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Abstract 
How should one evaluate investment projects whose CCAPM betas are uncertain? This question is 
particularly crucial for projects yielding long-lasting impacts on the economy, as is the case for 
example for many green investment projects. We defined the notion of a certainty equivalent beta.  
We characterize it as a function of the characteristics of the uncertainties affecting the asset’s beta 
and the economy as a whole. We show that its term structure is not constant and that, for short 
maturities, it equals the expected beta. If the expected beta is larger than a threshold (which is 
negative and large in absolute value in all realistic calibrations), the term structure of the certainty 
equivalent beta is increasing and tends to its largest plausible value.  In the benchmark case in 
which the asset’s beta is normally distributed, the certainty equivalent beta becomes infinite for 
finite maturities. 
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1. Introduction 

Our ancestors have devoted much effort to innovate and to invest, from the domestication of fire, 

to the invention of the wheel, iron, the agriculture and the associated genetic selection of seeds 

and species, and to the accumulation of productive capital. When they contemplated the costs and 

benefits of these efforts, did they take into consideration the huge impacts of these actions over 

the entire time span of humanity? For example, when deciding to incur the huge costs to build an 

efficient roads network covering their empire, did the Romans consider the large benefits of their 

investment that was eventually enjoyed by the European citizens over the next two millennia? In 

the stagnant and unsustainable Roman economy, we know from the Ramsey rule that it would 

have been efficient to use a discount rate for safe investment projects that would be close to zero, 

so that the safe long term benefits should have mattered in the decision to invest. Projects with a 

negative beta should have been particularly valuable to serve as an insurance against the potential 

decline of the Roman economy over centuries. The problem is that it is particularly complex to 

determine the projects’ betas for such long time horizons. In this paper, we take seriously the 

problem of the uncertainty affecting projects’ betas in their normative evaluation. 

These retrospective considerations serve as an illustration of more contemporary concerns about 

how one should evaluate our own efforts in favor of future generations. Indeed, the same 

questions arise when contemplating fighting climate change, investing in biotechnologies, or 

depleting non-renewable resources, for example. Economists have promoted the use of 

cost/benefit analysis to answer these questions. In particular, economic theory provides strong 

normative arguments in favor of using the Net Present Value criterion as a decision tool, with a 

discount rate that reflects both the opportunity cost of capital and the citizens’ propensity to 

invest for the future. Under the standard assumptions of the Consumption-based Capital Asset 

Pricing Model (CCAPM, Lucas (1978)), this discount rate f mr r    is the sum of a risk-free 

rate fr  and a risk premium m . Since Weitzman (1998), various authors have recommended to 

use a decreasing term structure for the risk-free discount rate, thereby putting more weight on 

long-term riskless impacts in the evaluation process.2  

                                                            
2 See for example Weitzman (2001, 2007, 2009), Gollier (2002, 2008, 2012a),  Newell and Pizer (2003), and Groom, 
Koundouri, Panopoulou and Pantelidis, (2007). 
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The development of this literature has mostly been devoted to the evaluation of safe projects. 

This is quite surprising, because most actions involving the distant future have highly uncertain 

impacts. For example, in spite of intense research efforts around the world over the last two 

decades, the socioeconomic impacts of climate change are still mostly unknown. We have 

learned from the normative version of the CCAPM that what matters to evaluate risky projects is 

their impact on the aggregate risk in the economy. This is evaluated by their beta, which 

measures the elasticity of the logarithm of their net benefits with respect to change in the 

logarithm of aggregate consumption ln tc . Projects with a larger beta will have a larger positive 

impact on the aggregate risk. They should be discounted at a larger rate. If two projects yield the 

same flow of expected benefits, the one with the smaller beta should have a larger social value.  

An important problem is that socioeconomic betas are difficult to estimate.  Large companies and 

assets funds tend to use them with parsimony. For example, Krueger, Landier and Thesmar 

(2012) demonstrate that conglomerates generally use a unique discount rate to evaluate different 

projects rather than project-specific ones. This tends low-beta conglomerates to overvalue high-

beta projects.  A more upsetting example is related to public policy evaluations in the western 

world. Up to our knowledge, all countries evaluate their actions using a unique discount rate 

independent of the uncertainty affecting their impacts. For example, a unique rate of 7% is used 

in the United States since 1992. It was argued at that occasion that the “7% is an estimate of the 

average before-tax rate of return to private capital in the U.S. economy” (OMB (2003)). In 2003, 

the OMB also recommended the use of a discount rate of 3%, in addition to the 7% mentioned 

above as a sensitivity. This new rate of 3% was justified as follows: “This simply means the rate 

at which society discounts future consumption flows to their present value. If we take the rate that 

the average saver uses to discount future consumption as our measure of the social rate of time 

preference, then the real rate of return on long-term government debt may provide a fair 

approximation” (OMB, (2003)). In short, the OMB does not recommend evaluators to estimate 

the beta of the policy under scrutiny. Rather, it recommends estimating the policy’s NPV using 

two discount rates, corresponding to a beta of zero or one, respectively.  From our experience of 

advising public institutions in their evaluation of environmental policies, we believe that this is 

due to the complexity of estimating the beta of flows of (non-traded) socioeconomic benefits, 

often disseminated over a long period of time.  
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For an investment project whose cash flows share characteristics of those of some traded asset, 

one should use deleveraged market betas of these assets to compute the NPV of the project. This 

method is not without deficiencies. It is for example often the case that the resemblance between 

the cash flows of the project and those of the traded asset is weak, and that it is limited to a short 

period of time. We should also add to this picture the well-known failure of the CCAPM to 

predict market prices from the assets’ betas. Finally, markets do not price the typical global, long-

term externalities that motivated this paper, as those associated to climate change or genetic 

manipulations for example. For these reasons, the potential errors in the estimation of the 

project’s beta should be taken into account when evaluating its social value. 

In this paper, we propose to reconsider the CCAPM by explicitly recognizing that betas are 

uncertain. We show that the classical asset pricing formula of the CCAPM is robust to the 

introduction of an uncertain beta in the sense that this uncertainty does not affect the basic 

message of the CCAPM contained in the pricing formula f mr r   . However, the uncertainty 

affecting the beta of the project necessitates the use of a Certainty Equivalent Beta (CEB) that 

must be used to replace the   contained in this formula. This paper is about the characterization 

of the CEB.  

For short maturities, the uncertainty about the project’s beta is shown to be irrelevant, so that the 

CCAPM formula should be used with a   equalling the expected beta of the project. The logic 

of compound interest plays a central role in the determination of the CEB for longer horizons. 

Two polar cases must be examined here. In the first polar case, the plausible betas are relatively 

large, so that it is likely that implementing the project raises the future aggregate risk in the 

economy. Because expected benefits increase with maturity t as tc ,  the incremental aggregate 

risk generated by the project is magnified at longer maturities. Because of the compounding 

nature of the beta, the main engine of this magnification comes from the uncertainty about   

much more than from the uncertainty coming from the growth of aggregate consumption.  This 

implies that the term structure of the CEB must be increasing in this case. The second polar case 

arises when the plausible betas are negative and relatively large in absolute value. In that case, 

implementing the project reduces the future aggregate risk in the economy, and the entire 

argument is reversed. This yields a decreasing term structure of the CEB in that case. But in 
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many instances, the support of the distribution of the project’s beta will contain values 

compatible with the idea that the project will increase the aggregate risk, and others compatible 

with the idea that it will hedge the aggregate risk.  

We show in Section 3 that a simple analytical solution to the CEB exists when the distribution of 

the beta is normal. In that case, the CEB and the associated discount rate using the CCAPM 

formula exist and are bounded only for relatively short maturities. The critical maturity is equal 

to the inverse of the product of the variance of the economic growth rate and of the beta. For 

example, if we assume a volatility of the economic growth rate of 4% per annum and a standard 

deviation of the beta equalling 1, this critical maturity above which the project’s discount rate 

becomes infinite is equal to 625 years.  Whether this is plus or minus infinity depends upon 

whether the expected beta is large enough. Suppose for example that relative risk aversion equals 

2, and that the first two centered moments of the growth rate of consumption be identical. Then, 

the model shows that if the expected beta is positive, then the term structures of the CEB and of 

the discount rates tend to plus infinity at t=625 years. This means that all benefits occurring after 

this time horizon are completely irrelevant for the decision. This would be true independent of 

the potentially fabulous size of these benefits.  Suppose alternatively that the expected beta of the 

project is negative. Then, the CEB and the discount rate tends to minus infinity at t=625 years. 

This means that the existence of any plausible benefit occurring after that critical time horizon 

should trigger the decision to invest, whatever the cost.  

The normality assumption for the distribution of the beta is quite unrealistic because it makes 

plausible very large betas in absolute value, either positive or negative. In Section 4, we relax the 

normality assumption by allowing any possible distribution for the beta of the project. We 

determine the asymptotic properties of the term structure. We show in particular that the CEB 

most often tends to the largest or to the smallest plausible beta for very long maturities. When the 

support of the beta is bounded, this asymptotic CEB depends upon the position of the center of 

this support, rather than the mean as in the Gaussian specification. This indicates that the 

skewness of the distribution of the beta plays a crucial role for the evaluation of distant benefits. 

In particular the plausibility of a very negative beta will drive the determination of the discount 

rate. These results are in line with the observation by Martin (2012) that the value of long-term 

assets is mostly driven by the possibility of extreme events. 
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In Section 5, we apply these theoretical results to different contexts. We first show that the long-

term beta of an environmental asset is equal to the inverse of the elasticity of substitution 

between this asset and consumption. We use time series data to estimate the elasticity of the 

demand for residential land in the United States. We show that the beta to be used for projects 

whose social benefit is to expand residential land should be increasing with maturity. We also 

measure the degree of uncertainty affecting socioeconomic and financial betas for different 

sectors of the economy in France and in the United States.  

We provide two other interpretations of our model in Section 6. One of them allows us to use our 

results when investment projects have different components, each one with its own (certain) beta. 

This portfolio approach has recently been considered by Weitzman (2012) in the particular case 

of a 0  component and a 1  component. The structure of the model considered by 

Weitzman (2012) is the same than in this paper, except that Weitzman assumes that the portfolio 

is dynamically rebalanced in favour of the 0  component. We explain in Section 6 that this is 

the driving reason for why the Weitzman’s certainty equivalent beta is always decreasing, 

contrary to what we obtain in this paper. 

 

2. The model 

We consider an asset whose social value V evolves stochastically through time in such a way that 

1
tR

t tV V e and 

 .t t tR a g     (1) 

In this equation, 1ln /t t tg c c  denotes the change in log consumption between dates 1t   and t . 

We assume that t has a zero mean and is independent of tg . Moreover, we assume that

1 2( , ,...)  are i.i.d. random variables. Thus,   in equation (1) is the CCAPM beta of the asset. 

Another way to characterize this asset is to make explicit the relationship between the value of 

the asset and consumption. This can be done by rewriting equation (1) as follows: 

 
0

,t
t t t t

c
V c f

c




 

  
 

 (2) 
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where t has a unit mean and is independent of aggregate consumption tc . Finally, tf is a free 

parameter in this model. In this paper, we generalize the CCAPM framework by allowing the 

beta of the asset to be uncertain. More specifically we consider the following model: 

 
0

,
t

t
t t t t

c
V c f E

c




 

  
 



 (3) 

where the expectation is taken with respect to some  cumulative distribution tQ  of t . In this 

paper, we alternatively examine the more natural family of projects in which, conditional to 

information at date 0, the distribution of t   is constant across maturities: tQ Q .3 

Except for the uncertainty of the beta, our model duplicates the classical CCAPM model. We 

assume that relative risk aversion is a constant 0  , so that the utility function of the 

representative agent is 1( ) / (1 )u c c    . The intertemporal welfare of the representative agent 

is the prent value of the flow of future expected utility discounted at constant rate  . We also 

assume that the growth rate of consumption defined as 1ln /t t tg c c  follows a stationary random 

walk, so that 1 2( , ,...)g g  is an i.i.d. process. Finally, we assume that the growth rate tg of 

consumption is normally distributed with mean g  and volatility g .  

 

3. The Certainty Equivalent Beta in the Gaussian case 

In this section, we compute the Present Value (PV) at date 0 of the future benefit tV  characterized 

by (3) with an uncertain  . The PV of this future cash flow is the sure increase of current 

consumption that has the same effect on intertemporal welfare as the future increase in 

consumption tV  at date t.  Because the project is marginal, we have that 

  
0 0

'( )
( ) exp(( ) ) .

'( )

t
t t tt t t

t t t

EV u c c
PV e e f E e f E E g

u c c

 

     


            



    (4) 

                                                            
3 Of course, there is learning going on in this model through the observation of the cash flows. In the long run, the 

ambiguity about  vanishes. 
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Following the tradition in finance, let us define the discount rate tr associated to future benefit tV  

as the rate at which the expected benefit tEV is discounted to compute its present value. This 

implies that ( )tr   is implicitly defined by the following equation: 

 ( )( ) ,tr
t tPV e EF 

  (5) 

with 

  exp( )
t

t tEV f E E g    
   (6) 

Define the Log of the Moment-Generating Function (LGMF) associated to random variable z  as 

follows: 

 ( ) ln exp( ).zm t E zt  (7) 

From equations (4), (5) and (6), we obtain that the efficient discount rate is characterized by the 

following equation: 

 
exp( ( ) )1

( ) ln ,
exp( ( ) )

g
t

g

E m t
r

t E m t


 

 
 






  (8) 

This can be rewritten in the following way: 

 
( ) ( )

1 1
( ) ( ) ( ).

g g
t m m

r m t m t
t t         (9) 

Observe that the each of the last two terms in the right-hand side of this equation compounds two 

moment-generating functions, the first one being associated to the randomness of the growth rate, 

and the second one being associated to the randomness of the beta. In this paper, we will often 

use the following technical result, which is proved in the Appendix 1. 

Lemma 1: Suppose that random variable z is normally distributed with mean z and standard 

deviation z . Consider any pair 2( , )a b  such that 21/ (2 )zb  . Then, we have that 

  2

2 2 2
1/22 2

2

0.5
exp( ) exp( (1)) 1 2 exp .

1 2
z z z

zaz bz
z

a a b
E az bz m b

b

  






  
      

 (10) 
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This lemma is well-known in the special case corresponding to 0b  , which states that the 

LGMF of 2( , )N   evaluated at a is just 2 20.5a a  . The Arrow-Pratt approximation for the 

risk premium is exact when the utility function is exponential and the risk is normal. Lemma 1 

shows that an analytical solution to such problems can be extended to the sum of a normal and a 

Chi-2.   

We assume in this paper that the growth rate of consumption is normally distributed with mean 

g  and volatility g . Using Lemma 1 with respectively ( , 0)a b  and ( , 0)a b     

yields 

 2 2( ) 0.5g g gm       (11) 

and 

 2 2( ) ( ) 0.5( ) .g g gm              (12) 

Suppose now that   is also normally distributed with mean   and variance 2
 . Because 

( )gm   and ( )gm   are quadratic in  , we can again use Lemma 1 again to obtain the 

following Theorem, which represents the benchmark result of this paper. Its proof is provided in 

Appendix 2. It relies on two well-known ingredients of the CCAPM, the risk-free rate fr and the 

aggregate risk premium m , which are defined as follows: 

 2 20.5 ,f g gr        (13) 

and 

 2.m g   (14) 

Here is the benchmark result of this paper. 

Theorem 1: Suppose that the beta of the project is normally distributed with mean   and 

variance 2
 . Then, the discount rate of the project is equal to 

 ˆ( ) ( ) ,t f t mr r       (15) 
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where, for all maturities 2 21/ gt T    ,  the Certainty Equivalent Beta ˆ ( )t  is defined as 

follows: 

 
2 2

2 2

( 0.5 )ˆ ( ) .
1

g g
t

g

t

t
 



   
 

 
 




  (16) 

 

Observe first that Theorem 1 generalizes the CCAPM. Indeed, suppose that the distribution of 

is degenerated at some  . This is the case by assuming   and 0  . Theorem 1 implies 

that ˆ ( )t   and ( )t f mr r    in that case. In this case, the term structure of the discount 

rate is flat and well defined for all maturities (T   ).  

When beta is uncertain, Theorem 1 defines a certainty equivalent beta ˆ ( )t  that should be used 

in the standard CCAPM formula (15) to compute the discount rate of the project. This CEB 

defined by equation (16) has its own term structure. In the remainder of this section, we analyze 

the properties of this term structure of the CEB. 

We first characterize the CEB for short maturities. 

Corollary 1: Under the assumptions of Theorem 1, the CEB is approximately equal to the mean 

beta for small maturities:  

 0
ˆlim ( ) .t t      (17) 

The uncertainty affecting the beta of the project has no effect on the rate at which cash flows with 

short maturities should be discounted. For short maturities, in a fashion similar to diversifiable 

risks, this uncertainty should not be priced.   

We now turn to the shape of the term structure of the CEB in the domain of maturities [0, [t T  

where it is well defined by Theorem 1.  

Corollary 2: Under the assumptions of Theorem 1, the CEB is increasing with the maturity 

[0, [t T  if the mean beta is large enough:  
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2

ˆ ( ) ( )0 [0, [ ( ) 0.5 .g
t

g

t T
t  


    




        


  (18) 

The term structure of the CEB is always monotone. It is increasing (decreasing) if the expected 

beta is larger (smaller) than a threshold   equals to the difference between half the relative risk 

aversion and the ratio of the mean and the variance of the growth rate of consumption. Notice 

that the term structure of the CEB is flat if the expected beta equals the threshold  . It is useful 

to compute the order of magnitude of this threshold. A relative risk aversion of 2   is usually 

considered as reasonable in the macro and finance literature. The average growth rate of 

consumption in the western world over the last two centuries has been around 2%g  , whereas 

its mean volatility can be approximated at 4%g   (see for example Maddison (1991)). Under 

this simple calibration that at least passes the laugh test, we obtain that the term structure of the 

CEB is increasing if and only if the expected beta is larger than  

20.5 2 (0.02 / 0.04 ) 11.5    . We believe that the vast majority of projects will satisfy this 

condition. An increase in risk aversion would increase this threshold. For example, the threshold 

would vanishes if relative risk aversion would increase to 25  . Observe that the shape of the 

term structure is quite sensitive to the trend of growth. For example, a reduction in the trend of 

growth from 2%g   to  1%g   would reduce the threshold to   -5.25, and it would 

vanish if the expected growth would be reduced to g  0.16%. It should also be noticed that the 

threshold is independent of the degree of uncertainty affecting the beta, which is measured by 

.   

The following corollary shows that the comparative statics of an increase in uncertainty about the 

beta of the project is symmetric to the one of an increase in maturity. It is a trivial consequence of 

equation (16). 

Corollary 3: Under the assumptions of Theorem 1, the CEB is increasing with the degree of 

uncertainty affecting  for the relevant maturities [0, [t T  if the mean beta is large enough:  

 
2

ˆ ( ) ( )0 [0, [ ( ) .t t T  


   



      


  (19) 
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In other words, the CEB is increasing in the uncertainty affecting the beta of the project if and 

only if the term structure of the CEB is increasing. In Figure 1, we draw the term structures of the 

CEB for different levels of uncertainty affecting the beta of the project, using a calibration with 

   .  

The CEB is defined for maturities below an upper limit 2 21/ gT    . In fact, for maturities 

approaching this upper limit from below, the CEB and the associated discount rate tend to 

infinity.  Under the plausible assumption    , they tend to plus infinity. In that case, T can 

be interpreted as a critical maturity above which cash flows become completely irrelevant for the 

cost-benefit analysis. Under the opposite assumption    , the CEB tends to minus infinity. 

In this alternative case, T  defines a critical maturity so that if some positive expected benefit ( tf ) 

are generated by the project above this maturity T , then the project should be implemented at any 

cost. This critical maturity is equal to the inverse of the product of the variances of the 

consumption growth and of the beta. If we retain the calibration with 4%g  per annum as 

above, it equals 625 times the precision of  . For a standard deviation of   between 1% and 

100%, we obtain a critical maturity between T=625 years and T=6 250 000 years. Thus, this 

critical maturity is well above the typical maturities for assets that are traded on financial 

markets. However, it is well in the range of some of the environmental projects currently debated 

in different countries, as those associated to climate change or to the management of nuclear 

waste for example. 

 

4. The Certainty Equivalent Beta in the non-Gaussian case 

In Section 3, we have seen that the normality assumption to describe the uncertainty about  led 

to some extreme consequences, as for example infinite CEBs and discount rates. This is due to 

the fact that the normality assumption allows for extremely large and extremely low betas, which 

is quite unrealistic. In this section, we reexamine this problem by allowing any probability 

distribution for the beta of the project. Because we still assume that the growth of log 

consumption is normally distributed, we can use equations (11) and (12) to rewrite pricing 

formula (8) as follows: 
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2 2

2 2

2 2

2 2

exp(( 0.5 ) )1
( ) ln

exp((( ) 0.5( ) ) )

exp(( 0.5 ) )1
ln .

exp(( 0.5 ) )

g g
t

g g

g g
f

g g m

E t
r

t E t

E t
r

t E t

  
 

     

  
   


 

  


 

 

 


 

 
  

 (20) 

This can be rewritten as the CCAPM equation (15), but with a CEB that is defined in the 

following proposition. 

Proposition 1: The discount rate for a project with an uncertain beta satisfies equation (15) with 

a certainty equivalent beta which is defined as follows: 

 
exp( ( ) )exp( )1ˆ ( ) ln ,

exp( ( ) )
m

t
m

E x t t

t E x t

  
 


 

 
  (21) 

with 

 2 2( ) 0.5 .g gx       (22) 

This means that the certainty equivalent risk premium t̂ m   is the LMGF of a distorted 

distribution of the ambiguous risk premium m . This implies that the certainty equivalent beta 

is in the support of  . The probability of   is distorted by multiplying it by a factor 

proportional to exp( ( ) )x t , which is nothing else than 0( / )tE c c  , i.e., the expected net benefit 

of the project at date t conditional to  . Equation (21) thus means that the certainty equivalent 

risk factor ˆexp ( )t mt     for project  is equal to the distorted expectation of the risk factor 

exp mt  . The probability associated to each  is distorted by the relative expected value 

exp ( )x t of the net benefit conditional to  . 

Equation (21) describes the two opposite effects of the uncertain beta on the CEB. The first effect 

is isolated by considering a binary distribution of the beta with 1  and 2 such that 

1 2( ) ( ).x x   This means that the two plausible betas yield the same expected growth of net 

benefits. In that special case, the CEB is equal to the LMGF with the non-distorted distribution of 

 :  



14 
 

 
1ˆ ( ) ln exp( )t m
m

E t
t

  


     (23) 

This CEB, together with the corresponding discount rate, have a term structure that is 

unambiguously decreasing. It tends to the smallest plausible beta for large maturities. This result 

à la Weitzman (1998, 2012) is based on the intuition made more precise in Gollier and Weitzman 

(2010): When the discount rate is constant but uncertain, compounding these rates in the expected 

NPV magnifies the role of the smallest plausible discount rate at large maturities.  

But in general, different betas generate different expected growth rates ( )x  of the net benefit. 

This generates a differential-growth effect which takes the form in equation (21) of a distortion in 

the probability distribution of the discount factor exp( )mt  . More weight is given at large 

maturities to betas associated to faster growing components of the expected net benefit. Notice 

that the expected growth ( )x  of the net benefit is increasing in   for all 20.5 /g g    , which 

is in general negative and large in absolute value. This implies that, when contemplating longer 

maturities, more weight is given to larger betas. This tends make the term structure of the CEB 

increasing. Thus, in general, the compounding effect and the differential-growth effect go into 

opposite directions to determine the shape of the term structure of the CEB. This is only when 

most of the plausible betas are smaller than 20.5 /g g   that the two effects go together to make 

it unambiguously decreasing. 

We have seen in the previous section in which we assumed that  is normally distributed that the 

CEB is equal to the expected beta at small maturities, and is increasing if the expected beta is 

large enough. We now show that these properties are robust to the relaxation of the normality 

assumption. The first corollary generalizes Corollary 1. 

Corollary 4: The CEB is approximately equal to the mean beta for small maturities:  

 0
ˆlim ( ) .t t E      (24) 

Proof: Using L’Hospital’s rule, equation (21) implies that 
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 0 0 0

exp( ) exp( )ˆ ˆ( ) lim ( ) lim
exp( ) exp( )

,

m t t m t

Ex xt Ey yt

E xt E yt

Ex Ey

      

 
   

 
 

    
 

 
 (25) 

where ( )x x    and my x     . This directly implies that 0
ˆ ( ) E    .   

We now examine the slope of the term structure of the certainty equivalent beta. When there is no 

uncertainty about the beta of project, we know that this term structure is flat. When it is 

uncertain, the full differentiation of equation (21) with respect to maturity t yields 

 
( ) ( )

ˆ ( )
( ) ( ),

m

t
m x x

H t H t
t   

   


 

   


 (26) 

where function zH   is defined as follows: 

 
1

( ) ( ) .z zH t m t
t t

      
   (27) 

In the next corollary, we suppose that the uncertainty of the beta of the project is limited, so that 

the risks on ( ) ( )gx m   and ( ) mx    are small. Now, the standard properties of moment-

generating functions imply that 

    

 

22

1
( ) ( )

1 1
ln 1 0.5 ... ...

!

0.5 ( ) 0.5 ( ).

z z Ez

kk

H t m t
t t

t E z Ez t E z Ez
t t k

tVar z Var z
t



      
              





  

   

 

 (28) 

This approximation is more precise for small maturities. It implies that 

     ˆ ( )
0.5 ( ) ( ) .t

m mVar x Var x
t

     
 



     (29) 

This simplifies to 
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 

2 2 2

2 2 2

ˆ ( )
( 0.5 , ) 0.5 ( )

0.5 ( ) 0.5 ( , )

t
g g g

g g g

Cov Var
t

Var Cov

       

     


 


  

    

  
 (30) 

If   is symmetrically distributed around its mean, we also know that 

 2( , ) 2 ( ).Cov E Var        (31) 

Combining these results with equation (30) yields the following corollary. 

Corollary 5: Suppose that the uncertainty about the beta of the project is small and 

symmetrically distributed around its mean. Then, the CEB satisfies the following property: 

 2
2

ˆ ( )
( ) 0.5 .gt

g
g

Var E
t

     


  
        

    (32) 

It implies that the term structure is increasing if 20.5 ( / ).g gE      

Corollary 5 is thus symmetric to Corollary 2, where the normality assumption on   has been 

replaced by the assumption that the risk on   is small and symmetric. When the distribution of 

the beta is asymmetric, equation (32) must be generalized as follows: 

 
32 2

2

ˆ ( )
( ) 0.5 0.5 .gt

g g
g

Var E E E
t

        


                

      (33) 

A negative skewness in the distribution of the beta tends to reduce the slope of term structure of 

the CEB. 

 Let us now examine the CEB for large maturities in the non-Gaussian case. We hereafter assume 

that the support of   bounded, so that the CEB ˆ ( )t   defined by equation (21) exists for all 

maturities. Let this support be min max[ , ].   Using L’Hospital’s rule again, equation (21) implies 

that 
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max max

exp( ) exp( )ˆ ˆ( ) lim ( ) lim
exp( ) exp( )

,

m t t m t

Ex xt Ey yt

E xt E yt

x y

       

 
   

 
 

    
   (34) 

with  ( )x x   , my x     , and maxx and maxy are the upper bounds of the supports of 

respectively x  and y . Because 2 2( ) 0.5g gx      , it is easy to check that 

 
2 2 2

min min min max

max 2 2 2
max max min max

0.5 0.5( ) /

0.5 0.5( ) / .

g g g g

g g g g

if
x

if

       

       

     
   

 (35) 

Similarly, we obtain that 

 
2 2 2

min min min min max

max 2 2 2
max max max min max

0.5 0.5( ) ( / )

0.5 0.5( ) ( / ).

g g m g g

g g m g g

if
y

if

          

          

      
    

 (36) 

We can thus conclude that 

  

* 2
min

* 2
2 * 2

min max min

* 2
max

                         /                         
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                               ( / ),                  

g g

g g
t g g g g

m

g g

if

if

if

   

  
          



    

  


 
         

 
 






 (37) 

where *
min max0.5( )    is the center of the support of  . If *  is larger than 2( / )g g   , 

the asymptotic certainty equivalent beta is the upper bound of the support of  . On the contrary, 

if  *  is smaller than 2( / )g g  , the asymptotic certainty equivalent beta is the lower bound of 

the support of  . In between, the CEB converges toward a linear interpolation of the two bounds 

of the support of the plausible betas. If we consider the same calibration than in the previous 

section with 2%g  , 4%g   and 2  , the critical values for the center of the support of   

are -12.5 and -10.5. In the Gaussian case, this interval collapses to the singleton -11.5.   

An interesting feature of the asymptotic properties of the CEB is that it is the position of the 

center of the support of   rather than its mean (as in the Gaussian case) that determines the CEB 

for long maturities.  If the distribution of beta is negatively skewed, it may be the case that 
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* 2/g g     in spite that the mean beta is large. The CEB would tend to min in that case. This 

is an important difference with respect to the Gaussian case. We illustrate this point in Figure 2. 

Suppose that 0.5%g  , 4%g  , and 2  . Suppose first that  is normally distributed with 

mean 0.5  and standard deviation 2  . From Theorem 1, the CEB equals 0.5 for short 

maturities, is increasing, and tends to infinity for maturities tending to T 156 years. Let us 

alternatively assume that the normal distribution of  is truncated to interval min max[ , ]  , with 

max 3  . Figure 1 depicts the term structure of the CEB for min 20, 10, 9,..., 6.       In spite of 

the fact that the truncations only affect the long tails of the distribution of the beta, they have 

radical effects on the CEB for very long maturities. First, they make the CEB bounded at all 

maturities. Second, for very asymmetric truncations, the term structure of the DEB is decreasing 

at long maturities. In spite of the fact that the beta of the project is very unlikely to be negative 

and large in absolute value, the mere plausibility of this hypothesis drives the choice of the 

discount rate for long maturities.    

 

5. Measuring the uncertainty affecting beta 

In this section, we show how our methodology can be used in different contexts. 

5.1. The beta of environmental assets 

Guesnerie (2004), Hoel and Sterner (2007), Sterner and Persson (2008), Gollier (2010) and 

Traeger (2011) have shown that the evolution of relative prices and substituability are crucial in 

the evaluation of environmental policies. Environmental assets that cannot be substituted by other  

goods in the economy and whose supply is constant over time have a social value which will be 

highly sensitive to economic growth. Their beta will thus be relatively large. Our objective in this 

subsection is to clarify the link between the beta of environmental assets and their degree of 

substitutability, and to illustrate this relation with an example. 

Consider an economy with 2 goods, a numeraire good c, and an environmental asset x. The 

investment project under scrutiny is aimed at increasing the quantity of x . Following the authors 
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mentioned above, the utility function of the representative consumer is assumed to belong to the 

CES family, with 

 
1

1 1 1 1
1

( , ) ,   with  (1 )
1

U x c y y x c    


        
 (38) 

where y is an aggregate good,  is the aversion to risk on this aggregate good, and 1   and 

   are two scalars. 4 Parameter  is the inverse of the elasticity of substitution. The marginal 

benefit of increasing the consumption of good x expressed in the numeraire is equal to 

  
1U

dc c
V

dx x



       

 (39) 

If we assume that the endowment in good x in the economy is constant, equation (39) for the 

sensitivity of the cash flow to aggregate consumption is equivalent to equation (2), where the beta 

of the project is equal to the inverse of the elasticity of substitution between good x and the 

numeraire. 

The simplest method to estimate the beta in this context is to observe that the relative value V of x 

satisfies the following relationship: 

 ( ).V c xg g g   (40) 

In other words, the beta of the project under scrutiny is equal to the ratio of the growth rate of the 

relative price of good x to the difference between the growth rates of c and x. Inspired by Hoel 

and Sterner (2007), one can illustrate this method by applying to residential land. Suppose that 

the supply of residential land is fixed ( 0xg  ). Davis and Heathcote (2007) provide data on the 

real  

price of residential land in the United States over the period 1975Q1-2012Q1. Using the yearly 

version of their data, one can estimate the following linear regression, which is equivalent to 

equation (1): 

 .V cg a g     (41) 

                                                            
4 When 1  , we get a Cobb-Douglas function with 1y c x   



20 
 

The OLS estimator of b equals 2.84  , with a large standard error 1.27  . This suggests a 

small elasticity of substitution of residential land and other goods in the economy. Observe also 

that the standard deviation of the beta is large. Under the normality assumption, there is a 1% 

probability that the true beta be in fact negative. Suppose also that 2%g  , 4%g   and 

2.    Because 22.87 11.5 0.5 ( / ),g g         Corollary 2 tells us that the term structure 

of the CEB is increasing. Moreover, under the assumption that 2( , )N      , the CEB tends to 

plus infinity for finite maturities ( 387T  years). The CEB equals 8 (18) for a maturities around 

100 (200) years. 

 

5.2. The socioeconomic and financial betas in various economic sectors of the economy 

In this subsection, we examine investment projects that are aimed to contribute to the 

development of a specific sector of the economy. This could for example take the form of an 

expansion of the electricity sector by using the current technology mix. If we assume that the 

economies of scale are approximately constant, one can use macroeconomic data measuring the 

creation of social value of the electricity sector to estimate the social benefit of such an 

investment. The French INSEE provides yearly data about the real value added produced by 

different sectors of the French economy.5 The value added of a sector is defined as the value of 

production minus intermediate consumption. Table 1 summarizes the OLS estimation of equation 

(41) for of subset of the sectors listed in this data set for period 1975-2011, where Vg is the yearly 

growth rate of real value added of the sector under scrutiny.  

The standard error of the estimator of the beta lies between a low  =0.15 for the education 

sector and a relatively large   =0.81 for the agricultural sector. If we suppose as before that 

2%g  , 4%g   and 2,   we obtain that the OLS estimator   is always larger than the 

threshold 20.5 ( / ) 11.5g g     defined in Corollary 2, so that the term structure of the CEB to 

                                                            
5 See data set « 6.202 Valeur ajoutée brute par branche en volume aux prix de l'année précédente chaînés » on the 
INSEE website http://www.insee.fr/fr/themes/comptes-nationaux/tableau.asp?sous_theme=5.2.2&xml=t_6202d. 
This approach is inspired from Pierre Fery’s appendix of Gollier (2011), which is a report to the French government 
on the economic evaluation of public policies under uncertainty.  
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be used to evaluate such investment projects is increasing for all the sectors listed in Table 1. 

This table also provides the sectoral CEB for the 0, 50, 100 and 200 maturities. 

The advantage of the value added approach is that it takes into account of the entire social value 

creation, with the exception of non-internalized externalities. Thus, the estimations described in 

Table 1 are about “socioeconomic” betas. One could alternatively examine the “financial” betas, 

in which one takes account of only the fraction of the value added accruing to investors. In Table 

2, we report these financial betas for the two-digit Fama-French industry (FF48) of the U.S. 

economy. 

TBC 

These examples are illustrative of the difficulty to quantify CCAPM in a very precise manner. 

The problem is usually made more complex than described above because most investment 

projects have a risk profile that does not correspond to the risk profile of the economic sector in 

which these investments will be implemented. To illustrate, it would make little sense to use the 

beta of the electricity sector in France (which is heavily biased in favor of the nuclear 

technology) to evaluate an investment project in photovoltaic solar panels. In the same vein, this 

sectoral beta would not be useful to evaluate the project to build a high-voltage connection 

between Italy and France to make the two national electricity networks more resilient to 

asymmetric demand shocks. The evaluation of such an investment project would require 

estimating the elasticity of the demand for insurance against electricity outages to changes in 

GDP. The standard errors associated to such estimations are likely to be larger than those 

described in Tables 1 and 2 of this subsection. 

 

6. Alternative interpretations of the model and discussion 

The assumption of our model is that there exists a linear relationship between the social return of 

the investment project and the growth rate of the economy, as expressed in equation (1). But the 

 of this linear relationship is initially unknown to the evaluator. There exist two other possible 

interpretations to this model which are alternative to the uncertainty affecting the project’s beta. 
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The first reinterpretation is based on the following rewriting of equation (3), using the 

normalization 0 1c  : 

  exp ln ( ) .t t t t tV c f c q d      (42) 

The integral in the right-hand-side of this equality can be interpreted as the Laplace transform of 

function q  evaluated at ln tc . Thus, our results can be used to evaluate any investment project 

whose cash flows are related to log consumption through a Laplace transform of a distribution 

function. The CCAPM is limited to the evaluation of cash flows that are linked to log 

consumption through an exponential function, as is implicitly stated in equation (2). 

Let us alternatively rewrite equation (3) using a discrete distribution 1 1( , ;...; , )t n ntq q  for :  

 
1

0

.
n t

t t t t t

c
V c f q
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
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



 
  

 
  (43) 

It is easy to check that allowing the noise  to be specific to the  does not affect the pricing 

formula (8) of the model. Now, observe that tV can be reinterpreted as the cash flow of a (time-

varying) portfolio of n  different assets indexed by 1,...,n  . Asset   has a sure constant beta 

equaling  . Thus, our results are useful to evaluate conglomerates composed of different 

investments, each with each own beta. Krueger, Landier and Thesmar (2012) have examined the 

investment strategy of such conglomerates in the US over the last three decades.   

Weitzman (2012) discusses the discount rate to evaluate a portfolio that contains two assets, the 

first being safe ( 1 0  ), and the other being the aggregate portfolio ( 2 1  ). Weitzman 

considers a portfolio of these two assets whose structure 1 2( , )t tq q evolves through time in a 

deterministic way. More precisely, Weitzman assumes that the share tq  of each component 

varies with maturity in opposition to its expected value  0/tE c c  : 

 
 0/

t t

t

q k
E c c 


 


  (44) 
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where 1    and tk  is a normalizing constant, so that 1tq   . This means that the expected 

share  of the value of each component   of the portfolio in the total expected value of the 

portfolio remains constant across maturities. Using this specific time-varying distribution tQ for 

t in equation (8) allows us to rewrite it as follows: 

 
1

exp( ( ) )1
( ) ln .

exp( ( ) )

n g
t t
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m t
r

t m t
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 
  




    (45) 

Assuming that g is normally distributed, this simplify to the standard CAPM formula (15) with a 

CEB equaling  

 
1

1ˆ ( ) ln exp( ).
n

t t m
m

t
t  

    
 

    (46) 

Equation (46) implies that the certainty-equivalent beta ˆ ( )t t  of this time-varying portfolio is 

decreasing with t, as shown by Weitzman (2012). The driving force behind this unambiguous 

property of the term structure of the CEB is the fact that the composition of the portfolio is 

continuously rebalanced towards the components with the smallest betas. To illustrate, suppose 

that there are two possible betas, 1 0   and 2 1   as in Weitzman (2012), and that 

1 2 0.5   . Suppose also that 2%g  , 4%g   and 2  . Under this calibration, the 

portfolio examined by Weitzman initially contains 10q =50% of the risk free component. 

According to equation (44), this share 1tq goes down to 88.9%, 98.5% and 99.8% respectively 

after  t=100, 200 and 300 years. This time-varying portfolio should be discounted by using a beta 

that reflects this dynamic reallocation of the portfolio in favor of the 1 0   component, as shown 

in Figure 3. This figure also shows the CEB that should be used when the composition of the 

portfolio is fixed, i.e., when 1 2 0.5t tq q  for all t. This term structure is increasing, as predicted 

by Corollary 5, since 20.5 11.5 0.5 ( / ).g gE          

Our results are thus compatible with those of Weitzman (2012). The two models differ about the 

nature of the investment projects that must be evaluated. Whether real projects satisfy the 



24 
 

constant-expected-value structure as in Weitzman (2012), or the constant-component structure as 

in this paper will have to be tested by the evaluators of these projects. 

 

7. Conclusion 

The starting point of this research is that CCAPM betas are often difficult to estimate. This is 

likely to be the main reason why the standard toolbox for public investment and policy evaluation 

does not say much about how risk should be integrated. In fact, believe it or not, four decades 

after the discovery of the normatively-appealing CAPM, evaluators at U.S. Environmental 

Protection Agency or at the World Bank, to give two prominent examples, are still requested to 

use a single discount rate independent of the risk profile of the policy under scrutiny. This implies 

that we collectively invest too much in projects that raise the macroeconomic risk, and too little 

in projects that insure us against it. In this paper, we have taken seriously the origin of the 

problem by explaining how one should take into account of the potential errors in the estimation 

of the betas in cost-benefit analysis.  

To each probability distribution describing the uncertainty associated to a project, we have 

defined and characterized a “certainty equivalent beta” that should be used to determine the rate 

at which this project should be discounted. When the mean beta of a project is positive, the 

potential error associated to it introduces uncertainties about future benefits that must be 

compounded over time. This means that the increment of systematic risk that this project 

generates is magnified at long horizons. This phenomenon explains the main result of the paper, 

which is that the certainty equivalent beta for such a project should have an increasing term 

structure. This penalizes long-dated projects with highly uncertain betas.  

This research opens new paths for exploration. On the empirical dimension, it would be 

interesting to test the hypothesis that long-dated traded assets with a more uncertain beta have a 

smaller market value. On the theoretical dimension, we have often assumed in this paper that the 

growth rate of consumption follows an arithmetic Brownian motion. This implies that the risk 

free rate and the systematic risk premium have a flat term structure. It also implies that our results 

are subjects to the standard critiques of the risk free rate puzzle and of the equity premium 

puzzle. If we allow for parametric uncertainty about the stochastic process of economic growth, 



25 
 

the risk free rate and the systematic risk premium will have respectively a decreasing and an 

increasing term structure, as shown by Gollier (2012b). It would be interesting to explore a model 

in which the parametric uncertainties about economic growth and about the project’s beta are 

combined.  
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Appendix 1: Proof of Lemma 1 

 We have that 
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After rearranging terms in the integrant, this is equivalent to 
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Notice that ̂ exists only if we assume that 21/ (2 )zb  . Notice also that the bracketed term in 

equation (48) is the integral of the density function of the normal distribution with mean ̂  and 

variance 2
z . This must be equal to unity. This equation can thus be rewritten as 
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This concludes the proof of Lemma 1.   
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Appendix 2: Proof of Theorem 1 

Combining equations (8), (11) and (12) implies that   
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If we assume that 2 20.5 1/ (2 )gt   , i.e., t T , we know from Lemma 1 that both expectations 

in this ratio are finite. Applying this lemma allows us to rewrite the above equality as follows: 
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 This concludes the proof of Theorem 1.   

  



31 
 

 

 

Figure 1: Term structure of the certainty equivalent beta, under the following specification: 
2(2%,(4%) )g N , 2(0.5, )N    , and 2  . 
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Figure 2: Term structure of the CEB with 0.5%g  , 4%g  , and 2  . The red curve 

corresponds to   being normally distributed with mean 0.5  and standard deviation 2  . 

The other curves correspond to the truncated version of this normal distribution with max 3   

and various min . 
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Figure 3: Certainty equivalent betas for two portfolios with a risk free asset 1 0  and a risky 

asset 2 1  . The first portfolio has a constant composition with 1 2 0.5t tq q  . The second 

portfolio has a time-varying composition as described by equation (44) with 
1

1 00.5 / (0.5 0.5( / ) )t tq Ec c   , as in Weitzman (2012).  We assume that 2%g  , 4%g   and 

2  . 
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Sector   
Certainty equivalent beta for different maturities 

0
ˆ

   
50̂  100̂  200̂  

Agriculture 0.81 0.67 1.34 2.10 3.90 
Electricity  0.49 1.93 2.19 2.47 3.05 
Water management 0.31 0.41 0.50 0.60 0.79 
Electronic equipment 0.56 1.93 2.28 2.64 3.42 
Electrical equipment 0.51 2.81 3.11 3.43 4.11 
Textiles 0.39 1.72 1.88 2.05 2.40 
Paper and printing 0.27 0.89 0.96 1.04 1.19 
Chemicals 0.61 0.93 1.31 1.72 2.61 
Pharmaceutics 0.54 1.35 1.66 1.98 2.67 
Steel works 0.32 1.25 1.36 1.46 1.68 
Construction 0.30 1.28 1.37 1.47 1.66 
Transportation 0.23 1.53 1.58 1.64 1.75 
Restaurants, hotels 0.25 0.73 0.79 0.85 0.98 
Communication 0.55 1.47 1.79 2.13 2.86 
Finance and insurance 0.37 0.10 0.23 0.36 0.63 
Real estate  0.19 0.64 0.68 0.71 0.78 
R&D 0.42 0.02 0.18 0.35 0.71 
Arts and entertainment 0.28 0.40 0.48 0.55 0.71 
Education 0.15 0.51 0.53 0.55 0.60 
Healthcare 0.21 0.14 0.18 0.22 0.31 

 

Table 1: Standard error and mean of the OLS estimator of the  in equation (41), where Vg is the 

yearly growth rate of real added value of the sector. Data set: France, 1975-2011, INSEE 6.202. 

 

 


