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Abstract: We analyze international environmental agreements in contexts
with asymmetric information, voluntary participation by sovereign coun-
tries and possibly limited enforcement. Taking a mechanism design per-
spective, we study how countries can agree on effort levels and compensa-
tions to take into account multilateral externalities. We delineate conditions
for efficient agreements and trace out possible inefficiencies to the different
conjectures that countries might hold following disagreement. We show
how optimal mechanisms admit simple approximations with attractive im-
plementation properties. Finally, we also highlight how limits on commit-
ment strongly hinder performances of optimal mechanisms.
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1 Introduction

Designing optimal climate-change policies is certainly the most challenging issue for
today’s generation. To give some clue on the size of the problem at stake, some sci-
entists have indeed argued that, with emissions currently around 370 ppm of carbon
dioxide, our goal should be to stabilize that number around 550 ppm rather than at the
business as usual level that would bring us up to 750 ppm by the end of the century.1

Taking a Coasian perspective, some economists are prone to suggest a strikingly
simple solution to this major problem. Under strong assumptions - complete informa-
tion, absence of transaction costs, perfect enforceability of contractual arrangements-
∗We thank workshop participants at Paris School of Economics and especially Gabrielle Demange,

Jérôme Pouyet and Franois Salanié for helpful comments. We also thank Daniel Coublucq for outstand-
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1See for instance Helm (2005, p.1), Cohen (1995), McNeill (2000).



efficient outcomes would emerge from environmental negotiations. If anything, the
recent record of such negotiations from Montreal, to Kyoto, Copenhague and Cancun
meetings and their repeated failures demonstrate that efficiency remains by and large
out of reach.

To better fit the actual institutional context surrounding climate policy negotiations
and give some hints on what sort of optimal treaty is actually feasible, we analyze in
this paper environmental agreements in a more realistic context that entails asymmet-
ric information, voluntary participation by sovereign countries and possibly limits on
enforcement.

Main ingredients of the model. We consider a large number (in fact a continuum)
of heterogenous countries which exert efforts to reduce pollution emissions. Countries
have private information on their abatement costs (or, in an alternative interpretation
on their opportunity costs of exerting depolluting efforts). The effort of a given coun-
try has both a local and a global positive impacts so that exerting effort is a public
good. Environmental agreements- or mechanisms in the parlance of the incentives
literature- consist in binding commitments to effort levels (for instance a commitment
to some quantities for carbon emissions like in most real-world treaties) and monetary
compensations contingent on those efforts.

Free-riding. In such multilateral externalities context, countries may free ride in pro-
viding efforts. As pointed out by Chander and Tulkens (2008), free-riding takes actu-
ally two different forms. First, countries may exaggerate their abatements costs, un-
dersupply effort and leave most of the burden of cost abatements on others. Second,
countries may also opt out of those negotiations and nevertheless enjoy the benefits of
the agreements that others may have reached in the mean time.

The first form of free-riding has received much attention in information economics
since the seminal works of Samuelson (1954), Groves and Ledyard (1977) and Green
and Laffont (1977). This line of research has certainly culminated with the work of
Laffont and Maskin (1982), Mailath and Postlewaite (1990) in general environments
whereas Rob (1989), Neeman (1999) and Baliga and Maskin (2003) have developed
specific applications targeted to environmental economics. In those papers, ensuring
incentive compatibility and budget balance while satisfying no-veto constraints might
generate underprovision (or even no provision at all of the public good).

The second form of free-riding results from the main specificities of environmental
negotiations. In this standard mechanism design paradigm, each agent has the right
to veto the mechanism with no provision being the fall-back option. However, im-
posing a no-veto constraint is by and large improper in the context of climate change
agreements. Indeed, climate negotiations are voluntary agreements between sovereign
countries. If any country refuses to participate, others may just band together in a
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smaller coalition or just adopt an individualistic behavior. Therefore, once it considers
leaving the negotiation table, a country should form conjectures on how others will re-
act. Incentives to free-ride by not participating certainly depend on those conjectures.

The standard mechanism design approach for public good provision inherited from
the existing literature seems thus ill-equipped to tackle these specificities. In this pa-
per, we revamp the conflict between individual incentives, ensuring budget balance for
the mechanism and satisfying the agents’ participation constraints when those partic-
ipation constraints explicitly take into account conjectures about the behavior of non-
deviating agents. This will give a fresh look at the various institutional problems that
a good design of climate-change policies must solve.

In this respect, two conjectures are particularly attractive. First, once an agent de-
cides leaving a negotiation, he may conjecture that others will agree on choosing in-
efficiently low levels of efforts; a Worst-Punishments scenario. Not participating in the
coalition is thus very costly. In such contexts, allocative efficiency is always preserved
even under asymmetric information.

Suppose instead that, whenever an agent refuses the agreement, the coalition fully
disbands and non-deviating agents just play individual best responses which leads to
the business as usual outcome. Of course, the Bayesian-Nash equilibrium so obtained
gives to each individual country type-dependent reservation payoffs which are above
those achieved under the Worst-Punishments scenario. It becomes harder to reconcile
incentive compatibility, budget balance and participation.

Constrained mechanisms. With a Bayesian-Nash scenario as a fall-back option, the
optimal agreement depends on the size of the global externality. For a sufficiently
significant externality, efficiency remains feasible despite asymmetric information. If
the externality decreases, some inefficiency arises. To limit free riding in preferences
revelation, the effort levels of the least efficient countries are reduced while at the same
time the most efficient ones are subsidized to better internalize the externality. Yet
(almost) all countries are strictly better off joining the agreement. Decreasing further
the size of the externality, a whole set of inefficient countries get the same payoff with
the agreement than with the fall-back option and exert the same effort level. This group
subsidizes the most efficient countries’ efforts but benefits from the global impact of the
latter’s greater effort levels.2

Enforcement. Casual evidence suggest that international treaties may not come with
all facilities and monitoring devices that are required to enforce the quotas committed
by ratifying parties. From a more theoretical viewpoint, the feasibility of any agree-

2The characterization of such regime is made technically complex by the addition of a type-
dependent participation constraint to a mechanism design problem under budget balance. We rely
on and adapt techniques developed in Martimort and Stole (2011) to tackle those issues.
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ment depends on the possibility to credibly enforce punishments following deviations
by some agents. Those deviations may concern participation to the mechanism or its
mere playing.

Suppose first that whenever a country deviates, others are still bound by the initial
mechanism.3 The treaty entails no punishment proviso. Free-riding in participation is
exacerbated. Strikingly, no mechanism can then outperform the Bayesian-Nash out-
come in such context.

Consider instead the possibility that non-deviating countries react following a de-
viation by themselves choosing effort levels to punish the non-participating country.
Those effort levels should nevertheless be credible in the sense that non-deviating
agents should find it optimal to carry those threats. The treaty incorporates only some
compliance mechanism if it is itself credible. In this context, we again show that this
“self-referential” criterion selects only the Bayesian-Nash outcome. The last two sce-
narios shows thus that moving away from the business as usual scenario may be very
difficult without much commitment power.

Lastly, we investigate the countries’ incentives to abide to an agreement after accep-
tance. Indeed, internal political pressures at reelections time, lobbying, incentives to
foster short-term growth may all push governments to cheat on agreements. In other
words, on top of assuming that countries can just not join the agreement, we thus look
at their incentives to abide by the mechanism once accepted. Those considerations lead
us to introduce an enforcement constraint which is harder to satisfy than the participa-
tion constraints considered earlier on. In those environments, inefficiencies are more
pronounced and the set of countries which are just indifferent between joining in or
not expands. International treaties thus suffer from the lack of credibility of joining
countries.

Literature review. The existing literature on climate negotiations has stressed the pos-
sible failures in reaching global agreements. The focus is on conditions for reaching
efficiency while at the same time requiring the grand-coalition to be robust to seces-
sions. To tackle those issues, Chandler and Tulkens (1995, 1997) introduced the notion
of -core for such economies and defined the worth of a coalition, assuming that coun-
tries outside the coalition play individual best responses. They demonstrated that the
grand-coalition is feasible despite individual incentives to free-ride in participation.
The take-away from this research is that, in those complete information environments,
efficiency may be compatible with a grand-coalition forming. We borrow from this
contribution the concern on the role played by conjectures on the level of participation
constraints. However, in our context with private information, efficiency is far less

3Given our assumption of a large population of countries possibly joining in, this assumption is akin
to assuming that individual deviations are just non-observable. This might be quite reasonable in a
context of limited capabilities to audit actual emissions reductions.
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easy to reach.
Another important line of research (Carraro and Siniscalco 1993, 1995; Barrett 1994)

has instead focused on incentives to form coalitions by imposing external and internal
stability criterions similar to those developed in cartel theory earlier on. Subsequent
research in the field (Carraro, 2005) has then stressed the importance of various in-
stitutional rules to ensure participation, stability, and solve the free-riding problem.
One important feature of this literature is that institutional constraints are imposed at
the outset and not derived from primitives. Such approach stands thus in sharp con-
trast with the mechanism design literature that precisely derives optimal institutions
from primitives - well-specified informational constraints and strategic behavior.4 Our
mechanism design approach is, by tradition, more normative and, by construction,
does not leave much room for discussing the exact details of the negotiation process.
Nevertheless, we show how the optimal mechanism can be approximated in practice
by means of simple menus of contracts.

The commitment issue for environmental treaties has also received some (rather
informal) attention in the literature. Barrett (2003) points out that the Kyoto Protocol
did not incorporate any compliance mechanism and that parties could refuse to ratify
without further being punished.5 This description nicely echoes our modeling of the
enforcement limits which suggests that very little beyond the business as usual outcome
can be achieved in a world plagued with informational asymmetries. Helm, Hepburn
and Mash (2005) are instead concerned with the credibility of domestic policies to-
wards reducing pollution, especially with the incentives of governments to implement
lax carbon policies in the short run for electoral concerns. These authors advocate for
setting up an independent agency, most likely an international one, to whom policies
enforcement would be delegated to solve a time-inconsistency problem.6 Our mecha-
nism design approach departs from such incentives problem due to time-inconsistency
to put asymmetric information upfront as the source of inefficiency. It also relies im-
plicitly on the use of a mediator (or and international external agency) who monitors
and enforces, possibly under some observability constraints, depolluting efforts made
by treaty members.

Organization of the paper. Section 2 presents the model and solves for the complete
information benchmark. Section 3 first describes incentive feasible allocations. Second,
it qualifies conditions ensuring that efficiency can be achieved even in a context with

4This stability program was developed in a complete information framework and often assumed
away the possible heterogeneity between countries. On the difficulties in reaching agreements among
heterogenous countries in a complete information setting, especially in view of the problem of ensuring
participation, see Thoron (2008).

5See also Schelling (2002) and Victor (2001).
6Other authors, like for instance Guesnerie (2008) have proposed mechanisms that also rely on an

International Bank for Emissions Allowance Acquisition.
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private information and type-dependent participation constraints, allowing either for
the Bayesian-Nash scenario or the Worst-Punishment outcome following a deviation.
Focusing on the Bayesian-Nash scenario, Section 4 then develops the various kinds of
inefficiencies that free-riding on preferences manipulation might induce. A particular
attention is given to developing simple instruments that could be used in practice to
implement this optimal allocation. Section 5 investigates various limits on the commit-
ment of parties to the mechanism. Section 6 concludes and highlights a few alleys for
further research. Proofs are in an Appendix.

2 The Model

Preferences and technology. We consider a continuum of countries of unit mass (some-
times referred to as “agents” in the sequel) who undertake activities mitigating pollu-
tion emissions. By exerting a pollution mitigating effort ei, country i generates two
kinds of benefits. The first ones of size �ei (where � ∈ [0, 1)) are purely local and accrue
only to country i. The second sort of benefits are global, worth (1−�)ei and accrue to all
countries worldwide. As � varies from zero to one, efforts go from having pure global
to pure local consequences.

Countries differ according to their marginal cost of exerting effort. For tractability,
we choose a quadratic formulation and assume that the disutility of effort writes as
C(ei, �i) =

e2i
2�i
. Cost convexity captures the fact that emissions cannot be reduced too

much without impairing the basic functioning of the economy for instance by impos-
ing technological changes and adjustments that are increasingly harder to implement.
Countries with higher values of �i are the most efficient at undertaking those activities.

We can then write country i’s payoff as:

Ui = ti + �ei + (1− �)

∫
j

ejdj −
e2
i

2�i
.

The payment ti stands for any financial compensation (taxes or subsidies) that this
country may receive for undertaking the requested effort and (1− �)

∫
j
ejdj represents

the “aggregate” effort taken over the whole population of countries.7 Given our nor-
malization to a unit mass, this quantity is nothing else than the average effort world-
wide.

Remark 1 Monetary payments may in fact be given a broader interpretation and be viewed as

7An a priori alternative formulation of the objective would be ti+�ei+ �
∫
j
ejdj − e2i

2�i
for some non-

negative � and �. Normalizing by �+� and changing �i into �i(�+�) gives us our posited formulation.
The latter has the benefit of keeping the first-best unchanged as � changes making comparative statics
significantly simpler.
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the benefits or costs that countries withdraw when climate negotiations are linked to negotia-
tions on other issues such as technology transfers, trade agreements and so on.8

Information. The efficiency parameters �i are independently drawn from the same
cumulative distribution F (⋅) with support Θ = [�, �̄] (with � > 0) and everywhere pos-
itive and atomless density f(�) = F ′(�). Let denote by E�(⋅) the expectation operator
with respect to the law of �. We also impose the following monotonicity condition
that will ensure monotonicity of effort at the optimal mechanism under asymmetric
information.

Assumption 1
d

d�

(
1− F (�)

�f(�)

)
≤ 0 ∀� ∈ Θ.9

Country i has private information on its efficiency parameter �i although its effort
in mitigating pollution is observable. Therefore, countries cannot receive payments
conditional on the realization of this efficiency parameter although efforts can be con-
tractually specified and rewarded.

Remark 2 Our model can also be applied in complete information settings, i.e., when costs are
common knowledge, but in contexts where no mechanism conditional on the countries’ identity
can be written.10

Finally, the following assumption requires that the externality is not too strong. We
will show below that when the externality is large enough, an efficient allocation can
still be implemented even under asymmetric information.

Assumption 2

� > �1 =
�

2E�̃(�̃)− �
∈ (0, 1).

8Barrett (2005) stresses the role of linking together various policies to achieve better treaties.
9Any distribution (uniform, exponential, truncated normal...) satisfying the more common mono-

tonicity of the hazard rate d
d�

(
1−F (�)
f(�)

)
≤ 0 (see Bagnoli and Bergstrom, 2005) satisfies our weaker

Assumption 1.
10This concern for a non-discriminatory design was pushed forward by the Bush administration to

justify its withdrawal from the 2001 Kyoto protocol by calling the treaty unfair for industrialized coun-
tries vis-à-vis developing countries.
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Assumption 2 certainly holds when the parameter � is close enough to one (weak
externality) or when uncertainty on the productivity type � is large enough.

Mechanisms and incentive compatibility. Because of asymmetric information, pay-
ments and effort levels must be incentive compatible. We turn now to the description of
such incentive compatibility allocations. Consider thus direct revelation mechanisms
of the form {t(�̂), e(�̂)}�̂∈Θ that determine compensations and effort levels as a function
of a country’s announcement �̂ on his cost parameter. By the Revelation Principle,11

there is no loss of generality in considering such direct and truthful revelation mecha-
nisms.12

Following a truthful strategy, a country with type � exerts an effort e(�). We may
thus rely on the Law of Large Numbers and identify the average global benefits of the
countries’ efforts with its expected value, i.e., (1 − �)

∫
j
ejdj = (1 − �)E�̃(e(�̃)). With

that remark in mind, we define the equilibrium payoff U(�) of a country with type �
as:

U(�) = t(�) + �e(�) + (1− �)E�̃(e(�̃))−
e2(�)

2�
.

From incentive compatibility, we immediately get:

U(�) = max
�̂∈Θ

t(�̂) + �e(�̂) + (1− �)E�̃(e(�̃))−
e2(�̂)

2�
. (1)

In the sequel, we shall repeatedly rely on a more compact (dual) characterization of
incentive compatibility by using the rent U(�) instead of the payment t(�). Together
with an effort level, an allocation is thus a pair (U(�), e(�)).

Budget balance. On top of those incentive constraints, a mechanism must also satisfy
some feasibility conditions. Assuming that no external source of funds is available, i.e.,
the mechanism is self-financed, the following budget balance condition must hold:

E�̃(t(�̃)) ≤ 0.

It will be often useful to rewrite this constraint as:

E�̃

(
e(�̃)− e2(�̃)

2�̃

)
≥ E�̃

(
U(�̃)

)
. (2)

This condition expresses the fact that the overall expected surplus generated by the
countries’ effort should be at least equal to their expected payoff. Of course, this con-
dition turns out to be an equality (no waste of resources) for optimal mechanisms in all
circumstances below.

11Myerson (1982).
12In particular, those mechanisms replace any nonlinear payment schedule T (e) that would map ob-

servable effort levels into compensations. See Section 4.2 for the shape of those optimal nonlinear sched-
ules.
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Participation constraints. Finally, the mechanism must satisfy a set of participation
constraints to ensure that all countries join in. Those participation constraints depend
on the commitment ability of the coalition, i.e., to what extent a coalition can commit to
actions in case any of its members deviates. Much of our analysis throughout the paper
will consist in studying how the mechanism design problem changes as we consider
alternative fall-back options.

Two alternative assumptions are analyzed in the remainder of the paper.

Bayesian-Nash outcome. Suppose that the whole coalition breaks down following an
individual deviation where one agent refuses the mechanism. The corresponding fall-
back option is thus the (symmetric) Bayesian-Nash equilibrium (thereafter BNE) where
countries non-cooperatively choose their effort levels. Let denote by UN(�) the payoff
of a country with type � in such BNE. By definition, we have

UN(�) = max
e
�e− e2

2�
+ (1− �)E�̃(eN(�̃))

where the Bayesian-Nash level of effort eN(�̃) is

eN(�) = arg max
e
�e− e2

2�
+ (1− �)E�̃(eN(�̃)) = ��.13

Because a given country does not internalize the impact of its own effort on other
countries’ welfare, efforts are under-provided at the BNE outcome: a well-identified
instance of a positive externality.

Immediate computations lead to the following expression of payoffs in the BNE
fall-back option:

UN(�) =
�2

2
� + (1− �)�E�̃(�̃).

Worst-punishment outcome. Alternatively, suppose that the coalition can still specify
what non-deviating agents do whenever a given country deviates and refuses the
mechanism. Choosing an effort level eN(�) is still a dominant strategy for that de-
viating country irrespectively of what the non-deviant ones can enforce. The worst
punishment is however obtained when the non-deviating agents just exert no effort.
This yields a lower payoff to the deviating agent:

UW (�) =
�2

2
�.

Given that countries know their efficiency parameter at the time of deciding whether
to join the treaty or not, we write the corresponding ex post participation constraints as:

U(�) ≥ Ul(�) ∀� ∈ Θ and l = N,W. (3)
13Thanks to our separability assumption between returns from local and global benefits, non-

deviating countries choose the same effort level whatever their beliefs on the deviant (and negligible)
country as long as they revert to a non-cooperative behavior.
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Complete information benchmark. Suppose that the countries’ efficiency parameters
are common knowledge. Type-dependent instruments can be used to fix efforts at their
target levels and compensate countries for those efforts according to the exact cost they
incur. Incentive compatibility constraints are not an issue in this ideal world.

We are interested in mechanisms that maximize aggregate welfare, i.e.,

(PF ) : max
U(⋅),e(⋅)

E�̃(U(�̃)) subject to (2) and (3).

The budget-balance condition (2) is binding and aggregate welfare is maximized for
the first-best level of effort

eFB(�) = � ∀� ∈ Θ.

Finally, to show that the ex post participation constraints (3) are satisfied, consider the
following payment schedule:

t̃FBl (�) = Ul(�)− �eFB(�)− (1− �)E�̃(e
FB(�̃)) +

(eFB(�))2

2�

=

{
(1− �)2

(
�
2
− E�̃(�̃)

)
if l = N

(1− �)2 �
2
− (1− �)E�̃(�̃) if l = W.

These payments ensure that the type �-country is just indifferent between its fall-
back option (whether it is the Bayesian-Nash or the Worst-Punishment outcome) and
receiving the payment t̃FB(�) while exerting the first-best effort eFB(�). This scheme is
feasible since we have:

0 < −E�(t̃FBl (�)) =

{
(1−�)2

2
E�̃(�̃) if l = N

(1−�2)
2

E�̃(�̃) if l = W.

Let us now construct a system of payments tFB(�) that are budget-balanced and
implement the efficient effort levels as follows:

tFBl (�) = t̃FBl (�)− E�̃(t̃
FB
l (�̃))

By construction, the budget-balance condition (2) is satisfied as an equality. Moreover,
and also by construction, tFBl (�) > t̃FBl (�) so that all countries now get a payoff which
is strictly greater than their fall-back option:

UFB(�) = Ul(�)− E�(t̃FBl (�)) > Ul(�).

Lastly, note that tFBl (�) is increasing with �. Indeed, the most efficient countries
are asked much higher levels of effort in the first-best situation than in the BNE or
the Worst-Punishment situations. Without compensation, the most efficient countries
are better off choosing their Nash effort levels than the first-best levels. To induce
participation, it is thus necessary to compensate efficient types by taxing less efficient
ones.
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3 Asymmetric Information and Efficiency

Incentive compatibility. Consider now the case where the countries’ efficiency param-
eters are private information Incentive compatibility constraints should then be added
to characterize feasible allocations. Next lemma further characterizes those incentive
constraints.

Lemma 1 An allocation (U(�), e(�)) is incentive compatible if and only if:

1. U(�) is absolutely continuous with at each differentiability point (i.e., almost everywhere)

U̇(�) =
e2(�)

2�2
. (4)

2. e(�) is non-decreasing and thus almost everywhere differentiable with at each differentia-
bility point

ė(�) ≥ 0. (5)

It is standard to neglect the monotonicity condition (5) and obtain a relaxed opti-
mization problem whose solution satisfies that extra condition. We can then rewrite
the so relaxed second-best optimization problem as:

(PSB) : max
U(⋅),e(⋅)

E�̃(U(�̃)) subject to (2), (3) and (4).

Conditions for efficiency. As a preliminary step, we investigate whether the efficient
allocation can still be implemented under asymmetric information. Of course, the an-
swer depends on how stringent the participation constraint is. We obtain below a less
optimistic result with BNE than with the Worst-Punishment outcome.

Proposition 1 Under asymmetric information, the first-best allocation (UFB(�), eFB(�))

1. cannot be implemented when the fall-back option is BNE and Assumption 2 holds;

2. can always be implemented when the fall-back option is the Worst-Punishment outcome.

To understand the first item, one must analyze the impact of �, on both partici-
pation and incentive constraints. Consider first the participation problem. When the
parameter � is small, positive externalities are significant and the cost of disagreement
is high. This relaxes participation constraints and eases cooperation. However, on the
incentives side, with small �, countries do not care much about the local impact of

11



their effort provision. Avoiding such “free-riding” requires larger payments to stim-
ulate provision. When � is small enough, there is enough gains from cooperation to
compensate for the incentive cost. The first-best allocation can be implemented.

When � is instead large enough, the global effect is small. Countries choose efforts
close to their efficient level even when behaving non-cooperatively. The gains from
cooperation are small. Although there is less “free-riding”, the gains from cooperation
are too small to allow first-best implementation.

Turning now to the case of the Worst-Punishments scenario, observe that the fall-
back option entails zero effort by non-deviating agents. This makes the gains from
cooperation very large allowing to implement the first best even with incentive con-
straints.14 Note that the Worst-Punishments outcome relies on a strong ability to com-
mit for non-deviating agents. It is not immune to further deviations by non-deviating
agents who may prefer to enforce at least their Nash effort levels. We investigate those
commitment issues in Section 5.

4 Second-Best Mechanisms

4.1 Characterization

First, we characterize second-best allocations when the first best is no longer feasible
and the fall-back option is the BNE outcome. Inefficiencies depend on the tension
between incentive compatibility, participation and budget balance.

We distinguish two scenarios. In the first one, all countries except the less efficient
ones strictly gain from joining the mechanism. This arises when the inefficiency is
rather mild and the gains from cooperation rather large. In the second scenario, only a
strict subset of countries strictly prefer joining in. Inefficiencies are more pronounced.

To describe the properties of these scenarios, let us define the variable �∗(�) as

�∗(�) =
1

1− 1−�
�
�f(�)

. (6)

Observe that �∗(�) is decreasing with � and that 1 − 1−�
�
�f(�) > 0 (hence �∗(�) > 1

holds) when the externality is not too big, namely,

� > �2 =
1

1 + 1
�f(�)

. (7)

Furthermore, we impose:

14This result is reminiscent of other works in the mechanism design literature (Makowski and
Mezzetti 1994, Williams 1999, Krishna and Perry 2000, and Schweizer 2006) although these papers study
Bayesian environments with a finite number of players.
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Assumption 3

�2 ≤ �1 ⇔ E�̃(�̃) ≤ � +
1

f(�)
.

Assumption 3 simplifies the number of cases relevant for our analysis without loss
of economic insight.15

Let us also define an effort schedule ē(�, �) and a critical type �∗(�) which are both
parameterized by some number � ≥ 1 such that:

ē(�, �) =
�

1 + �−1
�

1−F (�)
�f(�)

(8)

and {
1−F (�∗(�))
�∗(�)f(�∗(�))

= 1−�
�

�
�−1

if � ≥ �∗(�)

�∗(�) = � if � ∈ [1, �∗(�)).
(9)

Define now �̂ as the unique solution16 to∫ �∗(�)

�

(
eN(�)− e2

N(�)

2�

)
f(�)d� +

∫ �̄

�∗(�)

(
ē(�, �)− ē2(�, �)

2�

(
1 +

1− F (�)

�f(�)

))
f(�)d�

=

∫ �∗(�)

�

UN(�)f(�)d� + UN(�∗(�))(1− F (�∗(�))). (10)

Constraint (10) is obtained by aggregating incentive, participation and budget-
balance constraints altogether17 and �̂ is in fact the multiplier of this constraint in our
maximization problem. This condition states that total welfare has to be fully redis-
tributed while keeping incentive compatibility and inducing participation.18

Incentive compatibility explains the extra informational distortion (proportional to
1−F (�)
�f(�)

on the left-hand side of (10)). Inducing effort profiles closer to the first best
is now costly because it exacerbates the incentives of the most efficient countries to
pretend being less efficient.

Participation constraints impose that rent profiles are above the BNE outcome.
Nevertheless, as those constraints bind on an interval Ωc = [�, �∗(�)] (which might be
reduced to a single point), the BNE effort and rent profiles are found respectively on
the left-hand side of condition (10) which evaluates total welfare and on the right-hand
side which measures expected payoffs.

15It is for instance satisfied by the uniform distribution to which we will refer later on.
16The proof of uniqueness is found in the Appendix.
17The techniques behind such approach of consolidating the various constraints that define incentive-

feasible allocations into a single one are well-known in Bayesian environments from the works of Laffont
and Maskin (1982), Myerson and Sattherwaite (1983) and Mailath and Postlewaite (1990) among others.

18From Assumption 2, this aggregate feasibility constraint is already known to be binding otherwise
the first-best allocation could be implemented.
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Distortion regimes. We are now ready to describe two regimes of distortions that
depend on the value of the multiplier �̂ associated to condition (10).

Proposition 2 Suppose that the fall-back option is BNE and that Assumption 3 holds. There
exist �3 ∈ (�1, 1) and �4 ∈ (�1, �3) that define two different profiles of payoffs at the optimal
mechanism.

1. Weak distortions. For � ∈ [�1, �4], �̂ ∈ (1, �∗(�)].

2. Strong distortions. For � ∈ (�3, 1), �̂ > �∗(�).

The intuition for those distortions is better understood when thinking of � as being
close enough to �1, i.e., small enough while still keeping Assumption 2 satisfied. In
that case, the efficiency gains from coordinating effort levels are rather strong but yet
not large enough to allow implementation of the first-best. Nevertheless, we expect
rather small distortions, or more formally, the parameter �̂ should be close to one.

When � increases, the gains from coordination are lower and asymmetric informa-
tion has more bite. Distortions are stronger and the multiplier �̂ increases.

Rents profile. Depending on the scenario, the rents profile has different shapes which
are described in the next proposition.

Proposition 3 Suppose that the fall-back option is BNE and that Assumptions 1, 2 and 3 hold
together. The second-best profile of rents Ū(�) is such that the participation constraint (3)

1. is binding only at � when �̂ ≤ �∗(�);

2. is binding on a non-empty interior interval Ωc = [�, �∗(�̂)] when �̂ > �∗(�).

Efforts profile. Turning now to the characterization of effort levels, we get:

Proposition 4 Suppose that the fall-back option is BNE and that Assumptions 1, 2 and 3 hold
together. The second-best profile of effort levels ē(�) is continuous, increasing in �, weakly
greater than the BNE outcome but downward distorted below its first-best level everywhere
except at �̄. More precisely:

1. If � = �∗(�̂), then
ē(�) = ē(�, �̂) > eN(�) ∀� ∈ Θ; (11)

2. If � < �∗(�̂), then

ē(�) =

{
ē(�, �̂) > eN(�) if � ∈ Ω = (�∗(�̂), �̄]

eN(�) if � ∈ Ωc = [�, �∗(�̂)].
(12)
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When Assumption 2 holds, we already know that efficiency cannot be achieved.
One cannot find incentive compatible payments that implement efficient effort levels
and that give all types strictly more than their BNE payoffs. The participation con-
straint (3) is binding somewhere.

Under asymmetric information, the most efficient types (such that � ∈ Ω = (�∗(�̂), �̄])
have now some incentives to claim being less efficient and produce less effort than re-
quested by the mechanism. Those types want to “free-ride” by producing less effort
when playing the mechanism. By doing so, those efficient types get some rent above
their BNE payoffs. That rent is the amount of money that these efficient types can save
by producing the same effort as some less efficient types but at a lower marginal cost.

To limit those incentives, the optimal mechanism relies on two kinds of distortions.
First, effort is reduced below the efficient level for all types except the most efficient
one. This first distortion reduces how much can be saved by the most efficient types
by mimicking a slightly less efficient one. Second, the mechanism taxes more the least
efficient types to make their allocation less attractive for the most efficient ones. This
second distortion might push the least efficient types to opt out of the mechanism and
play non-cooperatively. Participation constraints are binding on the lower tail of the
types distribution, possibly at a single point or on a whole interval.

In other words, solving the “free-riding” problem on information revelation for
the most efficient types exacerbates “free-riding” on participation by the least efficient
ones. There is thus a significant conflict between the most efficient types’ incentives to
truthful reveal and the least efficient types’ incentives to participate.

Payments profile. Observe that at any differentiability point of the payment sched-
ule, the incentive compatibility condition (1) also implies the following relationship
between payments and efforts:

˙̄t(�) =
˙̄e(�)

�
(ē(�)− eN(�)) . (13)

From Proposition 4, it follows that t̄(⋅) is strictly increasing on (�∗(�̂), �̄] and constant
on [�, �∗(�̂)] if such interval has a non-empty interior. From the fact that the budget-
balance constraint (2) is binding at the optimum, it also follows that

t̄(�) < 0 < t̄(�̄).

In other words, the least efficient countries always pay for joining the coalition even
though they get the same payoff in and out. They are ready to pay exactly the benefit
they receive from the greater effort exerted by the most efficient types.

In particular, for large inefficiencies (i.e., when �̂ > �∗), any type in the interval
[�, �∗(�̂)] pays a tax

t̄(�) = −(1− �)

∫ �̄

�∗(�̂)

(ē(�)− eN(�))f(�)d� < 0.
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Indeed, when such country deviates and opts out of the coalition, the most efficient
countries with types � ∈ (�∗(�̂), �̄] react by producing their BNE effort level which is
strictly less than the effort requested by the mechanism. This punishment reduces the
overall payoff of the deviating agent by an amount which is exactly the tax

(1− �)

∫ �̄

�∗(�̂)

(ē(�)− eN(�))f(�)d�.

4.2 Implementation in Practice

Much has already been written on the kind of instruments that can be used in practice
to implement good climate-change policies.19 Pursing this tradition, this section inves-
tigates how the optimal mechanism found in Section 4 can be implemented in practice.
Our analysis reveals that a simple two-items menu that specifies either a fixed con-
tribution or a subsidy per unit of effort may perform pretty well to approximate the
optimal mechanism.

Convexity of the optimal payment schedule. Our analysis above demonstrated that
ē(�) is an increasing function of � when Assumption 1 holds. Hence, we may define
the inverse mapping �̄(e) on the relevant interval and a nonlinear payment schedule
that implements the optimal allocation as:

T (e) = t̄(�̄(e)) =

∫ �̄(e)

�

ē2(x)

2x2
dx− �e+

e2

2�̄(e)
− (1− �)E�̃(ē(�̃)).

Proposition 5 T (e) is flat for e ≤ eN(�∗(�̂)), strictly increasing and convex for e > eN(�∗(�̂)).

Interestingly, one can check that T ′(ē(�̄)) = 1−� ≥ T ′(ē(�)) for all �. In other words,
the marginal incentives to expand effort for the most efficient types make those types
fully internalize the impact of their effort on global welfare. Less efficient types are less
rewarded at the margin and do not expand effort as much.

Approximation. The convexity of T (e) makes it a good candidate to be approximated
by a pair of simple linear schemes.20 With the first one, countries only pay up-front
a fixed amount T and continue to exert their Bayesian-Nash effort level. The second
linear payment entails both a greater fixed up-front contribution T > T but also a
subsidy 1− � per unit of abatement so that the first-best effort is exerted by types who
choose this scheme. Initial contributions cover the expected subsidies needed to ensure
budget balance.

19See for instance Bradford (2008) and Guesnerie (2008) among others.
20For a similar insight in other contexts (respectively regulation and nonlinear pricing), see also Roger-

son (2003) and Wilson (1993).
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Let us denote by �∗ the cut-off type just indifferent between those two schemes.
By incentive compatibility and single-crossing, types below �∗ choose their Bayesian-
Nash effort while those above choose the efficient effort. This leads us to the following
indifference condition for �∗:

eFB(�∗)− (eFB(�∗))2

2�∗
− T + (1− �)

(∫ �∗

�

eN(�̃)d�̃ +

∫ �̄

�∗
eFB(�̃)d�̃

)

= �eN(�∗)− e2
N(�∗)

2�∗
− T + (1− �)

(∫ �∗

�

eN(�̃)d�̃ +

∫ �̄

�∗
eFB(�̃)d�̃

)
.

Simplifying, we obtain:

T = T + (1− �2)
�∗

2
. (14)

To ensure participation of the least efficient types, the upfront contribution they
make must just balance the externality gain created by the extra effort of types above
�∗. This extra effort being eFB(�)− eN(�) = (1− �)�, the expected externality on types
below �∗ becomes (1− �)2

∫ �
�∗
�f(�)d� which gives the following expression for T :

T = (1− �)2

∫ �

�∗
�f(�)d�. (15)

Finally, the menu must satisfy a budget-balance condition where the expenses are
the subsidies per unit of effort given to the most efficient agents and the resources the
lump-sum contributions paid by both groups, namely:

F (�∗)T + (1− F (�∗))T = (1− �)

∫ �

�∗
�f(�)d�. (16)

Using the expressions of T and T drawn from (14) and (15) and inserting into (16),
�∗ is implicitly defined as a solution to the following equation (for � < 1):

J (�∗) =
�∗

2
(1− F (�∗))(1 + �)− �

∫ �

�∗
�f(�)d� = 0. (17)

Remark first that �∗ = � is a solution and that J ′(�) < 0. Moreover, Assumption 1
implies that J (⋅) is quasi-concave and there are thus at most two solutions to (17).
More precisely, note that J (�) > 0 if and only if � ≤ �1. Therefore, for � ≤ �1, �∗ = �,
the first best is always implemented with a single linear contract of slope 1−� and we
recover our previous findings. On the contrary, for � > �1, we then have �∗ ∈ (�, �),
and the type space is nicely split into two connected subsets taking different contracts.

Numerical application. One may now wonder how significant is the welfare loss from
using the simple two-item menu above instead of the optimal nonlinear mechanism.
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As the following numerical simulations show, the loss is surprisingly small and there-
fore the two-item menu turns to be a good approximation of the optimal mechanism.

Let us characterize the optimal contract and its two-item approximation for a uni-
form distribution on Θ = [1, 2]. For this particular specification, we find �1 = �2 = .5.
Moreover, tedious computations show that �3 = �4 = .726. Following the terminology
of Proposition 2, we will take � = .65 and � = .85 to respectively illustrate the cases of
weak and strong distortions.21

∙ For weak distortions, i.e., � = .65, we know that �∗(�̂) = � = 1. Moreover, compu-
tations lead to �̂ = 1.397 so that the optimal effort is everywhere given by

ē(�̂ , �) =
�2

.792� + .416
.

From this, we compute that the aggregate welfare under the optimal mechanism
is roughly equal to 0.367.

If a two-item menu is instead offered, (17) yields �∗ = 1.300, i.e., the thirty percent
least efficient countries pay the lower amount T . Equations (14) and (15) yield
then

T = .190 and T̄ = .565.

Finally, the aggregate welfare achieved with such menu is roughly worth 0.328.
Comparing with the optimal mechanism, the welfare loss from using the simple
menu is 10.7 percent which is admittedly small and that loss must be put beside
the significantly simpler design of the two-item menu.

∙ For strong distortions, i.e., � = .85, we know that �∗(�̂) > 1. Computations lead to
�̂ = 1.779 and �∗(�̂) = 1.425. The optimal effort is everywhere given by

ē(�̂ , �) =

{
�2

.557�+.886
if � ∈ (1.425, 2]

.85� if � ∈ [1, 1.425].

This corresponds to a value of the aggregate welfare under the optimal mecha-
nism which is roughly equal to 0.380.

If a two-item is instead offered, (17) yields �∗ = 1.700, i.e., the thirty percent
most efficient countries pay the higher tax T and receive subsidies per unit of
abatements. Equations (14) and (15) yields then

T = .012 and T̄ = .247.

The aggregate welfare achieved with such menu is approximatively equal to
0.373. Now, the welfare loss from using the menu instead of the optimal mecha-
nism is less than 2 percent; a surprisingly small loss indeed.

21Because �3 = �4 = .726, we span here all possible configurations.

18



These numerical examples testify that even a complex mechanism design problem can
be handled efficiently with coarse instruments whose implementability in practice is
much simpler.

Even though our simple menu above does not perfectly fit any existing real-world
mechanism, it lends itself into a nice and realistic interpretation. Suppose that devel-
oping countries face lower marginal opportunity costs of reducing pollution because
they just do not produce as much as developed countries. Those countries, which
are well-equipped to contribute to the public good provision, self-select on the higher
powered incentive scheme. They exert effort above their “business as usual” level, get
subsidized for that, but contribute to fund this program through significant ex ante
lump sum taxes.A contrario, the more developed countries face higher opportunity
costs of reducing pollution and do not expand effort beyond the “business as usual”
level. Per capita, those countries contribute much less through ex ante contributions to
global funding but, as our examples illustrate, the fraction of countries that self-select
on the fixed payment scheme may be significant.

Our mechanism nevertheless bears some strong resemblance with other proposals,
most noticeably the so-called Global Public Good Purchase pushed forward by Bradford
(2008). In Bradford’s mechanism, countries make a set of voluntary contributions to
an international agency; this agency buys then any reduction below the business as
usual allowances. In the mechanism we precisely describe below, countries choose
between two possible initial contributions that are pocketed by an agency. Some of
those countries choose a larger contribution but will also receive a subsidy for any
effort made in reducing pollution. Those subsidies are themselves paid back by from
the agency’s budget. Note that, under asymmetric information, self-selection imposes
that countries choosing different voluntary contributions receive different subsidies.

5 Credibility

In this section, we investigate the impact of various assumptions on the treaty mem-
bers’ commitment ability to punish countries which do not join in.

5.1 No Commitment

A first possibility is that the treaty (or mechanism) cannot credibly impose any threat
to coordinate the behavior of non-deviating countries following a deviation. This typ-
ically arises when the identity of a deviating agent cannot be detected and the mecha-
nism remains in force for all non-deviating agents as well.

The type-dependent participation constraint becomes:

U(�) ≥ �2

2
� + (1− �)E�̃(e(�̃)), ∀� ∈ Θ (18)
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where the expected effort level on the right-hand side is simply the one prescribed by
the mechanism itself.

Here, all opportunities to punish deviations are lost and incentives to free-ride
in not participating to the agreement are maximal. Leaving the agreement does not
change the aggregate effort but avoids paying any contribution. We show that, in this
limit setting, an incentive compatible mechanism cannot achieve anything beyond the
Bayesian-Nash outcome.

Proposition 6 When the mechanism designer cannot commit to any inefficient threat, the only
feasible allocation is the BNE outcome.

5.2 Credible Mechanisms

The BNE and the Worst-Punishment outcomes have some common features. They not
only rely on the designer’s ability to enforce threats but also on his ability to detect
deviations. On the other hand, those two fall-back options have also very different
features. First, the BNE outcome is credible as non-deviating agents choose effort lev-
els that are not only best responses to the deviating agent but also best responses to
each other. In other words, the BNE outcome is itself a Bayesian incentive compatible
mechanism which, although very crude, is robust to further deviations.

Instead, in the Worst-Punishment scenario, non-deviating agents are committed to
out-of equilibrium effort levels which are no longer best responses. The correspond-
ing payoffs are excessively low compared to what non-deviating agents would get by
further deviating and choosing their non-cooperative effort levels. This mechanism
relies on incredible threats. We should of course cast serious doubts on the possibility
of using such threats. This raises in turn the question of finding a mechanism relying
on credible threats.

A credible effort profile eC(⋅) should be the minimal expected effort that can be imple-
mented by a mechanism given that agents playing such mechanism may themselves
further deviate and be punished for such deviation by other agents still coordinating
on the credible profile itself.22 In particular, any agent playing that credible mechanism
following an earlier deviation expects that the mechanism would still be enforced if he
further deviates himself.

That consistency requirement can be expressed with the following type-dependent
participation constraints:

U(�) ≥ �2

2
� + (1− �)E�̃(eC(�̃)), ∀� ∈ Θ. (19)

22Our notion of credibility shares some features with other concepts developed in game theoretic
contexts: for instance, the (non-cooperative) notion of coalition-proofness equilibrium pushed forward by
Bernheim, Peleg and Whinston (1987) and the (more cooperative) notion of binding agreements due to
Ray and Vohra (1997).
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where eC(⋅) must itself solve the following problem

(PC) : max
U(⋅),e(⋅)

−E�(e(�)) subject to (2), (4) and (19).

To obtain sharp predictions on this problem, we shall impose the following extra
assumption.

Assumption 4
d

d�

(
F (�)

�f(�)

)
≥ 0 ∀� ∈ Θ.

Equipped with this assumption, we obtain the following characterization.

Proposition 7 The only credible effort profile is the BNE outcome.

Taken together, Propositions 6 and 7 provide a very pessimistic view of what can
be achieved by environmental treaties under limited commitment. Only the business as
usual outcome might emerge.

5.3 Limited Enforcement

The optimal mechanism characterized in Section 4 has some surprising features, es-
pecially when the participation constraint is binding on a non-empty interval Ωc =

[�, �∗(�̂)]. Indeed, types in that interval produce the Bayesian-Nash effort both if they
join the mechanism and if they don’t. This makes the mechanism particularly sensitive
to an enforcement problem as once those types have already chosen their effort level,
they could just choose not to pay the tax and free-ride on the most efficient types.

We model this limited enforcement problem as in Laffont and Martimort (2002,
Chapter 9) and view the agent’s decision of paying back money to the mechanism as
a moral hazard variable that can nevertheless partially controlled. If an agent does
not contribute once he has already chosen his effort, he can be punished with some
probability � < 1. Punishments following a deviation are non-monetary and consist
for non-deviating agents in returning to their BNE effort levels.

An agent abides to the mechanism whenever the following moral hazard incentive
constraint holds:

U(�) ≥ (1− �)
(
−e

2(�)

2�
+ �e(�) + (1− �)E�̃(e(�̃))

)
+ �UN(�). (20)

This enforcement constraint (20) can be also written as:

t(�) ≥ �

1− �
(UN(�)− U(�)). (21)
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Payments cannot be too low without inducing a deviation. The enforcement constraint
certainly holds for the most efficient agents who are subsidized by the mechanism,
receive positive transfers and get more than their BNE payoff.

However, the enforcement constraint is harder to satisfy than the usual participation
constraint. In other words, countries find it more attractive accepting the mechanism
and then not paying taxes when necessary than refusing the mechanism right away.
To see why consider the optimal mechanism that we characterized in Section 4. For
such mechanism, a type � pays a tax, t̄(�) < 0, and UN(�) = U(�) which leads to an
immediate contradiction with (21).

Remark 3 Although our analysis does not rely on a full-fledged modeling of the dynamics
of the relationship, this enforcement constraint admits of course an interpretation in terms of
repeated games. Everything happens as if parties were committed to a stationary mechanism
that covers an infinite number of periods with a discount factor �. Types are stationary and
drawn once for all.23 The mechanism defines a repeated game with per-period payoff U(�) for the
agents. Payments have to be enforceable and whenever an agent does not repay, non-deviating
agents play trigger strategies and the BNE outcome in the continuation.

From a technical viewpoint, the enforcement constraint (20) is complex because it is
mixed, involving both the state variable U(�), the control e(�) and its average value
E�̃(e(�̃)). Next lemma simplifies the analysis by replacing the enforcement constraint
with an a priori stronger constraint that only depends on E�̃(e(�̃)).

Lemma 2 Suppose that Assumption 1 holds and that the enforcement constraint (20) is bind-
ing on an interval Ωc with a non-empty interior.

∙ Types in Ωc exert efforts equal to their BNE level:

e(�) = eN(�) ∀� ∈ Ωc. (22)

∙ The following constraint holds:

U(�)

{
= UN(�) + (1− �)(1− �)(E�̃(e(�̃))− E�̃(eN(�̃))) if � ∈ Ωc

> UN(�) + (1− �)(1− �)(E�̃(e(�̃))− E�̃(eN(�̃))) otherwise.
(23)

This lemma allows us to replace (20) by the simpler constraint

U(�) ≥ UN(�) + (1− �)(1− �)(E�̃(e(�̃))− E�̃(eN(�̃))). (24)

Consider thus the case of a strong distortion as exemplified in Proposition 2. We
now want to characterize the optimal mechanism when replacing (3) by the more strin-
gent condition (24). We expect (24) to be binding on a lower tail interval. Next propo-
sition summarizes the solution.

23See Baron and Besanko (1984) for instance
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Proposition 8 Assume limited enforcement and that � is large enough. There exists �̂ > 1

such that the optimal mechanism such that (20) is binding on an interval � ∈ Ωc = [�, �∗(�̂)].
This mechanism implements an effort profile:

ē(�) =

⎧⎨⎩
(

1− �̂−1

�̂
(1− �)(1− �)

)
�

1+ �̂−1

�̂

1−F (�)
�f(�)

> eN(�) if � ∈ Ω = (�∗(�̂), �̄]

eN(�) if � ∈ Ωc = [�, �∗(�̂)]
(25)

where
1− F (�∗(�̂))

�∗(�̂)f(�∗(�̂))
=

1− �
�

(
�̂

�̂ − 1
− 1 + �

)
. (26)

Under limited enforcement, reducing the effort level of the most efficient agents and
moving it closer to the BNE level relaxes the enforcement constraint (24). Comparing
(25) with (11) shows that the effort is everywhere distorted downwards on the upper
tail. Comparing (26) and (9) and using Assumption 1, we observe that �∗(�̂) is now
greater. In other words, the area where the enforcement constraint binds is larger than
with the weaker participation constraint. This captures again the increased inefficiency
that arises due to limited enforcement.

6 Conclusion

This paper has investigated optimal environmental mechanisms in a context of asym-
metric information, voluntary participation and limited enforcement. We have shown
that the optimal mechanism has some simple features (indifference between joining in
or not for countries facing the highest costs of effort, strict benefits for the most efficient
countries) and can be implemented with strikingly simple menus of linear contracts.
This simplicity at the implementation stage brings some optimistic view on how the
climate-change problem could be solved in practice even under assumptions signifi-
cantly less favorable than those used in the traditional Coasian perspective.

The least optimistic take-away from our analysis is that a strong commitment ability
is also needed to achieve the welfare gains from an (eventually approximate) welfare
maximizing mechanism. The compounding of asymmetric information and limited
commitment may destroy all those gains and generates outcomes close to business as
usual. This again suggests that setting up an International Agency with enough audit-
ing and enforcement capabilities is an essential and unavoidable step towards solving
the climate-change problem.

Equipped with the mechanism design methodology we have developed in this pa-
per, a number of important other questions could be addressed in future research. Let
us mention a couple of such problems. A first important extension should address
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the design of dynamic mechanisms. Under asymmetric information, dynamics intro-
duces the well-known difficulties of the ratchet effect.24 How incentive compatible
mechanisms must be adapted on such contexts remains a fascinating question both
from a theoretical and an applied viewpoint. In particular, one may want to assess the
performance of menus of linear contracts in those dynamic environments. A second
extension would be to go more deeply into the analysis of the relationship between
local politics and international agreements. This requires to view the countries’ objec-
tive functions no longer as those of unified entities but as the more complex outcome
of domestic political games where lobbying and reelection concerns play a key role.
The analysis of such two-tier mechanism design problem will be particularly fruitful
to understand the climate-change problem.25

We hope to contribute to those extensions in the future.
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Appendix

Proof of Lemma 1. From (1), we immediately obtain that U(�) is the maximum of
convex functions of � and as such it is convex, absolutely continuous and thus almost
everywhere differentiable.26 Condition (4) follows at any such differentiability points.

Using simple revealed arguments, we get for � ≥ �̂

t(�) + �e(�) + (1− �)E�̃(e(�̃))−
e2(�̂)

2�
≥ t(�̂) + �e(�̂) + (1− �)E�̃(e(�̃))−

e2(�̂)

2�
,

t(�̂) + �e(�̂) + (1− �)E�̃(e(�̃))−
e2(�̂)

2�̂
≥ t(�) + �e(�) + (1− �)E�̃(e(�̃))−

e2(�)

2�̂

Summing on both sides and simplifying yields immediately

e(�) ≥ e(�̂).

Thus e(⋅) is monotonically increasing and thus a.e. differentiable.
Reciprocally, that U(⋅) is absolutely continuous implies that it can be written every-

where as:

U(�) = U(�) +

∫ �

�

e2(x)

2x2
dx = t(�) + �e(�) + (1− �)E�̃(e(�̃))−

e2(�)

2�
.

From this, incentive compatibility immediately follows since:

t(�) + �e(�) + (1− �)E�̃(e(�̃))−
e2(�)

2�
−

(
t(�̂) + �e(�̂) + (1− �)E�̃(e(�̃))−

e2(�̂)

2�

)

=

∫ �

�̂

e2(x)− e2(�̂)

2x2
dx ≥ 0

when e(⋅) is weakly increasing.

26See Champsaur and Rochet (1989) or Milgrom and Segal (2002).
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Proof of Proposition 1. An important step of the analysis consists in consolidating the
incentive compatibility constraint (4) and the feasibility condition (2). In this respect,
let define a critical type �∗ as:

�∗ = max arg min
�∈Θ

U(�)− Ul(�).

Of course, such critical type depends on the choice of the mechanism since it affects
the profile of implementable rent U(�). From continuity of U(�)−Ul(�) and compacity
of Θ, such �∗ necessarily exists for any implementable profile U(�).

Note that satisfying the participation constraint (3) at �∗ is enough to have it satis-
fied for all �. Hence a necessary and sufficient condition for (3) to hold is that

U(�∗) ≥ Ul(�
∗). (A1)

Integrating (4) yields

U(�) = U(�∗) +

∫ �

�∗

e2(x)

2x2
dx. (A2)

Integrating by parts on each interval [�, �∗] and [�∗, �̄], we finally obtain the following
expression of the average payoff of countries:

E�̃(U(�̃)) = U(�∗) + E�̃

(
(1�̃≥�∗ − F (�̃))e2(�̃)

2�̃2f(�̃)

)

where 1�̃≥�∗ =

{
1 if �̃ ≥ �∗

0 otherwise.
Finally, the feasibility condition can be rewritten as

E�̃

(
e(�̃)− e2(�̃)

2�̃

)
≥ U(�∗) + E�̃

(
(1�̃≥�∗ − F (�̃))e2(�̃)

2�̃2f(�̃)

)
. (A3)

Notice that any rent profile for a mechanism that implements the first-best effort
level eFB(�) is such that � is the critical type since U(�)−Ul(�) (for l = N,W ) is increas-
ing (U̇(�)− U̇l(�) = 1−�2

2
> 0 when � < 1). Hence, a necessary and sufficient condition

for the participation constraint (3) to hold everywhere is that it holds at �. That remark
being made, the feasibility constraint and the critical type’s participation constraint are
altogether satisfied when:

E�̃

(
eFB(�̃)− (eFB(�̃))2

2�̃

)
≥ Ul(�) + E�̃

(
(1− F (�̃))(eFB(�̃))2

2�̃2f(�̃)

)
.

This amounts to check

E�̃

(
eFB(�̃)− (eFB(�̃))2

2�̃

(
1 +

1− F (�̃)

�̃f(�̃)

))
=

1

2

∫ �̄

�

(�f(�)− 1 + F (�))d� ≥ Ul(�)
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⇔

{
�
2
≥ �2

2
� + (1− �)�E�̃(�̃) if l = N

�
2
≥ �2

2
� if l = W.

(A4)

Hence, when l = N , we get an impossibility if (2) holds. Instead, when l = W , (A4)
holds and one can find budget-balanced transfers that ensure that the first-best is im-
plemented.

Proofs of Propositions 3 and 4. We first characterize the optimal mechanism when
Assumption 2 holds. The proof of Propositions 3 and 4 is a direct consequence of that
characterization.

Neglecting the second-order condition (5) that will be checked ex post; we rewrite
the so relaxed optimization problem under asymmetric information as:

(PSB) : max
U(⋅)∈W (Θ),e(⋅)

E�̃(U(�̃)) subject to (2), (3) and (4)

where W (Θ) is the set of absolutely continuous arcs on Θ.
(PSB) is a generalized Bolza problem with an isoperimetric constraint (2) and a

state-dependent constraint (3). We denote by � the non-negative multiplier of the for-
mer constraint. This allows us to write the Lagrangian for this problem as:

L(�, U, e, �) = f(�)

(
U + �

(
e− e2

2�
− U

))
.

Let then define the unmaximized Hamiltonian as

H(�, U, e, �, q) = L(�, U, e, �) + q
e2

2�2
.

This Hamiltonian is linear in U and strictly concave in e when

q ≤ ��f(�). (A5)

This latter condition is checked below for the optimal profile.
Necessity. Following Galbraith and Winter (2004), the necessary optimality conditions
for this State Maximum Problem that are satisfied by a normal extremum (Ū(�), ē(�)) can
be written as follows.

Proposition A.1 Necessary conditions (Galbraith and Winter, 2004). There exists an abso-
lutely continuous function p(�), a function q(⋅), and a non-negative measure � which are all
defined on Θ such that:

−ṗ(�) =
∂H

∂U
(�, Ū(�), ē(�), �, q(�)), (A6)

ē(�) ∈ arg max
e≥0

H(�, Ū(�), ē(�), �, q(�)), (A7)
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q(�) = p(�)−
∫ �−

�

�(d�), ∀� ∈ (�, �̄], (A8)

supp{�} ⊂ {� s.t. Ū(�) = UN(�)} = Ωc, (A9)

p(�) = −p(�̄) +

∫ �̄

�

�(d�) = 0. (A10)

Sufficient conditions. Moreover, those necessary conditions are also sufficient (Martimort
and Stole, 2011, Appendix B).

Condition (A6) describes how the costate variable p(⋅) evolves whereas (A7) is the
optimality condition for the control. Some explanations for the other conditions are
in order. From (A8), the left-side limit of q(⋅) at any � is the costate variable deflated
by a term related to the measure w.r.t. � of the open interval [�, �).27 This costate
variable measures the distortions induced by asymmetric information. From (A9), the
support of the measure � is contained in the subset of types for which the participation
constraint (3) is binding. Together, with (A7), it implies that distortions due to asym-
metric information are less significant on intervals where the participation constraint
is binding. Sufficiency is straightforwardly obtained by adapting the same Arrow-like
argument as in Martimort and Stole (2011, Appendix B). The conditions (A6) to (A10)
are also sufficient for (Ū(�), ē(�)) to be an optimum.

Let us rewrite some of these optimality conditions. First, observe that (A6) can be
transformed as

−ṗ(�) = f(�)(1− �). (A11)

From (A10), we get

p(�̄) =

∫ �̄

�

�(d�). (A12)

We may rewrite (A11) as

p(�) = p(�̄) + (1− �)(1− F (�)). (A13)

Second, (A7) yields the first-order condition

�f(�)

(
1− ē(�)

�

)
= −q(�) ē(�)

�2
. (A14)

In the sequel, we study in turn two possibilities for where the participation con-
straint (A1) is binding. In Case 1 below, this participation constraint is supposed to be

27Such formulation is made necessary to take into account the fact that � may be singular at �.
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binding on an interval Ωc = [�, �∗] with non-zero measure. Case 2 deals with the case
where Ωc = {�}.
Case 1. Ωc = [�, �∗], with �∗ > �.
Analysis of the set of types Ωc where the participation constraint (3) is binding. We are looking
for an optimal arc Ū(�) such that (3) is slack on some interval Ω = (�∗, �̄] and binding
on some complementary interval Ωc = [�, �∗] with a non empty-interior, i.e., � < �∗.28

Several facts immediately follow from such inspection.

∙ Equation (A12) implies that

p(�̄) =

∫ �∗

�

�(dx). (A15)

∙ Consider now an interval Ω = (�∗, �̄] with non-zero measure where (A1) is slack,
i.e., Ū(�) > UN(�). On the interior of such interval, � = 0 and (A8) implies that

q(�) = p(�)−
∫ �∗

�

�(dx). (A16)

Using (A15) and (A16), (A14) yields an optimal effort level ē(�, �) given by (8)
(where we make the dependence on � explicit for further references).

∙ Consider now an interval Ωc = [�, �∗] with non-zero measure where (A1) is bind-
ing, i.e., Ū(�) = UN(�). Differentiating with respect to � in the interior of Ωc =

[�, �∗] yields
˙̄U(�) = U̇N(�)⇔ ē(�) = eN(�).

Therefore, (A14) becomes now:

q(�) = −
(

1− �
�

)
��f(�) ∀� ∈ (�, �∗). (A17)

From (A8), (A11) and (A17), we deduce that∫ �−

�

�(d�) = p(�̄) + (1− �)(1− F (�)) +

(
1− �
�

)
��f(�) ∀� ∈ (�, �∗)

or, using (A15)

−
∫ �∗

�−
�(d�) = (1− �)(1− F (�)) +

(
1− �
�

)
��f(�) ∀� ∈ (�, �∗). (A18)

Let us look for a positive measure � that is absolutely continuous with respect to
the Lebesgue measure on (�, �∗] and so writes as �(d�) = g(�)d� for some mea-
surable and non-negative function g on this interval.

Before studying further the properties of g, we prove the following Lemma:
28From the sufficiency conditions in Proposition A.1, finding a vector (p, q, e) that induces such allo-

cation and satisfies the necessary conditions (A6) to (A10) validates this “guess and try” approach.
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Lemma A.1 Assume that Assumption 1 holds. Take k ≤ 1
�f(�)

and define uniquely
�∗ ∈ [�, �̄] as the solution to

k =
1− F (�∗)

�∗f(�∗)
> 0. (A19)

Then, we have
d

d�
(1− F (�)− k�f(�)) ≤ 0 ∀� ∈ [�, �∗]. (A20)

Proof. Observe that Assumption 1 can be rewritten as

0 ≥ d

d�

(
1− F (�)

�f(�)

)
= −1

�
−(1− F (�))

�2f 2(�)

d

d�
(�f(�))⇔ −(1−F (�))

d

d�
(�f(�)) ≤ �f 2(�).

From this, it follows that

d

d�
(1− F (�)− k�f(�)) = −f(�)− k d

d�
(�f(�)) ≤ f(�)

(
−1 + k

�f(�)

1− F (�)

)
.

Using the definition of k from (A19) and again Assumption 1, we get:

k ≤ 1− F (�)

�f(�)
∀� ≤ �∗

Therefore, we get

−f(�)− k d
d�

(�f(�)) ≤ 0 ∀� ≤ �∗

which yields (A20).

Consider now k = �(1−�)
(�−1)�

and observe that k ≤ 1
�f(�)

when � > �∗ where �∗ is
defined in (6).

From Lemma A.1, applied to such k, g is indeed non-negative on [�, �∗] if � > 1.
More precisely, when � > 1, we get:

g(�) = (1− �)
d

d�
(1− F (�)− k�f(�)) ≥ 0 ∀� ∈ (�, �∗). (A21)

Note that by construction, � has no mass point at �∗. Note also that putting
altogether (A15) and (A21) implies that

p(�̄) = �({�}) + (1− �)

∫ �∗

�

d

d�
(1− F (�)− k�f(�)) d�

where �({�}) is the mass that the measure � charges at �. Using (A19), this latter
equation can be rewritten as:

p(�̄) = �({�})− (1− �)− 1− �
�

��f(�). (A22)
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But from (A10) and (A11), we get

p(�) = p(�̄) + 1− � = 0. (A23)

Inserting into (A22) yields

�({�}) =
1− �
�

��f(�) > 0 (A24)

which shows that � has a mass point at �.

Concavity of H(�, U, e, �, q) in e. Observe that, for � ∈ Ωc, q(�) as defined by (A17) is
negative and thus (A5) holds where q = q(�).

For � ∈ Ωc, we deduce from (A11), (A16) and (A23) that q(�) = (1−�)(1−F (�)) < 0.

and thus (A5) again holds.
Continuity of ē(⋅) at �∗. It immediately follows from the fact that � has no singularity at
�∗. This implies “smooth-pasting” of the rent profile with:

U(�∗) = UN(�∗) and U̇(�∗) = U̇N(�∗).

Monotonicity of ē(⋅). It immediately follows from the fact that ē(⋅) is continuous and,
trivially increasing on Ωc and also so on Ω from Condition 1.
Case 2. Ωc = {�}. Observe that k = �(1−�)

(�−1)�
> 1

�f(�)
when � ≤ �∗. In that case, the

participation constraint (A1) is binding at � only. From (A24), the measure � has a
charge at � only. When � ≥ 1, we have

�({�}) =
1− �
�

��f(�) ≥ (� − 1)
�∗

�∗ − 1
≥ 0. (A25)

The optimal effort on Θ is still given by (8) on the whole interval [�, �̄].
Proof that � > 1. Observe that, when binding, (2) can be rewritten as:∫ �∗(�)

�

(
eN(�)− e2

N(�)

2�

)
f(�)d� +

∫ �̄

�∗(�)

(
ē(�, �)− ē2(�, �)

2�

)
f(�)d�

=

∫ �∗(�)

�

UN(�)f(�)d� +

∫ �̄

�∗(�)

(
UN(�∗(�)) +

∫ �

�∗(�)

ē2(�, �)

2�2
d�

)
f(�)d� (A26)

where we make explicit the dependence of ē(⋅) and �∗ on � as specified in (8) and (9) to
express the left-hand side and where we use (A2) to rewrite the right-hand side.29

Let denote respectively by L(�) and R(�) the left-hand and right-hand sides of
(A26).

The following observations are readily made.

29Observe that this formula encompasses both Case 1 which applies for � ≥ �∗ and Case 2 which
applies for � ∈ [1, �∗].
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1. L(�)−R(�) is strictly increasing. First, observe that

∂ē

∂�
(�, �) = −

1−F (�)
f(�)(

� + (� − 1)1−F (�)
�f(�)

)2 < 0. (A27)

Using the fact that ē(�, �) is continuous at � = �∗(�), i.e., ē(�∗(�), �) = eN(�∗(�)),
we have:

L′(�) =

∫ �̄

�∗(�)

∂ē

∂�
(�, �)

(
1− ē(�, �)

�

)
f(�)d� = (�−1)

∫ �̄

�∗(�)

∂ē

∂�
(�, �)

1−F (�)
�f(�)

� + (� − 1)1−F (�)
�f(�)

f(�)d�.

(A28)

Using the fact that UN(�, �) is continuous at � = �∗(�), we have

R′(�) = �̇∗(�)

∫ �̄

�∗(�)

(
U̇N(�∗(�))− ē2(�∗(�), �)

2(�∗(�))2

)
f(�)d�+

∫ �̄

�∗(�)

∫ �

�∗(�)

∂ē

∂�
(�, �)

ē(�, �)

�2
f(�)d�d�.

Using that U̇N(�∗(�)) =
e2N (�∗(�))

2(�∗(�))2 , and continuity of ē(⋅, �) at � = �∗(�), i.e., ē(�∗(�), �) =

eN(�∗(�)), we get

R′(�) =

∫ �̄

�∗(�)

(∫ �

�∗(�)

∂ē

∂�
(�, �)

ē(�, �)

�2
d�

)
f(�)d�.

Integrating by parts yields

R′(�) =

∫ �̄

�∗(�)

(1− F (�))
∂ē

∂�
(�, �)

ē(�, �)

�2
d� =

∫ �̄

�∗(�)

∂ē

∂�
(�, �)

� 1−F (�)
�f(�)

� + (� − 1)1−F (�)
�f(�)

f(�)d�.

(A29)

Using (A28) and (A29) we finally get

L′(�)−R′(�) = −
∫ �̄

�∗(�)

∂ē

∂�
(�, �)

1−F (�)
�f(�)

� + (� − 1)1−F (�)
�f(�)

f(�)d� > 0.

2. Notice that when � = 1, �∗(�) = � and L(1) < R(1) indeed amounts to (2).

3. We have

Lemma A.2
lim

�→+∞
L(�)−R(�) > 0. (A30)

Proof. Consider the following problem:

VM = max
e(⋅),�∗

∫ �∗

�

(
eN(�)− e2

N(�)

2�

)
f(�)d� +

∫ �̄

�∗

(
e(�)− e2(�)

2�

(
1 +

1− F (�)

�f(�)

))
f(�)d�
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−
∫ �∗

�

UN(�)f(�)d� − UN(�∗)(1− F (�∗)). (A31)

First, observe that VM ≥ 0. Indeed, taking e(�) = eN(�) and �∗ = �̄ obviously yields 0
for the maximand.

The above maximum is achieved for (ē∞(�), �∗∞) where

ē∞(�) =
�

1 + 1−F (�)
�f(�)

(A32)

and {
1−F (�∗∞)
�∗∞f(�∗∞)

= 1−�
�

if 1−�
�

< 1
�f(�)

�∗∞ = � if 1−�
�
≥ 1

�f(�)
.

(A33)

Condition 1 ensures that �∗∞ ∈ (�, �̄) always exists whenever (7) holds. That VM > 0

immediately follows from observing that VM is not achieved for eN(�) and �∗ = �̄. Fi-
nally, this strict inequality amounts to (A30).

From Items [1.], [2.] and [3.] above, we immediately obtain that there exists �̂ > 1

such that
L(�̂) = R(�̂).

Integrating by parts and manipulating finally yields (10).

Proof of Proposition 2. Because Assumption 3 holds, we have �∗(�) > 1 for any
� ≥ �1. A first implication is that, for � ≤ �∗(�), we get �∗(�) = �. Because L(⋅) − R(⋅)
is strictly increasing as shown above, we have �̂ ≤ �∗(�) if and only if

L(�∗(�)) ≥ R(�∗(�))⇔ J(�) ≥ UN(�, �) (A34)

where

J(�) =

∫ �̄

�

(
ē(�, �∗(�))− ē2(�, �∗(�))

2�

(
1 +

1− F (�)

�f(�)

))
f(�)d�

and where, for future reference, we make explicit the dependence of UN(⋅) on �.
We have

J ′(�) =
∂�∗

∂�
(�)

∫ �̄

�

∂ē

∂�
(�, �∗(�))

(
1− ē(�, �∗(�))

�

(
1 +

1− F (�)

�f(�)

))
f(�)d�

=

∫ �̄

�

�f(�)(1− F (�))2

�f(�)

((1− �)�f(�)− �)(
� + (1− �) (1−F (�))�f(�)

�f(�)

)3d�.

We have J ′(�) ≤ 0 (with equality only at � = �2) and thus J(�) is almost everywhere
strictly decreasing with �. Moreover, for � = 1, we have �∗(1) = 1 and ē(�, �∗(1)) =
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eFB(�). Therefore, we get:

J(1) =

∫ �̄

�

(
eFB(�)− (eFB(�))2

2�

(
1 +

1− F (�)

�f(�)

))
f(�)d� =

�

2
= UN(�, 1). (A35)

We also find:

J ′(1) = −�f(�)

∫ �̄

�

(1− F (�))2

�f(�)
d�.

From Assumption 1, we immediately derive the inequality

(1− F (�))2

�f(�)
≤ 1− F (�)

�f(�)

with an equality only at � = �. Therefore, we get:

−J ′(1) <

∫ �̄

�

(1− F (�))d� = E�(�)− � = −dUN
d�

(�, �)∣�=1. (A36)

Therefore, it follows from J(⋅) continuity,that there exists �3 < 1 such that

J(�) < UN(�, �) ∀� ∈ (�3, 1). (A37)

Moreover, we also have

J(�1) > J(1) = UN(�, 1) =
�

2
. (A38)

From (A39), we deduce that, necessarily, �3 ∈ (�1, 1). From (A34) and (A37), we also
deduce that:

�̂ > �∗(�) ∀� ∈ (�3, 1).

A contrario, we also have

J(�1) > J(1) = UN(�, 1) = UN(�, �1) =
�

2
. (A39)

From (A34), we deduce that there exists �4 ∈ (�1, �3] such that

J(�) ≥ UN(�, �) ∀� ∈ [�1, �4] (A40)

where the last inequality follows from the fact that �1 solves (A4) as an equality. Finally,
we get

�̂ ≤ �∗(�) ∀� ∈ [�1, �4].

Proof of Proposition 5. From (13), we immediately get:

T ′(e) =
ē(�)

�
− � =

⎧⎨⎩
1

1+ �̂−1

�̂

1−F (�)
�f(�)

− � if e > eN(�̄(e))

0 if e ≤ eN(�̄(e)).
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where the last equality follows from (8). Note that T ′(e) is continuous at �∗(�̂) if it is
interior.

Differentiating once more, we get

T ′′(e) =

⎧⎨⎩−
�̂−1

�̂

d
d� (

1−F (�)
�f(�) )∣�̄(e) ˙̄�(e)(

1+ �̂−1

�̂

1−F (�)
�f(�)

)2 > 0 if ē(�) > eN(�)

0 if e ≤ eN(�̄(e)).

Hence , T (e) is convex and strictly so if and only if e > eN(�̄(e)). It is flat when
e ≤ eN(�̄(e)).

Proof of Proposition 6. Observe that the budget balance condition (2) altogether with
the participation constraints (18) yield the following simpler inequality:∫ �

�

(
�e(�)− e2(�)

2�

)
f(�)d� ≥ �2

2

∫ �

�

�f(�)d�. (A41)

The pointwise maximum of the left-hand side is eN(�) = �� and then the left- and
right-hand sides of (A41) are both equal. Therefore, the optimal mechanism robust to
any individual deviation consists in proposing the BNE outcome which is, by defini-
tion, also incentive compatible.

Proof of Proposition 7. First, fix  ∈ Γ = [0, E�̃(eN(�̃))] and define the new type-
dependent participation constraint:

U(�) ≥ �2

2
� + (1− �), ∀� ∈ Θ. (A42)

Consider now the non-negative mapping Φ() defined over Γ such that:

−Φ() = arg max
U(⋅),e(⋅)

{
−E�̃(e(�̃)) subject to (2), (4) and (A42)

}
.

A credible effort profile eC(⋅) is thus such that

Φ(E�̃(eC(�̃))) = E�̃(eC(�̃)).

Clearly, Φ(⋅) is continuous. Moreover, Φ(0) > 0 and Φ(E�̃(eN(�̃))) ≤ E�̃(eN(�̃)). Hence,
there exists a minimal non-negative fixed-point ∗ for the mapping Φ(⋅). For such
value, the participation constraints become:

U(�) ≥ �2

2
� + (1− �)∗, ∀� ∈ Θ. (A43)

Neglecting the second-order condition (5) that will be checked ex post; we rewrite
the so relaxed optimization problem for this particular ∗ as:

(PC(∗)) : max
U(⋅)∈W (Θ),e(⋅)

−E�̃(e(�̃)) subject to (2), (4) and (A43).
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(PC(∗)) is again a generalized Bolza problem with an isoperimetric constraint (2)
and a state-dependent constraint (A43). We use therefore the same techniques as in the
Proofs of Propositions 3 and 4. Denoting again by � the non-negative multiplier of (2),
we write the Lagrangian for this problem as:

LC(�, U, e, �) = f(�)

(
−e+ �

(
e− e2

2�
− U

))
.

Let then define the unmaximized Hamiltonian as

HC(�, U, e, �, q) = LC(�, U, e, �) +
e2

2�2
.

This Hamiltonian is linear in U and strictly concave in e when (A5) again holds. This
latter condition is checked below for the optimal effort profile.
Necessary conditions.30 A normal extremum (UC(�), eC(�)) is such that there exists an
absolutely continuous function p(�), a function q(⋅), and a non-negative measure �

which are all defined on Θ such that:

−ṗ(�) =
∂HC

∂U
(�, UC(�), eC(�), �, q(�)), (A44)

eC(�) ∈ arg max
e≥0

HC(�, UC(�), eC(�), �, q(�)), (A45)

q(�) = p(�)−
∫ �−

�

�(d�), ∀� ∈ (�, �̄], (A46)

supp{�} ⊂
{
� s.t. UC(�) =

�2

2
� + (1− �)∗

}
= Ωc

C , (A47)

p(�) = −p(�̄) +

∫ �̄

�

�(d�) = 0. (A48)

Let us rewrite some of these optimality conditions. First, observe that (A6) can be
transformed as

ṗ(�) = �f(�). (A49)

From (A48), we may rewrite (A49) as

p(�) = �F (�) (A50)

and obtain also ∫ �̄

�

�(d�) = �. (A51)

30Sufficient conditions again follow from Martimort and Stole (2010, Appendix B).
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Second, (A45) yields the first-order condition

f(�)

(
−1 + �

(
1− eC(�)

�

))
= −q(�)eC(�)

�2
. (A52)

Consider the possibility that the participation constraint (A43) is binding on an
interval with non-empty interior. On such interval, it must be that U̇C(�) = �2

2
and so

eC(�) = eN(�). Inserting into (A52) we get the following condition∫ �

�

�(d�) =
�f(�)

�
(−1 + �(1− �)) + �F (�). (A53)

Next lemma is the dual of Lemma A.1.

Lemma A.3 Assume that Assumption 4 holds. Take k = 1− �−1
��
∈ (0, 1) and define uniquely

�∗ ∈ [�, �̄] as the solution to

k =
F (�∗)

�∗f(�∗)
(A54)

if it exists and �∗ = �̄ otherwise. Then, we have

d

d�
(F (�)− k�f(�)) ≥ 0 ∀� ∈ [�∗, �̄]. (A55)

Proof. Observe that Assumption 4 can be rewritten as

0 ≤ d

d�

(
F (�)

�f(�)

)
=

1

�
− F (�)

�2f 2(�)

d

d�
(�f(�))⇔ F (�)

d

d�
(�f(�)) ≤ �f 2(�).

From this, it follows that

d

d�
(F (�)− k�f(�)) ≥ �f(�)

(
1− k�f(�)

F (�)

)
.

Using the definition of k from (A19) and again Assumption 4, we get:

f(�)− k d
d�

(�f(�)) ≥ 0 ∀� ≥ �∗

which yields (A55).

Let us look for a measure � absolutely continuous with respect to the Lebesgue
measure and let us thus write �(d�) = g(�)d� where g(⋅) is non-negative on sup� =

Ωc = [�∗, �̄]. We show below that all necessary conditions for optimality are satisfied
with such scheme. From Proposition A.1, those conditions are also sufficient and thus
characterize the optimum.
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Coming back to (A53) and using Lemma, it is immediate that g(⋅) is non-negative
on the interval Ωc = [�∗, �̄].

On the complementary interval Ω = [�, �∗], we have

q(�) = �F (�) ∀� ∈ Ω. (A56)

For further reference, it is useful to define X = �−1
�
∈ (0, 1) and make explicit the

dependence of �∗ on X . In particular, observe that �∗(�) = �.
Similarly, the optimality condition for the effort (A53) yields also

eC(�,X) = X
�

1− F (�)
�f(�)

. (A57)

Observe that, whenever �∗ ∈ (�, �̄), eC(⋅) is continuous at �∗ with eC(�∗) = eN(�∗).
Note also that eC(⋅, X) remains positive on the interval Ω = [�, �∗(X)] as long as

Assumption 4 holds and � > 1, a condition that we check below. Finally, Assumption
4 implies also that eC(⋅, X) is monotonically increasing on the interval Ω = [�, �∗(X)],
so that the neglected second-order conditions (5) holds.

The value of the multiplier � , or alternatively the value of X , is obtained when (2)
is binding. This condition can be rewritten as:∫ �∗(X)

�

(
eC(�,X)− e2

C(�,X)

2�

)
f(�)d� +

∫ �̄

�∗(X)

(
eN(�)− e2

N(�)

2�

)
f(�)d�

=

∫ �∗(X)

�

(
�2

2
�∗(X) +

∫ �

�

e2
C(y,X)

2y2
dy

)
f(�)d� +

∫ �̄

�∗(X)

�2

2
�f(�)d� + (1− �)∗ (A58)

where

∗ =

∫ �∗(X)

�

eC(�,X)f(�)d� +

∫ �̄

�∗(X)

(
eN(�)− e2

N(�)

2�

)
f(�)d�.

Simplifying further, we get: (
�X − X2

2

)
=
�2

2
$(X) (A59)

where
$(X) =

�∗(X)F (�∗(X))∫ �∗(X)

�
�

1− F (�)
�f(�)

f(�)d�
.

Taking into account that �∗(�) = �, Lhôspital’s rule finally yields

$(�) = lim
�→�

�f(�) + F (�)
�f(�)

1− F (�)
�f(�)

= 1.

Inserting into (A59), we finally obtain that the solution in X for this latter equation is
X = �. From the fact that the Hamiltonian HC(⋅) is strictly concave in e, we know that
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the solution is unique. This ends the proof that the only credible effort profile is eN(�).

Proof of Lemma 2. Under Assumption 1, we know that (3) is necessarily binding. This
is also the case for (20) which is harder to satisfy as we showed in the text. Take now
Ωc an interval with non-empty interior where (20) binds. On such interval, we have

U(�) = (1− �)
(
−e

2(�)

2�
+ �e(�) + (1− �)E�̃(e(�̃))

)
+ �UN(�). (A60)

Differentiating w.r.t � and taking into account (1), the following condition holds a.e.:

�

(
e2(�)

2�2
− e2

N(�)

2�2

)
= (1− �)

(
�− e(�)

�

)
ė(�)

which admits the trivial solution given by (22) and this solution is the unique one that is
increasing on I as requested by second-order conditions for the incentive compatibility
problem.31 Inserting into (A60) then yields the first part of (24).

Consider now � ∈ Ω. By definition, we have:

U(�) > (1− �)
(
−e

2(�)

2�
+ �e(�) + (1− �)E�̃(e(�̃))

)
+ �UN(�)

= UN(�)+(1−�)(1−�)
(
E�̃(e(�̃))− E�̃(eN(�̃))

)
+(1−�)

(
−e

2(�)

2�
+ �e(�) +

e2
N(�)

2�
− �eN(�)

)
.

> UN(�) + (1− �)(1− �)
(
E�̃(e(�̃))− E�̃(eN(�̃))

)
where the last strict inequality follows from the definition of eN(�). This proves the
second part of (24).

Proof of Proposition 8. Neglecting as usual the second-order condition (5) that will be
checked ex post; we now rewrite the mechanism design problem as:

(PE) : max
U(⋅)∈W (Θ),e(⋅)

E�̃(U(�̃)) subject to (2), (4) and (24).

We are now looking for optimal mechanism such that (24) is binding on an interval
Ω = [�, �∗] for some �∗ ∈ Θ. Indeed, using the techniques of the previous Appendices,
we could exhibit the non-negative measure for the type-dependent constraint (24) that
allows us to check the necessary conditions for optimality as before. In that appendix,
we proceed more directly.

For such structure of the solution, we have:

U(�) = UN(�) + (1− �)(1− �)(E�̃(e(�̃))− E�̃(eN(�̃))) ∀� ∈ Ωc. (A61)

31The other solution is indeed such that ė(�) = − �
2(1−�)

(
e(�)
� + �

)
< 0.
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Instead, on Ω = (�∗, �̄], we have:

U(�) = U(�∗) +

∫ �

�∗

e2(x)

2x2
dx. (A62)

Using (A61) and (A62), we compute after an integration by parts:

E�̃(U(�̃)) =

∫ �∗

�

UN(�)f(�)d�+UN(�∗)(1−F (�∗)) + (1− �)(1−�)(E�̃(e(�̃))−E�̃(eN(�̃))).

Using (22) to express effort on Ωc, the feasibility condition (2) can thus be written
as: ∫ �∗

�

(
eN(�)− e2

N(�)

2�

)
f(�)d� +

∫ �̄

�∗

(
e(�)− e2(�)

2�

(
1 +

1− F (�)

�f(�)

))
f(�)d�

≥
∫ �∗

�

UN(�)f(�)d� + UN(�∗)(1− F (�∗)) + (1− �)(1− �)(E�̃(e(�̃))− E�̃(eN(�̃))),

or∫ �∗

�

(
eN(�)− e2

N(�)

2�

)
f(�)d�+

∫ �̄

�∗

(
(1− (1− �)(1− �))e(�)− e2(�)

2�

(
1 +

1− F (�)

�f(�)

))
f(�)d�

≥
∫ �∗

�

UN(�)f(�)d� + UN(�∗)(1− F (�∗)). (A63)

The mechanism design problem can thus be written as:

(PE) : max
�∗,e(⋅)

∫ �∗

�

(
eN(�)− e2

N(�)

2�

)
f(�)d� +

∫ �̄

�∗

(
e(�)− e2(�)

2�

)
f(�)d�

subject to (A63).

Let us suppose that the constraint (A63) is slack. Then, the solution is �∗ = � and
e(�) = eFB(�) for all �. But then, (A63) does not hold when � is large enough and more
precisely:

� > �1 −
2(1− �)E�̃(�̃)

2E�̃(�̃)− �
. (A64)

When (A64) holds, necessarily (A63) is binding at the optimum of (PE). Let denote
by � − 1 (where � > 1) the positive multiplier of (A63). We form the Lagrangean∫ �∗

�

(
eN(�)− e2

N(�)

2�

)
f(�)d� +

∫ �̄

�∗

(
e(�)− e2(�)

2�

)
f(�)d�

+(� − 1)[

∫ �∗

�

(
eN(�)− e2

N(�)

2�

)
f(�)d�
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+

∫ �̄

�∗

(
(1− (1− �)(1− �))e(�)− e2(�)

2�

(
1 +

1− F (�)

�f(�)

))
f(�)d�

−
∫ �∗

�

UN(�)f(�)d� + UN(�∗)(1− F (�∗))].

Optimizing pointwise with respect to e(�) on the interval Ωc = (�∗, �̄] gives a solu-
tion

ē(�, �) =

(
1− � − 1

�
(1− �)(1− �)

)
�

1 + �−1
�

1−F (�)
�f(�)

where we make explicit the dependence on � . The first part of (25) is the effort level
obtained when the multiplier is �̂ .

Optimizing with respect to �∗ yields e(�∗) = eN(�∗). Simplifying further, we get
(26). Denote �∗(�) such solution making again its dependence on � explicit.

Finally, the value �̂ of the multiplier is obtained so that∫ �∗(�̂)

�

(
eN(�)− e2

N(�)

2�

)
f(�)d�

+

∫ �̄

�∗(�̂)

(
(1− (1− �)(1− �))ē(�, �̂)− ē2(�, �̂)

2�

(
1 +

1− F (�)

�f(�)

))
f(�)d�

=

∫ �∗(�̂)

�

UN(�)f(�)d� + UN(�∗(�̂))(1− F (�∗(�̂))). (A65)
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