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A Mind is a Terrible Thing to Change: Confirmation Bias in
Financial Markets

Abstract

This paper proposes a dynamic model of financial markets where
some investors are prone to the confirmation bias. Following insights
from the psychological literature, these agents are assumed to amplify
signals that are consistent with their prior views. In a model with
public information only, this assumption provides a rationale for the
volume-based price momentum documented by Lee and Swaminathan
(2000). Our results are also consistent with a variety of other empir-
ically documented phenomena such as bubbles, crashes, reversals and
excess price volatility and volume. Novel empirical predictions are de-
rived: i) return continuation should be stronger when biased traders’
beliefs are more extreme, and ii) return continuation should be stronger
after an increase in trading volume. The implications of our model for
short-term quantitative investments are twofold: i) optimal trading
strategies involve riding bubbles, and that ii) contrarian trading can
be optimal in some market circumstances.

Keywords: financial markets, psychological biases, confirmation
bias, momentum, reversal, bubbles, trading strategies
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”A mind is a terrible thing to change. You decide gold is a good bet
to hedge against inflation, and suddenly the news seems to be teeming with
signs of a falling dollar and rising prices down the road. Or you believe
stocks are going to outperform other assets, and all you can hear are warn-
ings of the bloodbath to come in the bond and commodity markets. In short,
your own mind acts like a compulsive yes-man who echoes whatever you
want to believe. Psychologists call this mental gremlin the ”confirmation
bias”.” (Jason Zweig, in the Wall Street Journal, November 19, 2009)

Information processing is a major aspect of trading in financial markets.
Investors need to learn about the fundamental characteristics of the assets
that are traded. They also need to forecast what other investors will think of
these fundamentals in order to better estimate future asset prices. Economic
theory traditionally assumes that investors have perfect information percep-
tion capabilities, that is, investors have unlimited and unbiased cognition.
In contrast, the psychological literature on judgment and decision-making
suggests that some individuals are prone to cognitive biases and make sys-
tematic mistakes when processing information (see, for example, Kahneman,
Slovic, and Tversky (1982) and Gilovich, Griffin, and Kahneman (2002)).

Models of behavioral finance have analyzed the financial consequences of
various psychological biases. Overconfidence is studied by Kyle and Wang
(1997), Odean (1998), Benos (1998), Scheinkman and Xiong (2003), and
Dumas, Kurshev, and Uppal (2005). Self-attribution bias is examined by
Daniel, Hirshleifer, and Subrahmanyam (1998), Gervais and Odean (2001),
and Choi and Lou (2010), gambler’s fallacy by Rabin and Vayanos (2010),
and representativeness and conservatism by Barberis, Shleifer, and Vishny
(1998). To complement this literature, the present paper incorporates the
confirmation bias in a model of financial markets.

Confirmation bias is defined by Nickerson (1998) as ”the seeking or in-
terpreting of evidence in ways that are partial to existing beliefs”. Jonathan
Evans indicates that ”confirmation bias is perhaps the best known and most
widely accepted notion of inferential error to come out of the literature on
human reasoning” (Evans (1989), p. 41). The prevalence of the confirma-
tion bias has recently been quantitatively established in a meta-analysis by
Hart et al. (2009).

In light of the evidence offered by psychologists (such as Bodenhausen
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(1998)), our model assumes that a trader prone to the confirmation bias
amplifies information that is consistent with his or her prior views. In our
framework, this bias creates differences of opinion between rational arbi-
trageurs and biased traders over the interpretation of public information.
These differences of opinion in turn motivate trading. Arbitrageurs take
opposite positions with respect to biased traders and thus have a stabilizing
impact on prices. Transaction costs however limit the effectiveness of arbi-
trage strategies causing the views of both arbitrageurs and biased traders
to be incorporated into asset prices.1

Our results are related to the properties of mispricings and to short-term
quantitative trading strategies. To the best of our knowledge, our model is
the first to rationalize the volume-based momentum documented by Lee
and Swaminathan (2000): in our model, a price trend associated with a
high volume induces more momentum than a price trend associated with
a low volume. This is because a high volume indicates a large difference
of opinion (and thus a large mistake in biased traders’ beliefs). In turn,
the higher the mistake is, the longer biased traders stick with their opinion,
thereby causing price momentum.

We also show that the presence of investors prone to the confirmation
bias creates bubbles and crashes, and induces short-term momentum, long-
term reversals, and excess price volatility and volume. Bubbles occur when
traders hold optimistic beliefs.2 This is because positive beliefs increase the

1We base our model on exogenous transaction costs that reflect commissions or market

impact. We make this modeling choice for simplicity only. Transaction costs can have a

significant pricing impact (see, for example, Lesmond, Schill and Zhou (2004) for a study

of the transaction costs involved in momentum trading), but other factors can also limit

the willingness to trade of arbitrageurs and would also support our results. As analyzed by

Wurgler and Zhuravskaya (2002), assets’ fundamental risk diminishes the attractiveness

of arbitrage when perfect substitutes do not exist. Noise trader risk coupled with short

investment horizons as modeled by De Long, Shleifer, Summers, and Waldmann (1990)

and by Shleifer and Vishny (1997) are other factors preventing arbitrageurs from fully ex-

ploiting unsophisticated investors’ erroneous sentiment. Finally, Abreu and Brunnermeier

(2002)’s synchronization risk is another type of risk borne by arbitrageurs that reduces

their willingness to fight against mispricings.
2We use the terms optimism and pessimism to reflect the fact that traders’ beliefs

are respectively above or below their initial expectation of the fundamental value of the

asset. Our paper is therefore different from the analysis of Jouini and Napp (2007), among

others, that considers optimism or pessimism as a personal and stable psychological trait

that leads agents to systematically over- or under- estimate the probability of successes of
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likelihood that biased traders will in the future exaggerate positive signals.
During a bubble, prices are above perfectly rational levels and, from a ra-
tional arbitrageur’s perspective, the mispricing is expected to worsen in the
future. The same logic applies to crashes as they relate to pessimism. Mo-
mentum and reversals are a consequence of the fact that when biased traders’
beliefs shift from, for example, optimistic to pessimistic, these traders switch
from amplifying positive news to amplifying negative news. These autocor-
relations in price changes are not driven by fundamental factors since public
information is modeled as identically and independently distributed signals.
Excess volatility derives from the fact that biased traders sometimes over-
react to information. Excess variance is however not an arte-fact of the
overreaction embedded in our definition of confirmation bias. Indeed, there
is also excess variance, for a large range of parameter values, when biased
traders underreact to information that is inconsistent with their prior beliefs.
Excess volume arises naturally in our framework because the confirmation
bias creates differences of opinion. Finally, we find that, in the short run
(i.e., as long as the cash flow has not been distributed), biased traders are
expected to have higher capital gains than rational arbitrageurs. This is
in line with the result of De Long et al. (1990) in which irrational traders’
expected profits can be higher than rational traders’ ones. Since rational ar-
bitrageurs have a long horizon and only care about their consumption after
the final cash-flow has been distributed, this inferior interim performance
is not a problem for them. We show below that the situation would be
different if rational arbitrageurs had a short horizon.

These asset pricing patterns are in line with the results of various empiri-
cal studies. At quarterly, semi-annual or yearly horizons, Jegadeesh and Tit-
man (1993) document a momentum effect: assets that have performed well in
the past have a better performance than those that performed poorly. This
result was confirmed in an international context by Rouwenhorst (1998).
DeBondt and Thaler (1985) and Fama and French (1988) document a rever-
sal effect: at a three- or five-year horizon, past losers tend to outperform past
winners. Starting with Leroy and Porter (1981) and Shiller (1981), several
contributions report that asset prices are excessively volatile. De Bondt and
Thaler (1995, p. 392) indicate that ”the high trading volume on organized
exchanges is perhaps the single most embarrassing fact to the standard fi-

their investments.
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nance paradigm”. The present paper offers a parsimonious model based on
investors’ misperception of public information that is consistent with these
stylized facts.3

Novel empirical predictions of our model are two-fold. On the one hand,
when biased traders’ beliefs are more extreme, future price changes should
be less positively autocorrelated than when biased traders’ beliefs are neu-
tral. Indeed, when biased traders are extremely optimistic (respectively, pes-
simistic), they almost surely amplify positive (respectively, negative) news.
This in turn implies that, when biased traders’ beliefs are extreme, there is
almost no positive autocorrelation in short-term price changes. Our model
thus predicts an inverted U-shaped relationship between the strength of
biased traders’ beliefs and the future autocorrelation in price changes: auto-
correlation should be maximal when biased traders are neutral and should
be minimal when biased traders are extremely pessimistic or optimistic. To
identify the case in which biased traders beliefs are extreme, one can use
past volume: a price trend associated with a high volume indicates high
disagreement of biased traders with rational arbitrageurs, and is associated
with more extreme beliefs than low volume price trends. In the categoriza-
tion of Lee and Swaminathan (2000), one would expect lower autocorrelation
in future price changes for large volume winners and losers than for the other
assets.

On the other hand, price continuations should be more pronounced when
past price trends are associated with an increasing trend in volume. This
is because such an increase in volume signals that biased traders’ beliefs
become more and more extreme. These predictions are not present in other
behavioral models of momentum (see for example, Barberis, Shleifer and
Vishny (1998), Daniel, Hirshleifer, and Subrahmanyam (1998), Hong and
Stein (1999), and Rabin and Vayanos (2010)) and could thus be helpful to
disentangle the sources of the momentum effect observed in stock markets.

To analyze the implications of our model for quantitative investments, we
derive the optimal trading strategy of a short-term rational trader referred

3The model is parsimonious in the sense that it includes the perfectly rational bench-

mark as a special case and that departures from perfect rationality are driven by only one

parameter. This parameter is denoted by q and measures the severity of the confirmation

bias. When q = 1, the model features perfectly rational asset prices and trading strate-

gies. In contrast, when q > 1, asset prices and trading strategies are influenced by the

confirmation bias.
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to as a hedge fund. The short horizon can be interpreted as coming from
a liquidity constraint and implies that the hedge fund does not have the
same incentives as the rational arbitrageurs who can hold positions until
asset’s cash flow is distributed.4 We indeed show that the hedge fund has
an incentive to ”ride” bubbles despite its knowledge of an over-valuation.
This is because it correctly anticipates that mispricings will worsen in the
future. This is consistent with hedge funds’ behavior during the technology
bubble as described by Brunnermeier and Nagel (2004) or with Hoare’s (a
London-based bank) trading behavior during the 1720’s South Sea bubble
as reported by Temin and Voth (2003). We also show that the hedge fund
should short-sell during crashes despite its knowledge of an under-valuation.

We finally show that, while the hedge fund in our model uses a positive-
feedback strategy more often than a contrarian strategy, both of these trad-
ing strategies can be optimal depending on market circumstances: when
biased traders are optimistic, a hedge fund should adopt a positive-feedback
strategy after positive public announcements as well as after strongly nega-
tive announcements. The fund should buy after price increases and sell after
large price drops.5 On the contrary, after mildly negative public announce-
ments, a hedge fund should adopt a contrarian strategy, that is, the fund
should buy after moderate price drops. When biased traders are pessimistic,
the optimal strategy of the hedge fund follows the inverse logic. Overall, the
important input that drives this optimal trading strategy is biased trader’s
beliefs. We provide an explicit characterization of the optimal strategy, re-
ferred to as confirmation-based strategy, and compare it to momentum and
technical analysis strategies.

The rest of this paper is organized as follows. Next section briefly re-
4Because rational arbitrageurs are constrained by transaction costs, their presence

does not completely eliminate the anomalies generated by biased traders. This leaves

some profit opportunities for an additional rational trader such as the hedge fund in our

model. We assume that the hedge fund is atomistic so it does not influence prices or

eliminate the anomalies. On the top of transaction costs, the hedge fund is constrained

by a short-term horizon; Its profitability even if positive will thus be lower than the one

of rational arbitrageurs.
5Strong public announcements are defined as signals that are extreme enough to shift

biased traders’ beliefs from optimistic to pessimistic or inversely from pessimistic to opti-

mistic. By opposition, an announcement is characterized as mild when it does not change

the direction of biased traders’ beliefs. These definitions will be more formally laid out in

Section 4.
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views the literatures on the confirmation bias and on theoretical behavioral
fiannce. Section 2 describes our model. Our asset pricing results are pre-
sented in Section 3. Section 4 offers implications for quantitative trading
strategies. Section 5 concludes. Proofs are in the Appendix.

1 Literature

1.1 On the confirmation bias

Central to our model is the assumption that some traders are prone to
the confirmation bias. This bias has been extensively documented in the
psychological literature following the seminal contribution of Lord, Ross, and
Lepper (1979). They study how people react to new information regarding a
social dispute, namely capital punishment. Confronted with mixed evidence
regarding the deterrent effectiveness of this type of punishment, both initial
proponents and opponents to capital punishment tend to rate the evidence
that favors their initial view as more convincing and reliable. Furthermore,
the mixed evidence induces a polarization in people’s beliefs, a phenomenon
at odd with Bayes’ rule prediction that beliefs should move in the same
direction after seeing the same information.

The results of Lord et al. (1979) could be due to a systematic tendency to
only consider (or give credit) to particular types of information. Darley and
Gross (1983) address this issue and show that confirmation bias is indeed
at work. They experimentally manipulate prior beliefs of participants in a
task that consisted in the evaluation of the academic ability of a fourth-grade
student. They show that subjects who are given a good (bad) initial opinion
of the student end up with an even more positive (negative) evaluation after
receiving mixed evidence of her ability in various academic tests.

Confirmation bias is related to two psychological mechanisms. On the
one hand, meaning change reflects the tendency to change the valence of
information in order to make it support prior beliefs. On the other hand,
biased assimilation refers to the tendency to give more attention and more
weight on the decision to information that are in line with prior beliefs. Bo-
denhausen (1988) evaluates the relative importance of these two mechanisms
in the context of a judicial trial experiment. Subjects are initially given a
neutral or a bad opinion about a defendant. They then are given various

8



pieces of information, some containing evidence in favor of the defense, oth-
ers containing evidence in favor of the prosecution. Bodenhausen (1988)
shows that subjects with an initially bad opinion of the defendant tend to
interpret correctly the meaning of the evidence but better remember the
evidence that favors the prosecution. Bodenhausen (1988) interprets these
results as favoring the biased attribution mechanism.6

Hart et al. (2009) offer more systematic evidence regarding the preva-
lence of the confirmation bias. They perform a meta-analysis of 91 studies
that include almost 8,000 subjects. They find that people are two times
more likely to pay attention to an information that is in line rather than
not in line with their prior beliefs. They further show that the confirmation
bias is stronger when the information received are of good quality, when
the decision maker has a high commitment towards his prior beliefs (for
example, because they are closely related to his or her personal values), and
when the decision maker is less confident that his or her prior beliefs are
correct. Finally, individuals who are prone to the confirmation bias appear
to be more closed-minded than others.

The economics literature has recently recognized the importance of the
confirmation bias. Rabin and Schrag (1999) study the consequences of the
confirmation bias for beliefs’ formation. They show that confirmation bias
can lead to overconfidence and can prevent adequate learning of the realized
state of nature even after receiving a infinite amount of information. 7 Evi-
dence of such judgmental bias has been documented in an economic setting
by Forsythe, Nelson, Neumann, and Wright (1992). They analyze data from
the Iowa Political Stock Market organized during the 1988 U.S. presidential
election campaign. They report that, after the third debate, supporters of
one candidate were more likely to think that their preferred candidate won
the debate. They also show that these beliefs influenced trading behavior.
In the present paper, we propose a model that formally incorporates the

6Other contributions to the study of the confirmation bias include Plous (1991),

Dougherty, Turban, and Callender (1994), and Dave and Wolfe (2003). Additional refer-

ences are offered by Nickerson (1998) and by Rabin and Schrag (1999).
7Some papers offer rational theories of attitude polarization. In Suen (2004), attitude

polarization is due to decision makers relying on advisors. In Kondor (2011)’s model of

financial markets, it is due to investors’ differential trading horizons. Confirmation bias

can also be related to the need to avoid dissonance between past choices and current beliefs

(see Yariv (2005) for a model of cognitive dissonance).
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confirmation bias and studies its influence on trading strategies and on the
price formation process in financial markets.

1.2 On behavioral finance models

Our model unifies two mostly separate streams of literature about financial
markets, one on differences of opinion and the other on cognitive biases. The
first literature on differences of opinion has generated a lot of predictions
regarding the relationship between volume and asset returns. For example,
Harris and Raviv (1993) predict that price changes and volume are positively
correlated. When there are short-sales constraints, Miller (1977) predicts
that high disagreement lead to lower expected returns and Hong and Stein
(2003) to negatively skewed returns. In a dynamic setting, Scheinkman and
Xiong (2003) show that differences of opinion lead to a speculative motive
for trade, and to a positive link between trading volume and price volatility.

Behavioral finance models based on cognitive biases offer more insights
about the time-series properties of asset prices, in particular about the mo-
mentum effect documented by Jegadeesh and Titman (1993) for the US
stock market or more recently by Asness, Moskowitz, and Pedersen (2009)
for a variety of international asset classes. In Barberis, Shleifer, and Vishny
(1998), conservatism induces traders to underreact to isolated news, and
representativeness heuristic induces them to overreact to a series of news.
When associated with limited learning capabilities, these two effects gen-
erate excessive price continuation. In Rabin and Vayanos (2010), investors
are subject to the gambler’s fallacy and expect outcomes in random series
to exhibit systematic reversals. Rabin and Vayanos (2010) show that the
gambler’s fallacy can lead to the hot-hand fallacy: when investment per-
formance can be due to luck or skill, investors over-infer that their asset
manager is good after observing a streak of above average performance.
Thus, the gambler’s fallacy coupled with delegated portfolio management
can explain momentum.

The model that is closest to ours is offered by Daniel, Hirshleifer, and
Subrahmanyam (1998). In their model, traders observe private information
and then receive a public signal. Traders are assumed to suffer from the self-
attribution bias: if the realization of the public signal is in line with private
information, traders’ confidence in the accuracy of private information rises,
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whereas if it is not in line, confidence falls less than it should. In this context
with public and private information, Daniel et al. (1998) show that self-
attribution generates momentum. In addition to being based on a different
psychological bias, our model differs from theirs in several dimensions. First,
in our model, it is possible (even if not as frequent as it should be) that biased
traders change their mind and overreact to different signals compared to the
ones they were overreacting to initially. For example, if biased traders are
initially optimistic, they will start by overreacting to positive information.
But if a very negative information reaches the market such that traders
become pessimistic, these traders will now overreact to negative information.
Second, our model matches the empirical evidence on the volume-based price
momentum offered by Lee and Swaminathan (2000): price continuation is
stronger after a high past volume than after a low past volume. Third,
our rationalization of the momentum effect does not rely on the access to
private information. We use a framework with differences of opinions la
Harris and Raviv (1993) while they consider an asymmetric information
setting la Grossman and Stiglitz (1980). In their setting, it is the addition
of private information and the self-attribution bias that creates momentum.

Another type of model of the momentum effect is based on the interaction
between different types of traders. In Hong and Stein (1999), news-watchers
and trend-followers are trading with each others. Information is assumed
to diffuse gradually within the population of news-watchers, thereby gen-
erating initial price underreaction and predictability. This predictability is
exploited by trend-followers. Because they are assumed to be using only sim-
ple strategies, trend-followers generate price overreaction. The interaction
between heterogenous agents is thus inducing price momentum. 8

Most of the models described above also predict price reversals and ex-
cess volatility but they cannot rationalize the volume-based price momen-
tum. The various explanations, including ours, of the momentum effect and
of the other price patterns are not mutually exclusive. In this paper, we
provide several new empirical predictions, in particular about the relation-
ship between volume and price patterns. These predictions could be useful
to evaluate the relative importance of the confirmation bias relative to other

8Some articles such as Johnson (2002), Biais, Bossaerts, and Spatt (2010), and Vayanos

and Woolley (2010) offer a rational explanation for the momentum effect but do not

address the volume-based price momentum.
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cognitive biases as an explanation for the behavior of financial markets.

2 Model

We consider a pure exchange economy with one risky asset and a riskless
asset whose rate of return is normalized to zero. There are T + 1 periods
of trading indexed by t ∈ {0, 1, ..., T}. Consumption occurs only at period
T + 1 when the asset’s cash flow ṽA is distributed. We consider that ṽA =

m +
t=T∑
t=1

st + εA where m is a constant that represents prior beliefs, st is a

public signal announced before trading occurs at period t, and εA is a random
noise realized at date T + 1. Note that no signal reaches the market before
trading at date 0.9 For simplicity, we assume that there exists a probability
measure PA under which we have (s1, ..., sT , εA) law= N

(
0,
(
Σ2IdT+1

))
, where

0 is the null vector of dimension T + 1 and IdT+1 is the identity matrix of
dimension T + 1. The number of shares of the risky asset is normalized to
one. There is a continuum of traders with mass normalized to one. A trader
pertains to one of two groups of agents. Arbitrageurs (denoted by A) are
in proportion 1− λ, and biased traders (denoted by B) are in proportion λ.
Traders are endowed with one unit of the risky asset and no cash.

In order to focus on the informational aspects of financial markets, we
assume that traders are risk neutral.10 Absent market frictions, risk neu-
trality implies that traders would stand ready to submit infinite demands as
long as asset prices do not equal their expectation of the asset value. This
would prevent the existence of an equilibrium since the market would not
clear. In order to avoid this phenomenon, we assume that traders incur an
exogenous trading cost that is quadratic in the quantity traded and param-
eterized by c

2 > 0.11 The total cost of trading for trader j at date t with a
demand djt is thus equal to c

2(djt )
2, for all t. This cost can be viewed as an

explicit transaction cost traders have to pay to submit orders or as a proxy
9This assumption is made for simplicity and has no influence on the results.

10This is in the spirit of Harris and Raviv (1993) and isolates our analysis from the

influence of trading motives based on risk sharing.
11Alternatively, we could ensure existence of an equilibrium by assuming that traders

can only trade up to a fixed amount of shares as in Abreu and Brunnermeier (2002). This

different modeling framework would not affect our results.
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for the imperfect depth of financial markets.12 This transaction cost creates
limits to arbitrage and opens the scope for potential mispricings.13

In our model, differences of opinion emerge because all traders do not
encode the public signal in the same way. On the one hand, arbitrageurs
are perfectly rational in the sense that they are endowed with the actual
probability model PA. On the other hand, biased traders are endowed
with a different probability model PB. When receiving public signals st,
biased traders actually see σt, for every t. Under the probability model PB,

the asset’s cash flow is: ṽB = m +
t=T∑
t=1

σt + εB. To incorporate the fact

that biased traders believe that they correctly perceive signals s1,s2,...,sT
when they in fact observe σ1,σ2,...,σT , we consider that, under PB , we have
(σ1, ..., σT , εB) law= N

(
0,
(
Σ2IdT+1

))
.14

To incorporate the confirmation bias in our framework, we assume that
biased traders amplify public information when it is consistent with their
prior beliefs concerning the final cash flow.15.
We denote by µt−1 = EB (ṽB|σ1, . . . , σt−1), the beliefs of biased traders
(under probability model PB) given the information they have received up
to date t − 1. We denote by µAt−1 = EA (ṽA|s1, . . . , st−1), the beliefs of
rational arbitrageurs (under the correct probability model PA) given the
information they have received up to date t− 1. We consider that a signal
st is consistent with prior beliefs µt−1 if and only if st has the same sign
as µt−1 −m, the difference between the conditional and the unconditional

12Imperfect market depth could be related to inventory or adverse selection risks borne

by liquidity providers. See Madhavan (2000) and Biais, Glosten, and Spatt (2005) for

surveys of the market microstructure literature dealing with those issues.
13Alternative modeling frameworks generating limits to arbitrage include noise trader

risk as in De Long, Shleifer, Summers, and Waldmann (1990), short horizons as in Shleifer

and Vishny (1997), and synchronization risk as in Abreu and Brunnermeier (2002). Bar-

beris and Thaler (2001) survey this literature.
14This implies that, before receiving the first public signal, the biased traders have a

correct understanding of the statistical model underlying the financial market. As stated

above, their bias derives from their improper perception of information. Except from that,

biased traders maximize their expected utility, update their beliefs using Bayes’ rule, and

have rational expectations.
15The Appendix shows that our results qualitatively hold when biased traders attenuate

information which is inconsistent with their prior view. In this case, excess volatility also

arise for a large set of parameter values
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expectation of the asset cash flow. When biased traders are bullish, that is,
if they believe that the expected cash flow is above the unconditional mean
m, they over-react to positive signals. Likewise, when traders are bearish,
they over-react to negative signals.16 We can now formally define how the
confirmation bias affects biased traders’ perception of public information.

Definition 2.1 Under the appropriate probability measure PA, the infor-
mation perceived by biased traders is:

(2.1) σt = qst11(µt−1−m)st>0 + st11(µt−1−m)st≤0

in which q ≥ 1 measures the severity of the confirmation bias, and 11(.) is
the indicator function that takes the value 1 if the condition is satisfied and
0 otherwise.

In our model, the departure from perfect rationality is parameterized by
q. If q = 1, we are in the perfect rationality case: biased traders correctly
perceive the public signal, that is, σt = st for every t. However, when q > 1,
biased traders are prone to the confirmation bias: they amplify information
when it is consistent with their prior view. The following lemma shows that
the confirmation bias as modeled here induces biased traders to keep an
opinion for too long.

Lemma 2.1 When q > 1, under the appropriate probability measure PA,
biased traders’ beliefs are too persistent compared to what rationality would
prescribe:

PA
(
µt+x −m > 0|µt −m = n > 0) > PA

(
µAt+x −m > 0|µAt −m = n > 0)(2.2)

in which x is an integer with 2 ≤ x ≤ T − t.
16This definition is a reminiscence of category-like thinking as modeled for example

by Mullainathan (2000). We consider here that biased traders classify an asset into two

categories, good assets are expected to deliver more cash flows than initially expected

while bad asset are expected to deliver less. We depart from Mullainathan (2000) because

we assume that the category to which an asset belongs influences information perception

as shown by the literature on psychology. One could generalize our approach to consider

more than two categories of assets.
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The asset’s payoff distributed at date T+1 corresponds to the realization
of ṽA for both arbitrageurs and biased traders because the probability mea-
sure PA represents the truth. Reality thus strikes at date T+1 when the asset
distributes cash, a variable that can hardly be misinterpreted. The prob-
ability measure PB is an abstraction that is used to model biased traders’
beliefs. To complete the set up of our model, we endow biased traders with
rational expectations. This implies that they are not surprised when ob-
serving transaction prices that differ from their conditional expectation of
the asset cash flow. We thus posit the following definition.

Definition 2.2 Under PB:

st =
1
q
σt11(µt−1−m)σt>0 + σt11(µt−1−m)σt≤0

This definition indicates that, from biased traders’ perspective, arbi-
trageurs attenuate public information when it is consistent with biased
traders’ prior views. Let us point out that the set of information gener-
ated by the observation of the signals s coincides with the set of information
generated by the biased signals σ. In other words, there is no asymmetry of
information in our setting. For any randon variables x̃ and ỹ, we use EAt (x̃)
and EBt (ỹ) to denote EA (x̃|s1, . . . , st) and EB (ỹ|σ1, . . . , σt), respectively.

To summarize, the situation in our model is as follows: there are two
types of traders who receive the same public signals. The two types of traders
however do not perceive this information in the same way: biased traders
amplify signals that are consistent with their prior views. All traders then
use Bayes’ rule to update their beliefs. The two types of traders know that
not all the market participants perceive information in the same manner
but both of them believe that their interpretation is the correct one.17 This

17We could consider a model where traders assign a non-zero probability to the event

that their probabilistic measure is incorrect and engage in bayesian learning to appropri-

ately choose the measure that is the most plausible. However, since in our setting the

asset pays off a cash flow only at the last period, and since agents including biased traders

have rational expectations, none of the information that traders observe (that is, market

prices) would reduce the likelihood that their probabilistic measure is the correct one. Al-

ternatively, if the asset was distributing several cash flows over time, biased agents could

learn the true probabilistic measure. Our model can thus be viewed as focusing on the

period during which biased traders have not yet learned what the true probability model

is.
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creates differences of opinion across traders offering them a rationale to
trade. The next section characterizes the trading outcomes of this financial
market. We focus on the case in which T = 3 because it is rich enough to
deliver our main results.18

3 Equilibrium Prices, Returns and Volumes

Our model features quadratic transaction costs. As a result, asset demands,
dAt for arbitrageurs and dBt for biased traders, are finite despite risk neutral-
ity and there exists an equilibrium. Standard arguments show that prices
in our financial market are weighted averages of arbitrageurs and biased
traders’ beliefs given their respective information set. They are given in the
following proposition.

Proposition 3.1 At each date t:

• The price is:

Pt = (1− λ) EAt (ṽA) + λEBt (ṽB)

= m+ (1− λ)
i=t∑
i=1

si + λ

i=t∑
i=1

σi.

• The volume, defined as (1− λ) |dAt | or λ|dBt |, is:

Vt =
λ (1− λ)

c
|EAt (ṽA)− EBt (ṽB) |

=
λ (1− λ)

c
|
i=t∑
i=1

(si − σi) |.

For t > 1, the confirmation bias affects biased traders’ conditional beliefs,
EBt (ṽB), and thus in turn it impacts equilibrium variables. To analyze this
impact, it is useful to analyze the benchmark case in which all traders are
perfectly rational. Endogenous variables in this benchmark are indicated by
a star. This benchmark is nested in our model and corresponds to the case
in which λ = 0 or q = 1. In this case, we have P ∗t = EAt (ṽA) = m+

∑i=t
i=1 si.

Given the structure of the uncertainty in our model, it is straightforward to
show that the following proposition holds.

18The appendix shows that our results extend to the general case in which T > 3 .
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Proposition 3.2 When all traders are perfectly rational (that is, when λ =
0 or q = 1), market outcomes are as follows:

• The volume is null:
V ∗t = 0, for all t

• Expected returns are null. In particular:

EA (P ∗3 − P ∗2 |P ∗2 − P ∗1 ) = 0

• There is no autocorrelation in short-term price changes:

CovA
(
P ∗t+k − P ∗t , P ∗t − P ∗t−k

)
= 0, for t > 0, 1 ≤ k ≤ min(t, 3− t)

• There is no autocorrelation in long-term price changes:

CovA (P ∗t − P ∗0 , ṽA − P ∗t ) = 0, fort > 0

• The variance of prices reflects the arrival of fundamental information:

V arA (P ∗t ) = tΣ2, for all t

When there are no biased traders, prices are equal to the present value of
the asset’s cash flow conditional on the available information. Public signals
are the only factor influencing asset prices. Because we assume that public
signals are independent and identically distributed, the variance of prices is
just the sum of the public signals’ variances. There is no autocorrelation
in returns. Finally, trading volume is null because, in the benchmark case,
there are no differences of opinion.

We now study how asset prices, returns, and volumes are influenced by
the fact that some traders are prone to the confirmation bias. 19 Statistical
properties of equilibrium variables are evaluated based on the true proba-
bility measure PA because we take the viewpoint of an econometrician who
would observe independent repetitions of our model.

19As indicated above, the Appendix shows that our results qualitatively hold when

biased traders attenuate information which is inconsistent with their prior view.
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3.1 Volume-based price momentum

We start by showing that our model provides a rational for the volume-based
price momentum documented by Lee and Swaminathan (2000). They show
that price continuation is higher for stocks with past price trends that were
associated with high volume. We also show that our model is consistent with
the evidence offered by Jegadeesh and Titman (1993) on the momentum
effect. The next proposition establishes these results.

Proposition 3.3 When some traders are prone to the confirmation bias
(that is, when λ > 0 and q > 1), market prices are such that:

• Future expected returns are higher after higher past price changes, that
is:

∂EA (P3 − P2|P2 − P1)
∂ (P2 − P1)

> 0.

• Price continuation is stronger after higher past volume, that is:

CovA
(
V2, |EA (P3 − P2|P2 − P1) |

)
> 0.

Momentum in our model derives from the fact that a positive (respec-
tively, negative) price change makes it more likely that biased traders are
optimistic (respectively, pessimistic) and will thus overreact to future pos-
itive (respectively, negative) news. In addition to this effect, the volume-
based momentum is driven by the fact that a high past absolute price change
increases the expected size of the disagreement between biased traders and
rational arbitrageurs, leading to a high past trading volume. Together, these
two elements indicate that, in our model, the difference in future expected
return between winning and losing assets is higher for assets with a high
rather than a low past volume. This is in line with the empirical findings of
Lee and Swaminathan (2000).

3.2 Mispricings

We now explicitly derive the best estimate a rational agent can make about
future prices (and thus biased traders’ beliefs) at date 2 and 3 conditional
on the information at date 1. We have the following proposition.
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Proposition 3.4 When some traders are prone to the confirmation bias
(that is, when λ > 0 and q > 1), market prices are such that:

• When µ1 −m = s1 is positive, there is a bubble in the sense that

EA1 (P3) > EA1 (P2) > m+ s1 = EA1 (P ∗2 ) = EA1 (P ∗3 )

• Alternatively, when µ1 − m = s1 is negative, there is a crash in the
sense that

EA1 (P3) < EA1 (P2) < m+ s1

Proposition 3.4 shows that the presence of biased traders creates mis-
pricings: asset prices differ from the fundamental value as measured by the
sum of the public signals. This proposition is a reminiscence of the fact
that, as underlined by Rabin and Schrag (1999), first impression matters
for agents who are prone to the confirmation bias. When initial news (s1)
make them optimistic (that is, push their beliefs above m), biased traders
exacerbate future good news thus pushing prices above fundamental levels.
On the contrary, if initial news make them pessimistic, biased traders sub-
sequently push prices below fundamental levels. At initial dates t ∈ {0, 1},
biased traders have not formed an opinion yet so the confirmation bias has
no bite and prices equal fundamental values: P0 = P ∗0 and P1 = P ∗1 .

Furthermore, Proposition 3.4 shows that mispricings are expected to
worsen instead of being corrected. We interpret this phenomenon as a price
bubble or crash depending on the direction of biased traders’ beliefs at date
1. Suppose, for example, that public information at date 1 is positive, s1 > 0.
After observing this signal, a rational agent expects the price at date 2 to
be higher than the fundamental value and to drift further away from the
rational benchmark from date 2 to date 3. This is because biased traders’
beliefs are too persistent: for a given optimistic belief (that is, a belief above
the initial belief m), biased traders’ are likely to be even more optimistic in
the future. After a negative public signal at date 1, the logic is the same
and a crash develops: a rational agent expects the price at date 2 to be
lower than the fundamental value and to drift further downward from date
2 to date 3. As explained above, rational arbitrageurs’ trades partly correct
mispricings but do not completely eliminate them because of transaction
costs.
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3.3 Excess volatility

We now study how the confirmation bias affects price volatility. The next
proposition compares the volatility of prices when some traders are biased
to the volatility of prices in the perfectly rational benchmark.

Proposition 3.5 At date t ∈ {2, 3}, market prices exhibit excess variance:

V ar(Pt) = V ar (P ∗t ) + Σ2Θt(λ, q).

The appendix provides the exact expressions for Θt(λ, q), and shows that
Θt(0, .) = Θt(., 1) = 0 and Θt(λ, q) > 0 if λ > 0 and q > 1.

Proposition 6.5 indicates that excess variance arises because of the con-
firmation bias. The reason for this result is twofold. On the one hand, biased
traders sometimes over-react to public signals. This naturally increases the
variance of prices. On the other hand, biased traders put more weight on
future positive signals when being optimistic and on future negative signals
when being pessimistic. This positive correlation between current views and
future misperceptions exacerbates price volatility. The Appendix shows that
all our results hold when biased traders underreact to information that is
inconsistent with their prior views. In this case also, excess variance arises in
our model, even if only for a large set of parameters’ values. This indicates
that, in our model, excess variance is not an arte-fact of the overreaction
assumption.

3.4 Volume

In our model, volume is positively related to the magnitude of differences
of opinion. When there are no biased traders (that is, λ = 0 or q = 1),
volume is null: V ∗t = 0, for all t. Also, since at initial dates t ∈ {0, 1},
biased traders have not formed an opinion yet, volume is always null: V0 =
V1 = 0. The next proposition shows that, once biased traders have formed
an opinion, volume arises, is positively autocorrelated, and is larger when
contemporaneous absolute returns are larger.

Proposition 3.6 When some traders are prone to the confirmation bias
(that is, λ > 0 and q > 1):
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• Volume is positively autocorrelated:

CovA (V2, V3) ≥ 0

• At t ∈ {2, 3}, there is a positive correlation between the trading volume
and the magnitude of contemporaneous returns:

CovA (Vt, |Pt − Pt−1|) ≥ 0.

Once biased traders have formed an opinion, excess volume arises at
t ∈ {2, 3} and tend to be higher when large price change occur. This is not
a mechanic result. Indeed, once a difference of opinion has emerged, trading
occurs even if there is no news (st = 0) so that the price remains unchanged
(Pt = Pt−1). This is due to the convex nature of transaction costs: instead
of trading a large quantity once, traders prefer to split their orders and trade
repeatedly small quantities. This implies that trading is observed even in
the absence of any new information arrival. Proposition 3.6 also indicates
that there is a positive correlation between returns’ magnitude and volume.
This is due to the fact that both the magnitude of price changes and trading
volume are positively affected by biased traders’ beliefs.

3.5 Reversal effect

Our model also displays a reversal effect. When some traders are prone to
the confirmation bias (that is, when λ > 0 and q > 1), after a price increase,
the price is expected to decrease when the actual cash-flow of the asset is
distributed, that is, when reality strikes. We have the following proposition:

Proposition 3.7 Expected long-term returns, as measured by EA (vA − P2|P2 − P1),
are negative (respectively, positive) after a positive (respectively, negative)
past return.

For example, after a price increase, it is more likely that prices are above
the fundamental value. As a result, when the cash-flow vA is realized, reality
strikes thereby revealing the overly optimistic market valuation. This result
also holds when biased traders underreact to information that is inconsistent
with their prior views for a set of parameters’ values identical to the excess
volatility case.
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3.6 Trading performance

This subsection studies how the trading performance of rational arbitrageurs
compares to the one of biased traders. Performance is measured by the ex-
pected capital gains.20 At dates 0 and 1, because all traders have identical
endowments and beliefs, there is no trade and thus no capital gains. At
date 2, different positions are established by rational arbitrageurs and biased
traders. Because they misperceive the public information, biased traders’
performance is always lower than rational arbitrageurs’ one when the in-
formation revealed at date 4 is taken into account, date at which reality
strikes and the cash-flow is distributed. The following proposition charac-
terizes the expected capital gains realized from date 2 to date 3, defined as
EA
((

1 + dX2
)

(P3 − P2)
)
, with X ∈ {A,B}.

Proposition 3.8 Expected capital gains from date 2 to date 3 are strictly
positive for biased traders and strictly negative for rational arbitrageurs.

In our model, not only rational arbitrageurs have lower expected capital
gains than biased traders, but also they incur expected losses as long as the
final dividend is not distributed. This is because biased traders’ misper-
ception worsens overtime in expectation. Prices are thus expected to drift
further and further away from fundamentals, thereby impacting negatively
the performance of the rational arbitrageurs. These arbitrageurs only fare
better than biased traders when the final dividend of the asset is distributed.
At this date, biased traders end up with a negative expected wealth while
rational arbitrageurs have a positive one. Proposition 3.8 indicates that ra-
tional arbitrageurs’ stabilizing behavior is damageable for their performance
in the short-run. It is however beneficial in the long-run when the actual
cash flow of the asset is distributed. The short-run underperformance is not
an issue for rational arbitrageurs in our model because they only care about
their expected final wealth. They have a long horizon. The next section
studies the trading strategy of a rational agent with a short horizon.

20Focusing on expected capital gains abstracts from the impact of transaction costs.

Because traders are assumed risk neutral, we do not need to control for risk.
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3.7 New empirical predictions

This subsection proposes new empirical predictions based on the autocor-
relation in short-term price changes. In the perfectly rational benchmark,
there is no autocorrelation in returns because prices are only influenced by
independent public signals. The following proposition shows that positive
autocorrelation arises in our model because of the confirmation bias.

Proposition 3.9

When some traders are prone to the confirmation bias (that is, λ > 0 and
q > 1), price changes exhibit positive autocorrelation, that is,

CovA (P1 − P0, P2 − P1) ≥ 0.

CovA1 (P2 − P1, P3 − P2) ≥ 0.

The autocorrelation is weaker when biased traders’ beliefs are more extreme,
that is, CovA1 (P2 − P1, P3 − P2|µ1 −m) decreases with |µ1 −m|.

This autocorrelation however does not imply that a rational observer
can predict whether the next return will be positive or negative. Rather,
a rational agent predicts that, when biased traders are optimistic, the size
of positive price changes is on average larger than the one of negative price
changes. Likewise, when biased traders are pessimistic, the size of negative
price changes is on average larger than the one of positive price changes.

Proposition 3.9 states that autocorrelation varies with the strength of
biased traders’ beliefs. The intuition for this result is as follows. Consider
for example that biased traders are optimistic. When they are extremely
optimistic, it is very unlikely that biased traders will ever become pessimistic
in the future. As a result, they will almost always overreact to positive sig-
nals and correctly interpret negative ones. Because signals are independent,
biased traders’ changes in beliefs are uncorrelated. On the contrary, when
biased traders’ beliefs are less extreme, the next signal can affect their views
on the asset’s cash flow: they may become pessimistic if the next signal is
sufficiently negative. This shift in beliefs is then going to affect the future
information distortions. There is thus a positive correlation between the
public signal and the future signal distortions. This correlation is maximal
when biased traders are neutral because, in this case, their state of mind (and
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thus future information distortions) are extremely sensitive to public infor-
mation: a positive (negative) signal turns them into optimistic (pessimistic)
which implies that they will over-react to future positive (negative) news.

3.8 Discussion

Our model is, to the best of our knowledge, the first one that is in line with
Lee and Swaminathan (2000)’s empirical observation of the volume-based
momentum. This is made possible by the fact that our model is a differences
of opinion model (and thus can generate volume predictions) in which the
source of the disagreement is explicitly modeled (which gives rise to peculiar
dynamics in price and volume). In addition to this, our model provides a
unified explanation for a variety of empirically documented phenomena and
delivers novel empirical predictions.

First, price momentum arises in our model. This is in line with the em-
pirical analysis of Jegadeesh and Titman (1993). In addition, confirmation
bias creates autocorrelation in price changes. A novel empirical prediction
is that this autocorrelation decreases with the strength of biased traders’
beliefs. Along with the volume-based momentum result, this prediction dif-
ferentiates our theory from other behavioral finance models of momentum
such as Barberis, Shleifer, and Vishny (1998), Daniel, Hirshleifer, and Sub-
rahmanyam (1998), or Hong and Stein (1999).

Second, after good initial news, our model shows that a bubble is ex-
pected to form. Favorable initial news induce traders to be optimistic con-
cerning the future cash-flow to be distributed by the asset. Biased traders
then distort subsequent information and, in expectation, become more and
more optimistic. Prices are set above fundamental value and are expected
to drift further up. This expected price run-up goes together with an in-
creasing expected volume: after good initial news, a rational agent would
not only expect prices to inflate above fundamental values but also trading
volume to increase as prices rise. Our model offers a joint characterization
of prices and volumes in bubble episodes and thus complements the theory
of bubbles based on overconfidence and differences of opinion developped
by Scheinkman and Xiong (2003), and Hong, Scheinkman, Xiong (2006).
The bubble in our model is expected to crash only when a strike of bad
news is strong enough to make biased traders pessimistic. If a bad signal

24



is announced but does not turn biased traders optimism into pessimism,
the price of the asset goes down but the bubble is still expected to keep on
inflating afterward.

Third, biased traders have positive expected capital gains in the short
run and negative ones in the long run. Long run negative returns are con-
sistent with the empirical results of Odean (1999). Moreover, the fact that
biased traders trade a lot and incur losses is consistent with the empirical
results of Barber and Odean (2000). Our model suggests that confirmation
bias can complement overconfidence as an explanation for these phenomena.
Rational arbitrageurs are expected to accumulate losses except at the final
date at which the dividend is distributed. The performance of rational ar-
bitrageurs is better than the one of biased traders only when reality strikes,
that is, when the cash flow is distributed. This result is related to the anal-
ysis of De Long, Shleifer, Summers, and Waldmann (1990) in which some
irrational investors create risk on the market and end up, in some cases,
with a higher expected wealth than rational agents because they pocket in
a higher fraction of the risk premium. In our model, in the short-run, bi-
ased traders have a better performance than rational arbitrageurs because
they pocket in profits from a momentum effect that they themselves create.
However, this is not a problem for rational arbitrageurs since they have a
long-term horizon: they want to maximize their expected final wealth. If a
rational agent had a short-term horizon though, he would adopt a different
strategy. This issue is the focus of the next section.

Finally, our model features excessive price volatility and price reversal.
These results are consistent with the empirical evidence documented by
Shiller (1981), and Mankiw, Romer, and Shapiro (1985) on volatility and De
Bondt and Thaler (1985) on reversal. In our model, these phenomena derive
from two sources. On the one hand, they are related to the fact that traders
who are prone to the confirmation bias may amplify some of the public
signals. On the other hand, even when biased traders underreact rather
than overreact, these phenomena arise because of the positive correlation
between past news and future distortions. Both effects translate into higher
price volatility and reversal because of the price pressure biased traders exert
on the market.
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4 Short-term investments and the Confirmation

Bias

Some investors in financial markets are subject to liquidity constraints that
prevent them from holding positions for an extended period of time (see
the analysis of Shleifer and Vishny (1997)). We thus investigate how an
investor with a short horizon would behave when confronted with traders
who suffer from the conrmation bias. To do so, we introduce in the model
an additional risk neutral rational trader, referred to as a hedge fund, with a
negligible mass and a one-period horizon. The negligible mass implies that
the hedge fund trading behavior does not affect prices. As a consequence,
the pricing results derived above are still valid. The short horizon implies
that, at each date, the hedge fund’s objective is to maximize next period’s
return.21 The question that we aim to address here is whether the fund uses
a contrarian or a positive-feedback strategy, whether the fund is fighting or
riding bubbles and crashes.

Proposition 4.10 below shows how to set up the optimal short-term trad-
ing strategy, that is, the strategy that exploits mispricings when they arise.

Proposition 4.10 For t ∈ {1, 2}, the demand of a short-term trader is:

dt =
λ(q − 1)Σ
c
√

2π

[
211(µt>m − 1

]
.

Proposition 4.10 highlights the fact that one of the crucial dimensions
of a short-term strategy in our model is to track the evolution of biased
traders’ beliefs. Before the final trading date, if biased traders are optimistic
(pessimistic), that is µt −m > 0 (µt −m < 0), the hedge fund establishes
a long (short) position because it rationally anticipates that potential price
increases (drops) will on average be larger than drops (increases). The hedge
fund rides the bubble or the crash. Such a behavior is in sharp contrast with
arbitrageurs’ behavior in our model. These arbitrageurs indeed sell when the
price is above the rational fundamental value and buy when it is below. This
is because they hold their inventories until the asset’s cash flow is distributed.

21All of the following results hold as long as the horizon of the hedge fund does not

include the date at which the asset’s cash flow is distributed. If it were the case, its

behavior would be similar to the one of rational arbitrageurs.
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At the final trading date, the hedge fund trades against the mispricing and
is thus in line with arbitrageurs’ strategy. In addition to this, it is easy to
show from Proposition 4.10 that the trading activity and the profit of the
hedge fund increase with the intensity of the confirmation bias, and with
the proportion of biased traders. These parameters can be estimated thanks
to maximum likelihood techniques. The likelihood function is provided in
the appendix. Based on Proposition 4.10, we now characterize the type of
strategy used by the fund.

Proposition 4.11 For t ∈ {1, 2}, a short-term trader engages in:
- Positive-feedback trading when the public signal is positive (st > 0)

and biased traders are optimistic (µt −m > 0), or when the public signal is
negative (st < 0) and biased traders are pessimistic (µt −m < 0);

- Contrarian trading when the public signal is positive (st > 0) and biased
traders are pessimistic (µt −m < 0), or when the public signal is negative
(st < 0) and biased traders are optimistic (µt −m > 0);

- A short-term trader adopts a positive-feedback trading strategy more
often than a contrarian strategy: for a given µt−1, the probability that the
fund uses a positive-feedback strategy equals 1

2 +Φ(−|µt−1−m|
Σ ) which is greater

than 1
2 .

Proposition 4.11 shows that a short-term trader is more likely to fol-
low a positive-feedback strategy and that there are circumstances in which
contrarian trading is optimal. These circumstances correspond to cases in
which the public signal is inconsistent with biased traders’ beliefs but is not
strong enough to change their views. For example, a contrarian strategy is
optimal when biased traders are optimistic (µt−1 −m > 0) and the public
signal is mildly negative (−(µt−1 −m) < st < 0).

To illustrate the optimal strategy of a short-term trader, consider that
biased traders are optimistic, that is, µt−1−m > 0 (the logic described here
also applies when they are pessimistic). The most recent return is Pt−Pt−1 =
(1−λ)st+λσt which is positive (negative) if st is positive (negative). When
st is positive, biased traders’ beliefs remain positive (µt−1 −m+ σt > 0) in
which case the fund is buying (dt > 0): upon receiving a good news at date t,
the market price increases and the fund engages in positive-feedback trading.
When st is negative, there are two cases. First, if st < −(µt−1 −m), biased
traders’ beliefs become negative in which case the fund is selling (dt < 0).
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Again, this case corresponds to positive-feedback trading since, after a very
bad news at date t, the price declines and the fund is going short. Second,
if −(µt−1 −m) < st < 0, biased traders’ beliefs remain positive despite the
bad news in which case the fund is buying (dt > 0). In this case, contrarian
trading occurs: the fund is buying after a price decline.

This example can be useful to highlight the difference between a strategy
based on the confirmation bias and some popular strategies such as momen-
tum and technical analysis strategies. We define a momentum strategy as
a strategy according to which a fund buys after a price increase (that is, if
st is positive) and sells after a price decline (that is, if st is negative). Such
a momentum strategy would generate positive expected profits but these
profits would be lower than the one of the optimal strategy described above.
This is because a momentum strategy does not take into account the cases
in which information arrivals do not change the valence of biased traders’
beliefs. Consider for example that biased traders are optimistic. A negative
information arrives that does not affect biased traders’ optimism. In this
case, the momentum strategy would issue a selling signal while the optimal
strategy issues a buying signal to reflect the fact that biased traders are still
likely to overreact to positive news.

We now compare the confirmation-based strategy to technical analysis
strategies. We define a technical analysis strategy as a strategy that pre-
scribes buying (selling) as soon as the price path crosses a particular resis-
tance (support). In our model, the level m constitutes a natural candidate
for a support or a resistance. Such a technical analysis strategy imperfectly
captures the change in biased traders’ beliefs. Consider for example, that
the price is above the level m but that biased traders are pessimistic. The
technical analysis strategy would issue a buying signal while the optimal
strategy would issue a selling signal. In addition, the technical analysis
strategy would not take into account the autocorrelation in price changes as
effectively as the optimal strategy.22 In a sense, the optimal strategy based
on the confirmation bias can be viewed as a combination of the momentum

22Another type of technical analysis consists in buying when the price is above a given

support and selling when it is below a given resistance. Again, a natural candidate in our

model for the support and the resistance would be the level m. This strategy would benefit

from the autocorrelation in prices but only imperfectly because it does not perfectly track

biased traders’ beliefs
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and the technical analysis strategies. Because it is based on a correct under-
standing of price formation in our model, this strategy will outperform the
two others by construction.23 It would be interesting to test whether this is
also the case on actual data.

5 Conclusion

This paper proposes a theory of price formation based on the premise that
some traders are prone to the confirmation bias. We model this cognitive
bias by considering that people prone to the confirmation bias tend to am-
plify signals that are consistent with their prior views. We show that, in the
context of financial markets, this bias provides a rationale for the volume-
based price momentum documented by Lee and Swaminathan (2000): the
return differential between winning and losing assets is higher for high past
volume than for low past volume assets. In addition, we show that excess
volatility, momentum and reversals arise in our model. Also, when biased
traders are optimistic (pessimistic), the market experiences a bubble (crash)
in the sense that prices are above (below) fundamentals, and that the mis-
pricing is expected to worsen in the future. Finally, a new prediction is
that autocorrelation in price changes is negatively related to the strengths
of biased traders’ beliefs: when biased traders’ beliefs are more extreme (ei-
ther more optimistic or more pessimistic), there is less autocorrelation in
price changes. This prediction could be the basis for an empirical test of
our model. One way to proceed could be to compare price continuation and
future price change autocorrelation after different volume episodes: a price
trend associated with a decreasing volume indicates that biased traders be-
lieves are becoming more in line with fundamentals. This predicts a lower
price continuation but a higher autocorrelation in price changes.

We highlight the implications of our model for quantitative investments
by deriving the optimal strategy of a short-term trader. We analytically
indicate how to structure a portfolio in order to profit from biased traders’
misperception. In particular, we show that most of the time, a short-term

23If we assume that the hedge fund invests one monetary unit at each date (either long

or short), the expect profit of a confirmation-based strategy is c/2 which is greater than

(c(211µt>m−1)− c
2
)11st>0+(−c(211µt>m−1)− c

2
)11st<0, the expected profit of a momentum

strategy.
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trader adopts a positive feedback strategy. We also characterize market
conditions in which a contrarian trading strategy is optimal. These con-
ditions correspond to cases in which the public signal is inconsistent with
biased traders’ beliefs but is not strong enough to change their views. For
example, a contrarian strategy is optimal when biased traders are optimistic
and the public signal is mildly negative (that is, negative but not enough
to turn biased traders from optimistic to pessimistic). Overall, our model
highlights the fact that, to successfully benefit from short-term strategies,
traders should track the evolution of biased traders’ beliefs that are at the
origin of the momentum effect and of the other mispricings. Our model pro-
vides an explicit characterization of these biased traders’ beliefs and their
evolution and may thus be helpful in structuring dynamic trading strategies
bound to profit from the momentum effect.

In future work, it would be interesting to estimate the parameters of our
model (in particular the proportion of biased traders on the market, , and the
magnitude of the bias, q) in order to evaluate the abnormal returns generated
by a strategy based on the confirmation bias. Also such estimation could be
useful to test the model against the fully rational benchmark and against
the overconfidence case where traders overreact to every signal. Finally, our
model could be used to study optimal corporate communication. Indeed,
firms that are confronted to financial market populated by investors prone
to the confirmation bias might have an interest in appropriately choosing
the timing and the strength of information releases.

30



6 Appendix

This appendix provides the analytical expressions that lead to the results
stated in our various propositions.
Proof of Lemma 2.1 Let us consider x = 2. We will prove that

PA
(
µt+2 −m > 0|µt −m = n > 0) > PA

(
µAt+2 −m > 0|µAt −m = n > 0),

or equivalently for any n > 0,

PA
(
n+ σt+1 + σt+2 > 0) > PA (n+ st+1 + st+2 > 0).

From the equality,

n+σt+1+σt+2 = n+st+1+st+2+(q−1)st+111st+1>0+(q−1)st+111(n+σt=1)st+2>0,

we deduce that the set {n+st+1 +st+2 > 0} ⊂ {n+σt+1 +σt+2 > 0} because
n+σt+1 +σt+2 ≥ n+ st+1 + st+2 almost surely. To show that the inequality
is strict, let us consider a path where st+1 > 0 and −(n + qst+1) < st+2 <

−(n+ st+1).
Proof of Proposition 3.1
At date T + 1, the final wealth of trader j, Wj , is:

Wj =
t=T∑
t=0

[
djt (vX − Pt)−

c

2

(
djt

)2
]

+ vX ,

with X=A if j is an arbitrageur and X=B if j is a biased trader. Since
traders only consume at the last date T + 1, their objective is to maximize
their expected final wealth conditional on their information. To solve for
the optimal demands, we start by solving the program of trader j at period
T :

max
djT

EXT

(
t=T−1∑
t=0

[
djt (vX − Pt)−

c

2

(
djt

)2
]

+ djT (vX − PT )− c

2

(
djT

)2
+ vX

)
,

subject to the budget constraint of trader j at date T .
It is straightforward to check that the objective function is concave in

djT . The first order condition is thus necessary and sufficient to characterize
the optimal demand at date T :
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djT =
EXT (v)− PT

c
.

Proceeding backward, we obtain that:

djt =
EXt (v)− Pt

c
, ∀t ∈ {0, 1, ..., T} .

At date t, t ∈ {0, 1, ..., T}, the market clearing condition is given by:∫ (1−λ)

0

EAt (v)− Pt
c

dj +
∫ 1

(1−λ)

EBt (v)− Pt
c

dj = 0,

where 0 corresponds to the fact that no new share is being issued on the
market. From this market clearing condition, we derive the following pricing
equation:

Pt = (1− λ) EAt (ṽA) + λEBt (ṽB)(6.3)

= m+ (1− λ)
i=t∑
i=1

si + λ

i=t∑
i=1

σi.

Given these results, deriving the expression for the volume is straight-
forward.

Proof of Proposition 3.2
This proposition derives from the fact that, in the rational benchmark

case, prices constitute a random walk. In this case, the volume is null
because all agents hold the same belief regarding the value of the future
cash flow.

Proof of Proposition 3.3
Momentum is related to the fact that:

EA (P3 − P2|P2 − P1) = λ (q − 1)
Σ√
2π

(2Φ (P2 − P1)) .

Φ(.) represents the cumulative distribution function of a standardized nor-
mal random variable. It is straightforward to see that this expression in-
creases with P2 − P1.
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Volume-based price momentum derives from the fact that:

CovA
(
V2, |EA (P3 − P2|P2 − P1) |

)
=
λ2 (1− λ) (q − 1)2

c

Σ√
2π

EA (11s1>0|s2| (1− 2Φ (−ks2)) > 0.

where k = λ(q − 1) + 1.

Proof of Proposition 3.4
The mispricing at date t∈ {2, 3} is :

Pt − P ∗t = λ

i=t∑
i=1

si
(
(q − 1)11(µi−1−m)si>0

)
.

When µ1 −m = s1 is positive, there is a bubble in the sense that:

EA1 (P3) = EA1 (P2)+λ
Σ√
2π

(q−1)(1−Φ(−s1

Σ
)) > EA1 (P2) = m+s1+λ

Σ√
2π

(q−1) > m+s1.

When µ1 −m = s1 is negative, there is a crash in the sense that

EA1 (P3) = EA1 (P2)−λ Σ√
2π

(q−1)Φ(−s1

Σ
) < EA1 (P2) = m+s1−λ

Σ√
2π

(q−1) < m+s1.

In order to prove the propositions relative to excess variance, volume-
based momentum and reversal effect, we need to prove technical results
concerning the distribution function of the biased signal.

Result .1 For every t, the random variable µt−m has a symmetric distri-
bution.

Proof of Result .1 We will make a proof by induction. The result is
obvious for t = 1 because µ1 −m = s1.
Let us assume that µt−1−m has a symmetric distribution. Let us first show
that σt has a symmetric distribution. Take x > 0, we have

P(σt ≤ x) = P(µt−1 −m > 0)P(s3 ≤
x

q
) + P(µt−1 −m < 0)P(s3 ≤ x).

On the other hand,

P(σt ≥ −x) = P(µt−1 −m > 0)P(s3 ≥ −x) + P(µt−1 −m < 0)P(s3 ≥ −
x

q
).
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We conclude using that both s3 and µt−1−m have a symmetric distribution.
Now, by denoting Ft−1 the distribution function of µt−1 −m,

P(µt −m ≤ x) = P(µt−1 −m+ σt ≤ x)

=
∫

R
P(σt ≤ x− y)Ft−1(dy)

=
∫

R
P(σt ≥ y − x)Ft−1(dy) since σt has a symmetric distribution

=
∫

R
P(σt ≥ −z − x)Ft−1(dz) since µt−1 −m has a symmetric distribution

= P(µt −m ≥ −x)

Result .2 The second order moments of the signals are

1.
Var(σ2) = Var(σ3) = (1 + q2)Σ2.

2.

covA(σ2, s1) = (q − 1)
Σ2

π
.

3.

covA(σ2, s2) = (q + 1)
Σ2

2
.

4.

covA(σ3, s1) = (q − 1)
Σ2

√
π
.

5.

covA(σ3, s2) = (q − 1)
Σ2

π
.

6.

covA(σ3, s2) = (q − 1)
Σ2

π

(
q − 1 +

1√
2

)
.
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Proof of Result .2 Using the independence of the signals si and Result .1
the first three equalities are straightforward. We focus on the last three.

covA(σ3, s1) = (q − 1)EA(s1s311(s1+σ2)s3≥0)

= (q − 1)
Σ√
π

EA(s1(11s1+σ2≥0 − 11s1+σ2≤0))

= 2(q − 1)
Σ√
π

EA(s1(11s1+σ2≥0))

Using,
PA1 (s1 + σ2 ≥ 0) = N

(s1

Σ

)
,

we get

covA(σ3, s1) = 2(q − 1)
Σ2

√
2π

EA
(
s1N

(s1

Σ

))
.

By integration by parts, we have EA
(
s1N

(
s1
Σ

))
= Σ√

2
and thus the result.

On the same manner, we have

covA(σ3, s2) = 2(q − 1)
Σ√
π

EA(s2(11s1+σ2≥0)).

Using EA1 (s2(11s1+σ2≥0)) = Σe−
s21

2Σ2 and EA(e−
s21

2Σ2 ) = 1√
2
, we get the result.

On the other hand, using Result .1

covA (σ2, σ3) = EA(σ2σ3).

We have,

EA(σ3σ2) = EA(EA2 (σ3)σ2)

= (q − 1)
Σ√
2π

EA(σ2(211{µ2≥m} − 1))

= 2(q − 1)
Σ√
2π

(
EA(σ2(11{s1+σ2≥0}

)
.

But,

EA(σ211{s1+σ2≥0}) = (q − 1)EA(s211{s1s2≥0}11{s1+σ2≥0}) + EA
(
s211{s1+σ2≥0}

)
= (q − 1)EA(s211{s1≥0}11{s2≥0}) + EA

(
s211{s1+σ2≥0}

)
= (q − 1)

Σ√
2π

PA(s1 > 0) +
Σ√
2π

EA(e−
(s1)2

2Σ2 )

=
1
2

(q − 1)
Σ√
2π

+
Σ

2
√
π
.

35



Proof of Proposition 6.5
Using Result .2, we obtain

V arA(P2) = V arA(P ∗2 ) + Σ2Θ2(λ, q).

where

Θ2(λ, q) = λ2 (q − 1)2

2
+ 2λ

(
q − 1
π

+
q − 1

2

)
> 0.

Likewise, the variance of P3 is:

V arA(P3) = V arA(P ∗3 ) + Σ2Θ3(λ, q),

where

Θ3(λ, q) =
λ2

2
(q − 1)2 +

4λ2(q − 1)
2π

(
q − 1

2
+
√

2
)

− 4λ2(q − 1)
2π

√
2 + 2λ(q − 1) +

4λ(q − 1)
2π

√
2

+
4λ2(q − 1)

2π

√
2 +

2λ(q − 1)
π

> 0.

Our model exhibits excess variance both at dates 2 and 3.

When biased traders underreact to information, the biased signal is mod-
eled as

(6.4) σt = st11(µt−1−m)st>0 + rst11(µt−1−m)st≤0

with r ≤ 1. All the previous formula remains valid with 1 − r in the place
of q − 1. Therefore, excess variance arises when confirmation bias implies
underreaction of biased traders.

Proof of Proposition 3.6
Volume at date 2 is:

V2 =
λ (1− λ) (q − 1)

c
11s1s2>0|s2|.

Volume at date 3 is:

V3 =
λ (1− λ) (q − 1)

c

∣∣11s1s2>0s2 + 11(µ2−m)s3>0s3

∣∣ .
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Because V2 = 0 if s1s2 ≤ 0 then we will compute volume at date 3 when
s1s2 ≥ 0. Hence,

λ (1− λ) (q − 1)
c

|11s1>011s2>0(s2 + 11s3>0s3)− 11s1<011s2<0(s2 + 11s3<0s3)| .

As a result,

CovA(V2, V3) =
λ2 (1− λ)2 (q − 1)2

c2

(
Σ2

2
+

1
2

Σ2

2π

)
> 0.

On the other hand,

CovA (V2, |P2 − P1|) =
λ (1− λ) (q − 1)

c

(
(λq + (1− λ))

(
Σ2

2
− Σ2

4π

)
− Σ2

4π

)
> 0.

The same computations apply at date 3. We conclude that volume is posi-
tively correlated with the magnitude of price changes.

Proof of Proposition 3.7
Expected long-term returns conditional on past performance are:

EA (vA − P2|P2 − P1) = − λ(q − 1)
2(λ(q − 1) + 1)

(P2 − P1).

These returns are negative after a price increase and positive after a price
decrease.

Proof of Proposition 3.8
Expected capital gains from date 2 to date 3 for a biased trader are:

EA
((

1 + dB2
)

(P3 − P2)
)

=
(1− λ)

c
(q − 1)2 Σ2

π
> 0.

Expected capital gains from date 2 to date 3 for a rational arbitrageurs are:

EA
((

1 + dA2
)

(P3 − P2)
)
− λ

c
(q − 1)2 Σ2

π
< 0.

Proof of Proposition 3.9
Our new predictions regards various autocorrelations in price changes

provided below.

CovA (P1 − P0, P2 − P1) = λ (q − 1)
Σ2

π
> 0.
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Also, we have:

covA(P3 − P2, P2 − P1) = covA(λσ3 + (1− λ)s3, λσ2 + (1− λ)s2)

= λ2covA (σ2, σ3) + λ(1− λ)covA (s2, σ3)

which is positive according to Result .2.
Furthermore, conditionally on the information set at time 1, we prove in the
same manner that

covA1 (P3 − P2, P2 − P1) = f(|s1|),

where f is defined on (0,+∞) by

f(x) = λ2(q − 1)
Σ2

π
e−

x2

2Σ2 + λ(1− λ)
Σ2

2π

(
(q − 1) + (q − 1)2N

(
−x
Σ

))
.

Obviously, f is a decreasing function. Moreover, lim
x→+∞

f(x) = 0 and f at-

tains its maximum at x = 0.

Case in which T > 3
This part of the Appendix extends our model to the case in which T > 3

and in which biased traders only amplify public signals that are consistent
with their prior views (q > 1).

In order to understand how future prices are related to overreacting bi-
ased traders’ current beliefs, we introduce an operatorM acting on bounded
function defined as:

(Mf)(µt) = EAt [f(µt+1)] ,

with

(Mf)(x) =
[∫ ∞

0
f(x+ qy)e−

y2

2Σ2
dy√
2πΣ2

+
∫ 0

−∞
f(x+ y)e−

y2

2Σ2
dy√
2πΣ2

]
11x>m

+
[∫ ∞

0
f(x+ y)e−

y2

2Σ2
dy√
2πΣ2

+
∫ 0

−∞
f(x+ qy)e−

y2

2Σ2
dy√
2πΣ2

]
11x<m.

Applied to the function fm(x) = 11{x>m}, the function

(Mfm)(x) = PA(µt+1 > m|µt = x)

38



corresponds to a rational agent expectation of biased traders’ future beliefs
given that the current beliefs of these biased traders equal x.

According to bounded dominated convergence, the belief operator maps
the bounded function in the set of continuous functions on the open set
] −∞, 0[∪]0,+∞[. Moreover, it has several properties that will govern the
behavior of equilibrium prices. These properties are summarized in the
following lemma.

Lemma 6.2 We have,

• If f is increasing then (Mf) is an increasing function.

• Let f be a bounded function satisfying f(x) + f(−x) = 1 for every
positive real x. Then, we have for every positive real x

(Mf(x)) + (Mf)(−x) = 1.

A nice consequence of Lemma 6.2 is that (Mf)(x) ≥ 1
2 for x > m.

Applied to the function fm(x) defined earlier, this consequence indicates
that, if biased traders are currently optimistic, it is more likely that they will
also be optimistic in the future (and vice versa when they are pessimistic).
This persistence in biased traders’ beliefs is at the core of our results on the
properties of prices in our model.
Proof of Lemma 6.2

• Let f be an increasing function. By definition, we have

(Mf)(x) = EA (f(µt+1)|µt = x)

= EAt (f(x+ σt+1))

= EA
(
f(x+ qst+111(x−m)st+1≥0 + st+111(x−m)st+1≤0)

)
.

Let us consider the function θy(x) = x + qy11(x−m)y≥0 + y11(x−m)y≤0.
We will prove that the function θy is increasing for every real numbers
y which will imply that the function (Mf) is increasing. To see this,
we first assume that y ≥ 0. We have,

θy(x) = (x+ y)11{x<m} + (x+ qy)11{x>m}.
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Therefore, θy is an increasing function if its jump at m is positive. But
the jump at m is (q − 1)y which is positive since q > 1 and y > 0.
If we assume y ≤ 0, we have

θy(x) = (x+ qy)11{x<m} + (x+ y)11{x>m}.

The jump at m is (1− q)y which is positive for y ≤ 0.

• Take x > m and a bounded function f such that f(x) + f(−x) = 1.
We have

(M)f(x) + (M)f(−x)

= (Mf)(x) +
[∫ ∞

0
f(−x+ qy)e−

y2

2Σ2
dy√
2πΣ2

+
∫ 0

−∞
f(−x+ y)e−

y2

2Σ2
dy√
2πΣ2

]
11x<m

+
[∫ ∞

0
f(−x+ y)e−

y2

2Σ2
dy√
2πΣ2

+
∫ 0

−∞
f(−x+ qy)e−

y2

2Σ2
dy√
2πΣ2

]
11x>m

= (M)f(x) +
[∫ 0

−∞
f(−x− qy)e−

y2

2Σ2
dy√
2πΣ2

+
∫ ∞

0
f(−x− y)e−

y2

2Σ2
dy√
2πΣ2

]
11x<m

+
[∫ 0

−∞
f(−x− y)e−

y2

2Σ2
dy√
2πΣ2

+
∫ ∞

0
f(−x− qy)e−

y2

2Σ2
dy√
2πΣ2

]
11x>m

=
[∫ ∞

0
f(x+ qy)e−

y2

2Σ2
dy√
2πΣ2

+
∫ 0

−∞
f(x+ y)e−

y2

2Σ2
dy√
2πΣ2

]
11x>m

+
[∫ ∞

0
f(x+ y)e−

y2

2Σ2
dy√
2πΣ2

+
∫ 0

−∞
f(x+ qy)e−

y2

2Σ2
dy√
2πΣ2

]
11x<m

+
[∫ 0

−∞
f(−x− qy)e−

y2

2Σ2
dy√
2πΣ2

+
∫ ∞

0
f(−x− y)e−

y2

2Σ2
dy√
2πΣ2

]
11x<m

+
[∫ 0

−∞
f(−x− y)e−

y2

2Σ2
dy√
2πΣ2

+
∫ ∞

0
f(−x− qy)e−

y2

2Σ2
dy√
2πΣ2

]
11x>m

= 1.

2

Before proceeding to prove that there is excess variance in our model,
we state a technical lemma claiming that overreacting biased traders’ beliefs
at time t are unconditionally positively correlated with the true signal st.
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Lemma 6.3 Let f be a bounded increasing function. We have for every t,

EA(stf(µt)) ≥ 0.

Proof of Lemma 6.3: Let us denote Ft the distribution function of µt.
We have

EA(stf(µt)) = EA(stf(µt−1 + σt))

=
∫

R
EA
(
st11{(x−m)st≥0}f(x+ qst) + st11{(x−m)st≤0}f(x+ st)

)
dFt−1(x)

=
∫

R
EA
(
st11{(x−m)st≥0}(f(x+ qst)− f(x+ st))

)
dFt−1(x).

We conclude by noting that the function s → s(f(x + qs) − f(x + s)) is
positive for any increasing function f . 2

Now, we come back to the proof of the excess variance in our model.
To do this, we express Pt in terms of P ∗t using the definition of the biased
signals σt,

Pt = P ∗t + λ
t∑
i=1

(σi − si)

= P ∗t + λ(q − 1)
t∑
i=1

si11{(µi−1−m)si≥0}.

Therefore,

varA(Pt) = varA(P ∗t ) +(6.5)

+ 2λ(q − 1)covA

(
P ∗t ,

t∑
i=1

si11{(µi−1−m)si≥0}

)

+ λ2(q − 1)2varA

(
t∑
i=1

si11{(µi−1−m)si≥0}

)
.

We focus on the second term and show that it is positive. Because EA(P ∗t ) =
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0, we have

covA

(
P ∗t ,

t∑
i=1

si11{(µi−1−m)si≥0}

)
= EA

[(
t∑
i=1

si

)(
t∑
i=1

si11{(µi−1−m)si≥0}

)]

=
t∑
i=1

EA
(
s2
i 11{(µi−1−m)si≥0}

)
+ 2

∑
1≤i<j≤t

EA
(
sisj11{(µj−1−m)sj≥0}

)
.

Now, consider i < j. We have,

EA
(
sisj11{(µj−1−m)sj≥0}

)
= EA

(
siEAi (sj11{(µj−1−m)sj≥0})

)
= 2(q − 1)

Σ√
2π

EA(siPi(µj−1 > m)).

Let us remind that fm(x) = 11{x>m}. Note that fm is a bounded increasing
function. We have

Pi(µj−1 > m) = EAi (fm(µj−1))

= (Mj−i−1fm)(µi).

Finally, we obtain

covA

(
P ∗t ,

t∑
i=1

si11{(µi−1−m)si≥0}

)
=

t∑
i=1

EA
(
s2
i 11{(µi−1−m)si≥0}

)
(6.6)

+ 4(q − 1)
Σ√
2π

∑
1≤i<j≤t

EA(si(Mj−i−1fm)(µi)).

We conclude by applying Lemma 6.3 sinceMj−i−1fm is a bounded increas-
ing function.

In order to show the momentum effect, we focus on the case k = 1
without loss of generality. Let us take t ∈ {0, . . . , T}, we have

covA(Pt+1 − Pt, Pt − Pt−1) = covA(λσt+1 + (1− λ)st+1, λσt + (1− λ)st)

= λ2covA (σt+1, σt) + λ(1− λ)covA (σt+1, st) .
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We will prove that the two terms of the right-hand side are positive. Indeed,
we have

covA (σt+1, st) = EA (σt+1st)

= qEA
(
stst+111{(µt−m)st+1≥0}

)
+ EA

(
stst+111{(µt−m)st+1<0}

)
= 2(q − 1)

Σ√
2π

EA
(
st11{µt≥m}

)
.

Now

EA
(
st11{µt≥m}

)
= EA

(
st11{µt−1+σt≥m}

)
= EA

(
st11{µt−1+qst≥m}11{(µt−1−m)st≥0}

)
+ EA

(
st11{µt−1+st≥m}11{(µt−1−m)st≤0}

)
= EA

(
st11st≥0}11{µt−1≥0}

)
+ EA

(
st11{µt−1+st≥m}11{µt−1≤m}

)
+ EA

(
st11{m−µt−1<st<0}11{µt−1≥m}

)
= EA

(
st11{µt−1+st≥m}

)
=

Σ√
2π

EA(e−
(µt−1−m)2

2Σ2 )

≥ 0.

Thus, covA (σt+1, st) ≥ 0. On the other hand,

covA (σt+1, σt) = EA(σt+1σt)− EA(σt+1)EA(σt).

We have, for every t,

EA(σt) = (q − 1)EA(st11{(µt−1−m)st≥0})

= (q − 1)
Σ√
2π

(2PA(µt−1 > m)− 1).

and

EA(σt+1σt) = EA(EAt (σt+1)σt)

= (q − 1)
Σ√
2π

EA(σt(211{µt≥m} − 1))

But,

EA(σt11{µt≥m}) = (q − 1)EA(st11{(µt−1−m)st≥0}11{µt≥m}) + EA
(
st11{µt≥m}

)
= (q − 1)EA(st11{µt−1≥m}11{st≥0}) + EA

(
st11{µt≥m}

)
= (q − 1)

Σ√
2π

PA(µt−1 > m) +
Σ√
2π

EA(e−
(µt−1−m)2

2Σ2 ).
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Finally,

covA(σt, σt+1) = (q−1)
Σ2

2π

(
2E(e−

(µt−1−m)2

2Σ2 ) + (q − 1) (1− (2PA(µt−1 > m)− 1)(2PA(µt > m)− 1))
)
.

The latter quantity is always positive since

|(2P(µt−1 > m)− 1)(2P(µt > m)− 1)| ≤ 1.

Furthermore, conditionally to the information set at time t− 1, compu-
tations above give that

covAt−1(Pt+1 − Pt, Pt − Pt−1) = f(|µt−1 −m|),

where f is defined on (0,+∞) by

f(x) = λ(q − 1)
Σ2

π
e−

x2

2Σ2 + λ2(q − 1)2 Σ2

π
N
(
−x
Σ

)
.

Obviously, f is a decreasing function. Moreover, lim
x→+∞

f(x) = 0 and f at-

tains its maximum at x = 0.

We finally focus on the price reversal effect as measured by the number

covA(Pt − P0, ṽA − Pt) = covA(Pt, ṽA − Pt).

According to equation (6.5), we have

varA(Pt) = varA(P ∗t ) + 2λ(q − 1)covA

(
P ∗t ,

t∑
i=1

si11{(µi−1−m)si≥0}

)

+ λ2(q − 1)2varA

(
t∑
i=1

si11{(µi−1−m)si≥0}

)

≥ varA(P ∗t ) + λ(q − 1)covA

(
P ∗t ,

t∑
i=1

si11{(µi−1−m)si≥0}

)
= covA (ṽA, Pt)

because covA
(
P ∗t ,

∑t
i=1 si11{(µi−1−m)si≥0}

)
is positive according to Equation

(6.6).
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To derive the results on mispricings, we start by recalling their analytical
expression, as measured by the difference Pt − P ∗t . We have, for every t,

Pt − P ∗t = λ
t∑
i=1

(σi − si)

= λ(q − 1)
t∑
i=1

si11si(µi−1−m)>0

Therefore, for 0 ≤ k ≤ l,

Pt+l − P ∗t+l = Pt+k − P ∗t+k + λ(q − 1)
l∑

i=k+1

st+i11{st+i(µt+i−1−m)>0}

Taking expectations conditionally on the information available at time
t, we obtain

EAt
(
Pt+l − P ∗t+l

)
= EAt

(
Pt+k − P ∗t+k

)
+λ(q−1)

Σ√
2π

l∑
i=k+1

(2Pt(µt+i−1 > m)− 1) .

Now,
PAt (µt+i−1 > m) = (Mi−1fm)(µt),

with as usual fm(x) = 11x≥m. According to Lemma 6.2, we have that
(Mi−1fm)(µt) ≥ 1

2 if and only if µt > m. This shows that, for exam-
ple, when biased traders are optimistic, there is a bubble: prices are too
high and are expected to increase further.

We now analyze the investment strategy of a short-term trader (referred
to as a hedge fund). The trading strategy of a one-period horizon hedge
fund is

dt =
1
c

(
EAt (Pt+1 − Pt)

)
.

Because,
Pt+1 = Pt + (1− λ)st+1 + λσt+1,
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we get

dt =
λ

c
EAt (σt+1)

=
λ(q − 1)Σ

c
EAt (st+111(µt−m)st+1≥0

=
λ(q − 1)Σ
c
√

2π

[
211(µt>m − 1

]
which implies that dt > 0 if µt−m > 0. The maximal profit of a short term
trader is thus

Π∗t =
c

2

(
λ(q − 1)Σ
c
√

2π

)2

.

In order to study the behavior of a short term trader, we assume without
loss of generality that we are at time t and µt > m. We will compute the
probability of a feedback (contrarian) trading.

PAt (feedback trading) = PAt (st+1dt+1 ≥ 0)

= PAt (st+1 ≥ 0 ∩ dt+1 ≥ 0) + PAt (st+1 ≤ 0 ∩ dt+1 ≤ 0)

= PAt (st+1 ≥ 0 ∩ µt+1 ≥ m) + PAt (st+1 ≤ 0 ∩ µt+1 ≤ m)

= PAt (st+1 ≥ 0) + PAt (st+1 ≤ −(µt −m))

=
1
2

+N
(
−(µt −m)

Σ

)
• If the public signal st+1 ≥ 0, the variation of price Pt+1−Pt = λst+1 +

(1−λ)qst+1 is positive and the biased traders’belief µt+1 = µt+qst+1 >

0 which implies that dt+1 > 0. The short term trader engages in
feeback trading.

• If the public signal st+1 ≤ −µt, the variation of price Pt+1−Pt = st+1

is negative and the biased traders’ belief µt+1 = µt + st+1 < 0 which
implies that dt+1 < 0. The short term trader engages in feeback
trading.

• If the public signal −µt ≤ st+1 ≤ 0, the variation of price Pt+1 − Pt =
st+1 is negative but the biased traders’ belief µt+1 = µt + st+1 >
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0 which implies that dt+1 > 0. The short term trader engages in
contrarian trading.
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