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Abstract

This paper investigates the comparative statics of ”more ambiguity aversion”

as defined by Klibanoff, Marinacci and Mukerji (2005). The analysis uses the

static two-asset portfolio problem with one safe asset and one uncertain one.

While it is intuitive that more ambiguity aversion would reduce demand for

the uncertain asset, this is not necessarily the case. We derive sufficient con-

ditions for a reduction in the demand for the uncertain asset, and for an

increase in the equity premium. An example which meets the sufficient con-

ditions is when the set of plausible distributions for returns on the uncertain

asset can be ranked according to their monotone likelihood ratio. It is also

shown how ambiguity aversion distorts the price kernel in the alternative

portfolio problem with complete markets for contingent claims.

Keywords: Smooth ambiguity aversion, monotone likelihood ratio, eq-

uity premium, portfolio choice, price kernel, central dominance.



1 Introduction

This paper examines the standard static portfolio problem with one safe asset

and one uncertain asset. For the investor, the true probability distribution

for the excess return on the uncertain asset is ambiguous. This ambiguity

is expressed by a second order prior probability distribution over the set of

plausible (first order) distributions for the excess return. Following Segal

(1987) and Klibanoff, Marinacci and Mukerji (2005) (hereafter KMM), an

investor’s attitude towards ambiguity is introduced by relaxing the reduc-

tion of first and second order probabilities. In other words, the investor does

not evaluate in the same way lottery 1 yielding a payoff  with probabil-

ity  and lottery 2 yielding the same payoff  with an unknown probability

whose expectation is . This is in contrast to the standard Bayesian expected

utility framework under which the two lotteries would be evaluated identi-

cally. It is assumed that the investor is ambiguity averse if they dislike any

mean-preserving spread in the space of first order probability distributions

for excess returns. For example, they prefer lottery 1 to lottery 2.

KMM propose a useful and elegant decision criterion called ”smooth am-

biguity aversion” that is compatible with ambiguity averse preferences under

uncertainty. For a given portfolio allocation, the ex ante welfare of the in-

vestor is measured by computing the (second order) expectation of a concave

function  of the (first order) expected utility  of final consumption con-

ditional on each plausible distribution for the excess return. As usual, the

concavity of the utility function  expresses risk aversion in the special case

of risky acts, i.e. acts for which the plausible probability distributions for

their consequences is unique. When  is linear, we are back to the standard

expected utility model. The representation of the uncertain context can be

reduced to a single compound probability distribution. However, when 
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is concave, the investor is ambiguity averse, and the reduction to a single

compound distribution is not valid.

KMM also define the comparative notion of ”more ambiguity aversion”.

Consider two agents, respectively with function 1 and 2, who have the same

beliefs expressed by the set of first and second order probability distributions.

Suppose also that they have the same utility function  to evaluate risky acts.

Agent 2 is more ambiguity averse than agent 1 if 1 prefers an uncertain

act over a pure risky one whenever 2 does so. This is true if and only

if function 2 is more concave than function 1, in the Arrow-Pratt sense:

−00202 is uniformly larger than −00101. This paper examines the effect of
such an increase in ambiguity aversion on the optimal level of demand for the

uncertain asset. To do so, the first and second order beliefs, and the utility

function  are fixed.The effect of a concave transformation of function  on

the optimal portfolio can then be examined.

The KMM model has two attractive features in comparison to other mod-

els of ambiguity such as the pioneering maxmin expected utility (or multiple-

prior) model of Gilboa and Schmeidler (1989). First, it creates a crisp sep-

aration between ambiguity aversion and ambiguity, i.e., between tastes and

beliefs. Without this feature, the comparative static analysis of more am-

biguity aversion could not be performed. Second, the KMM model applies

the expected utility machinery sequentially, starting on the first order prob-

ability distributions before moving onto the second order distributions. This

allows the huge range of techniques amassed over the years to tackle ques-

tions involving risk under the expected utility framework to be applied to

the analysis of problems involving ambiguity aversion. A point illustrated by

this paper.

The question of the comparative statics of ambiguity aversion for the

portfolio problem is parallel to the one of risk aversion. It has been well
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established since Arrow (1963) and Pratt (1964) that an increase in risk

aversion reduces demand for the risky asset. It is therefore quite surprising

that in general, as shown in this paper, it is not necessarily true that more

ambiguity aversion reduces demand for an ambiguous asset. For a cleverly

chosen - but not spurious - set of priors for the return on the ambiguous

asset, it is shown that the introduction of ambiguity aversion increases the

investor’s demand. The intuition for why such counterexamples may exist

can be explained as follows. The first-order condition of the portfolio prob-

lem with ambiguity aversion can be rewritten in the form that it takes under

the expected utility model, but with a distortion in the way the different first

order probability distributions for the excess return are compounded. Taking

the expected utility approach, i.e., ’ambiguity neutrality’, the compounding

is made by using the true second order probability distribution. Under am-

biguity aversion, this second order probability distribution is distorted by

putting more weight on the plausible second order distributions yielding a

smaller expected utility. This was first observed by Taboga (2005). In spite

of the fact that the ambiguity averse investor’s beliefs cannot be reduced

to a single compound probability distribution over excess returns, the in-

troduction of ambiguity aversion is observationally equivalent to the effect

of distorting the compound distribution used by the ambiguity-neutral in-

vestor. This distortion is pessimistic, in a technical sense that is defined

more precisely in the paper. It is well known from expected utility theory

that pessimistic deteriorations in beliefs do not always reduce the demand for

the risky asset.1 As for Giffen goods in consumer theory, this deterioration

in the terms of trade yields a wealth effect that may in fact raise demand.

The main objective of the paper is to characterize conditions under which

1See Rothschild and Stiglitz (1971), Fishburn and Porter (1976), Meyer and Ormiston

(1985), Hadar and Seo (1990), Gollier (1995), Eeckhoudt and Gollier (1995), Abel (2002)

and Athey (2002), and the bibliographical references in these papers.
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more ambiguity aversion reduces the optimal level of exposure to uncertainty.

This can be done by restricting either the set of utility functions and/or the

set of possible priors. If it is assumed that the set of priors can be ranked

according to their order of first-degree or second-degree stochastic dominance

(FSD/SSD), then some simple sufficient conditions on the utility function

result in unambiguous comparative static properties after the introduction

of ambiguity aversion.This is illustrated in the paper. These results are

derived by using the following technique. Any increase in ambiguity aversion

deteriorates the observationally equivalent second order distribution in a

very specific way. More weight is transferred onto the worst priors in the

sense of those with the lowest monotone likelihood ratio (MLR). This puts a

very specific structure on the notion of pessimism caused by more ambiguity

aversion. For example, if the plausible priors can be ranked according to FSD,

then their compound MLR deteriorated second order probability distribution

generated by more ambiguity aversion implies a FSD deterioration of the

behaviorally equivalent changes of beliefs under expected utility. In turn this

implies that the following two questions are linked :

1) under the EU model, what are the conditions on the utility function

 that guarantee that any FSD deterioration in the distribution of excess

return of the risky asset reduces the demand for it?; and

2) in the KMM model, what are the conditions that guarantee that any

increase in ambiguity aversion reduces the demand for the ambiguous asset?

The same property holds when replacing FSD by SSD. More sophisti-

cated methods are required when considering other stochastic orders to rank

plausible priors for the excess return. The result which is easiest to express

should be mentioned at this stage: if the plausible priors can be ranked ac-

cording to MLR (a special case of FSD), then it is always true that more

ambiguity aversion reduces the demand for the ambiguous asset.
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It is easy to translate these results about the effect of comparative am-

biguity aversion on the demand for the ambiguous asset into its effect on

the equity premium. Therefore this work is related to recent research on the

effect of ambiguity aversion on the equity premium.

Ju and Miao (2009) and Collard, Mukerji, Sheppard and Tallon (2009)

examine a dynamic infinite-horizon portfolio problem in which the represen-

tative investor exhibits smooth ambiguity aversion and faces time-varying

ambiguity about the second order distribution of the plausible probability

distributions of consumption growth. These two papers consider different

sets of risk-ambiguity attitudes ( ), and different stochastic processes for

the first and second order probability distributions. They both use numeri-

cal analyses to solve the calibrated dynamic portfolio problem and they both

conclude that ambiguity aversion raises the equity premium. Other papers

draw a similar conclusion, but using other decision criterion for ambiguity

aversion, either maxmin expected utility, Choquet expected utility, or robust

control theory.2 This paper demonstrates that these results are specific to

the calibration under scrutiny.

The portfolio problem and two illustrations are presented in Section 2.

The main results are presented in Section 3 in which sufficient conditions

are derived for the comparative statics of more ambiguity aversion. Section

4 examines a Lucas economy with a representative agent facing ambiguous

state probabilities. It is shown how the ambiguity aversion of the represen-

tative agent affects the equity premium, the price kernel of the economy, and

individual asset prices.

2See for example Dow and Werlang (1992), Chen and Epstein (2002), Epstein and

Wang (1994), Hansen, Sargent and Tallarini (1999), Maenhout (2004), Hansen and Sargent

(2008).
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2 The smooth ambiguity model applied to

the portfolio problem

The model is static with two assets. The first asset is safe with a rate of

return that is normalized to zero. The uncertain asset has a return  whose

distribution is ambiguous in the sense that it is sensitive to some parameter

 whose true value is unknown. The investor is initially endowed with wealth

0. If they invest  in the uncertain asset, their final wealth will be 0+

conditional on a realized return  on the uncertain asset.

The ambiguity of the uncertain asset is characterized by a set Π =

{1  } of plausible cumulative probability distributions for e. Let e
denote the random variable distributed as . It is supposed that the sup-

port of all priors are bounded in [− +] with −  0  + Based on

their subjective information, the investor associates a second order probabil-

ity distribution (1  ) over the set of priors Π with Σ
=1 = 1 where

 ≥ 0 is the probability that  is the true probability distribution for ex-

cess returns.From now on e denotes the random variable (1 1; 2; 2; ; )
Following Klibanoff, Marinacci and Mukerji (2005), it is assumed that the

investor’s preferences exhibit smooth ambiguity aversion. For each plausi-

ble probability distribution  the investor computes the expected utility

( ) = (0 + e) = R (0 + )() conditional on  being the

true distribution. It is assumed that  is increasing and concave, so that

( ) is concave in the level of investment  in the ambiguous asset, for

all . Ex ante, for a given portfolio allocation  the welfare of the agent is

measured by  () with:

 () = −1
Ã

X
=1

(( ))

!
= −1

Ã
X

=1

 ((0 + e))! 

 () can be interpreted as the certainty equivalent of the uncertain con-
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ditional expected utility ( e). The shape of  describes the investor’s
attitude towards ambiguity. A linear  means that the investor has a neutral

attitude towards ambiguity, and that their compound probability distribu-

tions can be reduced to a single one Σ. In contrast, a concave  is

synonymous with ambiguity aversion in the sense that the DM dislikes any

mean-preserving spread of the conditional expected utility ( e).
An interesting particular case arises when the absolute ambiguity aver-

sion () = −00()0() is constant, so that () = −−1 exp(−).
As proved by Klibanoff, Marinacci and Mukerji (2005), the ex ante welfare

 () essentially exhibits a maxmin expected utility functional  () =

min (0 + e) à la Gilboa and Schmeidler (1989) when the degree  of
absolute ambiguity aversion tends to infinity.

The optimal portfolio allocation ∗ maximizes the ex ante welfare of the

investor  ().  is increasing, therefore ∗ is the solution of the following

program:

∗ ∈ argmax


X
=1

 ((0 + e))  (1)

If  and  are strictly concave, then the objective function is concave in  and

the solution to program (1), when it exists, is unique. It can be observed that

the demand for the ambiguous asset shares its sign with the equity premium

e = Σe. All proofs are relegated to the Appendix.
Lemma 1 The demand for the ambiguous asset is positive (zero/negative)

if the equity premium is positive (zero/negative).

This means that ambiguity aversion, as is the case for risk aversion, has

a second order nature, as defined by Segal and Spivak (1990). As soon

as the equity premium is positive, the demand for the ambiguous asset is
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positive, independent of the degree of ambiguity over the distribution of

returns. From now on it is assumed that the equity premium is positive, so

that ∗ is positive.

The remainder of this section, examines two illustrations. Consider first

the following special case in which an analytical solution can be found for

∗:

• Priors are normally distributed with the same variance 2, and with
e =  : e ∼ ( );3

• The ambiguity over the equity premium  is itself normally distributed:e ∼ ( 0);

• The investor’s preferences exhibit constant absolute risk aversion: () =
−−1 exp− ∈ R−;

• The investor’s preferences exhibit constant relative ambiguity aversion:
() = −(−)1+(1 + ) This function is increasing in R− and is

concave in this domain if  is positive.

As is well-known, the normality of the priors and the constancy of absolute

risk aversion implies that the Arrow-Pratt approximation is exact.4 This

implies in turn that

( ) = −−1 exp− ¡0 +  − 0522¢  (2)

Because () is an exponential function of , and e is normally distributed,
therefore the same trick can be used to compute  yielding:

 () = −−1 exp−(0 + − 052(2 + (1 + )20)) (3)

3It is easy to extend this to the case of an ambiguous variance.
4For a simple proof, see for example Gollier (2001, page 57).
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The optimal demand for the uncertain asset is thus equal to:

∗ =


(2 + (1 + )20)
 (4)

It can be seen that under ambiguity (20  0), the demand for the uncer-

tain asset is decreasing in the relative degree  of ambiguity aversion of

the investor. This exponential-power specification for ( ) differs from the

other three papers on this topic. Taboga (2005) examines an exponential-

exponential specification. Ju and Miao (2009) used a power-power specifica-

tion, whereas Collard, Mukerji, Sheppard and Tallon (2009) used a power-

exponential specification. None of these three alternative problems can be

solved analytically.

Alternatively, consider the following counterexample:

•  = 2, e1 ∼ (−1 210;−025 320; 075 720; 125 310) and e2 ∼
(−1 15; 0 15; 1 35);

• 1 = 5% and 2 = 95%;

• () = min( 3 + 03( − 3)) and 0 = 2;

• () = −−1 exp(−).

It is easy to check that e1 is riskier than e2 in the sense of Rothschild and
Stiglitz (1970) sense. The problem is solved numerically. Below a minimum

threshold of around 20 for the degree  of ambiguity aversion, the optimal

holding of the ambiguous asset equals ∗ = 1. However, above this threshold

the introduction of ambiguity aversion increases ∗ above the optimal invest-

ment of the ambiguity-neutral investor. For example, ∗ equals 1204 when

 = 50 When  tends to infinity, the optimal investment in the uncertain

asset tends to ∗ = 43 which is the optimal holding of the ambiguous as-

set for an ambiguity-neutral investor who believes that the distribution of
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excess return is e1 with certainty. In terms of portfolio allocation, it is ob-
servationally equivalent to increase absolute ambiguity aversion from zero to

infinity or to replace beliefs e1 ∼ (e1 5%; e2 95%) by e2 ∼ (e1 100%) under
expected utility. Notice that because e1 is riskier than e2, the extreme be-
lief e2 is riskier than e1 in the Rothschild and Stiglitz sense. This example
illustrates the fact — first observed by Rothschild and Stiglitz (1971) — that

it is not true in general that a riskier distribution for excess returns reduces

the demand for the risky asset in the expected utility model.

3 Effect of an increase of ambiguity aversion

The investor’s beliefs are represented by the set of priors (e1  e) for the
excess return of the uncertain asset, together with the second order distrib-

ution (1  ) on these priors. A comparison is made between two agents

with the same beliefs and the same concave utility function  but with dif-

ferent attitudes toward ambiguity represented by the concave functions 1

and 2. The demand for the uncertain asset by agent 1 is expressed by 
∗
1

which must satisfy the following first-order condition:

X
=1


0
1((

∗
1 ))e0(0 + ∗1e) = 0 (5)

Following Klibanoff, Marinacci and Mukerji (2005), it is assumed that the

agent with function 2 is more ambiguity averse than agent 1 in the sense

that there exists an increasing and concave transformation function  such

that 2() = (1()) for all  in the relevant domain. We would like to

characterize the conditions under which the more ambiguity averse agent 2

has a smaller demand for the uncertain asset than agent 1: 
∗
2 ≤ ∗1. This

10



would be the case if and only if:

X
=1


0
2((

∗
1 ))e0(0 + ∗1e) ≤ 0 (6)

The conditions under which it is always true that (5) implies (6) are sought.

Notice that this implication can be rewritten as:

e10(0 + ∗1e1) = 0 =⇒ e20(0 + ∗1e2) ≤ 0 (7)

where e is a compound random variable which equals e with probabilityb,  = 1   such that
b = 

0
((

∗
1 ))P

=1 
0
((

∗
1 ))

 (8)

Notice that the left equality on the left in (7) can be interpreted as the first-

order condition of the problem max(0 + e1) for an expected-utility-
maximizing investor whose beliefs are represented by e1 ∼ (e1 b11; ; e b1).
Therefore, the ambiguity averse agent 1 behaves in the same way as an EU-

maximizing agent who has distorted their second order beliefs from (1  )

to the ”observationally equivalent probability distribution” b1 = (b11  b1).
The distortion factor 01((

∗
1 ))Σ

0
1((

∗
1 )) is a Radon-Nikodym deriv-

ative, and the probability distribution b1 is analogous to the risk-neutral
probability distribution used in the theory of finance. Notice that the distor-

tion functional described by equation (8) is endogenous, because it depends

upon the portfolio allocation ∗1 selected by the agent. The inequality on

the right in (7) just means that shifting beliefs from e1 to e2 reduces the
ambiguity-neutral investor’s holding of the asset. These findings are summa-

rized in the following lemma:

Lemma 2 The change in preferences from ( 1) to ( 2) reduces the de-

mand for the ambiguous asset if the EU agent with utility function  reduces
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their demand for the uncertain asset when their beliefs about the excess re-

turn shift from e1 ∼ (e1 b11; ; e b1) to e2 ∼ (e1 b21; ; e b2), where b is
defined by (8).

This result was initially due to Taboga (2005). It precisely expresses

the observational equivalence property that has already been encountered in

the counterexample presented in the previous section. It provides a test to

determine whether more ambiguity aversion reduces demand. Observe that

this test relies on two reduced probability distribution e1 and e2. However, it
is not true that the ambiguity averse investor ( 1) uses the corresponding

reduced probability distribution e1 to evaluate the optimality of the different
feasible portfolios. If they did so, they would re-evaluate the distribution of e1
for each portfolio, since vector b1 is a function of . In the smooth ambiguity
aversion model, beliefs cannot be reduced to a single probability distribution

over the payoffs for each state of the world. However, this lemma builds a

bridge between the comparative statics of increased ambiguity aversion and

increases in risk in the classical EU model.

Let us now examine how changing function 1 into 2 modifies the obser-

vationally equivalent probability distribution for the excess return. A first

answer to this question is provided by the following lemma.

Lemma 3 The following two conditions are equivalent:

1. Agent 2 is more ambiguity averse than agent 1;

2. Beliefs b2 are dominated by b1 in the sense of their monotone likelihood
ratio order.

Property 2 in the above lemma means that, assuming (∗1 1) ≤ (∗1 2) ≤
 ≤ (∗1 ) b2b1 is decreasing in . An increase in ambiguity aversion has

12



an effect on demand that is observationally equivalent to a MLR-dominated

shift in the prior beliefs. In other words, it distorts beliefs by favouring the

worst priors in a very specific sense: if agent 1 prefers prior e over priore0  then, compared to agent 1 the more ambiguity averse agent 2 in-
creases the distorted probability b20 relatively more than the probability b2 .
Lemma 3 provides a justification for saying that, in the case of the portfo-

lio problem, more ambiguity aversion is observationally equivalent to more

pessimism, i.e., to a MLR deterioration of beliefs. This result is central

to proving the next proposition, in which three dominance orders are con-

sidered: first degree stochastic dominance (FSD), second-degree stochastic

dominance (SSD), and Rothschild and Stiglitz’s increase in risk (IR).

Proposition 1 Let  be one of the following stochastic orders: FSD, SSD

or IR. Suppose that e  0, and that (e1  e) can be ranked according to
the stochastic order  . If there is a concave function  such that 2 = (1)

and if e1 ¹ e2 ¹  ¹ e then
e2 ∼ (e1 b21; ; e b2) ¹ (e1 b11; ; e b1) ∼ e1

In words, if (e1  e) can be ranked according to the stochastic order
 , then an increase in ambiguity aversion deteriorates the observationally

equivalent probability distribution for the excess return in the sense of the

stochastic order  Therefore, if priors can be ranked according to first-

degree stochastic dominance, the increase in ambiguity aversion modifies

the demand for the asset in the same direction as an FSD deterioration of

the excess return in the expected utility model. The problem is that, in

general, the comparative statics of an FSD deterioration in the excess return

is ambiguous in the expected utility model. The intuition for this negative

result is that a reduction in the return on an asset has a substitution effect and

a wealth effect. As for the existence of Giffen goods in consumption theory,
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the wealth effect may induce an increase in the asset demand. Technically,

it is not true in general that condition (7) holds when e2 ¹ e1 It is

easy to see why: by the definition of FSD, this would be true if and only if

function () = 0(0 + ) was increasing, which is not true in general.

As observed by Fishburn and Porter (1976), a sufficient condition for  to

be increasing is that relative risk aversion () = −00()0() is smaller
than unity.5 By implication, this is also a sufficient condition for an increase

in ambiguity aversion to reduce the demand for the ambiguous asset when

priors can be ranked according to FSD.

The same strategy can be used to examine the case when priors can be

ranked in the sense of a Rothschild-Stiglitz increase in risk. In that case,

the above proposition tells us that the observationally equivalent probability

distribution e2 is an increase in risk compared to e1. This does not in general
imply that condition (7) holds because  is not necessarily concave. As

initially shown by Rothschild and Stiglitz (1971), it is not true in general that

an increase in risk for the excess return of the risky asset reduces its demand.

Hadar and Seo (1990) provided a sufficient condition, which guarantees that 

is concave. This condition is that relative prudence is positive and less than

2, where relative prudence is defined by  () = −000()00() (Kimball
(1990)) This proves the following result:

Proposition 2 Suppose that  ∈ 3 and e  0. Any increase in ambiguity

aversion reduces the demand for the uncertain asset if one of the following

two conditions is satisfied:

1. (e1  e) can be ranked according first-degree stochastic dominance
and  ≤ 1;

5with () = −00()0().
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2. (e1  e) can be ranked according to the Rothschild and Stiglitz’s risk-
iness order and 0 ≤   ≤ 2.

More generally, if the set of marginals can be ranked according to the SSD

order, an increase in ambiguity aversion reduces the demand for the risky as-

set if relative risk aversion is less than unity, and relative prudence is positive

and less than two. In the case of power utility function, relative prudence

equals relative risk aversion plus one. This implies that when relative risk

aversion is constant, and when priors can be ranked according to SSD, any

increase in ambiguity aversion reduces the demand for the ambiguous asset if

relative risk aversion is less than unity. This condition is not very convincing,

since relative risk aversion is usually assumed to be larger than unity. Argu-

ments have been provided based on introspection (Drèze (1981), Kandel and

Stambaugh (1991), Gollier (2001)) or on the equity premium puzzle that can

be solved in the canonical model only with a degree of relative risk aversion

exceeding 40.

Rather than limiting the set of utility functions yielding an unambiguous

effect, an alternative approach is to restrict the set of priors. To do this, let

us first introduce the following concepts, which rely on the location-weighted-

probability function  that is defined as follows:

() =

Z 

−
() (9)

Following Gollier (1995), it can be said that e2 is dominated by e1 in the
sense of Central Dominance if there exists a nonnegative scalar  such that

2() ≤ 1() for all  ∈ [− +]6 Gollier (1995) showed that e2 ¹ e1
6There is no simple interpretation of this stochastic order in the literature. However,

observe that replacing e1 by e2 ∼ (e1; 0 1 − ) implies that 2 = 1. This pro-

portional probability transfer to the zero excess return has no effect on the risk-averse

investor’s demand for the risky asset. This explains the presence of the arbitrary scalar
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is necessary and sufficient to guarantee that all risk-averse investors reduce

their demand for the risky asset whose distribution for excess returns goes

from e1 to e2. SSD-dominance is not sufficient for CD-dominance. Notice
that e1 and e2 in the counterexample of the previous section violate the CD
condition. It implies that there exists a concave utility function such that

the demand for the asset is increased when beliefs go from (e1 5%; e2 95%)
to the riskier e1
Here is a partial list of stochastic orders that have been shown to belong

to the wide set of CD:

• Monotone Likelihood Ratio order (MLR) (Ormiston and Schlee (1993)).
Notice that MLR is a subset of FSD.

• Strong Increase in Risk (Meyer and Ormiston (1985)): The excess re-
turn e2 is a strong increase in risk with respect to e1 if they have the
same mean and if any probability mass taken out of some of the real-

izations of e1 is transferred out of the support of this random variable.
• Simple Increase in Risk (Dionne and Gollier (1992)): Random variablee2 is a simple increase in risk with respect to e1 if they have the same
mean and (1()− 2()) is nonnegative for all .

• Monotone Probability Ratio order (MPR) (Eeckhoudt and Gollier (1995),
Athey (2002)): When the two random variables have the same support,

it can be said that e2 is dominated by e1 in the sense of MPR if the
cumulative probability ratio 2()1() is nonincreasing. It can be

 in the definition of CD. Moreover a CD shift with  = 1 requires a reduction of the

location-weighted-probability function  . For example, if one divides a probability mass

 at some return  =   0 in two equal masses (2 2), the transfer of mass to the left

must be to the left of 2, which is a strong condition.
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shown that MPR is more general than MLR, but is still a subset of

FSD

The next result allows the conditions on  to be relaxed, but at the cost

of restricting the set of priors.

Proposition 3 Suppose that e  0. Any increase in ambiguity aversion

reduces the demand for the uncertain asset if the set of priors (e1  e)
can be ranked according to both SSD dominance and central dominance, that

is, if e ¹ e+1 and e ¹ e+1 for all  = 1  − 1
To illustrate, because it is known that MLR yields both first-degree sto-

chastic dominance and central dominance, the following corollary is obtained

directly:

Corollary 1 Suppose that e  0 and that (e1  e) can be ranked accord-
ing to the monotone likelihood ratio order. Then, any increase in ambiguity

aversion reduces the demand for the uncertain asset.

In this case, it can be concluded that ambiguity aversion and risk aversion

work in the same direction. A more general corollary holds when the MLR

order is replaced by the more general MPR order.

It is noteworthy that the comparative statics of ambiguity aversion are

much simpler when considering market participation. Of course, as observed

in Lemma 1, the basic model is not well suited to examining this question,

since all agents should have a positive demand for equity as soon as the

equity premium is positive (second order risk aversion). Let us introduce a

fixed cost  for market participation, so that the new model is with ( ) =

(0 −  + e)  () = −1 (
P

 (( ))) 
−→ = argmax (), and

∗ = −→ if  (−→ ) ≥ (0), and ∗ = 0 otherwise. Obviously, because 
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is the certainty equivalent of ( e) under function , an increase in the

concavity of  reduces  () for all  Therefore the condition for market

participation  (−→ ) ≥ (0) is less likely to hold when ambiguity aversion

is increased. This means that ambiguity aversion may explain the market

participation puzzle (Haliassos and Bertaut (1995)).7

4 Asset prices with complete markets

This section extends the focus of our analysis to the effect of ambiguity

aversion on the price of contingent claims. Consider a Lucas tree economy

with identical risk-averse and ambiguity averse representative agents whose

preferences are characterized by increasing and concave functions ( ).

Each agent is endowed with a tree producing an uncertain quantity of fruit at

the end of the period. There are  possible states of nature, with  denoting

the number of fruits produced by the trees in state ,  = 1  . The

distribution of states is subject to some parametric uncertainty. Parameter 

can take value 1   with probabilities (1  ), and | is the probability

of state  conditional on . Let  = Σ| denote the unconditional

probability of state . Ex ante, there is a market for contingent claims.

Agents trade claims for fruit contingent on the harvest. Assuming complete

markets, the ambiguity averse and risk-averse agent, whose preferences are

given by the pair ( ), solves the following problem:

max
(1)

X
=1



Ã
X
=1

|()

!
 s.t.

X
=1

Π( − ) = 0

(10)

where  −  is the demand for the Arrow-Debreu security associated with

state , andΠ is the price of that contingent claim. The first-order conditions

7Thus, our story of the role ambiguity aversion in explaining the market participation

puzzle differs from the one by Dow and Werlang (1992) and Epstein and Schneider (2007),

who consider a MEU model without participation cost.
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for this program are written as:

0()

"
X

=1


0


Ã
X

0=1

0|(0)

!
|

#
= Π (11)

for all  where  is the Lagrange multiplier associated with the budget

constraint. The market-clearing conditions impose that  =  for all ,

which implies the following equilibrium state prices:

Π
 = b0() (12)

for all , where the distorted state probability b is defined as follows:
b = X

=1

b| with b = 
0
 ((e))P

=1 
0
 ((e))  (13)

where e is distributed as (1 1|;   |) Under ambiguity neutrality, it
follows that b =  and b is the true probability of state  computed from
the compound first and second order probabilities. The aversion to ambiguity

of the representative agent affects prices in the equilibrium state in a way

that is observationally equivalent to a distortion of beliefs in the EU model.

This distortion takes the form of a transformation of the subjective prior

distribution from (1  ) to (b1  b) that is equivalent to the previous
section with e = 0 + ∗1e. Lemma 3 implies that b2 is dominated by b1 in
the sense of MLR when 2 is more ambiguity averse than agent 1 The next

proposition is a direct consequence of this observation.

Proposition 4 Suppose that the set of priors (e1 e) can be ranked ac-
cording to the stochastic order  ( =FSD, SSD or IR) . If there is a

concave  such that 2 = (1) and if e1 ¹ e2 ¹  ¹ e , then

(e1 b21; ;e b2) ¹ (e1 b11; ;e b1)
19



It is straightforward to reinterpret this result in terms of the impact of

ambiguity aversion on the price kernel  = Π. Suppose that  6= 0

for all ( 0), so that index  = 1   can be substituted by another index

 = 1  . Figure 1 draws the state price  = b0() as a function
of . Under ambiguity neutrality, this is a decreasing function, because 

0 is

decreasing. The slope of the curve () describes the degree of risk aversion

of the agent. From Proposition 4, ambiguity aversion tends to reinforce risk

aversion. Indeed, if the priors can be ranked by FSD, an increase in ambiguity

aversion has an effect on asset prices that is observationally equivalent to a

FSD-deteriorating shift in beliefs, that is it tends to transfer the distorted

probability mass b from the good states to the bad ones. The corresponding
shift in  = b0() is described in Figure 1a. If the priors can be

ranked according to their riskiness, an increase in ambiguity aversion tends

to transfer the distorted probability mass to the extreme states. This implies

convexifying the price kernel in the region of aggregate consumption where

priors differ by mean-preserving spreads, as depicted in Figure 1b.

In the standard EU model, there is a decreasing relationship between the

pricing kernel and aggregate consumption. However, there is some strong em-

pirical evidence that this relation may be violated (Ait-Sahalia and Lo (2000),

Rosenberg and Engle (2002), Yatchew and Härdle (2006), and Barone-Adesi

and Dall’O (2009)). Typically, the empirical pricing kernel is ”bump-shaped”,

as in Figure 2. Hens and Reichlin (2010) provide three plausible stories to ex-

plain this ”pricing kernel puzzle” : incomplete markets, risk-seeking behavior,

and heterogeneous beliefs. This paper shows that ambiguity and ambiguity

aversion are another plausible solution for this puzzle. This can be seen from

Figure 1b, where the priors differ by a mean-preserving spread in the lower

tail of the distribution. To illustrate, let us consider a four-state economy

with 1 = 075 2 = 09 3 = 105 and 4 = 12. Suppose also that there are
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a : FSD                                                                   b : IR 



Figure 1: The effect of an increase in ambiguity aversion on the price kernel,

when the priors can be ranked by the FSD order (a), or by the Rothschild-

Stiglitz riskiness order (b).

two equally plausible distributions for the state probabilities. The two proba-

bility distributions are respectively (18 12 18 14) and (38 0 38 14)

It is easy to check that the second distribution is riskier than the first in

the Rothschild-Stiglitz sense. Let us also assume that 0() = −2, and

0() = exp(−). The circled points in Figure 2 correspond to the pricing
kernel when the representative agent is ambiguity-neutral ( = 0) whereas

the squared points correspond to the case of ambiguity aversion with  = 50

Using Proposition 4, many other distortions of the pricing kernel can be

obtained by considering other sets of multiple priors.

5 Conclusion

This paper explores the determinants of the demand for uncertain assets and

of asset prices when investors are ambiguity averse. The analysis was carried

out using the standard static portfolio problem with one safe asset and one
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Figure 2: The effect of ambiguity aversion on the pricing kernel when priors

differ by mean-preserving spreads in the lower tail of the distribution. The

dashed curve corresponds to ambiguity neutrality. The four state prices are

linked by quadratic interpolation.

22



uncertain asset. It was shown that, contrary to casual intuition, ambiguity

aversion may yield an increase in demand for the risky and ambiguous asset,

and a reduction in the demand for the safe one. In the same fashion, it is

not necessarily true that ambiguity aversion raises the equity premium in

the economy. It was shown first that the qualitative effect of an increase

in ambiguity aversion in these settings is observationally equivalent to that

of a shift in the beliefs of the investor in the standard EU model. If the

set of plausible priors can be ranked according to the first degree stochastic

dominance order, this shift is first degree stochastic deteriorating, whereas it

is risk-increasing if these priors can be ranked according to the Rothschild-

Stiglitz risk order. The problem originates from the observation already

made by Rothschild and Stiglitz (1971) and Fishburn and Porter (1976)

that a FSD/SSD deteriorating shift in the distribution for the return of the

uncertain asset has an ambiguous effect on the demand for that asset in

the EU framework. The literature that emerged from this negative result

has been heavily relied upon to provide some sufficient conditions for any

increase in ambiguity aversion to yield a reduction in the demand for the

uncertain asset and therefore an increase in the equity premium. In most

cases these conditions hold.

Two sets of findings confirm this view. First, the numerical analyses in

the existing literature all show more ambiguity aversion reducing demand

for the uncertain asset. It has also been shown that this will always be

true when the first and second order probability distributions are normal,

and the pair ( ) are exponential-power functions. Second, the sufficient

conditions cover a wide set of realistic situations. For example, if the set

of priors can be ranked according to the well-known monotone likelihood

ratio order, then it is always true that an increase in ambiguity aversion

raises the equity premium. The conclusion is that the potential existence
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of a counterintuitive demand effect arising from ambiguity aversion plays a

role similar to the potential existence of Giffen goods in consumption theory.

The observationally equivalent FSD deterioration of more ambiguity aversion

has a wealth effect on the demand for the asset that may dominate the

substitution effect. This is a rare event, but theoretical progress can rarely

be made without understanding the mechanism that generates it. After all,

the existence of Giffen goods is taught in Microeconomics 101.
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Appendix: Proofs

Proof of Lemma 1

By concavity of the objective function in (1) with respect to , we have

that ∗ is positive if the derivative of this objective function with respect to

 evaluated at  = 0 is positive. This derivative is written as

X
=1


0((0))e0(0) = 0(0)

0((0))e
where e = Σ is the equity premium. This concludes the proof. ¥

Proof of Lemma 3

Because 1 and 2 are increasing in  there exists an increasing function

 such that 2() = (1()) or 
0
2() = 0(1())01() for all  . Using

definition (8), we obtain that

b2b1 = 0(1((
∗
1 ))

P

=1 
0
1 ((

∗
1 ))P

=1 
0
2 ((

∗
1 ))

(14)

for all  = 1  . The Lemma is a direct consequence of (14), in the sense

that the likelihood ratio b2b1 is decreasing in  if 0 is decreasing in 1. ¥

Proof of Proposition 1

Suppose that e1 ¹ e2 ¹  ¹ e It implies that (∗1 1) ≤ (∗1 2) ≤
 ≤ (∗1 ). We have to prove that (e1 b11; ; e b1) is preferred to
(e1 b21; ; e b2) by all utility functions  in , that is

X
=1

b2(e) ≤ X
=1

b1(e)
where  is the set of increasing functions if=FSD,  is the set of increasing

and concave functions if =SSD, and  is the set of concave functions if

=IR. Combining the conditions that e ¹ e+1 and that  ∈  implies
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that (e) is increasing in . The above inequality is obtained by combining
this property with the fact that b2 is dominated by b1 in the sense of MLR
(Lemma 3), a special case of FSD. ¥
Proof of Proposition 3

The following lemma is useful to prove Proposition 3. Let  denote

interval [min 
∗
max 

∗
] where 

∗
 is the maximand of (0 + e).

Lemma 4 Consider a specific set of priors (e1  e) and a concave utility
function . They characterize function  defined by ( ) = (0 +

e). Consider a specific scalar ∗1 in . The following two conditions are

equivalent:

1. Any agent 2 that is more ambiguity averse than agent 1 with demand

∗1 for the ambiguous asset will have a demand for it that is smaller

than ∗1;

2. There exists  ∈ {1  } such that

(∗1 )(
∗
1 ) ≥ (∗1 )(

∗
1 ) (15)

for all  ∈ {1  }

Proof: We first prove that condition 2 implies condition 1. Consider an

agent 2 = (1) that is more ambiguity averse than agent 1 so that the

transformation function  is concave. The condition thus implies that

0(1((
∗
1 )))(

∗
1 ) ≤ 0(1((

∗
1 )))(

∗
1 )

for all . Multiplying both side of this inequality by 
0
1((

∗
1 )) ≥ 0 and

summing up over all  yields

X
=1


0
2((

∗
1 ))(

∗
1 ) ≤ 0(1((

∗
1 )))

X
=1


0
1((

∗
1 ))(

∗
1 ) = 0
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The last equality comes from the assumption that agent 1 selects portfolio

∗1. Thus, condition (6) is satisfied, thereby implying that 
∗
2 is less than 

∗
1

We then prove that condition 1 implies condition 2. Without loss of

generality, rank the s such that (∗1 ) is increasing in . By contradiction,

suppose that there exists a 0   such that (
∗
1 0) ≥ 0 and (

∗
1 0 +

1) ≤ 0. Select a prior distribution (1  ) so that  = 0 for all  except
for 0 and 0 + 1. Select 0 =  ∈ [0 1] so that

01((
∗
1 0))(

∗
1 0) + (1− )01((

∗
1 0 + 1))(

∗
1 0 + 1) = 0

(16)

so that agent 1 selects portfolio ∗1. Consider any concave transformation

function . It implies that

X
=1


0
2((

∗
1 ))(

∗
1 )

= 0(1((
∗
1 0)))

0
1((

∗
1 0))(

∗
1 0)

+(1− )0(1((
∗
1 0 + 1)))

0
1((

∗
1 0 + 1))(

∗
1 0 + 1)

Because (
∗
1 0+1) ≤ 0 and 0(1((∗1 0+1))) ≤ 0(1((∗1 0))) this

is larger than

0(1((
∗
1 0))) [

0
1((

∗
1 0))(

∗
1 0) + (1− )01((

∗
1 0 + 1))(

∗
1 0 + 1)] = 0

It implies that condition (6) is violated, implying in turn that ∗2 is larger

than ∗1 a contradiction. ¥
If we rank the  in such a way that (∗1 ) is monotone in  condition

2 is essentially a single-crossing property of function (
∗
1 ) To illustrate,

suppose that () = −−1 exp(−) and e ∼ ( 2), which implies that

( ) is increasing in  and is given by equation (2). It implies that ( )

has the same sign as −2. It implies in turn that condition 2 in Lemma
4 is satisfied with  = 2. Our Lemma implies that ambiguity aversion
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reduces the demand for the uncertain asset in the exponential/normal case.

This was shown in Section 2 in the special case of power  functions.

We need to prove a second lemma in order to prepare for the proof of

Proposition 3.

Lemma 5 Suppose that e2 is centrally dominated by e1. Then, e20(0 +
e2) ≤ 0 for any  ≥ 0 such that e10(0 + e1) ≤ 0 .
Proof: By assumption, there exists a positive scalar  such that 2() ≤

1(). Integrating by part, we have that

e20(0 + e2) =

Z +

−
0(0 + )2()

= 0(0 + +)2(+)− 

Z +

−

00
(0 + )2()

This implies that

e20(0 + e2) ≤ 

∙
0(0 + +)1(+)− 

Z +

−

00
(0 + )1()

¸
= e10(0 + e1)

By assumption, this is nonpositive. ¥
We can now prove Proposition 3. Condition e ¹ e+1 implies that

( +1) ≥ ( ), whereas, by Lemma 5, condition e ¹ e+1 implies
that ( ) ≤ 0 whenever (  + 1) ≤ 0 This latter result implies that
there exists a  such that ( − )( ) ≤ 0 for all . This immediately
yields condition 2 in Lemma 4, which is sufficient for our comparative static

property. ¥
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