate consumption are documented for the U.S. by Bansal 
and Yaron (2004) for example. 
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than in a pure random walk with the same instantaneous volatility. Prudent people want to bias 

their investments towards those which yield more sure benefits for these horizons. Because the 

term structure of socially efficient discount rates is flat under a random walk, this bias is 

implemented by using a decreasing term structure.  

With the notable exception of Weitzman (2012), this recent literature focuses on rates ftr  at 

which safe cash flows should be discounted. In reality, most investment projects yield uncertain 

future costs and benefits. For marginal projects, we know that idiosyncratic risks should not be 

priced, because they will be washed out in diversified portfolios. In public economics, this result 

is usually referred to as the Arrow-Lind Theorem (Arrow and Lind (1970)), but this is a well-

known feature of the consumption-based capital asset pricing model (CCAPM, Lucas (1978)). 

More generally, the discount rate t to be used to evaluate risky projects depends upon their beta 

which measures the elasticity of net cash flows to changes in aggregate consumption.  A positive 

beta justifies a positive risk premium ( ) ( )t t ftr     . As is well-known in the CCAPM, in 

the benchmark specification with CRRA and a random walk for the growth rate of consumption, 

the term structure of the risk premium is flat. However, the arguments listed above in favor of a 

decreasing term structure of safe discount rates are also compatible with an increasing term 

structure of the risk premium associated to projects with a positive beta. If we assume that the 

stochastic process of the growth rate of consumption exhibits positive serial correlation, the 

annualized measure of aggregate risk will have an increasing term structure. Under risk aversion, 

the term structure of the risk premium will inherit this property.  

With positively serially correlated growth rates, the project-specific discount rate 

( ) ( )t ft tr     for positive betas is thus the sum of a prudence-driven decreasing function ftr  

and of a risk-aversion-driven increasing function ( )t  of the time horizon t . In standard models, 

this risk premium is proportional to the beta. Thus, this term structure will be decreasing if the 

project-specific beta is small enough, otherwise it will be increasing. This implies that the recent 

literature on the discount rate that has been advocating for decreasing discount rates is potentially 

misleading. If the beta of some green projects is positive and large, ( )t   may well be 

increasing with maturity. This paper provides a more balanced discussion about the shape of the 

term structure of discount rates. 
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For maturities measured in decades and centuries, we believe that it is crucial to adapt the 

CCAPM by recognizing that the stochastic process governing the growth of aggregate 

consumption is affected by parametric uncertainties. We  consider two alternative specifications. 

Under the first specification, which is examined in Section 3, we assume that log consumption 

follows an arithmetic Brownian motion conditional to knowing the true trend and volatility, but 

we assume that these parameters of the model are uncertain. Observe that the uncertainty on the 

trend of growth implies that the unconditional growth rates are positively correlated, thereby 

generating the phenomena described above. This analysis in generalized to the case of mean-

reversion in Section 4.  

A second specification is examined in Section 5, in which we assume that the economy may face 

macroeconomic catastrophes at low frequency. In normal time, the growth of log consumption is 

Gaussian, but a large drop in aggregate consumption strikes the economy at infrequent dates. Our 

modeling duplicates the one proposed by Barro (2006, 2009), at the notable exception that we 

take seriously a critique formulated by Martin (2012). Martin convincingly demonstrates that it is 

extremely complex to estimate the true probability of infrequent catastrophes, and that a small 

modification in the choice of parameters values has a huge effect on asset prices. We take this 

into account by explicitly introducing ambiguity about this probability into the model. This 

implies the same kind of positive serial correlation in the unconditional growth rates of the 

economy. An important consequence of introducing uncertainty on the probability of 

catastrophes is that, contrary to Barro (2006, 2009), the term structures of discount rates are 

generally not flat. We show in Section 5 that the risk free rate and of the risk premium are 

respectively decreasing and increasing. 

The method used in this paper was suggested by Martin (2012). We followed here this author’s 

suggestion to use the properties of Cumulant-Generating Functions (CGF) to characterize asset 

prices when the growth of log consumption is not Gaussian. This paper provides various 

illustrations of the power of this method, whose basic elements are presented in Section 2. It can 

also be inferred from Martin (2012) that abandoning the Gaussian assumption for growth 

introduces a new source of complexity in asset pricing theory. Namely, without the Gaussian 

assumption, the risk premium is generally not proportional to the beta of the asset. It implies that 
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knowing the aggregate risk premium and the asset’s beta is not enough anymore to determine the 

risk premium associated to the asset. We show in this paper that the nonlinearity is quite 

impressive in realistic calibrations of our specifications. 

Our paper provides important new insights about how public policies should be evaluated around 

the world. It is worrying to observe that it is common practice in public administrations around 

the world to use a single discount rate to evaluate public investments independent of their 

riskiness and time horizons. In the U.S. for example, the Office of Management and Budget 

(OMB) recommend to use a flat discount rate of 7% since 1992. It was argued that the “7% is an 

estimate of the average before-tax rate of return to private capital in the U.S. economy” (OMB 

(2003)). In 2003, the OMB also recommended the use of a discount rate of 3%, in addition to the 

7% mentioned above as a sensitivity. The 3% corresponds to the average real rate of return of the 

relatively safe 10-year Treasury notes between 1973 and 2003. Interestingly enough, the 

recommended use of 3% and 7% is not differentiated by the nature of the underlying risk, and is 

independent of the time horizon of the project. In another field, guidelines established by the 

Government Accounting Standards Board (GASB) recommend that state and local governments 

discount their pension liabilities at expected returns on their plan assets, which is usually 

estimated around 8%, independent of their maturities.4 The absence of risk-and-maturity-based 

price signals has potentially catastrophic consequences for the allocation of capital in the 

economy.5 This paper provides clear recommendations about the changes in evaluation tools that 

should be implemented.  

Another aim in this paper is to make recommendations about which discount rates should be used 

to evaluate environmental policies, in particular those associated to climate change. This raises 

the question of the beta of climate change, which we believe to be crucial for the determination of 

the so-called “social cost of carbon” (SCC). Sandsmark and Vennemo (2007) claim that the beta 

of mitigation investments is negative, so that the term structure of discount rates should be low 

and decreasing, thereby yielding a large SCC. They consider a simplified version of the standard 

                                                            
4 The European Union is currently debating about the new solvency regulation of insurance companies (Solvency 2). 
In the most recent consultation paper (European Insurance and Occupational Pensions Authority (2012)), it is 
proposed to discount safe liabilities using the yield curve up to 20-year maturities, and a real discount rate tending to 
2% (“Ultimate Forward Rate”) for longer maturities. 
5 In 2005, France has adopted a decreasing real discount rate from 4% to 2% for safe projects. This rule has been 
complemented in 2011 by an aggregate risk premium of 3% (Gollier (2011)). 
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integrated assessment model by Nordhaus’ DICE model (Nordhaus and Boyer (2000)). They 

assumed that the only source of aggregate fluctuations originates from climate change, with an 

uncertain climate sensitivity affecting socioeconomic damages to the economy.6 Under this 

assumption, a large climate sensitivity yields at the same time a low consumption (due to the 

climate damages) and a large social benefit from early mitigation. This explains the negative beta 

of their model. But suppose alternatively that the climate sensitivity is known, but the growth rate 

of aggregate consumption is unknown.  Because emissions are increasing in consumption, a 

larger growth rate of consumption goes together with a larger concentration of CO2. Because the 

damage function is assumed to be convex with the concentration of greenhouse gases, it also goes 

with larger damages, and with a larger societal benefit from early mitigation.  This justifies a 

positive beta. We show in Section 7  that any credible calibration of a model combining the two 

sources of aggregate fluctuations yields a positive and large beta of mitigation. From our 

discussion above, this is compatible with using increasing discount rates to measure SCC. This 

provides a radical reversal in the trend of the literature on discounting. This suggests that rather 

than focusing on climate change, one should rather invest in negative-beta projects whose largest 

benefits materialize in the most catastrophic scenarii of the destiny of humankind on this planet. 

This paper is organized as follows. In Section 2, we restate the classical pricing model with 

constant relative risk aversion and an arithmetic Brownian motion for the logarithm of aggregate 

consumption. We also introduce the CGF method in that section. The core of the paper is in 

sections 3 and 5, in which we explore asset prices in our two basic specifications, i.e., the 

Gaussian process with an uncertain trend and volatility, and the model with an uncertain 

probability of catastrophes. In Section 4, we extend the Gaussian specification of Section 3 to 

mean-reversion. We show how these results allow us to evaluate a broad class of risky projects 

with non-constant betas in Section 6. An application to climate change is presented in Section 7.  

 

 

 

                                                            
6 The climate sensitivity is a physical parameter that measures the relationship between the concentration of 
greenhouse gases in the atmosphere and the average temperature of the earth. 
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2. The benchmark Gaussian model 

We evaluate a marginal investment project that reduces current consumption by some sure 

amount    and that generates a flow of benefits 1 2( , ,...)F F   in the future, which can be 

uncertain seen from today. Random variables tF , 1, 2,...t  , have known distribution functions. 

In order to evaluate the social desirability of such a project, we measure its impact on the 

intertemporal social welfare 

 0
1

( ) ( ),t
t

t

W u c e Eu c



   (1.1) 

where u is the increasing and concave utility function of the representative agent,  is her rate of 

pure preference of the present, and tc  is the consumption level of the representative agent at date 
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intertemporal social welfare if and only if 

 
1 0

'( )
1 0.

'( )

t
t t

t

e Fu c
E

u c





 
   

 
  (2) 

This can be rewritten as a standard NPV formula: 

 ( )

1

1 0,t tF t
t

t

e EF



    (3) 

where ( )t tF  is the rate at which the expected cash flow occurring in t years should be 

discounted. This discount rate is written as follows 
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It is traditional in the CCAPM to decompose the project-specific discount rate ( )t tF  into a risk 

free discount rate ftr and a project-specific risk premium ( )t tF . From (4), we define these two 

components of the discount rate as follows: 
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Observe that the risk premium ( )t F is zero when the project is safe or when its future cash flow 

is independent of future aggregate consumption. This implies that ftr  is indeed the rate at which 

safe projects should be discounted. The CCAPM also characterizes the project-specific risk 

premium ( )t tF . Throughout the paper, we assume that '( )u c c  and that 

 t t tF c  (7) 

where   1,2,...t t



 is a set of random variables independent of tc , and  is the CCAPM beta of the 

project (see for example Martin (2012)). Because the idiosyncratic risk t  is not priced, we 

hereafter identify a project  tF  by its  .  When  is positive, implementing the project raises 

the risk on aggregate consumption. When  is negative, the project has an insurance component 

since it pays more on average in the worse macroeconomic scenarii.  

Under this specification, asset pricing formulas (5) and (6) can be rewritten as follows: 

  1 , ,ft tr t G      (8) 

       1( ) , , , ,t t t tt G G G              (9) 

where 0ln /t tG c c  is log consumption growth, and ( , ) ln exp( )a x E ax  is the Cumulant-

Generating Function (CGF) associated to random variable x  evaluated at .a  CGF has 

recently been used by Martin (2012) to explore asset prices under non Gaussian economic growth 

processes. The CGF, if it exists, is the log of the better known moment-generating function. In 

this paper, we use the following properties of CGF (see Billingsley (1995)). 

Lemma 1 : If it exists, the CGF function ( , ) ln exp( )a x E ax  has the following properties:  

i. 
1

( , ) / !x n
nn

a x a n 


  where x

n is the nth cumulant of random variable x. If x
nm denotes 

the centered moment of x, we have that 1
x Ex  , 2 2

x xm  , 3 3
x x  , 2

4 4 23( )x x xm m   ,… 



9 
 

ii. The most well-known special case is when x is 2( , )N   , so that 2 2( , ) 0.5a x a a     . 

iii. ( , ) ( , ) ( , )a x y a x a y     when x and y are independent random variables. 

iv. (0, ) 0x  and ( , )a x is infinitely differentiable and convex in a .  

v. This implies that 1 ( , )a a x is increasing in a, from Ex to the supremum of the support of 

x when a goes from zero to infinity. 

vi. The cumulant of the nth order is homogeneous of order n: x n x
n n
   for all .   

Property i explains why  is called the cumulant-generating function, and it links the sequence of 

cumulants to those of the centered moments. The first cumulant is the mean. The second, the 

third and the fourth cumulants are respectively the variance the skewness and the excess kurtosis 

of the random variable. Because the cumulants of the normal distribution are all zero for orders n 

larger than 2, the CGF of a normally distributed x is a quadratic function of a, as expressed by 

property ii.7  This property also implies that the CGF of a Dirac distribution degenerated at 

0x x  is equal to 0ax . Property v will play a crucial role in this paper because of the 

assumption of an i.i.d. process for the growth of log consumption.  

In the remainder of this paper, we calibrate equations (8) and (9) for different specifications of 

the stochastic process of tG . The benchmark process is such that log consumption follows an 

arithmetic Brownian motion with trend   and volatility  . This implies that tG is normally 

distributed with mean t and variance 2t . Using property ii in Lemma 1 implies that equations 

(8) and (9) can be rewritten as follows 

 2 20.5 ,ftr        (10) 

and 

 2( ) ,t      (11) 

Equation (10), which is often referred to as the extended Ramsey rule, holds independent of the 

maturity of the cash flow. In other words, the term structure of the safe discount rate is flat in that 

                                                            
7 It should be noticed that the normal distribution is the only distribution that has a finite sequence of non-zero 
cumulants. This implies that the Gaussian case is the only one in which the equation in property i in Lemma 1 can be 
used as an exact solution to the CGF. 
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case. Its level is determined by three elements: impatience, a wealth effect and a precautionary 

effect. The wealth effect comes from the observation that investing for the future in a growing 

economy does increase intertemporal inequality. Because of inequality aversion (which is 

equivalent to risk aversion under the veil of ignorance), this is desirable only if the return of the 

project is large enough to compensate for this adverse effect on welfare. From (10), this wealth 

effect is equal to the product of the expected growth of log consumption by the degree  of 

concavity of the utility function which measures inequality aversion. The precautionary effect 

comes from the observation that consumers want to invest more for the future when this future is 

more uncertain (Drèze and Modigliani (1972), Kimball (1990)). This tends to reduce the discount 

rate. The precautionary effect is proportional to the volatility of the growth of log consumption.  

Equation (11) tells us that the project-specific risk premium ( )t  is just equal to the product of 

the project-specific beta by the CCAPM aggregate risk premium 2  . Under this standard 

specification, the risk premium associated to benefit tF  is independent of its maturity t. The 

standard calibration of these two equations yields a too large risk free rate (risk free rate puzzle 

(Weil (1989))) and a too small risk premium (equity premium puzzle (Mehra and Prescott 

(1985))) compared to historical market data. Barro (2006) showed that these two puzzles can be 

solved by introducing a small probability of economic catastrophes in the stochastic growth 

process. 

Because both the risk free rate and the risk premium of the project are independent of the 

maturity in this benchmark specification, their sum ( ) ( )t ft tr      is also independent of t. 

The term structure of risky discount rates is flat in this case. The risky discount rate equals 

 2( ) ( 0.5 ) .t            (12) 

Notice that the risky discount rate can be either increasing or decreasing in the aggregate 

uncertainty measured by 2  depending upon whether the   of the project is larger or smaller 

than / 2 .  Two competing effects are at play here. First, a large aggregate risk induces the 

representative agent to save more for the future (precautionary saving motive). That reduces the 

risk free discount rate. Second, ceteris paribus, a larger aggregate risk increases the project-

specific risk and the associated risk premium. This risk aversion effect is proportional to the beta 
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of the project. The two effects counterbalance each other perfectly when / 2  . When   is 

smaller than / 2 , the risk aversion effect (which is increasing in  ) is dominated by the 

precautionary effect (which is increasing in   ). 

 

3. The Gaussian model with parametric uncertainty 

Following Weitzman (2007) and Gollier (2008), we now characterize the term structure of the 

risk free rate and the risk premium when there is some uncertainty about the true value of some 

of the parameters of the model. We assume in this section that 1ln( / )t t tg c c   conditional to 

some unknown parameter   follows a random walk. Since 
1

t

tG g 
  , we can rewrite 

equation (8) as follows: 
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 (13) 

This means that the term structure of the risk free rate is determined by a sequence of two CGF 

operations. One must first compute ( ) ( , )c g     , which is the CGF of the per-period 

growth g conditional to  . One must then compute ( , )t c  by using the distribution P  of   that 

characterizes current beliefs. Notice that, by application of property v of Lemma 1, this 

immediately implies that the risk free discount rate has a decreasing term structure.  

A similar exercise can be performed on equation (9). Using notation g  for g  , this yields 

          1( ) , , , , , , .t t t g t g t g                 (14) 

Observe that this equation implies that (0) 0t   for all t, and that, by application of property v of 

Lemma 1, ( )t   has an increasing term structure in the special case   .  
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We examine a special case of this model with parametric uncertainty by assuming that, 

conditional to  , the log of consumption growth is normally distributed with drift   and 

volatility  . Applying property ii of Lemma 1 to equation (13), we can write that 

 1 2 2( , 0.5 )).ftr t t         (15) 

Similarly, we obtain that 

  1 2 2 2 2 2 2( ) ( , 0.5 ) ( , 0.5 ) ( , ( ) 0.5( ) ) .t t t t t                          (16) 

Combining these two equations gives us the discount rate: 

  1 2 2 2 2( ) ( , 0.5 ) ( , ( ) 0.5( ) ) .t t t t                   (17) 

We apply these pricing formulas to different structures of uncertainty about the trend and the 

volatility of the growth of the economy. Property iii of Lemma 1 tells us that these two sources of 

uncertainty can be examined separately without loss of generality if they are independent. But 

before examining these two sources of uncertainty, let us observe that, since 

2( , ) ( )a x aEx o a   , the above two equations imply that 

 2 20.5 ( ),ftr E E o t         (18) 

and 

 2( ) ( ).t E o t      (19) 

Comparing these results with equations (10) and (11) yields the following result, which may 

explain why parametric uncertainty has not been much studied in asset pricing theory. The 

remainder of this section demonstrates that parametric uncertainty has more radical effects on 

prices of long-dated assets. 

Proposition 1: In the Gaussian case, the parametric uncertainty affecting the trend and the 

volatility of economic growth has no effect on the risk free rate and on the risk premium for small 

maturities. 
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3.1. The trend of growth is uncertain 

Suppose first that log consumption  follows an arithmetic Brownian motion with a known 

constant volatility   and an unknown constant trend  . Using properties i  and iii of Lemma 1 

implies that equation (15) can then be rewritten as follows: 

 2 2 10.5 ( , ).ftr t t         (20) 

By properties i  and vi of Lemma 1, equation (20) also implies that 

 
1

2 2

1

( 1)
0.5 .

!

n n n
n

ft n

t
r

n

   







    (21) 

Let 1m E   and 1( )n
nm E m   for 2n   denote respectively the mean and the centered 

moment of  . The above equation is thus equivalent to: 

   22 2 2 3 2 4 3
1 2 3 4 2

1 1 1
0.5 3 ...

2! 3! 4!ftr m m t m t m m t                   (22) 

Two observations can be derived from this result. First, for small maturities, one more year in 

maturity implies a reduction of the discount rate by 20.5 times the variance of the trend  . If the 

trend of consumption growth is normally distributed, all terms involving higher cumulants of 

are zero, and the risk free discount rate is linearly decreasing with maturity, as shown by Gollier 

(2008). Second, if the distribution of the trend of growth is not normally distributed, the skewness 

3m  and the excess kurtosis  2

4 23m m   also influence the shape of the term structure of ftr at 

larger maturities. A positive skewness or a negative excess kurtosis for the distribution of the 

trend  tends to make the term structure increasing. 

A similar exercise with equation (16) implies that  
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            

    










        

        

     

 (23) 

This is equivalent to 
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       22 2 2 2 3
2 3 4 2

1
( ) 0.5 ( ) 1.5 3 ...

6t m t m t m m t                       (24) 

Notice that for small maturities, the risk premium is increasing with t. One more year of maturity 

has an effect on the risk premium that is equivalent to an increase in the volatility of the log 

consumption growth 2 by the variance 2m of the trend. If this trend is normally distributed, the 

other terms in the right-hand side of the above equation vanish, which implies that the risk 

premium is linearly increasing with maturity. For projects with a positive  smaller than  , a 

negative skewness reinforces the increasing nature of the term structure of ( )t  for positive 

betas, in particular for long maturities. A positive excess kurtosis has the same effect for projects 

with a positive beta. It must be noticed also that the risk premium is generally not proportional to 

 as in the Gaussian CCAPM model. This implies that knowing the aggregate risk premium 

(1)t and the beta of the project is not enough to determine the risk premium ( )t  associated to 

the project. 

Let us now consider the discount rate ( )t   for a risky project. In the special case of a normally 

distributed trend, the above analysis implies that 

  0 2( ) ( ) 0.5 ,t t m          (25) 

with 2 2 2
0 1( ) 0.5m          . We can summarize our findings relative to the shape of 

the term structures of ftr , ( )t  and ( ) ( )t ft tr     in the following proposition.  

Proposition 2: Suppose that log consumption follows an arithmetic Brownian motion with a 

known volatility   and with an uncertain trend    which is normally distributed. It implies 

that the term structures of the risk free discount rate and of the aggregate risk premium are 

respectively decreasing and increasing. Moreover, the term structure of the discount rates ( )t   

is decreasing, flat or increasing depending upon  is smaller, equal or larger than 0.5 .  These 

results hold  in the non-Gaussian  growth, but only for small maturities, or when the uncertainty 

on growth is such  that the cumulants of orders larger than 2 are small compared to the variance. 
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The intuition of these results combines the observation that the parametric uncertainty magnifies 

long term risks with the observation made in the previous section that risk decreases or increases 

the discount rate depending upon whether   is smaller or larger than / 2 . 

In the next proposition, we generalize these findings to non-Gaussian distributions of the trend of 

growth. It is easy to generalize equation (25) to the case of a non-Gaussian  : 

 1 1
0 1 1( ) ( ) ( , ( )) ( , ( )( )).t t t m t t m                   (26) 

Notice that property v of Lemma 1 applied to this equation implies that ( 0)t   and ( )t  

are respectively decreasing and increasing in t. And if  has a symmetric distribution, the above 

equation implies that ( 0.5 )t   is constant in t  at 0 1( / 2) m     . Under this symmetry 

assumption, we obtain the following result. 

Proposition 3: Suppose that log consumption follows an arithmetic Brownian motion with a 

known volatility   and with an unknown trend  . When  is symmetrically distributed, the 

term structure of the discount rate ( 0.5 )t   is flat at 1 .m  It is decreasing when   is 

smaller than 0.5 , and it is increasing when  is in interval  0.5 ,  . 

Proof: See the Appendix.   

Thus, we recover essentially the same characterization for the slope of the term structure of 

( )t  if we replace the Gaussian assumption contained in Proposition 2 by the assumption that 

this uncertainty is just symmetric around the mean.  

In the next proposition, we characterize the asymptotic properties of the term structure of 

discount rates when the distribution of the trend has a bounded support  min max,  . We first 

rewrite condition (26) as 

 2 1 1( ) ( 0.5 ) ( , ) ( , ( ) ).t t t t t                   (27) 

Property v  of Lemma 1 tells us that 1 ( , )a a x  tends to the supremum of the support of x when a 

tends to infinity. If  is negative, the supremum of the support of  is min , and the supremum 
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of the support of ( )   is min( )   . This implies that the sum of the last two terms of the 

RHS of the above equality tends to min . The other two cases are characterized in Proposition 4. 

Proposition 4: Suppose that log consumption follows an arithmetic Brownian motion with a 

known volatility   and with an unknown trend   with support  min max,  . For long 

horizons, the discount rate tends to 

 

2
min

2
min max

2
max

( 0.5 )                        0

( ) ( 0.5 ) ( ) 0

( 0.5 )                       

if

if

if

     
           

      


    
       
    

 (28) 

For distant futures, the ambiguity affecting the trend is crucial for the determination of the 

discount rate. The long term wealth effect is equal to the product of   by a growth rate of 

consumption belonging to its support  min max,  . Its selection depends here upon the beta of the 

project. When   is negative, the wealth effect should be computed on the basis of the smallest 

possible growth rate min  of the economy. On the contrary, when   is larger than  , the wealth 

effect should be computed on the basis of the largest possible rate max .  When the beta of the 

project is positive but smaller than  , the selected growth rate is a weighted average of min  and 

max , with weights ( ) /   and /  respectively. 

Proposition 4 also tells us that the condition of a symmetric distribution for   in Proposition 3 

cannot be relaxed. Indeed, Proposition 4 implies that 0 ( / 2)    and ( / 2)     are equal 

only if 1E m   and min max( ) / 2   coincide. Most asymmetric distributions will not satisfy 

this condition, which implies that the constancy of ( / 2)t   with respect to t will be violated.  

In Figure 1, we illustrate some of the above findings through the following numerical example. 

We assume that 0  , 2  , 4%   and   is uniformly distributed on interval  0%,3% . The 

term structure is flat for / 2 1   . The sensitiveness of the discount rate for different betas to 

changes in the beta is increasing in the maturity of the cash flows. This numerical example also 

illustrates the property that project-specific risk premia are in general not proportional to the 

project-specific beta. For example, consider a time horizon of 400 years. For this maturity, the 
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risk premia associated to 1   and 4   are respectively equal to 400 (1) 2.5%   and 

400 400(4) 6.3% 4 (1)   . 

  

Figure 1: The discount rate as a function of maturity (left) and of the beta of the project (right). 
We assume that 2  , 4%   and   is U 0%,3% . Rates are in %. 

 

3.2. The volatility of growth is uncertain 

Let us now turn to the case in which the trend is known, but the volatility is ambiguous. 

Weitzman (2007) examined this question by assuming that the 2  has an inverted Gamma 

distribution. This implies that 0ln( / )tc c is a Student’s t-distribution rather than a normal, yielding 

fat tails, a safe discount rate of  and a market risk premium of  . Let us reexamine this 

question without specifying the distribution of  2 . Lemma 1 implies that we can rewrite 

equation (15) as follows: 

 1 2 2( ,0.5 )).ftr t t        (29) 

Because the Inverse Gamma distribution for 2 has no real CGF, this equation offers another 

proof of Weitzman (2007)’s inexistence result. Property i  of Lemma 1 also implies that 
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This equation is useful to measure the impact of each cumulant of the distribution of 2  on the 

shape of the term structure of the risk free rate. Similarly, equation (16) implies that 

  1 2 2 2 2 2 2( ) ( ,0.5 ) ( ,0.5 ) ( ,0.5( ) ) .t t t t t                (31) 

Lemma 1 implies in turn that 

 
 

2

2 2

1
2 2 2

1

2 2
1 2

( ) ( )
2 !

1 3
...

2 2

n
n n nn

t n
t

t

n

m m t


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    





   

       


 (32) 

The bracketed term in the right-hand side of this equation is positive, which implies that the term 

structure of the aggregate risk premium is upward-sloping for small maturities. For longer 

maturities, the higher cumulants matter for the shape of the term structure of ( )t  , the direction 

of the effect of cumulant n depending upon the sign of 2 2 2( )n n n      .  

Finally, combining these two results implies that the discount rate ( )t   to be used for this 

project is such that 

  
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2
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( ) ( )

8
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8

t m o t
t

m o t





    

     

      
  

 

 (33) 

Thus, for short maturities, the term structure of the discount rate to be used for risky projects is 

downward-sloping if and only if  is smaller than / 2 . This result is identical to what we 

obtained when the uncertainty is about the trend of the economy.  The following proposition 

summarizes the findings of this section. 

Proposition 5: Suppose that log consumption follows an arithmetic Brownian motion with a 

known trend   and an uncertain volatility  . It implies that the term structures of the risk free 

discount rate and of the aggregate risk premium are respectively decreasing and increasing for 

short maturities. Moreover, the term structure of the discount rates ( )t   is decreasing, flat or 

increasing for short maturities depending upon  is smaller, equal or larger than 0.5 .  
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Given the similarities of these results with those of Proposition 2, we can conclude that, for small 

maturities, the qualitative properties of the term structures of discount rates are independent of 

whether the uncertainty is about the trend of growth or about its volatility. 

 

3.3. The trend and the volatility of growth are uncertain 

Many of the above results suggest that that the term structure of ( )t  is decreasing under small 

parametric uncertainty if and only if  is smaller than / 2 . This is not true in general, as shown 

in this section. To do this, let us suppose that  and 2  be statistically dependent. Applying 

property i  of Lemma 1 in equation (17) implies that  

  2 2 2 20.5 ( ) 0.5( )
2 2

( ) 1
( ).

2!
t o t
t

              
  


 (34) 

This implies that 

 

22 2 4 4
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( ) cov( , ) ( )

t m m
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o t

        

    

            
     

 (35) 

In the special case with / 2  , this implies in turn that 

 
3

2( )
cov( , ) ( ).

8
t o t
t

    
 


 (36) 

Thus, when / 2  , the signs of the slope of the term structure of the discount rate for small 

maturities and of 2cov( , )   coincide. To illustrate this result, let us consider the following 

simple numerical example. Suppose that 0  , 2   and that there are two possible states of 

nature. In the first state, 1 0%  and 1 1%  . In the second state, 2 3%   and 2 7%  , so 

that the trend and the volatility of growth are positively correlated. Under this calibration of the 

model, the discount rate for short-term cash flows with 1 / 2    is 0 (1) 3%  , and the 

discount rate for distant cash flows is 0(1) 3.24% (1).     
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4. Extension to  mean-reversion 

In the benchmark specification with a CRRA utility function and a Brownian motion for the 

growth of log consumption, the term structures of discount rates are flat and constant through 

time. In the specification examined in Section 3 with some parametric uncertainty on this 

Brownian motion, they are monotone and move smoothly through time due to the revision of 

beliefs about the true values of the uncertain parameters. But these processes ignore the 

cyclicality of the economic activity. The introduction of predictable changes in the trend of 

growth introduces a new ingredient to the evaluation of investments. When expectations are 

diminishing, the discount rate associated to short horizons should be reduced to bias investment 

decisions toward projects that dampen the forthcoming recession. Long termism is a luxury that 

should be favored only in periods of economic prosperity with low expectations for the future. 

More generally, when expectations are cyclical, it is important to frequently adapt the price 

signals contained in the term structure of discount rates to the moving macroeconomic 

expectations. From this theoretical result, it is clearly inefficient to maintain the U.S. official 

discount rate unchanged since 1992.  

In this section, we propose a simple model in which the economic growth is cyclical, with some 

uncertainty about the parameter governing this process. Following Bansal and Yaron (2004) for 

example, the change in log consumption follows an auto-regressive process: 
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y y
 

 




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  
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 (37) 

for some initial (potentially ambiguous) state characterized by 1y , where  and xt yt  are 

independent and serially independent with mean zero and variance 2
x  and 2 ,y respectively. 

Parameter  , which is between 0 and 1, represents the degree of persistence in the expected 

growth rate process. When   is zero, then the model returns to a pure random walk as in Section 
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3. We hereafter allow the trend of growth   to be uncertain.8 By forward induction of  (37), it 

follows that: 
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1 1
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It implies that, conditional to  , tG  is normally distributed with annualized variance 
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Using property ii of Lemma 1, equations (8) and (9) imply that 
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 (40) 

One can then treat the last term in the RHS of this equation as in Section 3.1. Bansal and Yaron 

(2004) consider the following calibration of the model, using annual growth data for the United 

States over the period 1929-1998. Taking the month as the time unit, they obtained, 0.0015  , 

0.0078x  , 0.00034y  , and 0.979  . Using this   yields a half-life for macroeconomic 

shocks of 32 months. Let us assume that 0  , and let us introduce some uncertainty about the 

historical trend of growth from the sure 0.0015  to the uncertain context with two equally 

likely trends 1 0.0005   and 2 0.0025  . In Figure 2, we draw the term structures of discount 

rates for two different positions 1y  in the business cycle.  In the left figure, the expected annual 

growth rate of the economy is 0.6% per year, well below its unconditional expectation of 1.8%. 

In this recession phase, the short term discount rate is a low 1%, but the expectation of a recovery 

makes the term structure steeply increasing for low maturities. For betas below unity, the term 

structure is non-monotone because of the fact that for very distant maturities, the effect of 

parametric uncertainty eventually dominates. In the right figure, the expected instantaneous 

                                                            
8 A more general model entails a time-varying volatility of growth as in Bansal and Yaron (2004). Mean-reversion in 
volatility is useful to explain the cyclicality of the market risk premium.  
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growth rate is 1.2% per year above its unconditional expectation. In this expansionary phase of 

the cycle, the short term discount rate is large at around 6%, but is steeply decreasing for short 

maturities because of the diminishing expectations. 

      

Figure 2: The discount rate (in % per year) as a function of the maturity (in years) in recession for 
different betas. Equation (40) is calibrated with 0  , 2  , 0.0078x  , 0.00034y  , 

0.979  , two equally likely trends 1 0.0005   and 2 0.0025  , and 1 0.001y    (left) or for 

1 0.001y  (right).  

One can also examine a model in which the current state variable 1y  is uncertain. It is easy to 

generalize equation (40) to examine this ambiguous context. We obtain the following pricing 

formula:  

 

      

2 2
2 2

2 2
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1 1
( ) ( 0.5 ) 1 2
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, 1 / (1 ) , ( ) ( ) 1 / (1 ) .
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t t y t t y t

          
  

              

   
            

         

 (41) 

Observe again that when 0.5  , the term structure of discount rates is flat if both   and 1y  

have a symmetric distribution function. We also observe that the ambiguity on 1y  plays a role 

similar to the ambiguity on   to shape the term structure. Our numerical simulations (available 

upon request) show that the hidden nature of the state variable does not modify the general 

characteristics of the term structures described above.  

 

5. A model with rare events of unknown frequency 
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In a recent move of the literature initiated by Barro (2006, 2009), and followed for example by 

Backus, Chernov and Martin (2011) and Martin (2012),  rare events have been recognized for 

being a crucial determinant of assets prices. The underlying model is such that the growth of log 

consumption tg  follows an i.i.d. process with a CRRA utility function, so that equations (13), 

(14) and (17) are relevant. However, contrary to what has been assumed in the Section 3, tg g

is not normally distributed conditional to  . Rather, it compounds two normal distributions:  

 2
1 2( ,1 ; , ) ( , ),i i ig h p h p with h N     (42) 

The log consumption growth compounds a “business-as-usual” random variable 2
1 1 1( , )h N  

with probability 1 p , with a catastrophe event 2
2 2 2( , )h N    with probability p and 

2 10    and 2 1  .  Barro (2006, 2009) convincingly explains that the risk free puzzle and 

the equity premium puzzle can be explained by using credible values of the intensity 2 of the 

macro catastrophe and of its frequency p. However, Martin (2012) shows that the levels of the fr

and (1) are highly sensitive to the frequency p, and that this parameter p is extremely difficult to 

estimate. In this section, we contribute to this emerging literature by integrating this source of 

parametric uncertainty into the asset pricing model. 

In the absence of parametric uncertainty, equations (13), (14) and (17) imply that the term 

structures of discount rates and risk premiums are flat. Suppose alternatively that parameter p is 

uncertain. Our current beliefs about the true frequency of macro catastrophes are given by some 

probability distribution P on p.  Let  min max,p p denote the support of P. In this section, we 

calibrate this model as in the EU benchmark version of Barro (2006) and Martin (2012). We 

assume that 3%, 4,   and 2n  . In the business-as-usual scenario, the trend of growth is 

1 2.5%  and its volatility is equal to 1 2%  . In case of a catastrophe, the trend of growth is 

2 39%   and the volatility is 2 25%  . Finally, we assume that the probability of catastrophe 

is 1.2% or 2.2% with equal probabilities.9 

At this stage, it is useful to define the following set of parameters and functions: 

                                                            
9 This corresponds to the two sensitivity analyses performed by Martin (2012) around Barro’s estimation of p=1.7%.  
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exp( 0.5 )
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b

d

   

  

      

 

  

   

 (43) 

for i=1,2. Remember that these variables represent respectively the expectation of 1F , 

1 0'( ) / '( )u c u c  and 1 1 0'( ) / '( )F u c u c conditional to scenario i. 

In this context, equation (13) becomes  

   1
1 2 1, ln ( ) ,ftr t t b p b b      (44) 

Using Lemma 1, we directly obtain the following results. First, the term structure of ftr is 

decreasing. This means that rare events are inherently linked to a decreasing structure of the risk 

free rate because of the intrinsic uncertainty related to their low frequency. For small maturities, 

it tends to 

  0 1 2 1ln ( ) ,fr E b p b b     (45) 

By Jensen’s inequality, 0fr is larger than if we would have assumed a sure frequency equaling

.Ep  This implies that the uncertainty affecting the frequency of rare events raises the risk free 

discount rate for short maturities. However, under our calibration, this effect is small. It raises the 

discount rate from 0.46% to 0.52% when replacing a sure frequency of 1.7% to an uncertain 

frequency (1.2%,1/ 2; 2.2%,1/ 2)p  .  

It would however be a mistake to conclude from this analysis that introducing uncertainty in 

Barro’s model has a negligible effect on the discount rate.  Property i in Lemma 1 tells us that 

one can rewrite equation (44) has follows: 

 
 1 2 1ln ( ) 1

0
2

.
!

b p b b n
n

ft f
n

t
r r

n

   



   (46) 

This implies that 

  1 2 1ln ( )
20.5 ( ).ft b p b br

m o t
t

 
  


 (47) 



25 
 

In the calibration of this section, we have that the first term in the RHS of this equation is equal  

to -0.06% per year, which is quite large. Lemma 1 can also be used to determine the asymptotic 

risk free discount rate. Because 2 1b b  under risk aversion, it yields 

 1 max 2 1lim ln( ( )).t ftr b p b b      (48) 

That is, the long discount rate should be computed by using the CCAPM pricing equation under 

the belief that the largest possible frequency of catastrophes is certain. This pessimistic approach 

valuation is compatible with a smaller discount rate for the distant future. Under our calibration, 

we obtain 2.86%fr    , a rate that should be compared to rate 0.46%fr    that holds in the 

absence of parametric uncertainty. A full description of the term structure of ftr  is given in Figure  

3. 

 

Figure 3: The term structure of risk free discount rates (in %) calibrated with 3%, 4,  
2,n   1 2.5%  , 1 2%  , 2 39%   and 2 25%  . In the unambiguous case (dashed), the 

probability p  equals 1.7% with certainty. In the ambiguous case (plain), it is 1.2% or 2.2% with 
equal probabilities. 

Let us now turn to the risk premium. Using specification (42) in equation (14), we obtain 

 
     
  

1 1
1 2 1 1 2 1

1
1 2 1

( ) , ln ( ) ( ( ) ( )) , ln ( )

, ln ( ) ( ( ) ( )) .

t t t a p a a t t b p b b

t t d p d d

      

   

 



     

  
 (49) 

For short maturities, we obtain that  
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 

 (50) 

For longer maturities, we can use property i of Lemma 1 to obtain 

       1 2 1 1 2 1 1 2 1

1
ln ( ) ( ( ) ( )) ln ( ) ln ( ) ( ( ) ( ))

0
2

( ) ( ) .
!
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a p a a b p b b d p d d

t n n n
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           


     



     (51) 

This implies that 

       1 2 1 1 2 1 1 2 1ln ( ) ( ( ) ( )) ln ( ) ln ( ) ( ( ) ( ))
2 2 2

( )
0.5 ( )a p a a b p b b d p d dt m m m o t

t
            

   


 (52) 

In the calibration of this section, we obtain that the slope of the term structure of the risk 

premium at small maturities is equal to respectively 0.04% and 0.06% respectively for 1   and 

5  .  

The asymptotic value of the risk premium equals 

 
     
  

1 2 1 1 2 1

1 2 1

lim ( ) sup ln ( ) ( ) ( ) sup ln

sup ln ( ) ( ) ( ) .

t t a p a a b p b b

d p d d

    

  
      

  
 (53) 

It is easy to show that 2 1( ) ( )a a   if and only if   is positive and smaller than 

2 2
1 2 1 22( ) / ( )       . Similarly, 2 1( ) ( )d d   if and only if   is between   and   . 

This implies for example that 

 
     

 
1 min 2 1 1 max 2 1

1 max 2 1

( ) ( ) ( )
lim ( ) ln ,

( ) ( ) ( )t t

a p a a b p b b

d p d d

  
 

  

   


 
 (54) 

when  belongs to interval  0, min ,    . In the numerical example presented above, we have 

that 4   and 13.4  . This means that condition (54) holds for a wide range of projects and 

assets with  0,4  . In Figure 4, we draw the term structure of the risk premium ( )t  for 

1  . It increases from 0 (1) 5.87%   to (1) 7.71%  .  
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Figure 4: The term structure of the risk premium (1)t  (in %). The calibration is as in Figure 3. 

 

Figure 5: The risk premium ( )t   (in %) as a function of  , for 1t   and 100t  . The 

calibration is as in Figure 3. 

 

It is interesting to observe that, as in the previous section, the risk premium ( )t   is usually not 

proportional to  . There are two reasons that explain this feature of asset prices in this context. 

Both are linked to the non-Gaussian nature of tG . The first one comes from the fat tail induced 
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by rare events. The second one comes from the uncertainty affecting the probability of rare 

events. Because the distribution of tG cannot be approximated by  a Gaussian even for small 

maturities, the nonlinearity of the risk premium with respect to the beta of the asset is quite 

impressive, as can be seen in Figure 5. This nonlinearity appears to be a crucial element of asset 

prices in the context of rare catastrophic events at all maturities. Notice in particular that the risk 

premium is concave in beta in a wide range of this parameter. In Table 1, we provide some values 

for the discount rate of risky assets for different betas and maturities. We obtain that the term 

structure of the discount rate ( )t  is decreasing for all 2.92  , and is increasing for larger 

betas. 

 

 t = 1 t = 10 t = 100 t = 1000 
1    -11.0 -12.7 -16.5 -16.9 

0.0   0.5 -0.1 -2.2 -2.8 
0.5   3.9 3.6 2.2 1.6 
1.0   6.4 6.2 5.4 4.9 
2.0   9.5 9.4 9.2 8.9 
5.0   12.8 12.8 12.9 13.0 

Table 1: The discount rate ( ) ( )t ft tr      (in %) calibrated with 3%, 4,   2n  ,

1 2.5%  , 1 2%  , 2 39%   and 2 25%  . The probability of the catastrophic scenario i=2 

is 1.2% or 2.2% with equal probabilities. 

 

It may be tempting to approximate all terms of the form  1 2 1ln ( )x p x x   for ( )x a  , x b

or ( )x d   that appears everywhere in this section either by its log-linearized version 

1 2(1 ) ln( ) ln( )p x p x  , or by its first-order Taylor approximation 1 2 1 1ln( ) ( ) /x p x x x  . 

However, because the distance between 1x and 2x is large in this model with catastrophes, these 

approximations are very poor. For example, the first-order Taylor approximation approach leads 

to the approximation 0 0.31%fr  , to be compared to the true value 0 0.52%fr  . 

 

6. Pricing projects with a non-constant beta 
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Specification (7) is critical for our results, because it allows us to use the properties of CGF 

functions that appears in all pricing formulas used in this paper. Although specification  (7) is 

restrictive, examining the pricing of a project satisfying it opens the path to examining the pricing 

of a much larger class of projects of the form 

 
1

,   with  ,i

n

t it it it it t
i

F F F c 


   (55) 

where random variables it are independent of tc . This project can be interpreted as a portfolio of 

n  different projects, project i  having a constant i  , 1,..., .i n  Of course, the resulting 

“portfolio project” has a non-constant beta. By a standard arbitrage argument, the value of this 

portfolio is the sum of the values of each of its beta-specific components. We can thus rely on our 

results in this paper for the evaluation of projects with a non-constant beta. If ( )t i  is the 

efficient discount rate to evaluate the i  component of the project, the global value of the 

project will be equal to 

 ( )

1

,t i

n
t

it it
i

e EF  


  (56) 

where we assumed without loss of generality that 1itE  . In other words, the discount factors – 

rather than the discount rates – must be averaged to determine the discount factor to be used to 

evaluate the cash flows of the global portfolio. In the absence of parametric uncertainty, 

Weitzman (2012) examines the case in which the project under scrutiny is a portfolio of a risk 

free asset ( 1 0  ) and of a risky project with a unit beta ( 2 1  ). 

 

7. The beta of CO2 projects 

The purpose of this section is to heuristically derive a crude numerical estimate for term structure 

of discount rates to be used for the evaluation of climatic policies. To do this, we need to answer 

the following often overlooked question: What is the beta of investments whose main objective is 

to abate emissions of greenhouse gases? Let us consider a simple two-date version of the DICE 

model of Nordhaus (2008) and Nordhaus and Boyer (2000): 
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 1T E  (57) 

 2 0E Y I   (58) 

 2
1D T   (59) 

 DQ e Y  (60) 

 C Q  (61) 

All parameters of the model are assumed to be nonnegative. T  is the increase in temperature and 

E  is the emission of greenhouse gases from date 0 to date 1. It is assumed in equation (57) that 

the increase in temperature is proportional to the emission of these gases.  By equation (58), 

emissions are proportional to the pre-damage production level Y , but they can be reduced by 

investing 0I  in a green technology at date 0.  In equation (59), we assume that the damage D  is 

an increasing power function of the increase in temperature. Equation (60) defines damage D  as 

the logarithm of the ratio /Y Q  of pre-damage and post-damage production levels.10 We 

hereafter refer to D  as the relative damage. Finally, consumption C is proportional to the post-

damage production Q . This model yields the following reduced form: 

   2

1 1 2 0exp ( ) .C Y Y I
         (62) 

We consider the beta of a green investment 0I . Such an investment has the benefit to raise 

consumption in the future by 

   22 2 1
1 2 2 0 1 1 2 0

0

( ) exp ( ) .
C

Y Y I Y I
I

              
 (63) 

This is the future cash flow F  of the investment. We assume that this investment is marginal, so 

that our model can be rewritten as: 

 

2

2 2

*
1

*
*1 2
1

2

exp

exp ,

C Y Y

F Y Y



 

 

   


    


    


 (64) 

                                                            
10 Equation (60) is traditionally expressed as 

1 1 1(1 )Q D Y  .  However, for high temperatures, this specification 

could lead to a negative after-damage production.  
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where 2 2*
1 1 1 2

     can be interpreted as a synthetic climate-sensitivity parameter.  

A critical parameter for this model is 2 . When 2  is equal to unity, the relative damage is just 

proportional to the change in temperature and in concentration of greenhouse gases. The absolute 

damage Y Q  is thus convex in Y  in that case. When 2 is larger than unity, the relative damage 

is itself convex, thereby bringing even more convexity to the absolute damage as a function of Y . 

Let us first assume that 2 1  . In that case, we can derive from system (64) that 

 1 1 .F C   (65) 

Let us further assume that the only source of uncertainty is about the growth of pre-damage 

production. This implies that 1 1   is a constant. We can thus conclude in this case that the green 

investment project under scrutiny in this section satisfies condition (7) with 1  . This proves 

the following proposition. 

Proposition 6:  Consider the simplified integrated assessment model (57)-(61) with 2 1   and 

without uncertainty about the climate parameter 1 1   .Under this specification, any project 

whose benefits are to reduce emissions of greenhouse gases has a constant beta equaling unity. 

 The intuition of a positive beta in this model is as follows. When economic growth is high, more 

greenhouse gases are emitted in the atmosphere and the benefits of mitigation are large. 

Consumption and benefits covary positively in this model.  However, this simple result raises two 

difficulties. First, although all experts in the field recognize the scarcity of evidence to infer 2 , 

most of them agree that the relation ( )D f T  should be convex, yielding 2 1  . Nordhaus and 

Boyer (2000) used 2 2  ,11 whereas Cline (1992) used 2 1.3  . The Monte-Carlo simulations of 

the PAGE model used in the Stern (2007) Review draw 2  from an asymmetric triangular 

probability density function with support in [1,3] , giving a mean of about 1.8 (See Dietz, Hope 

and Patmore, 2007). Although there is no consensus on the value of this parameter, this suggests 

a more consensual beta somewhere between 1 and 2. Compared to the result in Proposition 6, a 

                                                            
11 Nordhaus (2007, 2011) used a quadratic function, yielding a similar degree of convexity of the damage function in 
the relevant domain of increases in concentration.  
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larger 2 tends to increase the benefits of reducing emissions in good states (large Y ), and to 

reduce them in bad states (low Y ). Intuitively, this should raise the beta of green projects above 

unity. To see this observe that a local estimation of the beta from (7) can be obtained by fully 

differentiating system (64) with respect to Y . We obtained 

 
2*

1
2 *

1

1ln /

ln / 1

Yd F dY

d C dY Y

 



 


 (66) 

which is close to 2  when 2  is close to unity. Observe that the beta of the project is not constant 

when 2  is not equal to unity. In other words, the expected benefit function conditional to C  is 

not a power function of C . 

Second, when 1 1    is random, it will in general be correlated to C , as shown by the first 

equation in system (64). In that case, equation (65) cannot anymore be interpreted as describing a 

project with a unit beta. To illustrate this point, consider the extreme case where economic 

growth Y is certain, together with 1,  2  and 2 , but the climate sensitivity parameter 1 is 

uncertain. In that case, eliminating 1 from system (64) yields 

 2

2

ln .
C Y

F
Y C

 


  (67) 

In this case, cash flow F is a deterministic function of C . Because it is not a power function, the 

beta of green projects is not constant in this specification. We can approximate it through the 

following formula: 

 1

1

ln / 1
1 ,

ln /

d F d

d C d D




    (68) 

with 2*
1 .D Y   This typically yields a negative beta, which is large in absolute value. Indeed, if 

we assume a range of damages between 5% and 20% of the aggregate production, we obtain a 

beta in the range between -4 and -19. In this story based on the uncertain climate sensitivity,  a 

large sensitivity yields at the same time large damages, low consumption, and large benefits of 

mitigation. This explains the negative beta obtained under this specification. This story is similar 

to the one proposed by Sandsmark and Vennemo (2007) who claim that the beta of mitigation 
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investments should be negative.12 Their argument is based on the climate variability as being the 

only source of fluctuation in the economy. 

To sum up, the result presented in Proposition 6 suffers from two major deficiencies: The 

selected 2  is too small, and it does not recognize that there is still much uncertainty about the 

sensitivity of the climate to an increase in concentration of greenhouse gases in the atmosphere.  

The difficulty is that improving the model to allow for 2 1   or for an uncertain climate 

sensitivity implies that the benefit F  cannot be written anymore as a power function of C  as in 

equation (7), or as a sum of power functions of C  as in equation (55). 

We can conclude from this discussion that the beta of investments whose main benefits are a 

reduction of emissions of greenhouse gases is non-constant. Its average level is determined by the 

relative intensity of two sources of uncertainty, the one coming from the future economic 

prosperity, and the one due to the unknown intensity of the climatic problem. We believe that the 

economic source of variability has an order of magnitude larger than the climatic source of 

variability. When the annual growth rate of the economy varies between 0% and 3%, aggregate 

consumption in 100 years is between 0% and 1800% larger than today. This should be compared 

to climate damages for this time horizon which are usually estimated between 0% and 5% (see 

for example the Stern Review, 2007). To make this argument more concrete, let us consider the 

calibration of the simple above model as described in Table 2.  

Variable Value Remark 

t 50 years Time horizon between dates 0 and 1. 

1e
t

ii
x

Y   

2( , )

1.5%, 4%
ix iid N  
  


 0Y is normalized to unity. The growth rate of production 

follows a normal random walk.  

2  1 Normalization 

1  0.45 This implies that the expected increase in temperature in 
the next 50 years equals 1EY C   .  

2  1.5 Center of the “consensus interval” [1,2]. 

                                                            
12 They obtain , which is much closer to zero that what we obtain here. However, notice that these authors 
consider another definition of the beta, which is equal to the ratio of the covariance of  (C1,F1) to the variance of C1. 
In our model, the beta is equal to the ratio of the covariance of (lnC1,lnF1) to the variance of lnC1.  
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1  [0%,5%]U  This means that the damage at the average temperature 
increase of 1°C is uniformly distributed on [0%, 5%] of 
pre-damage production.  

  0.75 Consumption equals 75% of post-damage production. 

   

Table 2: Calibration of the two-date IAM model 

Using the Monte-Carlo method, we generated 50 000 independent random selections of the pair 

1( , )Y   and the corresponding outcomes in terms of aggregate consumption C  and benefits of 

mitigation F , as defined by system (64). Using these data, we regressed ln F  on ln C . The OLS 

estimation of the beta equals ˆ 1.32   with a standard deviation of 0.016.13 Because of the 

predominance of the uncertainty about economic growth in the long run, and because of the 

convexity of the cost function, there is a positive correlation between economic growth and the 

benefits of mitigation, yielding a large positive beta. This is in line with the recent results by 

Nordhaus (2011), in which the author summarizes the outcome of Monte-Carlo simulations of the 

much more sophisticated RICE-2011 model with 16 sources of uncertainty: “ Those states in 

which the global temperature increase is particularly high are also ones in which we are on 

average richer in the future.”  

In Figure 6, we draw the term structures of discount rates prevailing for 1.32   in three 

different phases of the macroeconomic cycle under the calibration used in Section 4. The 

discount rate to be used for super-long maturities is around 4.6%, whereas the short-term 

discount rate fluctuates along the business cycle from around 1.3% when the expected 

instantaneous trend is 1.2% per annum below its historical mean, to around 6% when the 

expected instantaneous trend is 1.2% above its historical mean.   

                                                            
 
13  Increasing the degree of uncertainty affecting  has a sizeable impact on this estimation. For example, if we 
replace the assumption that the interval [0%, 5%] on which it is uniformly distributed by [0%, 10%], the OLS 
estimation of the beta goes down to 1.14%. However, it is hard to imagine damages amounting to 10% of the world 
production due to a 1°C increase in temperature.  
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Figure 6: The discount rate (in % per year) as a function of the maturity (in years) for 1.32   in 

different phases of the cycle. Equation (40) is calibrated with 0  , 2  , 0.0078x  , 

0.00034y  , 0.979  , and two equally likely trends 1 0.0005   and 2 0.0025  . 

 

8. Concluding remarks 

By focusing on the riskiness of future benefits and costs, this paper contributes to the debate on 

the discount rate for climate change in several directions. Following Weitzman (2007) and 

Gollier (2008), we explicitly take into account of the deep parametric uncertainties that affect our 

economic growth in the distant future. Our benchmark model is such that the underlying growth 

rate of consumption is Gaussian, but with unknown drift and volatility. Our main messages in this 

framework are as follows. First, we showed that the shape of the term structure of discount rates 

for risky projects is determined by the relative intensity of a precautionary effect that pushes 

towards a decreasing term structure, and of a risk aversion effect that pushes towards an 

increasing term structure. Under some weak restrictions on the distribution of the uncertain 

parameters, the term structure is decreasing or increasing depending upon whether the beta of the 

project is respectively smaller or larger than half the relative risk aversion of the representative 

agent. Second, we showed that the risk premium associated to a project is generally not 

proportional to its beta, which implies that knowing the aggregate risk premium and the project’s 
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beta is not enough to compute the project-specific risk premium. We derived simple formulas to 

compute the project-specific risk premium as a function of the project’s beta.  

We have also examined a model à la Barro (2006) in which the growth rate of consumption has 

fat tails, because of a small probability of a macroeconomic catastrophe that is added to the 

otherwise Gaussian business-as-usual growth process. The recognition of the intrinsic ambiguity 

that affects the frequency of catastrophes implies that the risk free discount rate and the aggregate 

risk premium should be respectively decreasing and increasing.  

Finally, we have shown that there are reasons to believe that the beta of projects whose main 

benefits are to reduce emissions of greenhouse gases is relatively large, around 1.3. This allows 

us to conclude that the discount rates to be used to evaluate public policies to fight climate 

change should be increasing with respect to maturities. Given the current global economic crisis 

in the western world, following Figure 5, we are in favor of using a real discount rate for climate 

change around 1.3% for short horizons, up to 4.6% for maturities exceeding 100 years. 

A word of caution should be added to this conclusion. The use of price signals like discount rates 

and risk premia is possible only for investment projects that are marginal, i.e., for actions that do 

not affect expectations about the growth of the economy.  The reader should be aware that this 

assumption does not hold when considering the global strategy to fight climate change. When 

thinking globally, one needs to take into account the general equilibrium effects that the chosen 

strategy will have on the stochastic growth process, hence on the discount rates that are used to 

evaluate this strategy. The right evaluation approach for global projects relies on the direct 

measure of the impact of the global action on the intergenerational social welfare function, as 

done for example in Stern (2007) and Nordhaus (2008).  
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Appendix: Proof of Proposition 3 

If we define 1y m  , we can rewrite equation (26) as follows: 
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t y
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t Ee

 
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   (69) 

Fully differentiating this equation twice with respect to t and   yields 
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 (70) 

where z is the random variable which takes value 1z m
   under the distorted  probability 

distribution ( )tP  such that 
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Because the bracketed term in the RHS of (70) is always positive, we have that ( ) /t t    is 

decreasing in  for all ] , ]   . Because it vanishes at / 2  , we obtain that ( ) /t t    is 

negative for all / 2  , and it is positive for all  / 2,   .   
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