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1 Introduction

The main purpose of this paper is to introduce a general model of a random electorate of N

voters described by their preferences over two alternatives. Our model will admit, as special

cases, the two most popular models in the literature on power measurement. The �rst, one

called Impartial Culture (IC) is the basis of the celebrated Banzhaf power index (Banzhaf

(1965, 1966, 1968)). It assumes that the preferences of the voters over the two alternatives

are independent and equiprobable: correlation among the preferences of the voters is totally

precluded. The second one, called Impartial Anonymous Culture (IAC) which has been pio-

neered independently in voting theory by Chamberlain and Rothschild (1981), Fishburn and

Gehrlein (1976) and Kuga and Nagatani (1974) is the basis (as forcefully demonstrated by

Stra�n (1977, 1988)) of another celebrated power index due to Shapley and Shubik (Shap-

ley and Shubik (1954), Stra�n (1977, 1988)). The IAC model introduces correlation among

voters and the speci�c distributional assumption which is considered implies that the real

random variable de�ned as the number of voters supporting the �rst alternative is uniform

over all feasible integers. From a computational perspective, this distributional property of

the IAC model makes it very handy as compared to some other models and probably explains

its success. Further, as noted convincingly by Chamberlain and Rothschild, the IAC model

is more attractive than the IC model in the sense that the electoral predictions of the IAC

models don't display a discontinuity in the neighborhood of the outcome of a tied election.

Given a random electorate �, the power of a voter is de�ned as the probability of be-

ing pivotal1 i.e. as the probability of the event2 \There is a majority in favor of the �rst

alternative i� that voter supports that alternative". Given that we will focus on a sym-

metric simple game (the ordinary majority game), if the model of random electorate � is

fully symmetric (i.e. if the preferences are interchangeable), then all voters will have the

same power denoted Piv(�;N). Both the IC and the IAC models are symmetric. For the

IC model, this de�nes the Banzhaf power index Piv(IC;N) while for the IAC model this

de�nes the Shapley-Shubik power index Piv(IAC;N). It is well known that Piv(IC;N) and

Piv(IAC;N) are respectively of order 1p
N
and 1

N
.

The main purpose of this paper is to continue the exploration of the implications of cor-

relation on the asymptotic behavior of the power index. Precisely, we will consider a general

family of models of random electorate � and study the asymptotic behavior of Piv(�;N)

1Good and Mayer (1975) refers to this as the e�cacy of a vote.
2Of course, given a random electorate model (in particular in the case where there are more than two

alternatives) we can calculate the probability of many other events and it becomes important to develop
analytical representations of these probabilities (Huang and Chua (2000)).
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with respect to N . Our motivation to do so is to depart from the IAC model which assumes

that the correlation is the same for all pairs of voters in the population. It is likely that the

intensity of the correlation between the votes of i and j will depend upon some character-

istics of i and j suggesting that the correlation may vary from one pair to another. Most

of the paper will however be based on a particular pattern of heterogeneity. Precisely, we

will assume that the voters are partitioned into groups and that : correlation is positive and

identical for any pair of voters belonging to the same group and null for any pair of voters

belonging to two di�erent groups. We will assume that within each group the correlation is

de�ned as in the IAC model. This gives the IC and the IAC models as special cases : the

IC model emerges when all the groups are singletons and the IAC model arises when there

is a unique group which is then the entire population.

While particular, this model is general enough to cover many situations. We will o�er a

separate treatment of two polar cases. The �rst case is the case where there is a bound on

the size of the groups; this bound does not depend upon the size of the population. This

assumption is well suited to capture local interactions (within the family or the workplace for

instance). The second case is the case where there is a �xed number of groups; this means

that the size of the groups grows with the size of the population. This assumption is well

suited to describe large scale interactions (special interest groups, geographical territories,

electoral districts, countries if the population under scrutiny is multinational,...). After

o�ering some general results, we proceed to the study of these two cases. The analysis of the

two cases uses di�erent techniques. When � describes the local case, we conjecture that the

use of some versions of the Central Limit Theorem allows to estimate Piv(�;N). Under the

presumption that this local version holds, we show that it is of order 1p
N
and we calculate

explicitly Lim
N!1

p
NPiv(�;N). In contrast, when � describes the global case, our estimation

of Piv(�;N) is based on di�erent mathematical techniques. We approach the problem quite

di�erently using combinatorial tools which amounts to study some polynomials known as

Ehrhart's polynomials and the the volumes of some polytopes. We show that Piv(�;N)

is of order 1
N
and we calculate explicitly Lim

N!1
NPiv(�;N) in some speci�c cases. We also

show through a sample of examples how our approach extends to situations where there is

no a priori partition of the voters into well de�ned groups but instead more complicated

correlation structures. We sketch the extension of our arguments to this general model.

Related Literature

We have already alluded to the pioneering contributions of Chamberlain and Rothschild,

Fishburn and Gehrlein and Kuga and Nagatani. Our paper intersects di�erent branches of

the literature. On one hand, it aims to contribute to the systematic study of the implications
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of correlations on power measurement. Knowing the exact magnitude of the probability of

being pivotal is interesting for itself but this information is also essential for the design

of the optimal weights of representatives, as argued convincingly by Barbera and Jackson

(2006). They discuss a block model which is quite similar to the model of partitions which

is considered here except for the fact that instead of IAC, they assume perfect correlation

within each block/group.

On the other hand, our model aims also to be a �rst step towards the analysis of the

implications of correlations in a general model of random electorate. The general model of

random electorate pioneered by Weber (1978, 1995) assumes independence but considers an

arbitrary �nite number of alternatives. Similarly, the model of Myerson and Weber (1993)

and the general Poisson model developed by Myerson in a series of paper (1998, 2000)

postulate independence. They both study the asymptotic properties of arbitrary voting

rules when the strategic behavior of voters is taken into consideration. In our world of two

alternatives, the di�culty attached to strategic voting disappears, which makes the analysis

more simple. The probability of being pivotal between any two alternatives plays a critical

role in their analysis of strategic voting.

2 The Model of a Random Electorate

A random electorate is a triple fN ; X; �g where N is a �nite set of individuals (voters,...),

X is a �nite set of alternatives (candidates, parties,...) and � is a probability distribution

on PN where P is the set of linear orders over X. In the case where X consists of two

alternatives say 0 and 1, the set P contains two preferences which will be coded 0 and 1 and
PN = f0; 1gN where N denotes the cardinality of N i.e. the number of voters. The �rst

popular random electorate model, called Impartial Culture (IC), is de�ned by � (P ) = 1
2N

for all pro�les of preferences P = (P1; P2; :::; PN) in f0; 1gN . The IC model assumes that
the preferences of the voters are independent Bernoulli random variables with a parameter

p equal to 1
2
(i.e. the electorate is not biased towards a particular candidate). In contrast,

the second popular random electorate model, called Impartial Anonymous Culture (IAC) is

de�ned by � (P ) = 1

(N+1)(Nk)
for all pro�les of preferences P = (P1; P2; :::; PN) in f0; 1gN

such that #N0 (P ) = k where N0 (P ) � fi 2 N : Pi = 0g. In the IAC model, the events
Ek �

n
P 2 f0; 1gN : # fi 2 N : Pi = 0g = k

o
for k = 0; 1; :::; N are equally likely

A social choice mechanism is a mapping 	 from f0; 1gN into [0; 1] where 	(P ) denotes
the probability of choosing candidate 0 when the pro�le of preferences is P. In this binary
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setting3, we will not make any distinction between preferences and behavior. There is no

room for strategic behavior here: if we interpret 	 as a direct revelation game, then voting

sincerely according to his/her preference is the unique dominant strategy. Further, we will

focus4 on the standard majority mechanism Maj de�ned as follows:

Maj(P ) =

8<:
0 if #N0 (P ) < N

2

1 if #N0 (P ) > N
2

1
2
if #N0 (P ) = N

2

If N is odd, the third eventuality never arises and the mechanism is deterministic. If

N is even, the third alternative arises when the electorate is split into two groups of equal

size and the tie is broken fairly. The whole paper is about evaluating the probability of an

event. We will say that voter i 2 N is pivotal if either #N0 (P�i) =
N�1
2
when N is odd

or #N0 (P�i) =
N
2
or #N0 (P�i) =

N�2
2
when N is even. We denote by Ei this event and

Piv(�; i) is the probability of Ei i.e. Piv(i) = � (Ei). There is a slight di�erence between

the even and odd cases. In the odd case, the preference of i will be the social choice when i

is pivotal. In contrast, in the even case, if i is pivotal and say on the 0 side, his preference

will be for sure the social preference if #N0 (P�i) =
N
2
and will be the social preference with

probability 1
2
if #N0 (P�i) =

N�2
2
. Up to this quali�cation, the two cases will be analyzed

with similar methods.

Why should be interested in this event ? One strand of motivations has its roots in the

power measurement literature where a lot of attention is paid to the fact of being in
uential:

a player is de�ned as being powerful or in
uential if the probability that he is pivotal in the

social choice mechanism is large. Scholars working in this area have calculated or estimated

this probability for a large class of simple games including weighted majority games and

compound games. A second strand of motivations, which does not apply here, appears when

X contains more than two alternatives. With at least three alternatives any non trivial social

mechanism will involve strategic voting. To determine his optimal strategic behavior a voter

must estimate the probability of being pivotal for each possible pair of candidates. A voting

equilibrium according to Myerson and Weber (1993) is a pair consisting of a pro�le of voting

behaviors and a pro�le of pivot probabilities such that the voting behavioral responses are

consistent with these probabilities and the beliefs about pivotal events are consistent with

the voting behavior.

3In this binary setting, a social choice mechanism is de�ned alternatively by a simple game (Taylor and
Zwicker (1999)). A simple game is a monotonic family of coalitions W . The mechanism is then de�ned as
follows: 	(P ) = 0 i� fi 2 N : Pi = 0g 2 W.

4In the last section, we will outline the di�culties in generalizing our formula to arbitrary simple games
like those considered in the power measurement literature.
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When the simple game is symmetric, if the probability measure is symmetric, then

Piv(�; i) does not depend on i and will be denoted shortly by Piv (�). Piv (�) has been

calculated for the two popular models of random electorate which have just been de�ned.

For the IC model, Piv (�) =
�
N�1
N�1
2

�
1

2N�1 when N is odd and Piv (�) =
�
N�1
N�2
2

�
1

2N�1 when

N is even. For the IAC model, Piv (�) = 1
N
for both cases. Using Strirling's formula,

N ! '
p
2�N

�
N
e

�N
, we deduce that when N gets large Piv (IC) behaves like

q
2
�N
' 0:797 88p

N
.

In this paper, we assume that the electorateN is partitioned intoK groupsN1;N2; :::;NK

i.e. [1�k�KNk = N and Nk \ Nk0 = ? for all k; k0 such that k 6= k0. We will denote by

Nk the size of group k:
PK

k=1Nk = N and without loss of generality we assume that

N1 � N2 � ::: � NK .We consider the following random electorate model.

We assume that the preferences of any voter i from group Nk is the realization of a

Bernoulli random variable with parameter pk and that conditional on pk, the preferences

of any two voters in that group are independent. We assume that the coordinates of the

vector (p1; p2; :::; pK) are the realizations of K independent random variables with a uniform

distribution on [0; 1]. Let i be an arbitrary voter in Nk. Consider �rst the case where N is

odd. We obtain:

Piv(�; k) =
X

�(N�12 ;N1;:::;Nk�1;Nk�1;Nk+1;:::;NK)

�
Nk � 1
xk

��Z 1

0

pxkl (1� pk))
Nk�xk�1 dpk

�

�
"Y
l 6=k

�
Nl
xl

��Z 1

0

pxll (1� pl))
Nl�xl�1 dpl

�#

where � ( M;R1; :::; Rk; :::; RK) denotes the set of decompositions of the integer M into

K ordered integers under the constraint that the kth integer does not exceed Rk. By using

the formula: Z 1

0

pt�1 (1� p))n�t dp =
(t� 1)!(n� t)!

n!

we deduce:

Piv(�; k) =
X

�(N�12 ;N1;:::;Nk�1;Nk�1;Nk+1;:::;NK)

1

Nk

 Y
l 6=k

1

Nl + 1

!
=

�

�
N � 1
2

; N1; :::; Nk�1; Nk � 1; Nk+1; :::; NK

�
1

Nk

 Y
l 6=k

1

Nl + 1

!
(1:a)
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where � (M;R1; :::; Rk; :::; RK) denotes the cardinality of � ( M;R1; :::; Rk; :::; RK) i.e.

the number of decompositions of the integer M into K ordered integers under the constraint

that the kth integer does not exceed Rk.

When N is even, we obtain along the same lines:

2Piv(�; k) =
X

�(N�22 ;N1;:::;Nk�1;Nk�1;Nk+1;:::;NK)

�
Nk � 1
xk

��Z 1

0

pxkl (1� pk))
Nk�xk�1 dpk

�

�
"Y
l 6=k

�
Nl
xl

��Z 1

0

pxll (1� pl))
Nl�xl�1 dpl

�#

+
X

�(N2 ;N1;:::;Nk�1;Nk�1;Nk+1;:::;NK)

�
Nk � 1
xk

��Z 1

0

pxkl (1� pk))
Nk�xk�1 dpk

�

�
"Y
l 6=k

�
Nl
xl

��Z 1

0

pxll (1� pl))
Nl�xl�1 dpl

�#

and therefore:

Piv(�; k) =
1

2
[�

�
N � 2
2

; N1; :::; Nk�1; Nk � 1; Nk+1; :::; NK

�

+�

�
N

2
; N1; :::; Nk�1; Nk � 1; Nk+1; :::; NK

�
]
1

Nk

 Y
l 6=k

1

Nl + 1

!

= �

�
N � 2
2

; N1; :::; Nk�1; Nk � 1; Nk+1; :::; NK

�
1

Nk

 Y
l 6=k

1

Nl + 1

!
(1:b)

as �
�
N�2
2
; N1; :::; Nk�1; Nk � 1; Nk+1; :::; NK

�
= �

�
N
2
; N1; :::; Nk�1; Nk � 1; Nk+1; :::; NK

�
.

The factor 1
2
corresponds to the fact that when i is pivotal, there is only a chance of 1

2
to

be e�ective i.e. a chance of 1
2
that the tie is broken in his favor. The interest of the two

formulas above lies in the fact that the calculation of the pivot probabilities is equivalent

to a well de�ned combinatorial problem which amounts to count the number of possible

decompositions of a given integer into K integers under some constraints. Note however

that there are at most K cells i.e. K non zero integers in the decomposition. This means
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that the problem is di�erent from the problem of counting the number of partitions of a

given integer. Further, for each cell, there is an upper bound on the integer for that cell.

Let us check quickly that the IC and IAC models correspond to two extreme special

cases of this general framework. The IC value is attached to the case where K = N i.e. the

partition structure consists of N singletons:

Piv(IC; k) = �

�
N � 1
2

; 1; :::; 1; Nk � 1; 1; :::; 1
�
1

2N
=

�
N � 1
N�1
2

�
1

2N�1

since �
�
N�1
2
; 1; :::; 1; 0; 1; :::; 1

�
=
�
N�1
N�1
2

�
. The IAC value is attached to the case where

K = 1 i.e. the partition structure consists of a single set: the set N :

Piv(IAC; k) = �

�
N � 1
2

; N � 1
�
1

N
=
1

N

since �
�
N�1
2
; N � 1

�
= 1:

An alternative approach to the counting problem is based on probability. Let Xik denote

the Bernoulli random variable describing the preference of voter i in group k and let Sk

and S denote respectively the sums
P

i2Nk Xik and
PK

k=1

P
i2Nk Xik =

PK
k=1 Sk. With these

notations, we can express the pivot probabilities as follows:

Piv(�; k) = �

�
S�i =

N � 1
2

�
when N is odd and

Piv(�; k) =
1

2

�
�

�
S�i =

N � 2
2

�
+ �

�
S�i =

N

2

��
when N is even

This probabilistic approach will be very useful when we will focus on the asymptotic

behavior of Piv(�; k) when N tends to in�nity. We will have to be very careful in running

asymptotic arguments about the behavior of the partition as N tends to in�nity. Note that

all the random variables Xik are symmetric in the sense that Pr(Xik = 0) = Pr(Xik = 1) =
1
2

since Pr(Xik = 0) =
R 1
0
pdp = 1

2
. We have E [Xik] =

R 1
0
pdp = 1

2
and V ar [Xik] =

1
4
. These

variables do not need to be independent. Consider two random variables Xik and Xjk i.e.

the random variables describing the voting behavior of two voters from group k. We have:

Pr(Xik = 0; Xjk = 0) =

Z 1

0

p2dp =
1

3
>
1

4

The two variables are positively correlated: Cov(XiR; XjR) =
1
3
� 1

4
= 1

12
; the coe�cient

of correlation � is then equal to 1
3
.
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3 The case of Many Small Groups

In this section, we will focus on the case where there is an exogenous upper bound S on the

size of the groups in the partition (N1;N2; :::;NK). This implies that as N gets large, then

the number of groups increases.

To motivate the general result which will be presented hereafter, it is instructive to

consider the case where S = 2. In any such partition structure , the groups are either

singletons or pairs. We can think of this partition as describing a society where there are

singles and couples but no other family types. Consider the case where N is even and all

the groups are exactly of size 2. From (1.b), we deduce that:

Piv(�; k) = Piv(�) = �

�
N � 2
2

; 1; 2; :::; 2; 2

�
1

2

�
1

3

�N�2
2

:

We can check that:5

�

�
N � 2
2

; 1; 2; :::; 2; 2

�
=

bN�24 cX
k=0

�
N�2
2

�
!

(k!)2
��

N�2
2
� 2k

�
!
�  N

2
� k

k + 1

!
:

Indeed, counting how many decompositions of N�2
2
into N

2
integers chosen in f0; 1; 2g

amounts �rst to choose how many pairs k we choose among N�2
2
. The number of possibilities

is
(N�22 )!

(k!)((N�22 �k)!)
. This value of k cannot exceed

�
N�2
4

�
. To reach the integer N�2

2
, we need

N�2
2
� 2k singletons which can be chosen among N

2
� k. The number of possibilities is

(N2 �k)!
(N�22 �2k)!(k+1)!

=
(N2 �1�k)!
(N�22 �2k)!(k)!

N
2
�k

k+1
. After collecting the terms, we obtain the expression

reported above.

Calculating the above sum is not a straightforward combinatorial exercise and we will

mostly focus on the asymptotic behavior of Piv(�).

We conjecture that:

Lim
N!1

	(N) �
p
N

0B@b
N�2
4 cX
k=0

�
N�2
2

�
!

(k!)2
��

N�2
2
� 2k

�
!
�
1CA� 1

2

�
1

3

�N�2
2

exists

The following table contains some numerical values6 of 	(N) which supports this con-

jecture:

5bxc denotes the integer part of x.
6We show in appendix 4 that the largest value in 	(N) behaves as

p
3

2�m .
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N 102 202 1002 10002 100002
	(N) 0.695 25 0.693 14 0.691 43 0.691 03 0.690 99

Table 1: Values of 	(N)

We now prove a generalized version of this conjecture. To proceed, we use a probabilistic

approach. We assume that all the groups have a size smaller than S and we will be interested

in societies where the set of voters is partitioned into groups of size s where s runs from 1

to S. We will consider societies where N gets inde�nitely large but such that the proportion

of the population in each type of group (described by its size) remains invariant in the

population growth process. We will denote by 
s the proportion of voters in a group of size

s. We assume that 
s = sKs

K
where Ks is an integer for all s = 1; :::; S and K =

PS
s=1 sK

s.

The initial society contains Ks groups of size s. For any integer R, its Rth replica has N

voters where N is de�ned as follows:

N = N(R) = R
SX
s=1

Kss

For all R and all i = 1; 2; :::; N(R), we arrange the random variables XR
i describing the

individual votes in the Rth replica in a triangular array de�ned as follows: the �rst RK1

variables describe the vote of voters in groups of size 1, the next 2RK2 variables describe

the votes of voters in groups of size 2 and so on.

We obtain

�2 (R) � V ar(
NX
i=1

XR
i ) =

NX
i=1

V ar(XR
i ) +

SX
s=1

RKss(s� 1)Cov(XR
i ; X

R
j )

where Cov(XR
i ; X

R
j ) denotes the covariance between when i and j belong to the same

group. We have shown before that:

V ar(XR
i ) =

1

4
for all i = 1; 2; :::; N

Cov(XR
i ; X

R
j ) =

1

12
for all i; j = 1; :::; N if i and j belong to the same group

We obtain:

� (R) =
p
N

0@
vuut1

6
+

1

12
+
1

12

SX
s=2


ss

1A
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A random variable XR
i is of type s if R

Ps�1
l=1 lK

l < i � R
Ps

l=1 lK
l. We pack the sRKs

random variables of type s into RKs random variables
�
ZRks
�
1�k�RKs where Z

R
ks is de�ned as

follows :

ZRks = r i�
ksX

i=(k�1)s+1

1XR
is
= r

This de�nes a new triangular array
�
ZRks
�
1�s�S;1�k�RKs (indexed by R) where the random

variables ZRks are independent. Hereafter, we will refer to Z
R
ks as a random variable of type

s. We note that all random variables are integer valued: the support of a random variable

of type s is f0; 1; :::; sg Let 1 � i � N(R) be a member of a group of type s and for each

value of the row index R, consider the random variable SRi de�ned as follows:

SRi =

N(R)X
j=1;j 6=i

XR
j =

SX
l=1;l 6=s

KlX
k=1

ZRkl +
Ks�1X
k=1

ZRks +WR
i

where WR
i �

Ps
j=2 1XR

js
. The probability that i of type s is pivotal, Piv(�R; s) is equal

to the probability of the event
�
SRi =

N�1
2

	
if N is odd and to half the probability of the

event
�
SRi =

N�2
2

	
[
�
SRi =

N
2

	
if N is even.

We note that the span of the random variables ZRkl for 1 � l � S and 1 � k � K l and

WR
i is equal to 1. Further, the distribution functions of these random variables belong to

a �nite set of cardinality at most S, are not degenerate and occur in�nitely often in the

sequence
��
ZRkl
�
1�l�S;1�k�Kl [

�
WR
i

	�R�1
. Let � > 0:

If N is odd, since E
�
SRi
�
= N�1

2
, we deduce from Petrov's theorem that if R is large

enough: ����� (R)Piv(�R; s)� 1p
2�

���� � �

Similarly, if N is even, since E
�
SRi
�
= N�1

2
, we deduce from Petrov's theorem that if R

is large enough: ������ �SRi �Pr
�
SRi =

N � 2
2

�
� e�

1
8�(R)

p
2�

����� � �

������ �SRi �Pr
�
SRi =

N

2

�
� e�

1
8�(R)

p
2�

����� � �

Since Piv(�R; s) =
Pr(SRi =N�2

2 )+Pr(SRi =
N
2 )

2
, e

� 1
8�(R)p
2�

tends to 1p
2�
and

�(SRi )
�(R)

=
�(R)� 1

12
� s
6

�(R)

tends to 1 when R tends to +1, we deduce that if R is large enough:
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����� (R)Piv(�R; s)� 1p
2�

���� � �:

Proposition 1: Let �R be the random electorate de�ned above. For all s = 1; 2; :::; S

Lim
R!1

p
NPiv(�R; s) =

1�q
1
6
+ 
1

12
+ 1

12

PS
s=2 


ss

�p
2�

:

The random variable SRi = SR�XR
i introduced in the proof of Proposition 1 counts the

number of votes in favor of 1 in the population without individual i. Proposition 1 provides

information on the asymptotic behavior of the probability of the event
�
SRi =

N�1
2

	
which

plays a quite important role as N�1
2
is the �rst moment of SRi :

Proposition 1 provides information on the probability mass of the random variable SR in

the neighborhood of its mean. We could however under the presumption that a version of

the central limit theorem holds in this setting derive more information on the behavior of the

aggregate vote SR. Berks's theorem, reported in Appendix 27, provides useful information on

the asymptotic behavior of SR. It is straightforward to check that conditions (i), (ii), (iii) and

(iv) of Berk's theorem are veri�ed here. Since then
SR�N

2p
�(R)

converges to a unit Gaussian, we

can estimate the probability of the event
SR�N

2p
�(R)

2 [�x; x] for some �xed positive real number
x as �(x)��(�x) = 1�2�(�x): For instance for x = 1:65, �(x)��(�x) = 0:90. therefore
for R large enough the probability of the event

SR�N
2p

�(R)
2 [�x; x] is approximatively equal

to 90%. Equivalently the probability of the event SR

N
2
�
1
2
� 1:65

p
�(R))

N
; 1
2
+ 1:65

p
�(R)

N

�
is close to 90%. Since here,

p
� (R) =

p
N

�q
1
6
+ 
1

12
+ 1

12

PS
s=2 


ss

�
= c

p
N , we deduce

that there is a 90% chance for the percentage of people voting left to be in the intervalh
1
2
� 1:65 cp

N
; 1
2
+ 1:65 cp

N

i
. If N = 27225c2, then with probability almost equal to 90%, the

percentage obtained by the left is in the interval [0:49; 0:51].

Let us illustrate Proposition 1 through a sample of applications. Consider �rst the case

of an electorate where all the groups have the same size s. This electorate is denoted �sR .

In such case we deduce from our result that:

Piv(�sR) '
1p
N
� 2
s

3

2� (2 + s)

7Note that Berk's theorem can accommodate correlation patterns much more general than those covered
by the partitioning model in the sense that correlations need not be uniform within a block.
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The following table lists a sample of values of the probability of being pivotal for a sample

of values of s.

s 1 2 3 4 5 ... 10p
NPiv(�sR) 0.798 0.691 0.618 0.564 0.522 ... 0.399

Table 2: Probability of being pivotal as a function of s

We can also handle mixed situations i.e. random electorates � where the sizes of the

groups di�er across voters. For instance ,when the random electorate � is such and 
1 = 0:2,


2 = 0:3; 
3 = 0:4 and 
4 = 0:1, we obtain : Piv(�R) ' 0:658 85. We could interpret these
groups as family groups : singles, couples without children voting, couples with one children

voting, and so on.

The proof strategy of Proposition 1 based on Petrov's local central lmit theorem has

exploited the fact that the individuals could be packed in a regular way. We could imagine

a more general situation where the individuals could be arranged from left to right in such a

way that two individuals distant from each other by more that some given number m (which

may vary with the size of the population) vote independently. We could proceed as in the

proof of Proposition 1 i.e. pack together m consecutive individual random variables. Even

when m is �xed, we have no guarantee tha the number of distributions in the sequence of

random variables which is constructed through this packing process is �nite and we cannot

therefore appply Petrov's theorem. To handle such more general situations, we need to

appeal to a more general local central limit theorem like, for instance the version proved by

Mc Donald (1979).

4 The Case of Few Large Groups

In this section we consider the polar case of a society divided into a �nite (possibly large)

number of groups. This means that as N gets larger and larger, the number of voters in

each group gets larger and larger. We could apply the probabilistic approach which has been

used in the preceding section. It was using extensively the observation that the sequence

of Bernoulli random variables describing the votes of the citizens was exhibiting a property

of m-dependence where m was independent of the size of the electorate. This approach

cannot be used here as assumption (iv) on the growth of m in Berk's theorem is not satis�ed

when there is a �nite number of groups. To circumvent this di�culty, we will approach the

problem from a combinatorial angle and use the theory of Ehrart's polynomials and some of

13



its developments8.

4.1 Ehrhart theory and Barvinok's algorithm

For �xed values of K, the general problem of computing the number � (M;R1; :::; Rk; :::; RK)

can be phrased as counting the exact number of integer solutions of a system of linear inequal-

ities with integer coe�cients, where the variables are xk (k = 1; :::; K) and the parameters

are M and Rk (k = 1; :::; K). This system is :8>>>>>>>>>><>>>>>>>>>>:

xk � 0 for all k = 1; :::; K

xk � Rk for all k = 1; :::; K

KX
k=1

xk �M

KX
k=1

�xk � �M

There is a well established mathematical theory for performing such a calculation, based

on the use of (parametric) polytopes and Ehrhart polynomials. Lepelley et al. (2008) and

Wilson and Pritchard (2007) were the �rst to introduce these tools in probability calculations

under IAC hypothesis in voting theory. We refer to their papers for more details and we

limit ourself, in this paragraph, to a short presentation of Ehrhart theorem and its exten-

sions. Also, we only sketch the key idea of the algorithm we have used to compute Ehrhart

polynomials9.

Consider a �nite system of linear inequalities with integer coe�cients: Ax � b, where x

is in Rd, A is an m � d integer matrix, b an integer vector with m components and m the

number of independent linear inequalities. Let P be the set of all solutions of this system, P

is called a rational polyhedron. If P is bounded, it is called a rational polytope. An extremal

point of P is called a vertex, and P can be de�ned equivalently as the convex hull of its

vertices. A simple case of parametric polytope is is the dilatation of a rational polytope P

by a positive integer parameter n: nP = fnxjx 2 Pg. Let LP be the function de�ned by
LP(n) = jnP \ Zdj, giving the number of integer points inside the dilated polytope nP. To
describe the general form of this function, we need the two following notions. A rational

8There is a voluminous literature on this topic (Baldoni-Silva and Vergne (1999), Brion (1995), (1998),
Brion and Vergne (1997), Cochet (2001) to cite few).

9For more details on Ehrhart theory we refer to Beck and Robins (2007) and for a general background
on algorithms computing Ehrhart polynomials, we recommend the technical report produced by Verdoolage
et al. (2005).
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periodic number, of period q, on the integer variable n is a function U : Z ! Q such that

U(n) = U(n0) whenever n � n0 mod q. A quasi-polynomial (or Ehrhart polynomial) on n is

a polynomial expression f(n) on the variable n, f(n) =
Pn

i=0 ci(n)n
i, where the coe�cients

ci(n) are rational periodic numbers on n. The period of a quasi-polynomial is the last com-

mon multiple (lcm) of the periods of its coe�cients.

Theorem (Ehrhart (1962)): Let P be a rational polytope in Rd. If P is d-dimensional,

then10:

1. The function L(P; n) is given by a degree-d quasi-polynomial.

2. The coe�cient of the leading term is independent of n and is equal to the volume of

P.

3. The period of the quasi-polynomial is a divisor of the lcm of the denominators of the

vertices of nP. When all the vertices of P have integral coordinates, LP(n) is simply

a polynomial.

The above result can be extended to more general situations with more than one para-

meter. De�ne a (linearly) parameterized polyhedron as the solution set of a system of linear

inequalities where the constant terms in each constraint is an a�ne combination of a set of

integer parameters: Pp = fx 2 RdjAx � Cp + bg, where A and C are integer matrices, b

is an integer vector and p a vector of r integer parameters. When Pp is bounded for each

value of p, it will be called a parametric polytope. The coordinates of the vertices of a

parametric polytope are a�ne functions of the parameters. Each vertex only exists for a

subset of the possible parameter values. Separate regions of the vector parameter space Nr

where the vertices have stable expressions are called validity domains. Clauss and Loechner

(1998) consider the enumerator function E(Pp) that describes the number of integer points

in a d-dimensional parametric polytope Pp. They extended Ehrhart's result by showing

that E(Pp) can be described by a �nite set of multivariate quasi-polynomials
11 of degree d

in p, each being valid on a di�erent validity domain. They also proposed an algorithm for

computing Ehrhart polynomials, based on the classical technique of interpolation. However,

10Note that P can be not full-dimensional; this is the case when the linear system describing P contains
equalities. However there is no loss of generality with assuming P full-dimensional: If this is not the case, P
can be transformed into another polytope which has the same number of integer points and is full-dimensional
in a lower dimensional space (see Verdoolage et al. (2004), (2005)).
11A multivariate quasi-polynomial is a multivariate polynomial expression where the coe�cients depend

periodically on each variable.
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this method is seriously limited because the computation time is generally exponential and,

in some cases, the algorithm can fail to produce a solution (Beyls (2004)).

To avoid these problems, an alternative approach for computing E(Pp) was proposed by

Verdoolaege et al. (2004). This method, known under the name of Parameterized Barvinok's

algorithm, is essentially an adaptation of Barvinok' algorithm (Barvinok (1994), Barvinok

and Pommersheim (1999)) to parametric polytopes. Barvinok's algorithm is a powerful tool

that guarantees the polynomial-time counting of integer points inside rational polytopes

(for �xed dimension)12. The key idea is to encode all the integer points inside a rational

polyhedron P (not necessarily a polytope) into a multivariate generating function de�ned

by:

f(P; x) =
X

z2P\Zd
xz

where x = (x1; : : : ; xd), z = (z1; : : : ; zd) and x
z = xz11 : : : x

zd
d . It is clear that, when P is

a polytope, this sum is a (Laurent) polynomial and the number of integer points in P is

equal to the number of monomials in the generating function. Thus, the number of integer

points in P can be obtained by rewriting f(P; x) as a reasonably short function and then

evaluating it at x = (1; : : : ; 1). Barvinok's method uses a crucial identity of Brion (1995) to

distribute the computation of f(P; x) on the vertices of P by considering the supporting cone

at each vertex13. Indeed, Brion's theorem states that the generating function of a polytope

is equal to the sum of the generating functions of the supporting cones at each vertex.

The remainder of Barvinok's procedure uses an inclusion-exclusion method to replace the

generating function of each supporting cone with a signed sum of polynomial number (in the

size of the data) of unimodular cones14. The generating functions of these cones are simple

and short rational functions that can be calculated explicitly. The function f(P; x) is then

the sum of short rational functions. Note that the point (1; : : : ; 1) is a pole of all these

functions, the evaluation of f(P; x) at this point is obtained by computing the residues15.

Parameterized Barvinok's algorithm, which allows to compute Ehrhart polynomials ana-

lytically, keeps the overall structure of Barvinok's algorithm, but takes into account validity

domains and handles periodic numbers. This technique always produces a solution in polyno-

12It was latter re�ned and implemented in the software LattE by De Loera et al. (2004)
13The supporting cone at a vertex is the polyhedron de�ned by the constraints that are saturated by the

vertex, i.e., those for which equality holds for the vertex.
14Let v ,u1, . . . , ut in Rd. The (shifted) cone with apex v and generators u1, . . . , ut is the set C

de�ned by C = fv +
Pt

i=1 �iuij�i � 0g. The cone C is called unimodular if its generators form a basis of
the lattice Zd.
15For detailed explanation, see De Loera (2004) and Verdoolage et al. (2005).
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mial time, when the number of variables in the inequalities is �xed16. The results presented

in subsections 4:4 and 4:5 (forK = 5; 7; 9; 11) have been obtained by applying this algorithm.

4.2 A Preliminary Result

It can be noticed that, when the number N1 of voters in the largest group represents more

than 50% of the total number of voters, then the probability of casting a decisive vote only

depends, in each group, on the value of N1. More precisely, we have the following general

result (Recall that bxc denotes the integer part of x).

Proposition 2: If N1 �
�
N
2

�
+ 1, then Piv(�; 1) = 1

N1
and Piv(�; k) = 1

N1+1
for k =

2; 3; :::; K.

Proof. Let xk be the value of the k
th term in the decomposition of

�
N�1
2

�
: x1+ :::+xk+ :::+

xK =
�
N�1
2

�
. If N1 �

�
N
2

�
+1, then N2+N3+ :::+Nk+ :::+NK �

�
N�1
2

�
. Consequently, for

k = 2; 3; :::; K, xk can take any integer value between 0 andNk (including 0 andNk) and when

x2; x3; :::; xK are set, the value of x1 is given in a unique way by x1 =
�
N�1
2

�
�x2�x3�:::�xK .

The number of possible decompositions is then given by

�(

�
N � 1
2

�
; N1; N2; :::; Nk; :::; NK) = (N2 + 1)(N3 + 1):::(NK + 1)

and the result follows from relations (1.a) and (1.b). �

4.3 The Case of Two Groups

Let us consider the case where K = 2 i.e. the situation where the voters are partitioned into

two groups. This setting has been examined by various authors in the literature including

Beck (1975), Kleiner (1980), Chamberlain and Rothschild (1981) and Le Breton et Lepelley

(2010).

In such a case, if N is odd, then N1 > N2 as the two integers don't have the same parity.

It is easily seen that:

�

�
N � 1
2

; N1 � 1; N2
�
= N2 + 1 and �

�
N � 1
2

; N1; N2 � 1
�
= N2

and therefore:

Piv(�; 1) =
1

N1
and Piv(�; 2) =

1

N1 + 1

in accordance with Proposition 2.

16For a rigorous description of this algorithm and for implementation details, see Verdoolage et al. (2005).
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4.4 Three groups of voters

In this section, we consider the case where the population is divided into three groups of

voters i.e. K = 3: N1 � N2 � N3 and N1 +N2 +N3 = bN + 1, with bN even.

The value of �(
bN
2
; N1 � 1; N2; N3) is given by the number of integer solutions of the

following set of (in)equalities, where xk can be interpreted as the number of voters voting

Left in group k, k = 1; 2; 3:

0 � x1 � N1 � 1
0 � x2 � N2
0 � x3 � N3

x1 + x2 + x3 =
bN
2

Given the last equality, N3 = N �N1 �N2 and the above set of inequalities reduces to:

0 � x1 � N1 � 1
0 � x2 � N2

0 � x3 � N �N1 �N2

x1 + x2 + x3 =
bN
2

where the parameters satisfy:

N1 � N2
2N2 +N1 �N � 1 � 0 and

N1 +N2 � N + 1

A representation for the number of integer solutions of this set of inequalities with three

variables and three parameters (N1, N2 and N) can be derived by using the multiparameter

version of the Barvinok's algorithm (see Lepelley et al. (2008)). We obtain:

�(
bN
2
; N1 � 1; N2; N3) = ( bN �N1 �N2 + 2)(N2 + 1) = (N3 + 1)(N2 + 1)

if N1 �
bN
2
+ 1 and

�(
bN
2
; N1 � 1; N2; N3) = (� bN2 + 2 bN(2N1 + 2N2 � 1)� 4(N2

1 +N1(N2 � 2) +N2(N2 � 1))=4

if N1 �
bN
2
.

Representations for �(
bN
2
; N1; N2 � 1; N3) and �(

bN
2
; N1; N2; N3 � 1) can be derived in a

similar way to obtain:

�(
bN
2
; N1; N2 � 1; N3) = ( bN �N1 �N2 + 2)N2 = (N3 + 1)N2
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if N1 �
bN
2
+ 1 and

�(
bN
2
; N1; N2 � 1; N3) = (� bN2 + 2 bN(2N1 + 2N2 � 1)� 4(N2

1 +N1(N2 � 1) +N2(N2 � 1))=4

if N1 �
bN
2
;

�(
bN
2
; N1; N2; N3 � 1) = ( bN �N1 �N2 + 1)(N2 + 1) = N3(N2 + 1)

if N1 �
bN
2
+ 1 and

�(
bN
2
; N1; N2; N3 � 1) = (� bN2 + 2 bN(2N1 + 2N2 + 1)� 4(N2

1 +N1N2 +N2
2 � 1))=4

if N1 �
bN
2
.

Observe that we recover the results we have mentioned for two groups by taking N3 = 0.

From the above results, we can now derive the probability of casting a decisive vote for a

voter belonging to each of the three groups. We obtain :

Piv(�; 1) =
(N3 + 1)(N2 + 1)

N1(N2 + 1)(N3 + 1)
=
1

N1

Piv(�; 2) =
(N3 + 1)N2

(N1 + 1)N2(N3 + 1)
=

1

N1 + 1

Piv(�; 3) =
N3(N2 + 1)

(N1 + 1)(N2 + 1)N3
=

1

N1 + 1

if N1 �
bN
2
+ 1 (in accordance with our preliminary result), and

Piv(�; 1) =
4N2

1 + 4N1(N2 � bN � 2) + 4N2
2 � 4N2( bN + 1) + bN( bN + 2)

4N1(N2 + 1)(N1 +N2 � bN � 2)
(2)

Piv(�; 2) =
4N2

1 + 4N1(N2 � bN � 1) + 4N2
2 � 4N2( bN + 2) + bN( bN + 2)

4(N1 + 1)N2(N1 +N2 � bN � 2)
(3)

Piv(�; 3) =
4N2

1 + 4N1(N2 � bN) + 4N2
2 � 4N2 bN + bN2 � 2 bN � 4)

4(N1 + 1)(N2 + 1)(N1 +N2 � bN � 1)
(4)

if N1 �
bN
2
.
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In order to simplify the above three representations, let �1 = N1= bN and �2 = N2= bN
denote the proportion of voters in the �rst and the second group. Replacing N1 by �1 bN and

N2 by �2 bN and assuming that bN is large give, for k = 1; 2; 3 and �1 � 0:50:

Piv(�; k) ' 4�21 + 4�1�2 � 4�1 + 4�22 � 4�2 + 1
4�1�2(�1 + �2 � 1)

� 1

N
:

Let c3(�1; �2) =
4�21+4�1�2�4�1+4�22�4�2+1

4�1�2(�1+�2�1) if �1 � 0:50 and c3(�1; �2) = 1=�1 if �1 > 0:50.
We �nally obtain that, for N large, the probability of casting a decisive vote for a voter

belonging to an electorate divided in three groups is approximately equal to the Shapley-

Shubik index multiplied by c3(�1; �2). We give in Table 3 some computed values of c3(�1; �2)

for various values of �1 and �2.

�1/�2 1/3 0.35 0.40 0.45 0.50
1/3 2.250 - - - -
0.35 2.248 2.245 - - -
0.40 2.219 2.214 2.188 - -
0.45 2.145 2.143 2.130 2.099 -
0.50 2 2 2 2 2
> 0.50 1=�1 1=�1 1=�1 1=�1 1=�1

Table 3 : Values of c3(�1; �2)

These values show that the probability of casting a decisive vote is maximum when

�1 = �2 = 1=3, i.e. when each of the three groups has the same size.

4.5 The Symmetric Case

We consider here the case with N1 = N2 = ::: = NK =
bN+1
K

and we assume that N = bN + 1

is a multiple of K, which implies that K is odd. In this symmetric case, the value of

�(
bN
2
;
bN+1
K
� 1; bN+1

K
; :::;

bN+1
K
) is given as the number of integer solutions of the following set

of (in)equalities:

0 � x1 �
bN+1
K
� 1

0 � x2 �
bN+1
K

:::

0 � xK �
bN+1
K

x1 + x2 + :::+ xK =
bN
2

For speci�c small values of K, it is fairly easy to obtain close forms of and of the proba-

bility of being pivotal as a function of the parameter N . Let us consider the �rst values of

K.
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� K = 3: To compute �
� bN
2
;
bN+1
3
� 1; bN+1

3
;
bN+1
3

�
, we proceed as follows. Let bK � bN+1

3

and m be the number of voters taken from the smallest group. Of course: 0 � m � bK � 1.
Given m, how many voters x2 can we take in the second group ?

The smallest number x is solution of m+x+ bK = 3 bK�1
2

i.e. x =
bK�1
2
�m. This bound is

derived when we chose the largest possible number (i.e. bK) in the third group. This integer
is larger than or equal to 0 when m � �1

2
. On the other hand, the largest number x is

solution of m + x + 0 = 3 bK�1
2

i.e. x = 3 bK�1
2
�m. This integer is smaller than or equal tobK when m � bK�1

2
.

Case 1: m � bK�1
2
. In such case: x2 = bK �

�
3 bK�1
2
�m

�
+ 1 =

bK+1
2
+m+ 1

Case 2: m � bK�1
2
. In such case: x2 =

�
3 bK�1
2
�m

�
� 0 + 1 = 3 bK�1

2
�m+ 1

From that, we deduce:

�
� bK � 1; bK; bK� =

bK�1
2X

m=0

 bK + 1

2
+m+ 1

!
+

bK�1X
m=

bK+1
2

 
3 bK � 1
2

�m+ 1

!

=

 bK + 1

2

!2
+
( bK � 1)( bK + 1)

8
+

�
3 bK � 1

�� bK � 1
�

4

�
bK( bK � 1)

2
+
( bK � 1)( bK + 1)

8
+ bK

which simpli�es to:

�
� bK � 1; bK; bK� = 3 bK2 + 4 bK + 1

4

From that, we derive:

Piv(�) =
3 bK2 ++4 bK + 1

4 bK � bK + 1
�2

Changing to the variable N = 3 bK, we obtain:
Piv(�) =

3
�
N
3

�2
+ 4N

3
+ 1

4
�
N
3

� �
N
3
+ 1
�2 =

9N2 + 36N + 27

4N3 + 24N2 + 36N
=

9(N + 1)

4N(N + 3)

or equivalently

Piv(�) =
9( bN + 2)

4( bN + 1)( bN + 4)
(5)
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for bN = 2 modulo 6 (recall that bN + 1 must be an odd multiple of 3). Notice that these
results are consistent with the representations given in Section 2: Replacing N1 and N2 by

(N + 1)=3 in (2), (3) or (4) leads to (5).

Hence, we get for N large:

Piv(�) ' c3
1

N

with c3 =
9
4
= 2:25, in accordance with the result obtained in the preceding subsection

for �1 = �2 = 1=3.

� K = 5: We obtain:

�(
bN
2
;
bN + 1

5
� 1;

bN + 1

5
;
bN + 1

5
;
bN + 1

5
;
bN + 1

5
) =

( bN + 2)( bN + 6)(23 bN2 + 276 bN + 928)

24000

and

Piv(�) =
25( bN + 2)(23 bN2 + 276 bN + 928)

192( bN + 1)( bN + 6)3

for bN = 4 modulo 10. In this case, the limiting value of the probability of casting a

decisive vote is given as:

Piv(�) ' c5
1

N

with c5 =
575
192
= 2:995.

� K = 7: The probability of casting a decisive vote is given as:

Piv(�) =
48(841 bN6 + 35322 bN5 + 616300 bN4 + 3859680 bN3 + 23167384 bN2 + 67791768 bN + 66810120)

11520( bN + 1)( bN + 8)6

for bN = 6 modulo 14. And for N large:

Piv(�) ' c7
1

N

with c7 =
41209
11520

= 3:577.

� K = 9 and K = 11: Although we have been able to obtain the complete polynomial

associated with �(
bN
2
;
bN+1
9
� 1; bN+1

9
; :::;

bN+1
9
) and with �(

bN
2
;
bN+1
11
� 1; bN+1

11
; :::;

bN+1
11
), we only

give here the values of c9 and c11:

c9 =
2337507

573440
= 4:076

and

c11 =
4199504287

928972800
= 4:521:
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For values of K higher than 11, the implementation of the Barvinok's algorithm demands

a very long computation time that prevents from obtaining some numerical results.

Proposition 3: Let K be an odd number (K � 3).
Let '(K) = lim

N!+1
[ 1
NK�1�(

bN
2
;
bN+1
K
� 1; bN+1

K
; :::;

bN+1
K
)]. Then, for each �xed value of K, we

have:

'(K) =
1

(K � 1)!

K�1
2X

m=0

(�1)m
�
K

m

��K � 2m
2K

�K�1
:

Proof. By de�nition, �(
bN
2
;
bN+1
K
� 1; bN+1

K
; :::;

bN+1
K
) is the number of integer solutions of the

following parametric linear system:8>>>>>>><>>>>>>>:

0 � x1 �
N

K
� 1

0 � xk �
N

K
for all k = 2; :::; K

KX
k=1

xk =
N � 1
2

We know by Ehrhart's theorem that this number is a quasi-polynomial of degree K � 1 on
the variable N . Hence, '(K) is equal to the leading coe�cient of this quasi-polynomial.

The additive constants in the second member of the constraints do not a�ect this coe�cient,

'(K) is also the leading coe�cient of the quasi-polynomial computing the number of integer

solutions of the system 8>>><>>>:
0 � xk �

N

K
for all k = 1; 2; :::; K

KX
k=1

xk =
N

2

The system represents the dilatation by the factor N of the rational (K � 1)�dimensional
polytope Q de�ned by: 8>>><>>>:

0 � xk �
1

K
for all k = 1; :::; K

KX
k=1

xk =
1

2

By the second assertion of Ehrhart's theorem, and by de�nition of '(K), we know that

'(K) is equal to the relative volume of Q, which is the (normalized) volume in RK�1 of the
full-dimensional polytope P de�ned by:
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8>>><>>>:
0 � xk �

1

K
for all k = 1; :::; K � 1

K � 2
2K

�
K�1X
k=1

xk �
1

2

Let Vol(P) be the volume of P. To compute this volume, we consider some particular subsets

of RK�1. Let � and �0 be the K � 1-dimensional simplices de�ned by:

� = fx 2 RK�1 : xk � 0 for all k = 1; : : : ; K � 1 and x1 + : : :+ xK�1 � 1=2g

�0 = fx 2 RK�1 : xk � 0 for all k = 1; : : : ; K � 1 and x1 + : : :+ xK�1 � (K � 2)=2Kg

It is easy to see that Vol(P) = Vol(A)� Vol(B), where:

A = fx 2 � : xk � 1=K; 8k = 1; : : : ; K � 1g

B = fx 2 �0 : xk � 1=K;8k = 1; : : : ; K � 1g

We only show how to compute Vol(A), the same method will be applied to obtain Vol(B).

For each i in f1; : : : ; K � 1g let �i = fx 2 � : xi � 1=Kg. More generally, for each non
empty subset S of f1; : : : ; K � 1g, we de�ne �S by �S = \i2S�i. Note that �S = ; for
j S j> K�1

2
.

For S such that #S � K�1
2
, let #S = m and let tu be the translation of vector u, where

u is the vector of RK�1 de�ned by ui = � 1
K
if i 2 S and ui = 0 if not. It is obvious that

tu(�S) = �(m), where �(m) = fx 2 RK�1 : xk � 0 for all k = 1; : : : ; K � 1 and x1 +
: : :+xK�1 � (K�2m)=2Kg. Since translations conserve volumes, and applying the formula
giving the volume of a simplex, we obtain:

Vol(�S) = Vol(�(m)) =
1

(K � 1)!
�K � 2m

2K

�K�1
On the other hand, we can write Vol(A) = Vol(�)�Vol([K�1i=1 �i). Applying the inclusion-

exclusion principle, we get:

Vol([K�1i=1 �i) =

K�1
2X

m=1

(�1)m�1
X

S;jSj=m

Vol(�S)

=

K�1
2X

m=1

(�1)m
�
K � 1
m

�
1

(K � 1)!
�K � 2m

2K

�K�1
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Since Vol(�) = 1
(K�1)!

�
1
2

�K�1
, we obtain:

Vol(A) =
1

(K � 1)!

K�1
2X

m=0

(�1)m
�
K � 1
m

��K � 2m
2K

�K�1
Now, Vol(B) can be computed in a similar way and we can easily establish that:

Vol(B) =
1

(K � 1)!

K�3
2X

m=0

(�1)m
�
K � 1
m

��K � 2� 2m
2K

�K�1
:

Finally, the following simple calculus gives the result:

Vol(P) =
1

(K � 1)!
� K�1

2X
m=0

(�1)m
�
K � 1
m

��K � 2m
2K

�K�1 � K�3
2X

m=0

(�1)m
�
K � 1
m

��K � 2� 2m
2K

�K�1�
=

1

(K � 1)!
��1
2

�K�1
+

K�1
2X

m=1

(�1)m[
�
K � 1
m

�
+

�
K � 1
m� 1

�
]
�K � 2m

2K

�K�1
=

1

(K � 1)!
��1
2

�K�1
+

K�1
2X

m=1

(�1)m
�
K

m

��K � 2m
2K

�K�1
=

1

(K � 1)!

K�1
2X

m=0

(�1)m
�
K

m

��K � 2m
2K

�K�1
: �

Using the analytical expression obtained in the previous proposition, we can extend the

calculation of cK = KK'(K) to larger values of K. The following table gives the exact value

of cK for K = 5 to 49 (K odd).

K 5 7 9 11 13 15 17 19 21 23 25 27
cK 2.995 3.577 4.076 4.521 4.925 5.298 5.647 5.976 6.288 6.584 6.870 7.143
K 29 31 33 35 37 39 41 43 45 47 49
cK 7.408 7.657 7.903 8.141 8.372 8.597 8.817 9.031 9.240 9.444 9.644

Table 4 : Exact values of cK

Notice that the limiting result obtained in this subsection can be easily extended to the

case where N is even and the population is divided into K groups of size N
K
. The integer

K can be odd or even and the unique assumption is that N is an even multiple of K.

Let  (K) = lim
N!+1

[ 1
NK�1�(

N�2
2
; N
K
� 1; N

K
; :::; N

K
)]. With slight modi�cations in the proof of

Proposition 3, we obtain:

 (K) =
1

(K � 1)!

K�1
2X

m=0

(�1)m
�
K

m

��K � 2m
2K

�K�1
25



if K is odd, and

 (K) =
1

(K � 1)!

K
2X

m=0

(�1)m
�
K

m

��K � 2m
2K

�K�1
if K is even.

4.6 A Probabilistic Argument

To study the asymptotic behavior of the the above expression i.e. to understand how cK

behaves when K tends to 1, we will develop a probabilistic argument. To this end we will
consider the probability of being pivotal from the perspective of a small group of size �N

where � > 0 is �xed instead of a group of size 1 as done until now. Such a group is pivotal

i� :

N

2
� �N

2
� SN �

N

2
+
�N

2

where:

SN =
KX
k=1

SkN where S
k
N =

NkX
i=1

Xk
i and Nk =

N

K

The random variables S1N ; S
2
N ; :::; S

K
N are independent and identically distributed. Fol-

lowing the argument used in Proposition 4 of Chamberlain and Rothschild (1981), we deduce

that for all k = 1; :::; K,
SkN
Nk

converges weakly to the uniform law on the interval [0; 1] when

Nk ! 1. This implies that SN
N
converges weakly to Z = 1

K

PK
k=1 U

k where the random

variables Uk are independent and identically distributed. Their common distribution is the

uniform distribution on [0; 1]. From the central limit theorem, we deduce that if K is large

then: PK
k=1 Uk
K

� 1
2
' N(0;

1p
12K

)

since
q

1
12
is the standard deviation of the uniform variable on [0; 1]. We deduce that the

probability of a group of relative size � to be pivotal denoted Piv(�;N) is approximatively

equal to

Pr

(
� �
2
�
PK

k=1 Uk
K

� 1
2
� �

2

)
' Pr

�
� �
2
� N(0;

1p
12K)

� �

2

�

' �

r
6K

�
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and therefore:

cK '
r
6K

�
when K is large

We have tabulated few values of
q

6K
�
below:

K 3 5 7 9 11 ::: 51 ::: 99q
6K
�

2: 393 7 3: 090 2 3: 656 4 4: 145 9 4: 583 5 ::: 9: 869 3 ::: 13: 750 5

Table 5 : Approximate values of cK

5 Correlations and Further Applications

In this paper, we have mostly focused on a speci�c pattern of correlation that we have called

the IAC partitioning model. It is important to recall that this model is speci�c on two

grounds. First, it is based on a partition of the individuals such that individuals belonging

to two di�erent groups in that partition have independent preferences. Second, it has been

assumed that in each group the correlations among the preferences in the group were resulting

from the IAC model. The main purpose of this last section is to show that the techniques

developed in our paper can be used to accommodate many other types of quantitative and

qualitative correlations. We will also show the di�culties in extending some of the results

to arbitrary correlation patterns.

5.1 Partitioning

In this section, we keep the partitioning assumption but we depart from the IAC setting,

which implies that the covariance between the votes of two voters from the same group is

equal to 1
3
. We consider instead the case where the covariance between the votes of two

voters is arbitrary and denoted �: Cov(XiR; XjR), the covariance between the votes of i and

j when they belong to the same group is then equal to �
4
. As before, we obtain:

Lim
R!1

p
NPiv(�R; s) =

1�q
1��+�
1

4
+ �

4

PS
s=2 


ss

�p
2�

In the case of perfect correlation i.e. � = 1; we obtain for instance:

Lim
R!1

p
NPiv(�R; s) = 0:564 19 when s = 2
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and

Lim
R!1

p
NPiv(�R; s) = 0:460 66 when s = 3

Note that in the case of perfect correlation, the above results follow immediately from a

rede�nition of the random variables. For instance, in the case where s = 2, we would pack

the N random variables into N
2
packs of size 2. The aggregate vote in a pack is a discrete

random variable with support f0; 2g instead of f0; 1g. It has mean 1 and variance 1. A voter
or a pair of voters from the same block is pivotal i� in the remaining blocks, the number of

blocks voting left is equal to the number of blocks voting right. It is as if we were in the

standard case with a variance � of 1 instead of a variance of 1
4
and N

2
instead of N . We know

that the probability of being pivotal behaves as 1

�
p
2�
p

N
2

= 1p
N
p
�
= 0:564 19p

N
.

Note �nally that we could run the same computations without assuming that the co-

variances are constant within each group. An interesting situation of that kind appears in

the Le Breton and Lepelley (2011) study of the French electoral law of June 29 1820. This

electoral law, known as the law of double vote is a law to elect the deputies. France is divided

into a number of elector districts (the so called French \d�epartements") and each district

sends a number of deputies to the chamber. Each district is divided itself into subdistricts

(the so called \arrondissements"). Each arrondissement elects one deputy and to be voter in

an arrondissement, your amount of tax must be above some �xed level (called the \cens").

In addition, the voters in the top quartile of the income distribution of the voters in the

d�epartement form an additional electoral college and elect D deputies. These \rich" voters

have a double vote: they vote in their arrondissement and also in the electoral college con-

stituted at the level of the d�epartement. This explains the name which was given to this

law. It was decided that 3
5
of the deputies was elected by the arrondissements and 2

5
by the

voters in the top colleges. Le Breton and Lepelley (2011) study a symmetric version of that

problem where there are K d�epartements, with A arrondissements in each d�epartement and

4r+1 voters in each arrondissement where r is an odd integer denoting the number of voters

with two votes in that arrondissement. The size N of the chamber is therefore K(A +D).

We assume that A is an odd integer and that D is an even integer. A good approximation

of the French data at that time is given by K = 86, A = 3 and D = 2 leading to N = 430:

258 being elected in arrondissements and 172 elected by the top colleges. Hereafter, we will

limit however our attention to the case where K is odd. In the case where A = 3 and D = 2,

the 5K deputies are partitioned into groups of size 5. These legislators have in common to

be elected from the same territory. Even if we assumed that the preferences of the A(4r+1)

districts are independent, the preferences of the deputies are not independent because some
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voters have a double vote. Let
�
S1j ; S

2
j ; S

3
j ; S

4
j ; S

5
j

�
be the pro�le of the �ve votes in the

jth d�epartement where the �rst three coordinates denote the votes in the three arrondisse-

ments and the last two the votes in the top college. When r is large this random vector is

approximatively Gaussian with (after normalization) the matrix of variances-covariances:


 =

0BBBBB@

p
4r+1
2

0 0
p
r
2

p
r
2

0
p
4r+1
2

0
p
r
2

p
r
2

0 0
p
4r+1
2

p
r
2

p
r
2p

r
2

p
r
2

p
r
2

p
3r
2

p
3r
2p

r
2

p
r
2

p
r
2

p
3r
2

p
3r
2

1CCCCCA
The variance of SN is equal to:

3K

�
4r + 1

4

�
+ 2K

�
3r

4

�
+K(6

�r
4

�
+ 2

�
3r

4

�
) ' K

�
3r +

3r

2
+
3r

2
+
3r

2

�
=
15Kr

2

We also note that the coe�cient of correlation � between any of the �rst three variables

and any of the last two ones is equal to
q

1
12
Now we consider the 5-dimensional vector of

Bernoulli variables
�
X1
j ; X

2
j ; X

3
j ; X

4
j ; X

5
j

�
where X l

j = 1 if Slj � 2r + 1 for l = 1; 2; 3 and

X l
j = 1 if S

l
j � Ar+1

2
for l = 4; 5. Based on the Gaussian orthant probabilities, the matrix of

variances-covariances of this vector is:0BBBB@
1
4

0 0 1
4
+ arcsin �

2�
1
4
+ arcsin �

2�

0 1
4

0 1
4
+ arcsin �

2�
1
4
+ arcsin �

2�

0 0 1
4

1
4
+ arcsin �

2�
1
4
+ arcsin �

2�
1
4
+ arcsin �

2�
1
4
+ arcsin �

2�
1
4
+ arcsin �

2�
1
4

1
4

1
4
+ arcsin �

2�
1
4
+ arcsin �

2�
1
4
+ arcsin �

2�
1
4

1
4

1CCCCA
In the speci�c case where � =

q
1
12
, we obtain that 1

4
+ arcsin �

2�
= 0:29849. By using the

argument above we would deduce that the probability for a deputy to be pivotal if both r

and K are large integers is approximatively equal to:

1�
1
4
+ 1p

5

�
1
2
+ 6� 0:29849

��p
2�N

' 0:313 01p
N

In contrast, note that if the N = 5K were all independent, then, as we know from table

2, the probability of being pivotal for a deputy will be approximatively equal to 0:798p
N
. The

correlations introduced by the law of double vote has reduced by a factor of 2 the probability

of being pivotal !
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5.2 Networks and Local Interactions

In the above illustration, the correlation takes place or not once some partitioning of the

voters has been considered. In this dichotomous setting correlations among the preferences

of voters or deputies exist i� the considered voters or deputies belong to the same group. A

more general approach distinct from the one considered in this paper does not assume any

a priori partitioning of the population of voters into groups. We could simply assume that

the votes of two di�erent voters are correlated and denote by �ij the probability that i and

j both vote for 1 (which is equal (in our neutral world) to the probability that i and j both

vote for 0). Of course 0 � �ij � 1
2
. If �ij = 0 (respectively �ij =

1
2
); then the covariance

�ij between the votes of i and j is equal to
1
4
(respectively �1

4
). A nice general model along

these lines is the following. Suppose that the N voters are ordered from left to right on

the integer line (located in the positions 1; 2; :::; N) and that the joint probability describing

the votes of these N voters is stationary17. We may interpret this one dimensional ranking

as their ranking on a one dimensional ideological (left-right) axis. The more distant are

voters i and j on this axis, the more unlikely they are going to have the same preferences.

Moving directly to the asymptotic setting, let us describe the pro�le of votes as a sequence

X = (Xi)i2N of Bernoulli random variables on the probability space (
;F ;Pr) where as
before Xi = 1 i� voter i votes left. Let �n be the n

th mixing coe�cient.

Since E [X12
i ] < 1, we deduce from Billingsley's (1995) theorem 27.418 that if �n =

O(n�5), then:

V ar
�
Sn � n

2

�
n

tends to � � 1

4
+ 2

1X
k=1

Cov (X1; X1+k)

and if � > 0,
Sn�n

2

�
p
n
converges weakly to a unit Gaussian.

A nice application of this approach, taken from Billingsley (1995), is the following. Let

(Yn)n�1 be a Markov chain with a �nite state space and positive transition probabilities

(pij)1�i;j�s and suppose that Xn = f(Yn) where f is some real function on the state space. If

the initial probabilities (pi)1�i�s are the stationary ones, then clearly (Xn)n�1 is stationary.

By Billingsley's theorem 8.9. we deduce that
���p(n)ij � pj

��� � �n where � = (1 � s�) < 1 with

� � Min
1�i;j�s

pij. We have:

Pr [Y1 = i1; :::; Yk = ik; Yk+n = j0; :::; Yk+n+l = jl] = pi1pi1i2 :::pik�1ikp
(n)
ikj0

pj0j1 :::pjl�1jl

17The few atypical notions of probability theory used in this paper are described in the appendix.
18There are many more central limit theorems where the variables are not assumed to be independent

(Bergstrom (1970), Bernstein (1927), Diananda (1955), Ho�ding and Robins (1948), Merlevede and Peligrad
(2000), Orey (1958) to cite few).
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which di�ers from Pr [Y1 = i1; :::; Yk = ik]� [Yk+n = j0; :::; Yk+n+l = jl] by at most:

pi1pi1i2 :::pik�1ik�
npj0j1 :::pjl�1jl :

It follows that for sets of the formA = f(Y1; :::; Yk) 2 Hg andB = f(Yk+n; ; :::; Yk+n+l) 2 H 0g,
we obtain:

jPr(A \B)� Pr(A) Pr(B)j � s�n

Since these sets generate respectively the ���elds Fk
0 and F+1

k+n, we deduce that (Xn)n�1
is strongly mixing. One illustration consists in taking s = 2 (preference for the left or

preference for the right) and assuming that the right neighbor of a leftist (rightist) voter

is a leftist (rightist) voter with probability � and a rightist (leftist) voter with probability

1� � where � 2 [0; 1]. Here � = 1� 2Min(�; 1� �) = 1� 2 (1� �) = 2�� 1 if � � 1
2
. The

stationary distribution is
�
1
2
; 1
2

�
. Some straightforward calculations give:

Cov (X1; X1+k) =
1

4
(2�� 1)k

and therefore:

� =
1

4

�

1� �

From Nagaev (1957) local central limit theorem for Markov's chains, we deduce:

Lim
N!1

p
NPiv(N) =

r
2(1� �)

��

Without any surprise, since � measures how correlated are the votes of two neighbors,

the probability of being pivotal decreases with �.

5.3 Blocks of Increasing Size

In this paper, we have considered the polar cases of many groups of small �xed size and

few groups whose sizes grow linearly with the size of the population. We could consider of

course intermediate situations where the society of N voters is partitioned into K(N) = N
S(N)

groups of size S(N) � N where the function S is neither constant, neither linear in N . For

instance, we could consider for S(N):19 S(N) = log(N) or S(N) =
�
N �
�
with 0 < � < 1.

If we want to use Berck's theorem, we need to sort out the implications of condition (iv)

19bxc denotes the integer part of x.
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which asks for Lim
N!1

S(N)2+
2
�

N
= 0. Since in our setting, � can be chosen arbitrarily large, it

amounts to ask that S(N)2+� tend less rapidly to1 than N for some arbitrarily small � > 0.

For instance, S(N) = log(N) and S(N) = N
1
4 verify this condition. In such case to meet

conditions (ii) and (iii) of Berk's theorem, we cannot assume that the covariances are the

same within each group. We could assume for instance that the covariance between i and j

in the same group is non zero i� j = i+ 1. Note however that in such setting, Piv(N) still

behaves asymptotically like 1p
N
.

Berk's assumption can be relaxed to permit more general dependence structures as for

instance in Romano and Wolf (2000) presented in appendix 3. The force of their result comes

from the relaxation of conditions (ii) and (iii) of Berk's theorem through the introduction of a

parameter 
 < 1. Now, the variance of a block can behave as m1+
. Under the presumption

that a local version of such central limit theorem holds, we now obtain:

Piv(N) '
s

12

(2N +NS(N)
'
s

6

NS(N)

For instance when S(N) = N
1
4 , the order of magnitude of the probability of being pivotal

is 1

N
5
8
instead of the standard 1p

N
.

6 Concluding Remarks

In this paper, we have studied the impact of correlation across preferences and votes on the

probability of being pivotal. The analysis has been conducted under a number of assumptions

and we think that it would be of interest to examine how far we can go without being too

much speci�c. One key assumption is the the neutrality among the two alternatives. We

have assumed that the two alternatives were similar ex ante. One interesting generalization

could consist in assuming that there is a partition of the population into groups where in each

group the preferences are as here correlated but also possibly biased towards one candidate.

The bias could of course vary from group to another. In such a setting a group could be

de�ned as a subset of individuals displaying some homogeneity de�ned through a vector of

characteristics.

We are not aware of an ambitious attempt to generalize the current theory to a setting

that would allow for di�erences across alternatives. To the best of our knowledge, the only20

model along these lines is due to Beck (1975). He considers a population divided into two

groups of equal size. In the �rst group, the votes are independent and people vote left with

20See also Berg (1990) for another illustration.
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probability p > 1
2
. In the second group, votes are also independent and people vote left with

probability 1 � p. Beck estimates numerically the probability for a voter to be pivotal for

several values of the parameter p. Modulo a simple adjustment of the proof of Proposition

1, we obtain an asymptotic exact value of the probability of being pivotal in Beck's model.

Precisely, we obtain :

Lim
N!1

p
NPiv(N) =

1p
2�p(1� p)

When p = 1
2
, we obtain the traditional constant

q
2
�
= 0:797 88. When p = 3

4
, we

obtain 1p
2�� 3

16

= 0:921 32 and when p = 4
5
; we obtain 1p

2�� 4
25

= 0:997 36. Moving towards

polarization increases drastically the probability of being pivotal !

Another promising direction of research is the analysis of simple games which are not

symmetric. In such case, the probability of being pivotal varies across the voters. It would

also be of interest to use the models of random electorate developed in our paper to settings

with more than two alternatives.

7 Appendix

Suppose that for each k, yk1 ; y
k
2 ; :::; y

k
n(k) are independent random variables on the probability

space (
;F ;Pr); the probability space for the sequence may change with n. Such a collection
is called a triangular array of random variables.

For any two �elds A and B � F , consider the following measure of dependence21 (Rosen-
blatt (1956)):

� (A;B) = Sup
A2A;B2B

jPr(A \B)� Pr(A) Pr(B)j

For a sequence of random variables yk1 ; y
k
2 ; :::; y

k
n(k), let �n be a number such that:

�n = Sup
A2A;B2B

jPr(A \B)� Pr(A) Pr(B)j for n 2 N�

for A 2 �
�
yk1 ; y

k
2 ; :::; y

k
j

�
; B 2 �

�
ykj+n; y

k
j+1+n; :::

�
and j � 1; n � 1. The triangular array

is called strongly mixing or ��mixing if Lim
n!1

�n = 0.

The triangular array
�
ykn(k)

�
k�1

ism�dependent if
�
yk1 ; y

k
2 ; :::; y

k
j

�
and

�
ykj+n; y

k
j+1+n; :::; y

k
j+n+l

�
are independent whenever n > m. If the distribution of the random vector,

�
ykn; y

k
n+1; :::; y

k
n+j

�
does not depend on n, the triangular array is said to be stationary.

21There are many other measures of dependence which have been used in this literature. We refer the
reader to Bradley (2005) for a comparison of these measures and their use in limit theorems.
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7.1 Petrov's Local Central Limit Theorem22

Let k be an arbitrary �xed positive integer. A sequence of random variables (yn)n�1 is

said to be a k�sequence if the number of di�erent distribution functions in the sequence of
the distribution functions corresponding to (yn)n�1 is equal to k. Consider a k�sequence
of independent integer-valued random variables (yn)n�1 each having �nite variance. We

denote by F 1; :::; F l the l distributions which are non-degenerate and occur in�nitely often

in the sequence (F i)1�i�k. We denote by H
r the maximal span of F r for r = 1; :::; l. Let

Sn =
Pn

j=1 yj; Sn =
Pn

j=1E(yj), Bn =
Pn

j=1E(yj � E(yj))
2 and Prn (N) = Pr(Sn = N).

Then:

If g.c.d.
�
H1; H2; :::; H l

�
= 1, then Sup

N

����pBn Prn (N)� 1p
2�
e�

(N�Mn)
2

2Bn

���� !n!1 0
7.2 Berk's Theorem

For each k = 1; 2,...let n = n(k) and m = m(k) be speci�ed and suppose that yk1 ; y
k
2 ; :::; y

k
n

is an m�dependent sequence of random variables with zero means. Assume the following

conditions hold. For some � > 0 and some constants M and K:

(i) For some � > 0; E
��yki ��2+� �M for all i and all k.

(ii) V ar
�
yki+1 + :::+ ykj

�
� (j � i)K for all i; j, and k.

(iii) Lim
k!1

V ar(yk1+:::+ykn)
n

exists and is nonzero. Denote v the limit.

(iv) Lim
k!1

m2+2
�

n
= 0

Then
yk1+:::+y

k
n

n
is asymptotically normal with mean 0 and variance v.

7.3 Romano and Wolf's Theorem

For each k = 1; 2,...let n = n(k) and m = m(k) be speci�ed and suppose that yk1 ; y
k
2 ; :::; y

k
n

is an m�dependent sequence of random variables with zero means. Assume the following

conditions hold. For some � > 0, some �1 � 
 < 1 and some sequences (�k) ; (Kk) and

(Lk):

(i) E
��yki ��2+� � �k for all i and all k.

(ii)
V ar(yki+1+:::+ykj+i�1)

(j�i)1+
 � Kk for all i and j such that j � i � m.

22Other local versions of the conventional (variables are assumed to be independent but non necessarily
identically distributed) central limit theorem have been proved (Davis and Mc Donald (1995), Gamkrelidze
(1964), MC Donald (1979), Mukhin (1991)). To the best of my knowledge, no such result exists in the
general dependent case. We conjecture that Berk's theorem and Billingsley's central limit theorems which
are used in this paper admit a local version.

34



(iii) Bk �
V ar(yk1+:::+ykn)

n(k)m
 � Lk

(iv) Kk

Lk
= 0(1)

(v) �k

L
2+�
2

k

= O(1)

(vi) Lim
k!1

m1+(1�
)(1+2
� )

n(k)
= 0

Then
yk1+:::+y

k
n

Bk
is asymptotically normal with mean 0 and variance 1.

This theorem extends Berk's theorem in two ways. Berk essentially proves this theorem

for the special case 
 = 0. Condition (ii) of his theorem corresponds to condition (ii) of this

theorem with 
 replaced by 0. The greater generality of this theorem allows to accommodate

stronger dependence structures. For example, it can handle the situation of Bk � n(k)1+


for positive 
 smaller than 1. Note that for 
 > 0 the condition (vi) becomes weaker than

the corresponding condition in Berk's theorem. Further, unlike Berk's theorem, this theorem

permits the bounding constants to depend on the row index k.

7.4 On the Coe�cients in 	(N)

Let us rewrite 	(N) =

�PN�2
4

k=0

(N�22 )!
(k!)2((N�22 �2k)!)

�
�
�
1
3

�N�2
2 as

Pm
2
x=0

f(x)
3m

where:

f(x) =
(m)!

(x!)2 ((m� 2x)!)
with m =

N � 2
4

The function f is increasing i.e. f(x) � f(x� 1) i�

(m� 2x+ 2) (m� 2x+ 1) � x2

which simpli�es to :

3x2 � 2x(2m+ 3) + (m+ 1)(m+ 2) � 0

The discriminant � of this quadratic function is equal to 4m2. Therefore, the roots are:

m

3
+ 1 and m+ 1

Therefore, the function f is increasing between 0 and m
3
and decreasing after. Let us

computef(m
3
) = (m)!

(m3 !)
3 . From the Stirling's formula, we deduce:

m! '
p
2�m

�m
e

�m
and

�m
3
!
�3
'
�
2�m

3

� 3
2 �m
3e

�m
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and then:

f(
m

3
) ' 3m+

1
2

2�m

which implies that the largest term in the sum 	(N) behaves as:

p
3

2�m
:
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