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We de�ne coherent-ambiguity aversion within the Klibano¤, Marinacci and Mukerji (2005)

smooth ambiguity model (henceforth KMM ) as the combination of choice-ambiguity aversion and

value-ambiguity aversion. We analyze theoretically �ve ambiguous decision tasks, where a subject

faces two-stage lotteries with binomial, uniform or unknown second-order probabilities. We check

our theoretical predictions through a 10-task laboratory experiment. In (unambiguous) tasks 1-5,

we elicit risk aversion both through a portfolio choice method and through a BDM mechanism. In

(ambiguous) tasks 6-10, we elicit choice-ambiguity aversion through the portfolio choice method

and value-ambiguity aversion through the BDM mechanism. We �nd that more than 75% of

classi�ed subjects behave according to the KMM model in all tasks 6-10, independent of their

degree of risk aversion. Further, the percentage of coherently-ambiguity-averse subjects is lower

in the binomial than in the uniform and in the unknown treatment, with only the latter di¤erence

being signi�cant. Finally, highly-risk-averse subjects are more prone to coherent-ambiguity.
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1 Introduction

In this paper we propose a series of ten experimental decision tasks involving two-outcome

lottery choices. Five of these tasks are aimed at eliciting a subject�s attitude towards risk

and the other �ve are designed to study her attitude towards ambiguity. We derive speci�c

theoretical predictions about a subject�s behavior in the latter decision tasks, by relying on

the Klibano¤, Marinacci and Mukerji (2005) smooth ambiguity model (henceforth KMM ).

The paper has three main goals.

The �rst objective is to propose a simple experimental method able to makeKMM oper-

ational in individual decision tasks. This is why the experimental environment is explicitly

designed in order to match KMM intuition of modelling ambiguity through two-stage lot-

teries. In such an environment, we are able to provide two di¤erent operational de�nitions

of ambiguity aversion. The �rst one, namely value-ambiguity attitude, is based on Becker

and Brownson (1964) idea that �individuals are willing to pay money to avoid actions

involving ambiguity�(p. 5).1 A value-ambiguity-averse subject values an ambiguous lot-

tery less than its unambiguous equivalent with the same mean probabilities. In the KMM

model, this is true if the subject�s � function is concave. The second de�nition, namely

choice-ambiguity attitude, relies on Gollier (2012) intuition that more ambiguity-averse

subjects should have a smaller demand for a risky asset whose distribution of return is am-

biguous. Notice that a portfolio containing a larger share invested in the risky asset may be

seen as a two-stage lottery where second-order objective probabilities are more dispersed.

In the KMM framework, Gollier (2012) has shown that an ambiguity-averse subject could

have a larger demand for the risky asset than another ambiguity-neutral subject with the

same risk aversion, thereby stating that a choice-ambiguity-averse subject is not necessarily

value-ambiguity-averse. On the other hand, Gollier (2012) provides su¢ cient conditions on

the structure of the two-stage uncertainty to re-establish the link between the concavity of

� and ambiguity aversion. Given that one of these conditions is satis�ed in our experimen-

tal decision tasks, we expect to �nd an equivalence between value-ambiguity attitude and

choice-ambiguity attitude, that we de�ne as coherent-ambiguity attitude within the KMM

framework.

The second objective of the paper is to test the reliability of KMM in the �ve decision

tasks aimed at studying a subject�s attitude towards ambiguity. In all ambiguous deci-

sion tasks the subject faces always the same two (second-stage) lottery-outcomes. Thus,

1After Becker and Brownson (1964), the idea that information which reduces ambiguity has a positive
value for ambiguity-averse subjects has been clearly stated within di¤erent decision-theoretic models: e.g.,
Quiggin (2007), using Machina (2004) concept of almost-objective acts; Attanasi and Montesano (2012),
relying on the Choquet expected utility model. Moreover, focusing on a speci�c adaptation of KMM, Snow
(2010) has proved that the value of information that resolves ambiguity increases with greater ambiguity
and with greater ambiguity aversion. Attanasi and Montesano (2012) have found similar results within
the Choquet model.
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within the same treatment, each ambiguous task di¤ers from the next one only because

of the level of ambiguity of the decision setting and/or because of a �rst-degree stochastic

improvement in the distribution of second-order probabilities. In particular, these tasks

are designed such that, once a subject has been classi�ed as coherent-ambiguity-averse,

coherent-ambiguity-neutral or coherent-ambiguity-loving, the sign of the variation of her

certainty equivalent from one task to the next one should depend only on this classi�ca-

tion. Therefore, this sign should be predicted directly by the �sign�of her attitude towards

ambiguity as determined within KMM. This means that, by construction, the veri�cation

of our main theoretical predictions in these tasks should be independent of the subject�s

degree of risk aversion as elicited in the �ve unambiguous tasks. Finding an e¤ect of risk

attitude over the behavioral veri�cation of our theoretical hints would raise some doubts

on the use of KMM as reference model for the tasks proposed in our experiment. The

elicitation of risk attitude is also important in order to empirically state whether it in�u-

ences the �sign�of the ambiguity attitude, i.e. which one of the three ambiguity attitudes

(aversion, neutrality, or proneness) the subject could show. Our design is also aimed at

stating whether this �sign�may depend on the riskiness of the second-stage lottery, i.e. on

the spread of the di¤erence of its two lottery-outcomes. In order to be consistent in the

elicitation of risk attitude and of ambiguity attitude, we use the same pair of instruments

for both attitudes. In particular, we elicit risk attitude both through a portfolio choice

method and through a Becker�DeGroot�Marschak (1964) mechanism (henceforth, BDM).

Correspondingly, we state choice-ambiguity aversion through the �rst method and value-

ambiguity aversion through the second one. The combination of the two instruments has

a twofold role. For risk attitude, it allows to check that both instruments lead to similar

subjects�orderings. For ambiguity attitude, it enables to elicit separately the two features

of (coherent)-ambiguity attitude introduced above within KMM. Concerning risk attitude,

once veri�ed the correlation between the two risk-aversion orderings, we rely on the results

of the portfolio choice method: this has the advantage of imposing some theoretically de-

rived constraints which allow to check whether the subject�s selected portfolio is compatible

with a constant absolute and/or a constant relative risk aversion speci�cation. Concerning

ambiguity attitude, throughout the article we consider as �classi�ed subjects�only those

who provide coherent answers under the two instruments. This provides a rationale for the

term �coherent�to identify the kind of ambiguity attitude studied in this paper.

The third objective of the paper is to analyze how subjects�decisions under ambiguity

react to di¤erent distributions of second-order probabilities. The experiment consists of

three treatments, according to a between-subject design. The �ve unambiguous tasks

do not vary among treatments, while the ambiguous tasks are di¤erent for each treatment

according to the way in which uncertainty over the composition of the urns used to perform

them is generated. More precisely, the �rst of these tasks relies on a 10-ball small urn with
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inside white and orange balls whose composition is not told to subjects. In all treatments

this composition is generated through a random draw from a big urn, introduced in order

to mimic KMM two-stage lottery approach. In treatment 1, the composition of the 10-ball

small urn is determined through a Bernoullian process over a 50-white-50-orange balls big

urn, thereby leading to a binomial distribution of second-order probabilities. In treatment

2, subjects are shown that second-order probabilities over the composition of the 10-ball

small urn are uniformly distributed. In treatment 3, subjects have no information about

the composition of the 10-ball small urn, although �to make it comparable to treatment

1 �ambiguity is generated through a two-stage lottery procedure similar to the one of the

binomial treatment, but without giving any information about the composition of the big

urn. The uniform distribution of the second-order probabilities in treatment 2 is clearly a

mean-preserving spread of the binomial distribution obtained in treatment 1. Treatment 3

is intrinsically more ambiguous than treatment 1. Therefore, under ambiguity aversion, we

expect that in the �rst ambiguous task of both the uniform and the unknown treatment the

subject assigns a lower value to the ambiguous lottery than in the corresponding task of the

binomial treatment. This should happen also in the remaining ambiguous tasks, given that,

once the 10-ball small urn is generated, the way its composition is �modi�ed�in order to

vary the level of ambiguity and the distribution of second-order probabilities is the same in

each treatment. Although our design is not within-subject, we can check the above stated

predictions by comparing the distribution of subjects�decisions in the ambiguous tasks of

the three treatments. This treatment comparison would hold only under the assumption

that the distribution of subjects�degree of risk aversion does not di¤er among the three

treatments. This is an additional motivation for eliciting risk attitude before looking at

subjects�decisions in the ambiguous tasks.

Since Ellsberg (1961), several papers have empirically investigated the descriptive and

predictive power of theories of decision making under ambiguity.2 Some of them have in-

vestigated ambiguity attitude by explicitly excluding two-stage probability models.3 Some

others have produced experimental designs aimed at comparing the performance of KMM

to that of non-expected utility models. Within this second group of studies, Halevy (2007)

is surely the closest to our paper in terms of experimental design: we use a similar BDM

mechanism to elicit risk attitude and value-ambiguity attitude. However, there are two

main di¤erences. On the one hand, compared to Halevy (2007) our experimental design

allows to study the variation of the subject�s certainty equivalent for a larger number of

ambiguity levels and of distribution of second-order probabilities. This enables to formu-

late a richer set of theoretical relations that a subject�s decisions have to satisfy in order

2Early literature is surveyed in Camerer and Weber (1992) and Camerer (1995).
3See for example Hey, Lotito and Ma¢ oletti (2010), and Hey and Pace (2011): both experimental

designs are aimed at testing only non-two stage probability models.
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for KMM to pass the test. On the other hand, we propose the three treatments �bino-

mial�, �uniform�and �unknown�between subjects: Halevy (2007) proposes only the last

two treatments, and, more importantly, within subjects. This enables him to examine the

relation between attitude towards ambiguity and attitude towards reduction of compound

(objective) lotteries, an issue that is outside the goals of our paper. Halevy (2007) �nds

that there is no unique theoretical decision model that captures all subjects� behavior.

However, 15%-20% of his subjects are ambiguity neutral and able to reduce compound

lotteries.4 Another 35% of subjects exhibit ambiguity aversion (proneness) together with

aversion (proneness) to mean preserving spreads in the second-order distribution. Both

these categories of subjects are consistent with KMM.

Also Conte and Hey (2012) compare the performance of di¤erent theoretical decision

models � expected utility, KMM, rank dependent expected utility, and Alpha model of

Ghirardato, Maccheroni and Marinacci (2004) �with an experimental design quite dif-

ferent from Halevy (2007) and so from ours. They �nd results in favor of KMM both

through individual estimates (56% of subjects have behavior consistent with KMM ) and

by classifying subjects through posterior probabilities of each of them being coherent with

one over four types of preferences (50% for KMM ). Their results clearly suggest that KMM

performs the best among the four tested models.

Not all experimental studies �nd support for KMM. Ahn et al. (2011) �nd a result

opposite to the one of Conte and Hey (2012) by performing a portfolio choice experiment

aimed at investigating rank-dependent theories versus smooth ambiguity à la KMM. Their

tests of signi�cance suggest that the majority of subjects are well described by the sub-

jective expected utility model. Moreover, among the remaining subjects, KMM is not

able to explain the behavior of those subjects showing ambiguity aversion. Close to our

paper, Ahn et al. (2011) implement an experimental design where subjects are asked to

choose between di¤erent lotteries that duplicate the return of a portfolio containing a safe

asset and an ambiguous asset. However, di¤erently from their study, in each task of our

experiment the asset contained in the portfolio is either safe or ambiguous. Moreover, we

simplify the choice problem by limiting the choice set to only four possible portfolios, and

by considering an uncertain environment with only two states of nature.

There are not so many experiments explicitly designed to test the KMM model only:

Chakravarty and Roy (2009) is one of them. As in our paper, they try to separate attitude

towards risk from that towards ambiguity, although using an experimental instrument �

the multiple price list method �di¤erent from the two used in this paper. Their main

objective is di¤erent from ours: investigating potential di¤erences in subject�s behavior

under uncertainty over gains versus uncertainty over losses. For what concerns the domain

4In a similar experimental environment, Abdellaoui, Klibano¤ and Placido (2011) �nd evidence that
do not support the equivalence between ambiguity neutrality and reduction of compound lotteries.
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of gains (the only one that can be compared with our design), they �nd a positive correlation

between risk attitude and ambiguity attitude (although in the aggregate subjects are risk-

averse and ambiguity-neutral). Their result is not isolated. Among several experimental

studies about a possible relation between risk attitude and ambiguity attitude, only few

papers �nd no correlation (Cohen, Ja¤ray and Said, 1987; Cohen, Tallon and Vergnaud,

2011), while many studies �nd a positive correlation (e.g., Lauriola and Levin, 2001; Di

Mauro and Ma¢ oletti, 2004; Bossaerts et al., 2010; Ahn et al., 2011).

The idea that attitudes toward risk and ambiguity can be qualitatively di¤erent in a

subject has been stated by Andersen et al. (2009) within an experimental design that

directly refers to KMM�s second-order acts. They estimate attitudes toward ambiguity,

attitudes toward risk, and subjective probabilities in a rigorous manner within KMM, by

making some parametric assumptions about the form of the distribution of the priors and

the uncertain process. They �nd subjects who are risk-averse, and yet at the same time

ambiguity-loving. To the best of our knowledge, this is the only experimental work that

clearly states that attitudes toward risk and ambiguity can be opposite.

Our experimental �ndings are in line with Conte and Hey (2012) about the performance

of KMM : almost 90% of subjects can be classi�ed as averse, neutral or loving according

to our operational de�nition of coherent-ambiguity-attitude. Moreover, more than 75% of

classi�ed subjects comply with our theoretical predictions in all ambiguous tasks of the

experiment, independent of their degree of risk aversion. This percentage decreases if we

consider only coherent-ambiguity-loving subjects or only the uniform treatment. Coherent-

ambiguity-neutral subjects are those who have the highest percentage of compliance with

KMM predicted behavior. Recalling that for these subjects KMM reduces to the expected

utility model, we can relate this result to the one found by Halevy (2007) about the higher

ability of ambiguity-neutral subjects to reduce compound lotteries.

Further, we �nd that highly-risk-averse subjects are more prone to coherent-ambiguity.

This may lead to think to a sort of negative correlation between risk attitude and ambiguity

attitude, as the one found by Andersen et al. (2009). This point requires a more thorough

discussion. Notice that our experimental design only allows to state the �sign� of the

subject�s (coherent)-ambiguity attitude, i.e. whether she is (coherent)-ambiguity-averse,

neutral or loving. Separating all classi�ed subjects in three groups according to this �sign�,

we �nd signi�cant di¤erences in the distributions of the degree of risk aversion among the

three groups. In particular, (coherent)-ambiguity-averse and (coherent)-ambiguity neutral

subjects have on average a low degree of risk aversion, while the vast majority of (coherent)-

ambiguity-loving subjects is highly-risk-loving. A careful analysis of the experimental data

clari�es that this result is linked to the riskiness of the second-stage lottery the subject is

assigned in the ambiguous tasks. The higher the degree of risk aversion, the riskier the

chosen lottery in an ambiguous task, the higher the reduction of the value of this lottery
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when the distribution of outcomes becomes ambiguous.

Finally, we �nd that the percentage of coherently-ambiguity-averse subjects is lower

in the binomial than in the uniform and in the unknown treatment. However, only the

di¤erence between the binomial and the unknown treatment is statistically signi�cant. This

result is partially in line with the �ndings of Abdellaoui, Klibano¤ and Placido (2011), for

the part where they state that attitude towards ambiguity and attitude towards compound

risks are related but distinct, with this relationship being quite sensitive to the type of

compound risks considered. They de�ne as compound risk those decision tasks where the

second-order probability distribution over the one-stage lotteries is objective: both our

binomial and our uniform treatment belong to this category. Therefore, also in our case

the relation between what they call ambiguity (our unknown treatment) and what they call

compound risk depends on the type of compound risk considered, e.g. binomial or uniform.

However, there are two crucial di¤erences between our experimental design and that of

Abdellaoui, Klibano¤ and Placido (2011). First of all, although analyzing our uniform

case, they do not analyze our binomial case, focusing instead on the hypergeometric case.

And they actually �nd that it is the latter case the one having the strongest relationship

with ambiguity attitude. Second, and more importantly, as Halevy (2007), they have

a within-subject design, while in our experiment each subject only participates in one

treatment, hence facing only one of the three second-order probability distributions that

we generate in order to implement ambiguity: binomial, uniform or unknown.

The rest of the article is structured as follows. Section 2 describes our experimental

design, by highlighting the motivations behind the ten decision tasks. Section 3 analyzes

the �ve decision tasks under ambiguity and presents the main theoretical results. Section

4 presents the results of our experiment. Section 5 concludes.

2 Experimental Design

Experimental subjects were graduate students in Economics of the Toulouse School of Eco-

nomics (TSE). Computerized sessions where conducted at the Laboratory of Experimental

Economics of TSE.

A total of 105 experimental subjects (42 women, 63 men, average age = 23:7) par-

ticipated in our experiment, with each subject participating only once. Average earnings

were approximately e 20.50 per subject, including a e 5.00 show-up fee. The experiment

was programmed using the z-Tree software (Fischbacher, 2007) and subjects were seated

in isolated cubicles in front of computer terminals. Three treatments were run through

a between subjects design, with the same number of subjects (N = 35) participating in

each treatment. The number of subjects in each session varied from a minimum of 9 to a
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maximum of 18.5

The experiment consists of ten decision tasks per treatment. At the beginning of the

experiment, participants were told how many tasks there are. However, instructions of the

new task were given and read aloud prior to that task. After instructions were read aloud,

the decision task appeared on the screen and participants had three minutes to answer the

task. The average duration of the experiment was 65 minutes, including construction of

the �unknown�small urns (only for treatment 1 and 3), performance of one over the ten

tasks and participants��nal payment. The �nal payment of each participant depended

only on the choice made by this participant in the ten decision tasks and on some random

draws which we explain in detail below. Only one of the ten decision tasks was randomly

selected at the end of the experiment to determine participants��nal earnings.

The ten tasks of our experimental design di¤er in terms of the elicitation method

applied and/or of the scope of that elicitation (see Table 1). Tasks 1-5 do not vary among

treatments, while tasks 6-10 are di¤erent for each treatment according to the way in which

uncertainty over the composition of the urns used to perform these tasks is generated.

All Treatments Treatment 1 Treatment 2 Treatment 3
Task Elicitation Method Features of the lotteries
1­4 Portfolio Choice Simple Lottery5 BDM mechanism6­9 Binomial

Compound Lottery
Uniform

Compound Lottery
Unknown

(Compound) Lottery10 Portfolio Choice

Table 1. Main features of the ten decision tasks.

In each task from 1 to 4 the experimental subject is shown the same small urn with 5

white balls and 5 orange balls inside. She is asked to choose among four simple lotteries

of the type ljt = (xjt ; 0:5;x
j
t ; 0:5), with x

j
t ; x

j
t 2 R+, xjt > xjt for each j and t, where

j = A;B;C;D indicates the four lotteries in each task and t = 1; 2; 3; 4 indicates the

task (see Table 2). All ljt in the four tasks rely on the same 5-5 balls small urn, with

white balls assigned to the highest of the two outcomes, xjt . Each l
j
t di¤ers from the other

�fteen lotteries proposed in the four tasks in terms of both expected value and standard

deviation. In particular, in each of the four portfolio choices, the higher the index of the

lottery, the higher both its expected value and its standard deviation (see Table B in the

Appendix). Let jt 2 fA;B;C;Dg be the index of the lottery chosen by the subject in
5For treatment 1, we run two sessions, respectively with 17 and 18 students. For treatment 2, we run

three sessions, respectively with 16, 10 and 9 students. For treatment 3, we run three sessions, respectively
with 12, 10 and 13 subjects.
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task t 2 f1; 2; 3; 4g. If a task t between 1 and 4 is selected to be paid at the end of the
experiment, the subject plays for the pair of outcomes she has chosen in that task, namely

xjtt and x
jt
t . She is paid x

jt
t if a white ball is randomly drawn from the 5-5 balls small urn

and she is paid xjtt otherwise.

Task t=1 Task t=2 Task t=3 Task t=4

xj1 xj1 xj2 xj2 xj3 xj3 xj4 xj4

lottery j = A 12 6 11 6 20 14 19 14

lottery j = B 16 4 14 4 24 12 22 12

lottery j = C 20 2 17 2 28 10 28 8

lottery j = D 24 0 20 0 32 8 34 4

Table 2. Portfolio Choice in Tasks 1-4: pair of lottery-outcomes.

Tasks 1 to 4 are called �portfolio choices�because the random outcome parallels the

outcome of a portfolio with one risk-free asset and one risky asset. Indeed, we have that

the outcome ljt of choice j in task t can be written as (wt��jt)(1 + rf ) +�jt(1 + eyt), where
wt can be interpreted as initial wealth in task t, and �

j
t is the euro investment in the risky

asset: rf is the risk-free rate that is always normalized to 0, and eyt is the return of the risky
asset in task t: The return of the risky asset can take two possible values yt and yt with

equal probabilities. In Table 3, we reinterpret the portfolio contexts and portfolio choices

in the four tasks.

wt yt y
t
�j=At �j=Bt �j=Ct �j=Dt

Task t=1 8 4 -2 1 2 3 4

Task t=2 8 3 -2 1 2 3 4

Task t=3 16 4 -2 1 2 3 4

Task t=4 16 3 -2 1 2 4 6

Table 3. Reinterpretation of the lottery choices into portfolio choices for tasks 1 to 4.

In task 5 we propose to the subject the same pair of lottery-outcomes she has chosen

in task 4, namely xj44 and xj44 . We use again the same 5-5 balls small urn of tasks 1-4,

with white balls again assigned to xj44 , in order to build the lottery l
j4
4 = (x

j4
4 ; 0:5;x

j4
4 ; 0:5).

Therefore, the subject�s �initial endowment�in task 5 is her preferred lottery in task 4. In

task 5 the subject has the possibility to sell lj44 through a BDM mechanism.6 She is asked

6Given that the subject has to set the price at which to sell a random �initial endowment�, we assign
to her a lottery that she has just declared to prefer among four possible lotteries (task 4). Therefore, her
�initial endowment� in task 5 (and, as will we see, in tasks 6-9) depends on the choice made in task 4,
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to state the minimal price at which she is willing to sell lj44 , by setting a price between x
j4
4

and xj44 . This reservation price should provide an approximation to the subject�s certainty

equivalent of lj44 . Our BDM mechanism is very close to the one implemented by Halevy

(2007). In contrast to Halevy (2007) however, we have four di¤erent lotteries lj4 for which

a subject may state her reservation price and the set of possible �buying/selling prices�is

discrete.7

In each of the tasks 6-9 we propose to the subject the same pair of lottery-outcomes

that she has chosen in task 4, with white balls again assigned to xj44 , and we give her

the possibility to sell the respective lottery through the same BDM mechanism of task 5.8

However, the 10-ball small urn used to determine the likelihood of xj44 and of x
j4
4 is not the

same as in tasks 1-5.

In particular, the three treatments di¤er according to the way in which the composition

of the 10-ball small urn used to perform task 6 is determined. More speci�cally:9

� Treatment 1: Binomial. The 10-ball small urn used to perform task 6 is gener-

ated from a transparent big urn containing 50 white balls and 50 orange balls. At

the beginning of task 6, 10 balls are randomly drawn (one after the other, with re-

placement) from the big urn. The colors of these 10 balls determine the composition

of the 10-ball small urn. The outcomes of the 10 random draws are not shown to

the subjects. Therefore, at the moment when the subject states her reservation price

in task 6, the composition of the unknown small urn is a binomial random variable

taking 11 possible values.

although the subject does not know this in task 4.
7As we will see below, in our experiment none of the random draws from any urn is computerized. In

the same spirit of concreteness, also our BDM mechanism is implemented through real tools. There are
four di¤erent envelops, labeled respectively with letter A, B, C and D, i.e. one for each lottery available
in task 4. Each of these envelops contains eleven di¤erent numbered tickets. The distance between each
numbers on the tickets in an envelop is the same, so to have the same number of tickets in each envelop,
with the lowest numbered ticket being equal to xj4 and the highest being equal to x

j
4. In particular, the

eleven tickets inside envelop A are 14; 14:5; :::; 18:5; 19; those inside envelop B are 12; 13; :::; 21; 22; those
inside envelop C are 8; 10; :::; 26; 28; those inside envelop D are 4; 7; :::; 31; 34. The eleven tickets in envelop
j represent the set of possible prices of lottery lj44 , with j = A;B;C;D. A ticket is randomly drawn from
each envelop. The ticket drawn from envelop j determines the random �buying price�for lottery j. Then,
without knowing this price, the subject states her minimal selling price (reservation price) for her lottery
lj44 , by choosing one among the eleven possible prices for lottery j. In case task 5 is selected for payment
at the end of the experiment, the following happens: if, for the lottery the subject owned in task 5, the
subject�s minimal selling price is lower than the respective random �buying price�, the subject sells her
lottery and is paid the latter price. Otherwise, she has to play her lottery, and her payo¤ (xj44 or xj44 )
depends on the ball randomly drawn from the small urn.

8In particular, the subject is told that in each task from 6 to 9 the �buying prices�for the four lotteries
are respectively the same four numbered tickets randomly drawn at the beginning of task 5. Therefore,
although unknown to the subject, the reference �buying price� for the assigned lottery is the same as in
tasks 5-9. Furthermore, also the set of possible selling prices for each lottery is maintained constant among
tasks 5-9.

9See Figure A in the Appendix.
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� Treatment 2: Uniform. At the beginning of task 6, we show to the subject a

transparent construction urn10 which contains 11 transparent small urns of 10 balls

each. Each of the 11 small urns has a di¤erent composition in terms of white and

orange balls. One of the 11 small urns is randomly drawn from the construction

urn. Therefore, at the moment when the subject states her reservation price, the

composition of the unknown small urn is a (discrete) uniform random variable taking

11 possible states.

� Treatment 3: Unknown. The 10-ball small urn used to perform task 6 is gener-

ated from an opaque big urn containing 100 white and orange balls with unknown

composition. As in treatment 1, at the beginning of task 6, we draw from the big urn

(one after the other, with replacement) 10 balls whose color determines the compo-

sition of the 10-ball small urn. The outcomes of the 10 random draws are not shown

to the subject. Therefore, the subject states her reservation price in task 6 without

having any information about the composition of the unknown small urn. The reason

why ambiguity is generated through a two-stage lottery is to make this treatment

comparable to treatment 1.11

Tasks 7-9 involve the elimination of some possible compositions of the 10-ball unknown

small urn used to perform task 6. At the beginning of task 7, the subject is told that if

this task would be performed at the end of the experiment, the number of white balls in

the unknown small urn will be between 3 and 7 (and so the number of orange balls). This

would be implemented in the following way. In treatment 1 and treatment 3, 6 balls will be

taken out from the unknown small urn constructed at the beginning of task 6 and replaced

with 3 white balls and 3 orange balls. In treatment 2, 6 transparent small urns (the three

with less than 3 white balls and the three with less than 3 orange balls) will be taken out

from transparent construction urn. Task 8 (9) di¤ers from task 7 only for the fact that in

the unknown small urn the number of white (orange) balls will be between 3 and 10.

In each of the tasks 6-9 the subject, besides stating her reservation price for the lottery

resulting from the corresponding unknown small urn, is also asked to guess the number of

white balls in that urn. In case a task from 6 to 9 is randomly selected to be performed at

the end of the experiment, the subject is paid additional e 5.00 if her guess of the number

of white balls in the unknown small urn of that task was right.

10The term �construction urn� is borrowed from Klibano¤, Marinacci and Mukerji (2012). Epstein
(2010) calls this the �second-order urn�.
11In treatment 3, at the beginning of the experiment, after the unknown small urn has been constructed,

a random draw is made from a 2-ball urn containing 1 white ball and 1 orange ball. The color of the
randomly drawn ball is assigned to the highest of the two outcomes in each lottery in all the ten tasks of
the experiment. This additional random draw has been inserted in the design of treatment 3 in order to
make the subject aware that no manipulation from the experimenter is possible about the composition of
the unknown small urn used for tasks 6-10.
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Finally, task 10 is the same as task 4 in terms of elicitation method (portfolio choice)

and in the set of possible pair of outcomes among which the subject has to pick one pair.

However, the 10-ball small urn used to determine the likelihood of the chosen pair, namely

xj1010 and x
j10
10 , is the same as in task 6.

Notice that the subject in each task has no feedback about any random draw performed

in any of the previous tasks. This is because only one of the tasks is selected and actually

performed and only at the end of the experiment.12 Therefore, in our experimental design

the subject cannot make any updating neither about the actual composition of the unknown

small urns nor about the random �buying prices� in the BDM mechanism. Notice also

that in each session all the urns are real urns (not computerized) and all the random draws

in the experiment (construction of the small urns, random �buying prices� in the BDM

mechanism, selection of the task determining the subject�s �nal earnings, performance of

this task) are executed by one of the subjects (indicated in the experimental instructions

as the �drawer�). This subject is randomly chosen before the beginning of the experiment

among the subjects showing up for the experimental session. She does not participate in

the experiment and is paid a �x amount of money ($ 20.00) independent of her random

draws. The reason why we opted for a random human �drawer�instead of computerized

random draws is to make participants in the experiment aware that no manipulation from

the experimenter is possible in any of the random draws characterizing the experimental

setting.

3 Theoretical Predictions

We rely on Klibano¤, Marinacci and Mukerji (2005) smooth ambiguity model (henceforth

KMM ). Therefore, we assume that the subject�s preferences are represented by the von

Neumann - Morgenstern Expected Utility (henceforth EU ) function for simple lotteries

and we relax reduction between �rst and second-order probabilities in two-stage lotteries

in order to account for multiplicity/uncertainty of the possible compositions of the second-

stage lottery.

Let us �rst present our predictions about subject�s behavior in the �rst half of the

experimental design, i.e., in the �ve tasks aimed at estimating her degree of risk aversion.13

12For tasks 1-4 and 10, performing the task means playing the chosen lottery (random draw of one ball
from the 10-ball small urn). For tasks 5-9, it means playing the assigned lottery only if the subject�s selling
price is not lower than the random �buying price�for that lottery.
13Our ten decision tasks are shown to the subject always in the same order. The reason why we propose

tasks 1-5 (which rely on the 5-5 balls small urn) always before tasks 6-10 is because we want to elicit
subject�s risk-aversion before introducing unknown/multiple small urns. Further, Halevy (2007) has shown
that the (usually) higher reservation price for the 5-5 balls small urn (our task 5) is not a consequence
of this urn being proposed before the unknown/multiple ones (our tasks 6-9). Finally, our theoretical
results for the subject�s reservation price in tasks t = 6; :::; 9 do not suggest that this price should be

12



These �ve tasks involve only simple lotteries.

Tasks 1-4 rest on the well-know result in expected utility theory (e.g., Pratt 1964) that

the value of a simple lottery decreases if subject�s risk aversion increases. The value of

a simple lottery l with possible returns X is measured by its certainty equivalent CE(l),

which is de�ned by the following condition:

u(CE(l)) = EU(X);

where we assume that the utility function u is increasing and that it is concave for risk-

averse subjects and convex for risk-loving ones. From the previous relation, we have that

CE(l) decreases if we increase the concavity of u in the sense of Arrow-Pratt. This implies

that, for any task 1-4, an increase in risk aversion will never induce subjects to select a less

risky lottery (in our case, a lottery with less exposure to the risky asset). Given the fact that

lotteries A;B;C;D correspond to di¤erent portfolios with an increasing exposure to the

risky asset, we also know from Arrow (1964) that preferences are unimodal in (A;B;C;D).

Thus, if for example C is preferred to B, it is also the case that it is preferred to A: If one

limits the analysis to a set of utility functions that can be ordered by a single risk aversion

parameter, this allows us to compute for each task three critical degrees of risk aversion,

one for indi¤erence between the least risky lottery A and the riskier lottery B, one for

indi¤erence between lotteries B and C, and one for indi¤erence between lotteries C and

D.

Suppose �rst that the subject hasConstantAbsoluteRiskAversion (henceforthCARA),

so that u(c) = 1 � exp(�ARA c) for all c. Under this speci�cation, one can compute for
task 1 the critical ARAAB1 that yields indi¤erence between lotteries A and B:

1

2
exp(�ARAAB1 xA1 ) +

1

2
exp(�ARAAB1 xA1 ) =

1

2
exp(�ARAAB1 xB1 ) +

1

2
exp(�ARAAB1 xB1 )

We obtain ARAAB1 = 0:077. We can proceed in a similar fashion for the other pairs of

lotteries (B;C) and (C;D), and for the other tasks 2, 3 and 4. Under CARA, it is well

known (e.g., Gollier 2001) that the optimal portfolio composition is independent of initial

wealth. From Table 3, we know that tasks 1 and 3 correspond to the same portfolio

problem, but with di¤erent initial wealth levels respectively equal to w1 = 8 and w3 = 16:

This implies that ARAj;j+11 = ARAj;j+13 for all pairs of lotteries (j; j + 1). In other words,

a CARA subject should answer in exactly the same way for these two tasks. A similar

observation can be made for tasks 2 and 4. The interpretation of Table 4 is the following:

if the subject�s ARA is inside the interval (0:054; 0:077], then she should pick the pattern

always increasing or always decreasing with t. Rather, it should depend on the subject�s attitude towards
ambiguity (e.g., see (5) and (7) below).
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(lj11 ; l
j2
2 ; l

j3
3 ; l

j4
4 ) = (B;A;B;A) in the four portfolio choice problems and here CARA index

is 8. Notice that the higher the subject�s degree of risk aversion, the higher her CARA

index, the less risky is the pattern she chooses. Table 4 shows that in our experiment

more than 1/2 of subjects select lotteries in tasks 1 to 4 in a way that is compatible

with CARA.14 Results of the elicitation are provided disentangled by treatments in order

to show possible di¤erences in the distribution of the CARA ordering among the three

subject pools. Indeed, although the percentage of explained patterns is higher for subjects

participating in treatment 2, we do not �nd any signi�cant di¤erence in the distribution

of CARA ordering in the three treatments (see section 4.1).

Predicted pattern under CARA Experimental Data

Intervals of

ARA

Pattern

(lj11 ; l
j2
2 ; l

j3
3 ; l

j4
4 )

Index

CARA
Tr. 1 Tr. 2 Tr. 3 All % TOT

0:077 < ARA < +1 (A;A;A;A) 9 1 3 0 4 7.41%

0:054 < ARA � 0:077 (B;A;B;A) 8 0 3 2 5 9.26%

0:046 < ARA � 0:054 (B;B;B;B) 7 2 3 4 9 16.67%

0:033 < ARA � 0:046 (C;B;C;B) 6 1 3 1 5 9.26%

0:032 < ARA � 0:033 (D;B;D;B) 5 2 0 1 3 5.56%

0:027 < ARA � 0:032 (D;C;D;B) 4 0 2 0 2 3.70%

0:023 < ARA � 0:027 (D;C;D;C) 3 2 0 1 3 5.56%

0:016 < ARA � 0:023 (D;D;D;C) 2 7 1 2 10 18.52%

�1 < ARA � 0:016 (D;D;D;D) 1 3 6 4 13 24.07%

No. of Observations 18 21 15 54

% Explained 51% 60% 43% 51%

Table 4. Optimal answers for Tasks 1-4 under CARA.

Now, suppose that the subject has Constant Relative Risk Averse (henceforth CRRA),

so that u(c) = c1�RRA=(1� RRA) for all c. Under this speci�cation, one can compute for
task 1 the critical RRAAB1 that yields indi¤erence between lotteries A and B:

1

2

�
xA1
�1�RRAAB1 +

1

2

�
xA1
�1�RRAAB1 =

1

2

�
xB1
�1�RRAAB1 +

1

2

�
xB1
�1�RRAAB1

We obtain RRAAB1 = 1:320. We proceed in a similar fashion for the other pairs of lotteries

(B;C) and (C;D), and for the other tasks 2, 3 and 4. We order Constant Relative Risk

14When checking if a behavioral pattern in tasks 1-4 is compatible with CARA, we allow up to only one
possible deviation of at most one lottery ljtt from each of the theoretical patterns. For example, we assign
a CARA index to pattern (B;C;B;B), namely index 7, but we do not to assign any index to (B;D;B;B)
or to (C;C;B;B).
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Averse (henceforth CRRA) subjects according to their lottery choices in tasks 1-4, as in

Table 5. The interpretation of Table 5 is the same as in Table 4, with RRA in place of

ARA. Again, the higher the subject�s degree of risk aversion, the higher her CRRA index,

the less risky is the pattern she chooses. Table 5 shows that in our experiment almost

3/4 of subjects have a quadruplet of choices that is compatible with CRRA. Although

the percentage of explained patterns is higher for subjects participating in treatment 2,

we do not �nd any signi�cant di¤erence in the distribution of CARA ordering in the three

treatments (see section 4.1)15

Predicted pattern under CRRA Experimental Data

Intervals of

RRA

Pattern

(lj11 ; l
j2
2 ; l

j3
3 ; l

j4
4 )

Index

CRRA
Tr. 1 Tr. 2 Tr. 3 All % TOT

1:320 < RRA < +1 (A;A;A;A) 12 1 3 0 4 5.26%

0:890 < RRA � 1:320 (A;A;B;A) 11 1 0 3 4 5.26%

0:805 < RRA � 0:890 (A;A;B;B) 10 1 1 2 4 5.26%

0:670 < RRA � 0:805 (A;A;C;B) 9 0 0 1 1 1.32%

0:575 < RRA � 0:670 (B;A;C;B) 8 3 5 4 12 15.79%

0:440 < RRA � 0:575 (B;A;D;B) 7 3 2 2 7 9.21%

0:439 < RRA � 0:440 (B;A;D;C) 6 0 0 2 2 2.63%

0:382 < RRA � 0:439 (B;B;D;C) 5 5 2 3 10 13.16%

0:244 < RRA � 0:382 (C;B;D;C) 4 3 1 2 6 7.89%

0:197 < RRA � 0:244 (C;C;D;D) 3 2 1 2 5 6.58%

0:123 < RRA � 0:197 (D;C;D;D) 2 0 0 1 1 1.32%

�1 < RRA � 0:123 (D;D;D;D) 1 9 6 5 20 26.32%

No. of Observations 28 21 27 76

% Explained 80% 60% 77% 72%

Table 5. Optimal answers for Tasks 1-4 under CRRA.

Notice that tasks 1-4 have been designed such that both a CARA subject and a CRRA

subject, in order to show that she is not risk-averse (respectively, RRA � 0 and ARA � 0),
should pick the riskiest pattern (lj11 ; l

j2
2 ; l

j3
3 ; l

j4
4 ) = (D;D;D;D), thereby being assigned

(CARA or CRRA) index 1. That is why, independently from the assumption of CARA

or CRRA, if the number of explained patterns is the same under the two speci�cations,

we should �nd by construction the same percentage of non-risk-averse subjects. Indeed,

15As for Table 4, when checking if a behavioral pattern in tasks 1-4 is compatible with CARA, we allow
up to only one possible deviation of at most one lottery ljtt from each of the theoretical patterns. For
example, we assign a CRRA index to pattern (B;B;C;B), namely index 8, but we do not assign any
index to (B;C;C;B) or to (C;B;C;B).
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we �nd that this percentage is the same under the two speci�cations, although CRRA

captures a higher number of patterns than CARA: around 1/4 of the explained patterns

are compatible with risk neutrality or risk loving. This percentage is close to the one found

in other experimental studies on risk-aversion elicitation in simple lotteries.16

Through the BDM mechanism proposed in task 5, a risk-averse (-loving) subject should

declare a certainty equivalent for lj44 �the simple lottery she has been assigned in task 5 �

lower (higher) than its expected value, i.e.17

CE(lj44 ) < (>)EV (l
j4
4 ) .

Given that in task 5 the lottery assigned to the subject is the same she has chosen in task

4, lj44 , our portfolio choice problem provides a theoretical prediction on CE(lj44 ) in task 5

both under CARA and under CRRA speci�cation. Suppose that the subject�s pattern in

tasks 1-4 is compatible with CARA. Then, given her CARA index h = 1; 2; :::; 9, her ARA

belongs to the interval (ARAh; ARAh] for each h. Hence, given l
j4
4 = (xj44 ; 0:5;x

j4
4 ; 0:5),

ARAh, ARAh, it is

CE(lj44 ;ARAh) = �
1

ARAh
ln

�
1

2
exp(�ARAhxj44 ) +

1

2
exp(�ARAhxj44 )

�
(1)

withARAh = ARAh; ARAh. Then, it should beCE(l
j4
4 ) 2 (CE(l

j4
4 ;ARAh); CE(l

j4
4 ;ARAh)].

If the subject�s pattern in tasks 1-4 is compatible with CRRA, then, given lj44 and her

CRRA index k = 1; 2; :::; 12, her RRA belongs to the interval (RRAk; RRAk] for each k.

Hence, given lj44 = (x
j4
4 ; 0:5;x

j4
4 ; 0:5), RRAk, RRAk, it is

CE(lj44 ;RRAk) =

�
1

2
(xj44 )

1�RRA +
1

2
(xj44 )

1�RRA
� 1

1�RRA

(2)

withRRAk = RRAk; RRAk. Then, it should beCE(l
j4
4 ) 2 (CE(l

j4
4 ;RRAk); CE(l

j4
4 ;RRAk)].

Let us now analyze subject�s optimal behavior in tasks 6-10.

Consider a two-stage lottery L where the second stage is represented by a set of n+ 1

lotteries el� � (x1; p1�; :::;xS; pS�); with possible payo¤s x1 > ::: > xS, � 2 f0; :::; ng, ps� � 0
and �sps� = 1. The �rst stage is represented by the lottery L having as possible outcomes

the second-stage lotteries el� with probabilities (q1; :::; qn), with q� � 0 and �n�=0q� = 1.

16For example, Holt and Laury (2002) �nds 34% of subjects with RRA 2 (�1; 0:150) in the �low real�
payo¤s task and 19% of subjects with RRA 2 (�1; 0:150) in the �20x real�payo¤s task. Our tasks 1-4
contain lotteries whose expected payo¤s are between Holt and Laury�s �low real�and �20x real�lotteries
expected payo¤s.
17Karni and Safra (1987) has shown that the �certainty equivalent�of a lottery elicited using the BDM

mechanism respects the preference ordering if and only if preferences satisfy the independence axiom. This
is assumed in our theoretical analysis, given that we rely on KMM and so on EU.
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These are the second-order probabilities over the plausible probability distributions for el�.
In all treatments of our experiment, we characterize the impact of information on the

value of lotteries in the KMM framework. Following KMM, it is assumed that the subject�s

ex ante utility is measured by:

u(CE(L)) = ��1

 
nX
�=0

q��(EU(el�))! (3)

with

EU(el�) = SX
s=1

ps�u(xs):

Function u is a von Neumann-Morgenstern utility function, and � captures subject�s

smooth ambiguity attitude. In fact, � is a von Neumann-Morgenstern index function ac-

counting for the attitude toward mean preserving spreads in the induced distribution of

the expected utility of the one-stage lottery conditional to �, namely EU(el�). KMM de�ne

�smooth ambiguity aversion�and shows that it is equivalent to � being concave. There-

fore, it is equivalent to aversion to mean preserving spreads of the expected utility values

induced by the second-order subjective probability and lottery el�. Then, de�ning function
v as v = � � u, the certainty equivalent of the two-stage lottery is

CE(L) = v�1

 
nX
�=0

q�v(CE(el�))! ; (4)

where CE(el�) is the certainty equivalent of the one-stage lottery conditional to �. Function
v is a von Neumann-Morgenstern index function accounting for the attitude toward mean

preserving spreads in certainty equivalents of the one-stage lottery conditional to �, namely

CE(el�).
Recall that in each task of our experiment, there are only two possible payo¤s, namely

x; x 2 R+, x > x. Therefore, the small urn is represented by the 10-ball one-stage lotteryel� � (x; p�;x; 1 � p�), where p� = �
10
is the objective probability given by the ratio of

the number of white balls � 2 f0; 1; :::; 10g over 10. The second-order probabilities on the
possible compositions of the small urn depends upon the treatment under consideration. In

tasks 6-10 of treatments 1 and 2, the probability distribution (q0; :::; q10) over the one-stage

lotteries is objective. It is binomial in treatment 1 and uniform in treatment 2. Therefore,

in treatment 1, given a task from 6 to 10, the second-order objective probabilities are

always less dispersed than in the corresponding task in treatment 2.18

18In particular, in treatment 1 the objective second-order probabilities are as follows: In tasks 6 and 10,
q10 = q0 = 1=1024 ' 0:1%, q9 = q1 = 10=1024 ' 1%, q8 = q2 = 45=1024 ' 4:4%, q7 = q3 = 120=1024 '
11:7%, q6 = q4 = 210=1024 ' 20:5%, and q5 = 252=1024 ' 24:6%; in task 7, q7 = q3 = 1=16 = 6:25%,
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Recall that in our experiment second-stage lotteries in tasks 5-9 have the same pair

of outcomes, so that their variety depends only on �rst-order probabilities. Notice that

the simple lottery in task 5, lj44 , is analogous to a two-stage lottery with all second-stage

lotteries el�=5 being lj44 , namely L5 := (q1; l
j4
4 ; q2; l

j4
4 ; ::; qn; l

j4
4 ). We trivially assume that

L5 � lj44 . In order to identify whether a subject shows aversion, neutrality or proneness

to ambiguity, we can rely on comparing the subject�s answer to tasks 5 and 6. Recall that

in task 5, the subject is asked to value the unambiguous lottery that he/she selected in

task 4. In task 6, the subject is asked to do the same thing for an ambiguous urn with the

same expected probability for the two outcomes. This suggests the following operational

De�nition 1.

De�nition 1 (value-ambiguity attitude) Call CE(Lt) the subject�s reservation price
for the two-stage lottery assigned in task t 2 f5; 6g. It can be interpreted as the certainty
equivalent of the two-stage lottery in task t. Then, a subject is value-ambiguity-averse if

CE(L6) � CE(L5). She is value-ambiguity-neutral if CE(L6) = CE(L5). She is value-

ambiguity-loving if CE(L6) � CE(L5).

In short, a value-ambiguity-averse subject values an ambiguous lottery less than its

unambiguous equivalent with the same mean probabilities. In the KMM model, this is

true if the subject�s � function is concave.

Our experimental design o¤ers us an alternative to test ambiguity-aversion by compar-

ing the subject�s answers to tasks 4 and 10. Remember that the two possible outcomes

in lotteries fA;B;C;Dg are the same in the two tasks. The di¤erence lies in the fact that
probabilities are unambiguously 1/2 in task 4, whereas there are ambiguous in task 10, with

mean 1/2. De�ne a dispersion order � on set fA;B;C;Dg, such that D � C � B � A.
A more dispersed lottery is equivalent to a portfolio containing a larger share invested in

the risky asset.

De�nition 2 (choice-ambiguity attitude) Call jt 2 fA;B;C;Dg the index of the lot-
tery chosen by a subject in task t 2 f4; 10g: Then, a subject is choice-ambiguity-averse if
j10 � j4, i.e., if lottery j10 is not more dispersed than lottery j4. She is choice-ambiguity-
neutral if j10 = j4. She is choice-ambiguity-loving if j10 � j4, i.e., lottery j10 is not less

dispersed than j4.

q6 = q4 = 4=16 = 25%, and q5 = 6=16 = 37:5%; in task 8, q10 = q3 = 1=128 ' 0:8%, q9 = q4 = 7=128 '
5:5%, q8 = q5 = 21=128 ' 16:4%, q7 = q6 = 35=128 ' 27:3%; in task 9, q7 = q0 = 1=128 ' 0:8%,
q6 = q1 = 7=128 ' 5:5%, q5 = q2 = 21=128 ' 16:4%, q4 = q3 = 35=128 ' 27:3%. All other q� are zero. In
treatment 2 the objective second-order probabilities are: In tasks 6 and 10, q� = 1=11 ' 9:1% for every
� = 0; 1; :::; 10; in task 7, q� = 1=5 for every � = 3; 4; :::; 7; in task 8, q� = 1=8 for every � = 3; 4; :::; 10; in
task 9, q� = 1=8 for every � = 0; 1; :::; 7. All other q� are zero.
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Equivalently, a choice-ambiguity-averse subject always reduces her demand for the risky

asset when the distribution of outcomes becomes ambiguous. In the KMM smooth am-

biguity aversion framework, Gollier (2012) has shown that it is not true in general that

the concavity of the � function implies the choice-ambiguity-aversion of the subject. In

other words, a smooth ambiguity-averse subject could have a larger demand for the ambi-

guity asset than another ambiguity-neutral subject with the same risk aversion. However,

Gollier (2012) provides su¢ cient conditions on the structure of the two-stage uncertainty

to re-establish the link between the concavity of � and ambiguity aversion. One of these

su¢ cient conditions is that the di¤erent second-stage distributions of the risky asset can

be ordered by the Monotone Likelihood Ratio stochastic order. Because the set of distri-

butions f(3; p�;�2; 1� p�) j� = 0; :::; 10g can always be ordered by Monotone Likelihood
Ratio, we conclude that, in the KMM framework, the two de�nitions of value-ambiguity

aversion and choice-ambiguity aversion are equivalent, and are satis�ed if � is concave.

This justi�es the following de�nition.

De�nition 3 (coherent-ambiguity attitude) A subject is coherently-ambiguity-averse

if CE(L6) � CE(L5) and j10 � j4, with at least one of the two relations holding strictly.
She is coherently-ambiguity-neutral if CE(L6) = CE(L5) and j10 = j4. She is coherently-

ambiguity-loving if CE(L6) � CE(L5) and j10 � j4, with at least one of the two inequalities
holding strictly.

Our operational de�nition of coherent-ambiguity attitude is based on a double-check:

we compare subject�s behavior in task 5 versus task 6 and in task 4 versus task 10. The

�rst comparison tells us whether, given the two second-stage lottery-outcomes, she prefers

to know �rst-order probability p� than facing a mean-preserving spread of second-order

probabilities over the all possible p�. The second comparison tells us whether she prefers

a less risky lottery (a less dispersed performance of the portfolio in Table 3) where this

mean-preserving spread takes place.

Let us now analyze how the certainty equivalent of the two-stage lottery varies when

moving from task 6 to tasks 7, 8 or 9 and whether this variation depends on the fact the

subject is ambiguity-averse. Let us �rst compare CE(L7) to CE(L6): Remember that, in

each of our three treatments, the two-stage lottery in task 7 is obtained from task 6 by

symmetrically eliminating the plausibility of the extreme urns � = 0; 1; 2; 8; 9; 10. This

implies that we must objectively have q� = 0 in task 7 for these �. Compared to task 6,

the subject�s subjective second-order probabilities must be symmetrically transferred from

the extreme urns to the less dispersed urns � = 3; :::; 7. This yields a mean-preserving

contraction in the distribution of eU � (EU(el0); q0; :::;EU(el10); q10); as we show now. In the
remainder of this section, let us normalize u in such a way that u(xj44 ) = 0 and u(x

j4
4 ) = 1;

so that EU(el�) = p�.
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Lemma 4 Consider a symmetric random variable ep � (p0; q0; :::; pn; qn), with p� = �=n,

q� = qn�� for all �, and n > 2: Consider another symmetric random variable ep0 �
(p0; q

0
0; :::; pn; q

0
n) on the same support, but with q

0
0 = q

0
n = 0 and q

0
� = q

0
n�� � q� = qn�� for

all � 2 f1; :::; n� 1g. It implies that E�(ep0) � E�(ep) for all concave functions �, i.e., thatep0 is a Rothschild-Stiglitz mean-preserving contraction of ep:
Proof. Proof: Observe that, by symmetry, we have that

Eep = nX
�=0

q�
�

n
=

n=2X
�=0

q�

�
�

n
+
n� �
n

�
=

n=2X
�=0

q� =
1

2
:

Because the same observation can be made for ep0, we have that Eep = Eep0 = 1=2: Becauseep0 is obtained from ep by a transfer of probability mass from the extreme states to the center
of the distribution, we conclude that ep is a mean-preserving spread of ep0: This concludes
the proof.

Repeating this lemma three times, we obtain that CE(L7) must be larger than CE(L6)

under smooth ambiguity aversion. Because L7 is still ambiguous, we also have that CE(L7)

is smaller than CE(L5): Thus we have that CE(L5) � CE(L7) � CE(L6). The opposite
result would hold under smooth ambiguity-loving. Observe that a crucial assumption for

the lemma is the symmetry of the second-order probability distributions. In treatments

1 and 2, the second-order probability distribution on the composition of the small urn is

either binomial or uniform, which are clearly symmetric. In treatment 3, the symmetry of

the second-order distribution will depend upon the subject�s beliefs on the composition of

the big urn from which the small urn is built. However, the principle of insu¢ cient reason

suggests that the subject has symmetric beliefs on the composition of the big urn, and

therefore on the composition of the small urn generated by the Bernoullian process. Under

this principle, we can write the following proposition.

Proposition 5 If the subject is ambiguity-averse, then CE(L5) � CE(L7) � CE(L6). If
she is ambiguity-loving, then CE(L5) � CE(L7) � CE(L6). If she is ambiguity-neutral,

then CE(L5) = CE(L7) = CE(L6).

Let us now compare tasks 8 and 9 to task 6. Task 8 is similar to task 6 except that the

worst urns have been eliminated. Proposition 6 shows that the certainty equivalent of the

two-stage lottery proposed in that task 8 is greater than the one of the two-stage lottery

proposed in task 6, whatever the degree of ambiguity of the subject, i.e. independently of

the fact that she is ambiguity-averse, neutral or loving. The opposite result prevails for

task 9, in which the best urns have been removed. Therefore, comparison between task

6, 8 and 9 always leads to CE(L8) � CE(L6) � CE(L9), whatever the subject�s attitude
toward ambiguity.
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Proposition 6 Suppose that new information implies that the worst (best) urns become
implausible, without reducing the probability q� of any of the other urns. This new infor-

mation raises (reduces) the certainty equivalent of the lottery independent of the degree of

ambiguity aversion.

Proof. Because � is increasing and concave, it is obvious that any �rst-degree or second-
degree stochastic dominance improving shift in the distribution of (q0; EU(el0); :::; qn; EU(eln)):
Because p� = �=n is increasing in �; so is EU(el�) = p�u(x

j4
4 ) + (1 � p�)u(x

j4
4 ). Suppose

that a new information makes the worst lotteries (el0;el1; :::;elm), m < n, totally implau-

sible. This implies that the new second-order probabilities take the form (bq0; bq1; :::; bqn);
with bq1 = bq2 = ::: = bqm = 0. This yields a �rst-degree stochastic improvement if bqi � qi

for all i 2 fm+ 1; :::; ng : Therefore, under the assumption that both u and � are strictly
monotone, this new information raises the certainty equivalent of the lottery independent

of the degree of ambiguity aversion. Of course, the symmetric case also holds: Suppose

that new information implies that the best scenarii become implausible, without reducing

the probability q� of any of the other scenarii. This new information reduces the certainty

equivalent of the lottery independent of the degree of ambiguity aversion.

This result also applies to the comparison between task 8 (task 9) and task 7: the

certainty equivalent of the two-stage lottery proposed in the former task must be greater

(smaller) than the one of the two-stage lottery proposed in task 6, whatever the degree

of ambiguity of the subject. Task 7 may be seen as a modi�cation of Task 9 through

new information implying that the worse scenarii become implausible, without reducing

the probability q� of any of the other scenarii in task 9. Task 7 may be also seen as a

modi�cation of Task 8 through new information implying that the best scenarii become

implausible, without reducing the probability q� of any of the other scenarii in task 8.

Therefore, we must have CE(L8) � CE(L7) � CE(L9) independent of the shape of �.
Let us now try to establish the complete ranking of the values of tasks 5 to 9 under

smooth ambiguity aversion. We have seen earlier that smooth ambiguity aversion implies

that CE(L5) � CE(L7) � CE(L6): Combining these three sequences of inequalities implies
that, under smooth ambiguity aversion, we have that

CE(L5)

CE(L8)

)
� CE(L7) � CE(L6) � CE(L9); (5)

independent of subject�s attitude toward risk. The only degree of freedom under smooth

ambiguity aversion is thus about the relative values of task 5 (no ambiguity: q5 = 1) and

task 8 (ambiguity with worst urns eliminated: q0 = q1 = q2 = 0). If ambiguity aversion

is small enough, i.e., if the concavity of � is small, then the large expected probability

of the high outcome enjoyed in task 8 will dominate the ambiguity aversion e¤ect to
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yield CE(L8) � CE(L5); otherwise CE(L8) < CE(L5). The following result is a direct

consequence of Gollier (2001, Section 6.3.2).

Proposition 7 Suppose that a subject prefers the unambiguous lottery L5 to the ambiguous
lottery L8 (this is possible only under ambiguity aversion): Then, an increase in ambiguity

aversion in the KMM model can never reverse this ranking.

This implies that, assuming similar attitudes toward risk, any subject with CE(L5) <

CE(L8) has a smaller degree of smooth ambiguity aversion than any subject withCE(L5) �
CE(L8): Thus, comparing the values of task 5 and 8 for ambiguity-averse subjects allows

us to get some information about their degree of ambiguity aversion.

Of course, in the limit case of smooth ambiguity-neutrality, we must have that

CE(L8) > CE(L5) = CE(L6) = CE(L7) > CE(L9); (6)

independent of subject�s attitude toward risk. Finally, for an ambiguity-loving subject,we

obtain that

CE(L8) � CE(L6) � CE(L7) �
(
CE(L5)

CE(L9)
; (7)

independent of her attitude toward risk. If the degree of ambiguity proneness is small

enough, i.e., if the convexity of � is small, then the low expected probability of the high

outcome faced in task 9 will dominate the attractiveness of this ambiguous lottery for

ambiguity-loving subjects, so that CE(L9) < CE(L5); otherwise CE(L9) � CE(L5).

Proposition 8 Suppose that a subject prefers the unambiguous lottery L5 to the ambiguous
lottery L9 (this is possible also under ambiguity proneness): Then, a concave transformation

of the � function in the KMM model can never reverse this ranking.

Thus, comparing the values of task 5 and 9 for ambiguity-loving subjects allows us to

get some information about their degree of ambiguity proneness.

The next corollary shows the di¤erence among certainty equivalents of two-stage lot-

teries in the same task of di¤erent treatments. The comparison of treatments 1 and 2 is the

easiest. The uniform distribution of the second-order probabilities in treatment 2 is clearly

a mean-preserving spread of the binomial distribution obtained in treatment 1. Comparing

the certainty equivalents for treatments 1 and 3 is more di¢ cult. In both treatments, a

Bernoullian process is applied to build the small urn, but the parameter p of the Bernoulli

distribution is 1/2 in treatment 1, whereas it is unknown in treatment 3. If one accepts

the principle of insu¢ cient reason, then one may assume that the third-order probabili-

ties on parameter p yields Ep = 1=2. Under this assumption, treatment 3 always yields

a mean-preserving spread of the second-order probability distribution (q0; :::; qn). Under
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ambiguity aversion, this yields a reduction of the certainty equivalents. This yields the

following result.

Corollary 9 If the subject is ambiguity-averse (-loving), then CEt is greater (smaller) in
treatment 1 than in treatments 2 and 3 for every t = 6; 7; 8; 9.

By combining Proposition 7, Proposition 8 and Corollary 9, we obtain an interesting

behavioral prediction about possible treatment di¤erences. Although our design is not

within-subject, we have seen from Table 4 and Table 5 that the distribution of the degree

of risk aversion does not di¤er among the three treatments, both if we use a CARA

and if we use a CRRA speci�cation. Then, if we assume that the distribution of the

degree of ambiguity aversion is the same among the three treatments, then for similar

degrees of risk aversion we should �nd that the percentage of ambiguity-averse subjects

with CE(L5) � CE(L8) is lower in treatment 1 than in treatments 2 and 3. By combining
Proposition 8 and Corollary 9 for ambiguity-loving subjects: if the distribution of the degree

of ambiguity proneness is the same among the three treatments, then the percentage of

ambiguity-loving subjects withCE(L9) � CE(L5) is lower in treatment 1 than in treatment
2 and 3 inside the same class of risk aversion.

4 Experimental Results

In this section we present our experimental results. First of all, in section 4.1 we brie�y

analyze the results of the elicitation of subject�s risk aversion through the portfolio choice

method of tasks 1-4. Then, in section 4.2, we classify subjects according to their ambiguity

attitude relying on the operational de�nition introduced in section 3. In section 4.3 we test

the main theoretical predictions derived in section 3. In section 4.4 we analyze treatment

e¤ects on the distribution of subjects�beliefs over the second-order probabilities and on

the two-stage lotteries certainty equivalents given the task.

4.1 Risk aversion elicitation

The portfolio choice method used at the beginning of the experiment enables all subjects

to face the same set of lotteries in tasks 1-4: this allows to build a risk-attitude ordering

of subjects independent of lj44 , the lottery chosen in task 4. This is the �rst reason why we

prefer to rely on it rather than on the certainty equivalent elicited in task 5, which instead

depends on lj44 . Further, our portfolio choice method has the advantage of imposing some

theoretically derived constraints which allow to check whether the subject�s selected pattern

is compatible with a CARA and/or a CRRA speci�cation. This provides an empirical

veri�cation of what in many experimental studies on risk aversion is generally assumed.
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First, we check whether the portfolio choice method elicitation (tasks 1-4) leads to the

same ordering in terms of CE(L5) as the (more standard) BDM mechanism proposed in

task 5. Indeed, we �nd a positive correlation (coe¤. = 0:46) and highly signi�cant (P-value

= 0:000) between CE(L5) as predicted by the CARA ordering derived from the selected

pattern in tasks 1-4 (see Table 4) and the one elicited through the BDM mechanism in task

5. If we use the CRRA in place of the CARA ordering, the former correlation is slightly

lower (coe¤. = 0:36) and again statistically signi�cant (P-value = 0:006).19

Second, we check whether there is any signi�cant di¤erence among the three treatments

in the distribution of CARA indexes or in the distribution of CRRA indexes. Although

the percentage of explained patterns under each speci�cation is di¤erent in the Uniform

treatment (see respectively Table 4 and Table 5), we do not �nd any signi�cant di¤erence

in the distribution of risk-aversion ordering in the three treatments. This is what Figure

C in the Appendix seems to suggest, both if we rely on the CARA and the CRRA speci�-

cation. To provide support to the graphical representation, we have tested the di¤erences

in distribution of CARA ordering and CRRA ordering in the three treatments with two

di¤erent test: a Kruskal-Wallis test20 and a Kolmogorov-Smirnov equality-of-distributions

test21 with a pairwise comparison between treatments.22

Therefore, both orderings are correlated with the certainty equivalent of task 5 and

lead to similar distributions of risk attitude among treatments. Without assuming whether

subjects are CARA or CRRA, we use both speci�cations when analyzing possible relations

between the subject�s degree of risk aversion and her behavior in tasks 6-10.

It is true that all the theoretical predictions derived in section 3 within the KMM

framework should hold whatever the subject�s risk aversion. Nevertheless we look for pos-

sible correlations between risk attitude and ambiguity attitude. Further, we want to check

that risk attitude does not play any role when testing our main theoretical predictions,

which we have shown to hold independently of the subject�s risk attitude. Finally, includ-

ing risk aversion as an explanatory variable in our econometric analysis may be useful in

order to provide an experimental answer to some open theoretical questions as the sign

19More precisely, as CE(L5) predicted by the CARA ordering we consider the average between
CE(lj44 ;ARAh) and CE(l

j4
4 ;ARAh) in (1), for h = 1; 2; :::; 9. Similarly, for the CE(L5) predicted by

the CRRA ordering we consider the average between CE(lj44 ;RRAk) and CE(l
j4
4 ;RRAk) in (2), for

k = 1; 2; :::; 12.
20The Kruskal-Wallis equality-of-populations rank test (non-parametric) tests the hypothesis that several

samples are from the same population.
21The Kolmogorov-Smirnov test (non-parametric) compares two observed distributions f(x) and g(x).

The procedure involved forming the cumulative frequency distributions F(x) and G(x) and �nding the size
of the largest di¤erence between these. The hypothesis that has been tested is whether the two observed
distributions are equal (we perform a pairwise comparison between treatment 1-treatment 2, treatment
1-treatment 3 and treatment 2-treatment 3).
22According to the Kruskal-Wallis test we cannot reject the null hypothesis of equality of distributions

(P-value = 0:401 for CARA and P-value = 0:357 for CRRA). The Kolmogorov-Smirnov test con�rms this
result.
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of CE(L8) � CE(L5) for ambiguity-averse subjects or the sign of CE(L9) � CE(L5) for
ambiguity-loving ones. Notice that for ambiguity-neutral subjects it is always CE(L8) >

CE(L5) and CE(L9) < CE(L5).

4.2 Ambiguity aversion elicitation

In Table 6, we classify subjects being ambiguity-averse, ambiguity-neutral and ambiguity-

loving in each treatment according to De�nition 3 (coherent-ambiguity-attitude). Notice

that almost 1/2 of the classi�ed subjects are ambiguity-averse, while less than 1/5 are

ambiguity-loving. Only 13 subjects (less than 12% of the sample) participating in our ex-

periment cannot be classi�ed according to De�nition 3: around half of them are ambiguity-

averse according to De�nition 1 (value-ambiguity attitude) and ambiguity-loving according

to De�nition 2 (choice-ambiguity attitude). The other half of them are value-ambiguity-

loving and choice-ambiguity-averse.23 Given the small percentage of unclassi�ed subjects,

we can conclude that concavity of the � function implies choice-ambiguity-aversion in our

experimental tasks. This was exactly our theoretical prediction, given that the di¤erent

second-stage distributions of the risky asset have been set such that they can be ordered

according to the Monotone Likelihood Ratio stochastic order (see Gollier, 2012). Indeed,

the correlation between strong value-ambiguity-aversion (CE(L6) < CE(L5)) and strong

choice-ambiguity-aversion (j10 � j4) is positive, not very high (coe¤. = 0:18), but statis-
tically signi�cant (P-value = 0:074). We will further analyze this last result at the end of

section 4.3, by showing that in our sample subjects with strong choice-ambiguity-aversion

are usually non-strongly choice-ambiguity-averse.

Binomial Uniform Unknown TOTAL

coherent-AA 13 15 17 45

coherent-AN 16 5 8 29

coherent-AL 5 9 4 18

Total

Classi�ed
34 29 29 92

value-AA & choice-AL 1 4 2 7

value-AL & choice-AA 0 2 4 6

Total

Unclassi�ed
1 6 6 13

Table 6. Classi�cation of (coherent) ambiguity attitude according to De�nition 3.

23Although the number of unclassi�ed subjects is lower in the Binomial than in the other two treatments,
unclassi�ed subjects are not statistically di¤erent from classi�ed ones neither with respect to CARA or
CRRA ordering nor with respect to the lottery chosen in task 4.
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From Table 6, one can also see that the percentage of classi�ed subjects being ambiguity-

averse is lower in the Binomial than in the Uniform treatment and in the Unknown treat-

ment. Further, the percentage of classi�ed subjects being ambiguity-neutral is higher in

the Binomial than in the other two treatments.

Let us de�ne the �sign�of the ambiguity attitude as being negative if the subject is

ambiguity-averse, null if she is ambiguity-neutral and positive if she is ambiguity-loving.

Looking at the multinomial logistic regression of the sign of the ambiguity attitude over

the treatment, we �nd that the relative risk ratio for being ambiguity-neutral versus be-

ing ambiguity-averse is 0:27 (P-value = 0:040) when switching from the Binomial to the

Uniform treatment and 0:38 (P-value = 0:091) when switching from the Binomial to the

Unknown treatment. In other words, the expected probability of being ambiguity-neutral

seems to be higher for subjects who participate in the Binomial treatment. Table 6 also

shows that the percentage of subjects being ambiguity-loving is lower in the Binomial than

in the Uniform treatment, but not in the Unknown treatment. However, a multinomial

logistic regression of the ambiguity attitude over the treatment shows that the relative risk

ratio for being ambiguity-loving versus being ambiguity-averse is 1:56 (not statistically sig-

ni�cant: P-value = 0:510) when switching from the Binomial to the Uniform treatment

and 0:62 (not statistically signi�cant: P-value = 0:521) when switching from the Binomial

to the Unknown treatment.24

A possible explanation of this result relies on Corollary 9. Given the degree of ambigu-

ity attitude, jCE(L6)� CE(L5)j is lower in the Binomial than in the Uniform treatment.

This is due to the fact that the distribution of second-order probabilities is less dispersed

in the Binomial than in the Uniform treatment. Moreover, recall that the set of possible

certainty equivalent values that a subject may select is discrete. Therefore, if a subject

is slightly-ambiguity-averse or slightly-ambiguity-loving, it is more likely for her to choose

CE(L6) = CE(L5) in the Binomial than in the Uniform treatment.25. The intuition

based on Corollary 9 applies also to the comparison between the Binomial and the Un-

known treatment. Indeed, the percentage of ambiguity-averse (loving) subjects in the

Unknown treatment is higher (lower) with respect to the other two treatments, although

this di¤erence is not signi�cant (Kruskal-Wallis, P-value = 0:258). However, doing a pair-

wise comparison between treatments about the percentage of ambiguity-averse subjects, we

�nd that there is not statistically signi�cant di¤erence between the Binomial and the Uni-

24These results are not shown but are available upon request.
25This intuition is reinforced by the fact the correlation between (strong) value-ambiguity-aversion and

(strong) choice-ambiguity-aversion found above in all the sample of classi�ed subjects is higher (coe¤. 0:45)
and signi�cant (P-value 0:007) only if we restrict the analysis at the Binomial treatment. In this treatment,
it is plausible that only highly-ambiguity-averse subjects show at the same time CE(L6) < CE(L5) and
j10 � j4.
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form treatment (t-test, P-value = 0:290)26, and between the Uniform and the Unknown

treatment (P-value = 0:605), while the di¤erence between the Binomial and the Unknown

treatment is almost signi�cant (P-value = 0:109). This distortion con�rms our intuition

about the interpretation of the Unknown treatment. Both in the Binomial and in the

Unknown treatment the 10-ball small urn in task 6 has been generated through the same

Bernoullian process. However, the latter treatment is intrinsically more ambiguous, given

that there is no information about the composition of the big urn from which the small

unknown urn is generated. According to KMM, this generates smaller CE(L6) through

(4) and/or lower j10 through (3) in the Unknown than in the Binomial treatment, thereby

signi�cantly increasing the percentage of subjects for which it is CE(L6) � CE(L5) and

j10 � j4. Notice that if we disentangle value-ambiguity aversion and choice-ambiguity

aversion, we still �nd a higher percentage of subjects in the Unknown than in the Binomial

treatment, although this di¤erence is no more statistically signi�cant.

Let us conclude this paragraph by analyzing the relation between the sign of the am-

biguity attitude (as de�ned in the following sentence) and the degree of risk aversion.

Figure 1 shows that both the distribution of CARA indexes and the distribution of CRRA

indexes di¤er according to the sign of the ambiguity attitude. Indeed, under both spec-

i�cations, the modal risk-aversion index for ambiguity-averse and for ambiguity-neutral

is 1 (non-risk-averse subjects), while the modal index for ambiguity-loving subjects is 8

(highly-risk-averse subjects). We do �nd that di¤erences in the distributions of our risk-

aversion ordering among di¤erent signs of the ambiguity attitude are signi�cant.27 This

supposed negative correlation between the sign of the ambiguity attitude and the index

of risk aversion is con�rmed by rank correlation tests for ambiguity-neutral subjects un-

der CARA (coe¤. = �0:28, P-value = 0:063) and for ambiguity-loving subjects under

both speci�cations (under CARA: coe¤. = �0:39, P-value = 0:007; under CRRA, coe¤.
= �0:30, P-value = 0:013). We do not �nd that this negative correlation is signi�cant for
ambiguity-averse subjects. However, if we disentangle ambiguity-averse subjects according

to De�nition 1 and De�nition 2, we �nd that the negative correlation between the fact of

being choice-ambiguity-averse and the index of risk aversion is signi�cant (under CARA:

coe¤. = �0:30, P-value = 0:029; under CRRA, coe¤. = �0:31, P-value = 0:007).
26The t-test is any statistical hypothesis test (parametric) in which the test statistic follows a Student�s

t distribution if the null hypothesis is supported. Here we run a two-sample t-tests for a di¤erence in mean
(the null hypothesis is that the two samples have the same mean).
27In order to test the equality in the distribution of the risk-aversion indexes among di¤erent signs

of the ambiguity attitude, we have performed two di¤erent tests: Kruskal-Wallis equality-of-populations
rank test and Kolmogorov-Smirnov equality-of-distributions test. We �nd that both under CARA and
under CRRA, we can reject the null hypothesis of equality in distributions according to the Kruskal-Wallis
equality-of-populations rank test (respectively for CARA and CRRA: P-value = 0:0100, P-value = 0:0100).
By perfoming the Kolmogorov-Smirnov equality-of-distributions test with a pairwise comparison between
di¤erent signs of the ambiguity attitude, we �nd that the results are consistent with the Kruskal-Wallis
test.
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We can empirically observe the relation between the CARA (or CRRA) ordering and

the sign of the ambiguity attitude also by eliciting choice-ambiguity-aversion (tasks 4 and

10), which relies on the same method used to elicit risk aversion (tasks 1-4). Figure 1

seems to con�rm our intuition: very few ambiguity-averse subjects (less than 5%) choose

the least risky lottery in task 4, while the vast majority of ambiguity-loving ones (61%)

choose this lottery in task 4; moreover, none of the latter chooses the riskiest lottery in

task 4. We do �nd that di¤erences in the distributions of lj44 among the three groups of

subjects averse, neutral and prone to ambiguity are signi�cant.28
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Figure 1. Distribution of CARA index and

CRRA index by ambiguity attitude.
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Figure 2. Distribution of lottery chosen in task 4

by ambiguity attitude.

This point can be further clari�ed by introducing in the analysis the subject�s guess on the

number of balls linked to the highest of the two lottery-outcomes (henceforth, �winning

balls�) in task 6, that we could interpret as the subject�s modal belief on the composition

of the small unknown urn. This guess may have in�uenced the certainty equivalent in task

6 and so the sign of value-ambiguity-aversion.29 By looking at the upper-left part of Figure

D, one can notice that also the distribution of subjects� guess in task 6 is signi�cantly

di¤erent among di¤erent signs of the ambiguity attitude.30

Indeed, with a multivariate regression analysis we �nd that � controlling or not for

treatment e¤ect �both lj44 and the guess in task 6 are highly signi�cant (respectively, P-

28Again we have performed a Kruskal-Wallis test to check whether the distributions of lj44 are di¤erent
by treatment. According to this test, we can reject the null hypothesis of equality in distribution (P-value
= 0:000). We have also perfomed a Kolmogorov-Smirnov test with a pairwise comparison between di¤erent
signs of the ambiguity attitude and the results are consistent with the Kruskal-Wallis test.
29The guess in task 6 is positively correlated (coe¤. = 0:20, P-value = 0:045) with the �normalized�

CE(L6). In section 4.4 we explain what we intend with �normalized�certainty equivalent.
30Through the Kruskal-Wallis test, we can reject the null hypothesis of equality in distribution (P-value

= 0:000). The Kolmogorov-Smirnov test con�rms this result.
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value = 0:000 and P-value = 0:001): the former has a positive e¤ect on being ambiguity-

averse, while the latter has a negative one.

About the positive e¤ect of lj44 , we may think that subjects have made some kind of

hedging between the higher risk they accepted through the choice of a risky lottery in task

4 and the ambiguous second-order probabilities over this (second-stage) lottery (task 10).

Indeed, if we disentangle value-ambiguity aversion and choice-ambiguity aversion, we �nd

a positive and highly signi�cant correlation between lj44 and each measure of ambiguity

attitude: respectively, coe¤. = 0:24 (P-value = 0:023) for value-ambiguity aversion and

coe¤. = 0:42 (P-value = 0:000) for choice-ambiguity aversion.

About the negative e¤ect of the guess of the number of winning balls in task 6, this

plays a role through a decrease of CE(L6) and of j10. We will see in section 4.4 that

the distribution of subjects�guess in task 6 does not depend on the treatment where the

subjects have participated, i.e. on the di¤erent distributions of second-order probabilities

that we have generated through our experimental design.

4.3 Test of the main theoretical results

In this paragraph, we report and comment about the percentage of classi�ed subjects who

satisfy the theoretical predictions stated in section 3. We disentangle classi�ed subjects

according to the sign of their ambiguity attitude (averse, neutral and loving) and accord-

ing to the treatment where they participated. All the theoretical predictions tested in

this paragraph should hold independent of the treatment. A �rst set of theoretical predic-

tions (Proposition 5) state di¤erent conditions for ambiguity-averse, ambiguity-neutral and

ambiguity-loving subjects. A second set of theoretical predictions (Proposition 6) should

hold whatever the sign of the ambiguity attitude.

Figure 3 summarizes the percentage of subjects classi�ed according to De�nition 3

whose behavior in tasks 5-7 complies with Proposition 5. In particular, for 78% (35/45)

of ambiguity-averse subjects it is CE(L5) � CE(L7) � CE(L6); for 86% (25/29) of

ambiguity-neutral subjects it is CE(L5) = CE(L7) = CE(L6); for about 78% (14/18)

of ambiguity-loving subjects it is CE(L5) � CE(L7) � CE(L6). Although the percentage
of subjects ful�lling predictions of Proposition 5 is higher among the ambiguity-neutral

ones, validity of these predictions does not depend on the sign of the ambiguity attitude.

On the other hand, there is some dependences on the treatment. Through a t-test, we

get that the percentage of subjects complying with Proposition 5 is almost signi�cantly

higher in the Binomial (P-value = 0:124) and in the Unknown (P-value = 0:120) than in

the Uniform treatment. Finally, this compliance is uncorrelated with subject�s CARA or
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CRRA ordering, as predicted by Proposition 5.31

Figure 3. Percentage of subjects satisfying Proposition 5, by treatment and ambiguity attitude.

Figure 4 reports the percentage of subjects whose behavior in tasks 6-9 complies with

Proposition 6 respectively w.r.t to CE(L6) (Figure 4.a) and w.r.t. CE(L7) (Figure 4.b).

Recall that Proposition 6 provides the same prediction for all subjects being classi�ed

according to De�nition 3, whatever the sign of their ambiguity attitude and their degree of

ambiguity aversion. It is easy to notice that the percentage of subjects ful�lling Proposition

6 is even higher than for Proposition 5 and that it does not depend on which of the two

reference certainty equivalents we applied it, CE(L6) or CE(L7). In both cases, more than

90% of ambiguity-averse subjects (42/45 for CE(L6), 41/45 for CE(L7)), all ambiguity-

neutral subjects (29/29) and more than 70% ambiguity-loving subjects (13/18) comply

with Proposition 6. As further proof of �rational�behavior of this huge pool of subjects,

notice that there are only 4/84 subjects satisfying Proposition 6 w.r.t CE(L6) and not

satisfying it also w.r.t to CE(L7); there are only 3/83 subjects who ful�lls the predictions

w.r.t CE(L7) and not w.r.t to CE(L6).

There are not signi�cant di¤erences by treatment if we take as reference CE(L6). If

instead we take as reference CE(L7), the percentage of subjects being consistent with

Proposition 6 is slightly higher in the Binomial than in the Uniform treatment, with this

di¤erence being signi�cant (P-value = 0:055). On the other hand, whatever the reference

certainty equivalent, CE(L6) or CE(L7), we �nd a signi�cant di¤erence by the sign of

the ambiguity attitude. Indeed, the percentage of ambiguity-loving subjects complying

with Proposition 6 is signi�cantly lower than the proportion of ambiguity-averse ones32

31P-value = 0:546 for CARA, P-value = 0:841 for CRRA.
32P-value = 0:023 for CE(L6), P-value = 0:054 for CE(L7).
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and the proportion of ambiguity-neutral ones33. Again, compliance with the prediction of

Proposition 6 is uncorrelated with subject�s CARA or CRRA ordering.34

Figure 4. Percentage of subjects satisfying Proposition 6, by treatment and ambiguity attitude.

Figure 5 shows the percentage of classi�ed subjects whose behavior in tasks 5-9 satis�es

at the same time both Proposition 5 and Proposition 6. As we have seen in section 3, the

two propositions taken together lead to relation (5) for ambiguity-averse, relation (6) for

ambiguity-neutral, and relation (7) for ambiguity-loving subjects. Indeed, more than 75%

of classi�ed subjects (70/92) states their certainty equivalents in tasks 5-9 in a way that

33P-value = 0:002 for both CE(L6) and CE(L7).
34If we take as reference CE(L6), it is P-value = 0:202 for CARA, P-value = 0:278 for CRRA. If we

take as reference CE(L7), it is P-value = 0:216 for CARA, P-value = 0:333 for CRRA.
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all the �rationality� constraints imposed by the KMM model are satis�ed. Notice that

between Proposition 5 and Proposition 6 the former cuts much more observations, given

that percentages of veri�cation in Figure 5 are only slightly lower than those in Figure 3. In

addition, ambiguity-loving subjects have a lower ratio of ful�llment of propositions 5 and 6

taken together (61%, 11/18) than ambiguity-averse subjects (76%, 34/45) and ambiguity-

neutral ones (86%, 25/29), although this di¤erence is not signi�cant, maybe because of the

low number of ambiguity-loving subjects in our sample. Notice that all ambiguity-neutral

subjects ful�lling Proposition 5 also ful�ll Proposition 6.

Furthermore, we �nd signi�cant di¤erences both by sign of the ambiguity attitude

and by treatment. About the former, we �nd that the percentage of ambiguity-loving

subjects complying with both propositions is again signi�cantly lower than the proportion

of ambiguity-neutral ones (P-value = 0:038). About the latter, we have that (as for

Proposition 5) the percentage of subjects complying with both propositions is signi�cantly

higher in the Binomial (P-value = 0:038) and in the Unknown (P-value = 0:018) than

in the Uniform treatment. It is particularly striking that in the Unknown treatment all

subjects satisfying Proposition 5 satisfy also Proposition 6, both w.r.t to CE(L6) and w.r.t.

CE(L7): in fact, percentages of compliance with the theoretical predictions are the same

in Figure 3 and in Figure 5, whatever the sign of the ambiguity attitude. One more time,

compliance with the whole set of our theoretical predictions is uncorrelated with subject�s

CARA or CRRA index:35

Figure 5. Percentage of subjects satisfying (5), (6) and (7), by treatment and ambiguity attitude.

[Note: Relations (5), (6) and (7) refer respectively to ambiguity-averse, ambiguity-neutral and

ambiguity-loving subjects.]

35P-value = 0:838 for CARA, P-value = 0:765 for CRRA.
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Finally, let us analyze subject�s behavior in the only two tasks for which we do not

have a sharp theoretical prediction. We refer here to tasks 5 and 8 for ambiguity-averse

subjects and to tasks 5 and 9 for ambiguity-loving ones. From relation (6) we know that

in the limit case of smooth ambiguity-neutrality, we must have CE(L8) > CE(L5) and

CE(L5) > CE(L9). Therefore, in Figure 6 we classify as �Low�the ambiguity attitude

for those ambiguity-averse subjects and for those ambiguity-loving ones who behave as the

ambiguity-neutral ones, respectively in tasks 5 and 8 and in tasks 5 and 9. �Medium�and

�High�ambiguity attitude are classi�ed accordingly, that is a subject is highly-ambiguity-

averse if CE(L8) < CE(L5) and highly-ambiguity-loving if CE(L5) < CE(L9).

Figure 6. Disentangle of Low, Medium and High ambiguity aversion w.r.t.

CE(L8) R CE(L5) and ambiguity proneness w.r.t. CE(L5) R CE(L9).

Surprisingly enough, we �nd the same percentage of highly-ambiguity-averse (10/45) and of

highly-ambiguity-loving (4/18) subjects in our sample. Subjects in the former group prefer

to know with certainty the composition of the small urn (task 5) rather than knowing only

that the worst scenarii are implausible (task 8). Specularly, subjects in the latter group

prefer to know only that the best scenarii are implausible (task 9) rather than knowing

with certainty the composition of the small urn (task 5). Notice that neither the sign

of CE(L8) � CE(L5) for ambiguity-averse subjects nor the sign of CE(L5) � CE(L9)
for ambiguity-loving ones is correlated with any of the explanatory variables introduced

above (treatment, CARA ordering, CRRA ordering, lottery chosen in task 4, guess on the

winning balls respectively in task 8 and in task 9).

The e¤ects of all these variables are not signi�cant at all, neither in the univariate analy-

sis considering each control singularly, nor in the multivariate regressions. The only signi�-

cant result that we �nd is actually quite counterintuitive. We �nd that CE(L8)�CE(L5) >
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0 depends positively on strong choice-ambiguity-aversion (i.e. j10 � j4). This would

lead to conclude that strongly-choice-ambiguity-averse subjects are not so strongly-value-

ambiguity-averse (CE(L6) < CE(L5)), thereby explaining why the above found correlation

between strong choice-ambiguity-attitude and strong value-ambiguity-attitude, although

positive and signi�cant, is not so high.

As anticipated at the end of section 3, the combination of Proposition 7 and Corollary 9

suggests a possible treatment e¤ect on the percentage of ambiguity-averse subjects showing

CE(L5) � CE(L8) and on the percentage of ambiguity-loving subjects showing CE(L9) �
CE(L5). This prediction relies on the assumption of a similar distribution of risk attitude

among the three treatments, that we have shown is satis�ed in section 4.1. Indeed, our

prediction on the treatment e¤ect over the size of the ambiguity attitude is veri�ed. The

percentage of medium and highly-ambiguity-averse subjects is lower in the Binomial (31%,

4/13) than in the Uniform (60%, 9/15) and in the Unknown treatment (47%, 8/17), with

the di¤erence being almost signi�cant between the Binomial and the Uniform (P-value

= 0:131). Specularly, the percentage of medium- and highly-ambiguity-loving subjects is

lower in the Binomial (40%, 2/5) than in the Uniform (67%, 6/9) and in the Unknown

treatment (50%, 2/4).

4.4 Treatment E¤ects over beliefs and certainty equivalents

Let us conclude our analysis of the experimental results through a quick look at possible

treatment e¤ects over the certainty equivalents and over the guess of winning balls in tasks

6-9.

Corollary 9 states that CE(Lt) for t = 6; :::; 9 should be higher in the Binomial than in

the Uniform and in the Unknown treatment. If the subject�s guess on winning balls in task

t would be correlated with CE(Lt) for t = 6; :::; 9, then we should �nd that also this guess

should be higher in the Binomial treatment. Now, it is true that our experimental design

is between-subject, hence we cannot state whether and how a subject changes her certainty

equivalent (and her guess) according to the way in which at the beginning of task 6 the

unknown small urn is generated. However, under the assumption that the distribution of

risk attitudes and of ambiguity attitudes is not too di¤erent among treatments �that is

what we have shown respectively in section 4.1 and in section 4.2 �we can look at possible

di¤erences among treatments in the distribution of certainty equivalents and of guesses in

tasks 6-9.

In Figure 7 we report the distribution of subjects�guess on the number of winning balls

in tasks 6-9 disentangled by treatment. The graphs by treatment seem to suggest that

the distribution of guesses in the Unknown treatment is close to the one in the Binomial

treatment and both are quite di¤erent from the one in the Uniform treatment. This result
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is in line with the principle of insu¢ cient reason, that should lead a subject in the Binomial

and in the Unknown treatment to provide a guess equal to 5 in tasks 6 and 7, between 6

and 7 in task 8, and between 3 and 4 in task 9. Conversely, in the Uniform treatment, all

guesses should be equivalent: any guess over a scenario that is plausible in a speci�c task

is justi�able.

However, we �nd that the distribution of subject�s guess in task t is not signi�cantly

di¤erent among treatments, for t = 6; 8; 9:36 Our intuition is instead right in task 7. Ac-

cording to the Kruskal-Wallis test on the equality in distribution of guesses by treatment,

we can reject the null hypothesis at a 10% level (P-value = 0:082). More precisely, accord-

ing to the Kolmogorov-Smirnov equality-of-distributions test, there is not equality in the

distribution of guesses between the Binomial and the Uniform treatment (P-value = 0:003)

and between the Unknown and the Uniform treatment (P-value = 0:016). In this speci�c

task it seems that subjects in the Unknown treatment state similar guesses to those of

subjects in the Binomial one.
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Figure 7. Distribution of subjects�guess on the number of winning balls in tasks 6-9

by treatment.

36According to the Kruskal-Wallis test on the equality in distribution of guesses by treatment, we cannot
reject the null hypothesis (respectively for task 6, 8, 9, P-value: 0:739, 0:375, 0:175). The Kolmogorov-
Smirnov equality-of-distributions test with a pairwise comparison between treatments con�rms this result.
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Let us now focus on the relation between certainty equivalents and subject�s guesses.

We �nd that, overall, the former are never correlated with the latter in tasks 6-9 within

the same task.37

In general, certainty equivalents in task t (CE(Lt)) are negatively correlated with the

CARA and/or with the CRRA ordering (recall that the ordering index increases with risk

aversion). This is reasonable: as shown above, the subject�s certainty equivalent elicited

in task 5 (and in the following four tasks) rely on the lottery chosen in task 4. This choice

also depends on the CARA or the CRRA ordering elicited in tasks 1-4 (we have seen in

section 4.2 that it in�uences also the sign of the ambiguity attitude). Moreover, in order to

further investigate the link between certainty equivalent and risk aversion, we consider the

lottery chosen in task 4 (lj44 ) and its relation with the �normalized�values of the certainty

equivalents, i.e. their index in tasks 6-9, with CE(Lt) = xj44 being assigned index 1 and

CE(Lt) = xj44 being assigned index 11.38 We report in Figure E in the Appendix the

�normalized�values of CE(Lt) for t = 6; :::; 9.

Once we normalize CE(Lt), we �nd that they are still correlated with the risk-attitude

index. However, while the relation between risk aversion and CE(L6); CE(L7) and CE(L8)

is negative, CE(L9) shows instead a positive relation with risk aversion. The last result

can be referred to the positive correlation between risk aversion and ambiguity proneness

highlighted in section 4.2.

Further, as long as the distribution of the second-order probabilities is symmetric around

� = 5 (tasks 6 and 7), the normalized certainty equivalents are correlated with the guesses

in the same task. We do not �nd such a correlation in tasks 8 and 9.

A strong regularity is that by regressing either CE(Lt) or its normalized version over

the guess in the same task, the index of risk attitude and the treatment, we do not �nd

signi�cant treatment e¤ects, for any t = 6; 7; 8; 9.39

As one can notice from Figure E, the di¤erences among treatments in the distribution

of normalized CE(Lt) are not statistically signi�cant for every t = 6; :::; 9. In addition,

the sign of all di¤erences CE(Lt+1) � CE(Lt) for t = 5; 6; 7 and CE(Lt+2) � CE(Lt) for
t = 6; 7 do not depend on the treatment.40

37However, we �nd that CE(L6) is positively correlated (coe¤. = 0:35) with the guess in task 6 only
in the Uniform treatment (P-value = 0:037). We also �nd that CE(L9) is positively correlated (coe¤.
= 0:36) with the guess in task 9 only in the Binomial treatment (P-value = 0:035).
38In task 5-9 we allow each subject to choose always among 11 possible selling prices. Therefore, for

every t = 5; 6; :::; 9 , we can always assign index 1 to CE(Lt) = x
j4
4 , index 11 to CE(Lt) = x

j4
4 and indexing

the internal CE(Lt) accordingly. See footnote 7.
39A relevant exception is again represented by the (normalized) certainty equivalent in task 7. Controlling

for CARA and treatment and taking the Binomial as reference treatment, we �nd that the Unknown
treatment has a positive and signi�cant e¤ect (P-value = 0:059) over CE(L7). Controlling for CRRA and
treatment, we �nd that also the Uniform treatment has a positive and signi�cant e¤ect (P-value = 0:041)
over CE(L7).
40To be more precise, only in the regressions for CE(L7)� CE(L6) > 0 (CE normalized) we �nd that
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All this would lead to conclude that, despite some di¤erences in the distribution of

guesses among treatments, we do not �nd any treatment e¤ect on the distribution of

certainty equivalents in the ambiguous tasks. Therefore, the only signi�cant di¤erence

among treatments is the one shown at the beginning of section 4.2 about the distribution

of (CE(L6)�CE(L5)) if combined with the distribution of (j10�j4), i.e. the two conditions
leading to state a subject�s coherent-ambiguity attitude.

Conclusion

Our work shows how to identify two features of smooth ambiguity attitude à la KMM :

value-ambiguity attitude and choice-ambiguity attitude. A value-ambiguity-averse subject

values an ambiguous lottery less than its unambiguous equivalent with the same mean

probabilities. A choice-ambiguity-averse subject always reduces her demand for the risky

asset when the distribution of outcomes becomes ambiguous.

We elicit these two attitudes in a series of experimental decision tasks designed in order

to match the main insights of KMM model. Our decision tasks are parameterized so

that a value-ambiguity averse (loving) subject should not necessarily behave as a choice-

ambiguity averse (loving) one, i.e. showing coherent-ambiguity aversion. Indeed, we �nd

that 88% of our subjects (92/105) show a coherent-ambiguity attitude, independent of

the treatment, i.e. of the distribution of second-order probabilities (binomial, uniform or

unknown). This result clearly indicates an equivalence between value-ambiguity aversion

and choice-ambiguity aversion in subjects participating in our experiment. However, we do

not �nd the same equivalence between strong value-ambiguity aversion and strong choice-

ambiguity aversion.

We believe that the most important contribution of the paper concerns the theoretical

analysis of those ambiguous tasks designed with the aim of testing KMM predictive power.

In section 3 we provide two kinds of theoretical predictions: those holding independent of

subject�s (coherent)-ambiguity attitude and those stating speci�c behavior in correspon-

dence of a speci�c attitude to (coherent)-ambiguity. We �nd that the former are satis�ed

by more than 90% of our classi�ed subjects (84/92), while the latter comply with behav-

ior of more than 80% of classi�ed subjects (74/92). Overall, a large number of classi�ed

subjects (76%, 70/92) satisfy all our theoretically derived constraints. This extremely high

compliance of subjects�behavior to KMM indirectly provides support both to our oper-

ational de�nition of (coherent)-ambiguity attitude and to the fact that our experimental

design may be a correct representation of the main features of KMM in the laboratory.

the Uniform treatment increases signi�cantly the probability that CE(L7)� CE(L6) > 0 with respect to
the Binomial treatment (P-value = 0:040). This result holds also when controlling for the di¤erence in
the guesses about the number of winning balls in task 7 and task 6.
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We do not �nd any signi�cant correlation between compliance to KMM and gender, age,

level of education and degree of risk attitude.

A secondary contribution of the paper concerns the analysis of possible relations be-

tween risk attitude and ambiguity attitude. We elicit risk attitude through the same two

methods �portfolio choice and BDM �used to elicit the two features �respectively, choice

and value �of coherent-ambiguity attitude. Risk-aversion orderings provided by the two

methods are correlated. Relying on the two risk-aversion orderings built through the �rst

method, we �nd that more than 1/2 of subjects may be classi�ed as constant-absolute-

risk-averse and almost 3/4 may be constant-relative-risk-averse. Under both speci�cations

of risk aversion, we �nd a negative correlation between the degree of risk aversion elicited

in the unambiguous tasks and the fact of showing coherent-ambiguity aversion in the am-

biguous tasks. This correlation is signi�cant if we consider only choice-ambiguity-averse

subjects. More speci�cally, in our sample many coherent-ambiguity-averse subjects have

a low degree of risk aversion, while the most part of coherent-ambiguity-loving subjects

have a high degree of risk aversion (77% of the coherent-ambiguity-loving subjects are in

the last two quintiles of the CARA index distribution and 73% are in the last two quintiles

of the CRRA index distribution). We have an explanation for this apparently surprising

result. In our design a subject is elicited her (coherent)-ambiguity attitude in correspon-

dence to a lottery that she has previously chosen among a set of lotteries having di¤erent

levels of riskiness. We �nd that the riskier the lottery chosen by the subject when there

was no uncertainty about �rst-order probabilities, the greater the decrease in her value

for this lottery when �rst-order probabilities become ambiguous. The positive correlation

between the riskiness of the lottery assigned in the most ambiguous task and both value-

ambiguity aversion and choice-ambiguity aversion that we �nd in the data supports this

explanation. However, we found this result through a between-subject design: we ask a

subject to state her certainty equivalent under di¤erent levels of ambiguity of the setting,

but always facing the same pair of (second-stage) lottery-outcomes. One may test whether

the e¤ect that we �nd between-subjects holds also when the same subject is asked to state

her attitude towards ambiguity for di¤erent pairs of lottery-outcomes. We leave this for

further research.

The third contribution of the paper concerns the analysis of subjects�attitudes and de-

cisions in ambiguous tasks with speci�c distributions of second-order probabilities. We �nd

that the percentage of coherently-ambiguity-averse subjects is lower (though not signi�-

cantly) in the binomial than in the uniform treatment. This was easily predictable, given

that the latter distribution of the second-order probabilities is a mean-preserving spread

of the former. We also verify the prediction of a signi�cantly lower percentage of coherent-

ambiguity-averse subjects in the binomial than in the unknown treatment (the latter is

intrinsically more ambiguous than the former). What is more surprising is the absence
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of a signi�cant di¤erence in the percentage of coherent-ambiguity averse subjects between

the uniform and the ambiguous treatment. This would lead to validate the assumption

that subjective second-order probabilities may be thought as uniformly distributed when

the subject is not given any information about the composition of the unknown urn. This

conclusion is even stronger if one thinks at the fact that in our experiment ambiguity in

the unknown treatment has been generated through a process similar to the one used in

the binomial treatment. It seems that this process has in�uenced subjects�guess about

the number of �winning�balls in the unknown urn: the distribution of this guess in the

unknown treatment is closer to the one in the binomial than in the uniform treatment

in one ambiguous task, with no signi�cant di¤erences in the remaining ambiguous tasks.

Despite that, it seems that the level of a subject�s con�dence about her guess is completely

di¤erent when an objective probability distribution is given with respect to the case where

no information is provided about objective second-order probabilities. This may repre-

sent a further justi�cation to the signi�cant di¤erence found between the percentage of

ambiguity-averse subjects in the binomial and in the unknown treatment.
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Appendix

Appendix A

Figure A. Description of the procedure followed to generate of the composition of the 10-ball

small urn used to perform task 6.
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Appendix B

For each lottery ljt = (xjt ; 0:5;x
j
t ; 0:5) in Table 2, we have expected value and standard

deviation respectively equal to EV = 0:5(x + x) and � = 0:5(x � x). The two lottery-
outcomes can be expressed in terms of the two moments, i.e. x = EV +� and x = EV ��.
In Table B, we classify the set of lotteries in tasks 1-4 in terms of the triple

�
EV; �; d�

dEV

�
,

where the ratio d�
dEV

is the same for all lotteries in the same task. In particular, it is d�
dEV

= 3

in tasks 1 and 3 and d�
dEV

= 5 in tasks 2 and 4.

Task t = 1 Task t = 2 Task t = 3 Task t = 4

Lottery EV j1 �j1
d�j1
dEV j1

EV j2 �j2
d�j2
dEV j2

EV j3 �j3
d�j3
dEV j3

EV j4 �j4
d�j4
dEV j4

j = A 9.0 3.0 3.0 8.5 2.5 5.0 17.0 3.0 3.0 16.5 2.5 5.0

j = B 10.0 6.0 3.0 9.0 5.0 5.0 18.0 6.0 3.0 17.0 5.0 5.0

j = C 11.0 9.0 3.0 9.5 7.5 5.0 19.0 9.0 3.0 18.0 10.0 5.0

j = D 12.0 12.0 3.0 10.0 10.0 5.0 20.0 12.0 3.0 19.0 15.0 5.0

Table B. Risk Attitude Elicitation method: reinterpretation in terms of EV , �, and (d�=dEV ).
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Appendix C
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Figure C. Distribution of CARA index and CRRA index by treatment.
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Appendix D
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Figure D. Distribution of subjects�guess on the number of winning balls in tasks 6-9

by ambiguity attitude.
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Appendix E
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Figure E. Distribution of �normalized�CE(Lt) in tasks 6-9 by treatment.
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