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1 Introduction

Structural models in corporate finance allow an integrated analysis of firm, debt and equity
values, optimal capital structure and strategic default decisions. Particular attention has
been devoted to the case where bankruptcy is endogenously triggered by limited liability
equity holders who set the default time so as to maximize the value of their claim. The
pioneering paper, Leland [18], solves the problem when the debt is modeled as a consol
bond, meaning a commitment to pay coupons indefinitely at some constant coupon rate. In
Leland [18], posing an infinite maturity for the debt guarantees a simple time-homogenous
setting in which the equity holders’ problem takes the form of a standard perpetual Ameri-
can put option whose underlying asset is the value of the firm’s asset, and the exercise price
the present value of all coupon payments, net of tax shields. The optimal capital structure
emerges from the tradeoff between bankruptcy costs and tax shields. Computations are ex-
plicit and the solution can be fully studied in an analytical setting. Structural models with
infinite debt maturity have been extended in a number of contributions. Some important
examples are Mella-Barral and Perraudin [24], Fan and Sundaresan [9], Goldstein, Ju and
Leland [11], or Duffie and Lando [5] that extend Leland [18] in various thoughtful directions
while maintaining the perpetual debt assumption.

To focus only on infinitely lived debt is clearly restrictive. Considering debt with finite
maturity is, however, not a simple task as it breaks the stationary debt structure and pre-
cludes closed form solutions. In two influential papers, Leland [19] and Leland and Toft
[22] circumvent this difficulty and propose a dynamic capital structure model with roll-over
debt. The purpose is to study debt with arbitrary finite maturity and endogenous default
in a time homogenous environment that allows closed form solutions for the pricing of debt,
firm and equity values. Specifically, in a capital structure model with roll-over debt, the
firm’s management pre-commits to retire debt of finite maturity continually and to replace
it with a like amount of new debt in order to keep total coupon payments and principal con-
stant at any instant of time. Because of this pre-commitment the literature agrees that firm,
debt and equity cash flows must be time-independent. Then, resting on standard results
on stopping theory within a time-homogenous setting, it is argued that a constant barrier
rule characterizes the optimal default policy. That is, default is triggered by the first time
that the value of the firm’s asset reaches a sufficiently low positive constant threshold. The
optimal constant threshold is then derived by invoking the smooth pasting condition. This
way of modeling the debt maturity has been widely used in the recent literature! and is
now presented in textbooks such as those of Lando [17] or Bielecki and Rutkowski [1]. How-
ever, and very surprisingly, the strategic default decision problem faced by equity holders
in a capital structure model with roll-over debt has never been formulated properly and the

Leland [20] extends Leland [18] and studies the role of debt maturity on the incentives of equity holders
to increase the volatility of the firm’s asset. Mauer and Ott [23] study in a setting & la Leland [18] the
equity holders’ decision to invest in a growth opportunity. Eom, Helwege and Huang [7] and Leland [21]
examine yields spreads and default probabilities predictions across several structural models including Leland
and Toft [22]. Hackbarth, Miao and Morellec [12] use Leland [18] to study the impact of macroeconomic
conditions on credit risk and dynamic capital structure choice. Ericsson and Renault [8] rely on Leland and
Toft [22] to develop a structural model with liquidity and credit risk. Hilberink and Rogers [14], Kyprianou
and Surya [16], Chen and Kou [2] extend the Leland and Leland and Toft methodology to Lévy processes.



proposed optimal default policy is always presented as ‘natural’ and ‘clear’ from previous
results derived in the setting of time-homogenous models with infinite debt maturity. Given
its large audience, we think it is important to correct some previous inaccuracies in this
literature and therefore to allow academics to build on corporate models with roll-over debt
with lucidity.

To clarify the issue, let us consider the seminal Leland and Toft [22] paper. In Leland
and Toft [22], at any time the firm repays a nominal amount of fdt and issues new debt
with face value fdt, coupon cdt and maturity 7. At any instant of time the total amount
of principal outstanding is therefore constant equal to /' = fT and the total coupon to be
paid continuously is C' = ¢T'. The firm therefore maintains up to the default time a constant
debt both in face value and coupon payments. The aggregate firm’s debt structure is char-
acterized by the triplet (C, F,T'). The total debt cash flow due to roll-over is (C' + f —d) dt
where d is the market price of the newly issued debt with face value f dt, coupon cdt and
maturity 7. What can make the problem nonstationary? A first crucial observation is that
each new debt is issued at market value and its price d depends on the default policy. If
the law of the default policy is time-dependent, then the market price of the newly issued
debt will depend both on the current time and on the current value of the firm’s asset and
so will be the total cash raised through debt. It follows from this simple observation that
the debt cash flow is not time-homogenous for any default policy as it is the case when the
debt is a consol bond with cash flow simply equal to C'dt. Keeping in mind this remark let
us now turn to the equity holders’ problem. Here is the second crucial observation. Equity
holders, who have pre-committed to a debt structure characterized by the triplet (C, F,T),
choose a default policy and roll-over the debt until the default time. The actual equity cash
flow is the sum of the payment flow generated from the firm’s asset and the tax benefits
minus the payment flow due to roll-over (C'+ f — d) dt. The key point is that, in this per-
fect information setting, by issuing debt in a current time interval (0, dt) equity holders pin
down the default time of the firm. Debt holders perfectly anticipate future equity holders’
actions and will rationally refuse to buy the newly issued debt in time interval (0, dt) if they
recognize that equity holders have incentives to deviate at future dates from the default
policy chosen at date 0. The resulting rational expectations equilibrium problem requires
a definition and a characterization of equilibrium default policies. Then the equity holders’
decision problem is to select an equilibrium default policy that maximizes at date 0 the sum
of the expected discounted equity cash flow. The main source of confusion in the literature
is that this equilibrium problem, although clearly suggested by Leland and Toft [22]?, has
surprisingly never been written and studied. On the contrary, when focusing on the equity
value, the literature does not consider the actual equity cash flow but writes the equity value
as the difference between the firm value and the currently outstanding debt. The value of
the currently outstanding debt, by definition, takes into account all the cash flow due to roll-
over up to the current date but does not take into account that new debt will be issued and
withdrawn beyond that current date. It is therefore not clear whether or not the expression
for the equity value used in the literature accounts for all the cash flows due to roll-over up

2Leland and Toft [22] write page 989 “ (the default triggering) Vz will be determined endogenously and
shown to be constant in a rational expectations equilibrium.” This important point is not explained and
the equilibrium problem is not written.



to the default. In addition, as already said, the previous studies restrict the set of default
policies to constant barrier rules. Thus, the following questions drive our analysis: What is
the precise formulation of the equity holders’ problem in a dynamic capital structure model
with roll-over debt? What does a full characterization of equilibria look like? Is a dominant
equilibrium default policy existing?

Addressing these issues allow us to provide a general and rigorous presentation of capital
structure models with roll-over debt. Our main results are as follows. We formulate for the
first time the equity holders’ problem. It aims at selecting a payoff dominant equilibrium in
the sense of Harsanyi and Selten [13]. Thereby, we define equilibrium default policies and
we prove that they are fully characterized by the limited liability condition that guarantees
that the equity value remains positive at all time. We justify the particular representation
of the equity value used in the previous studies. These results hold for any capital structure
model with roll-over debt and do not involve any ad hoc restrictions on the default policies.
We study equilibrium policies which are hitting times of constant boundaries and justify
the smooth-pasting condition conjectured in the literature. It turns out that bankruptcy
costs play a crucial role in the analysis. We prove that, in the particular case where the
firm loses all its value at bankruptcy, the constant barrier rule posed in the literature is a
dominant equilibrium and thus solves the equity holders’ problem. However, when there is
some recovery at default, selecting a dominant default policy and solving the equity holders’
problem still remains an open question.

The outline of the paper is as follows. Section 2 reviews the literature on debt structure
and optimal default and poses the questions raised by the treatment of these models in
the existing studies. Section 3 characterizes equilibrium default policies and formulates the
equity holders’” problem. Section 4 explains the solution posed in the literature and solves
the equity holders’ problem when the firm loses all its value at default time. Section 5
discusses our results and investigates extensions of our study. Section 6 concludes.

2 Debt structure and optimal default

Following standard exposition of structural models, we consider that equity and debt can
be viewed as contingent claims on the asset of the firm. The price dynamics under the risk
neutral probability measure Q evolves as

dVy = (r — §)Vids + o VdBs. (1)

The process (Bs)s>o is a standard Brownian motion with respect to its own filtration (Fj)s>o
that models the flow of information. The firm generates cash flow at the rate §V; at time
s for some constant § € (0,00). The constant r denotes the riskless interest rate and the
discounted value e~ "5V, of the firm’s asset process is a martingale under Q, that is

E [ef(rfé)(ufs)vu’f's] _ V'S’



for all 0 < s < u. We use throughout the paper the following remarks and notations. The
strong solution of (1) with V; =z is

2

Vies = T €Xp (r—é—%)s+aWs , (2)
where (Wj = Biys — Bi)s>o is a standard Brownian motion (Fiis)s>0 adapted. We denote

by Ti o the set of (F;is)-stopping times with values in [t, co]. Using Equation (2), we note
that every 7, € T; » can be expressed as 7, =t 4+ 7 0 O; where 7 € 7y« and O, is the shift
operator®. Moreover, for all ¢ > 0, we note Q;, the probability measure on (€, (Fi1s)s>0)
under which V; = x. We have for any ¢ bounded measurable function

E(o(V) | Fe) = Eea(p(V7)).

Structural models with endogenous default are discussed in many textbooks. We refer
to Lando [17] page 60 and also to Section 2.1 of Duffie and Lando [5] for a review of this
approach initiated by Leland [18]. In these models, the firm, say the owner of the firm’s
asset at date 0, issues debt so as to take advantage of tax shields offered for interest expense.
The debt is sold and the proceeds from the sale are paid at date 0 as a cash distribution to
initial equity holders. Equity holders select strategically the default policy at date 0 after
debt being in place in order to maximize the value of their claim. The primary concern
of this paper is the determination of the strategic default when the firm pre-commits to
roll-over its debt as in the seminal paper of Leland and Toft [22].

2.1 Debt with infinite maturity

We start with the strategic default policy when the firm is partly financed by debt with
infinite maturity. We refer to Duffie [4] page 264 or again to section 2.1 of Duffie and
Lando [5] for a detailed presentation. In this standard setting, debt with infinite maturity
pays continuously a tax deductible coupon C'. The firm generates an income stream of
(0Vs + 0C') ds until default where 6 denotes the corporate tax. At default time 7, a fraction
a € [0, 1] of the assets are lost as a frictional cost and debt holders get the rest of the value
(1 — a)V,. Therefore, at time 0, for a given default policy 7, the firm and debt values are
respectively

0(0:7) = E [/0 e (5V, 4+ 0C) ds + (1 — oz)e_”VT} (3)

Note that the difference of values between the firm and the firm’s asset is only due to taxation
and losses at default. The equity cash flow is time-independent and formed by the difference
between the firm cash flow and the debt cash flow up to default time. The value of equity
at time 0 is

B(0:7) = E [/0 e (0V, — (1 - 0)C) ds} | (5)

3See for instance Revuz and Yor [26] page 36 for the definition of the shift operator.
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It is important to stress that no assumptions are made on stopping time 7. In particular it
is not assumed that the equity value is a simple function of the current value of the firm’s
asset V. This property however holds and is part of the solution to the equity holders’
problem that we now describe.

The equity holders’ only decision is to select the default policy that maximizes the value
of their claim. Equity holders take this decision strategically after debt being in place and
therefore chose the default time 7 that solves the stopping problem

sup (v(0;7) — D(0;7))

7'676,00

or equivalently

sup E [/ e "0V —(1—-6)C)ds| . (6)
TE€T0,00 0

Note that, for any default policy 7 € T, the equity cash flow (§V; — (1 —0)C') ds does not
change as a function of s but simply varies with the current value of the firm’s asset V. It
can be shown from this time-homogenous property that the optimal stopping time solution
to (6) is unsurprisingly a barrier rule 75 = inf{s : V; < B} where B is a positive constant.
It then follows that the equity value solution to (6) is indeed a function of the current value
of the firm’s asset V4. Furthermore, the optimal barrier B, is determined by the classical
smooth-pasting condition

0
5y V.5) = D(V,78))y=p =0 (7)
that says that the value function associated with stopping problem (6) is of class C'! across
the optimal boundary.* We show thereafter that the problem of the endogenous default
timing is very different in a model with roll-over debt and that the above reasoning cannot
be applied. A crucial reason is that, in a dynamic capital structure model with roll-over

debt, the equity cash flow is not time-homogenous for any default policy 7 € 7 -

2.2 Capital structure models with roll-over debt: summary and
questions
We now present capital structure models with roll-over debt. The seminal papers are those

of Leland [19] and Leland and Toft [22]. We draw on Hilberink and Rogers [14] who propose
a very clear and unified setting for these models.

In corporate models with roll-over debt, the firm pre-commits to retire and issue debt at
any time according to a so called maturity profile defined by a probability measure p whose
tail function will be denoted by

o) = [ wtd).

4Remark that in Equation (7), the firm and debt values (3) and (4) are written as functions of the current
value of the firm’s asset V. This holds because the stopping time 75 considered in (7) is a constant barrier
rule.



The rule with which the firm repays and renews debt is as follows. In any time interval
(t,t+dt), the firm issues new debt with face value f dt. In any time interval (t+s,t+s+ds)
the firm pays back fdt (®(s) — ®(s + ds)) = —fdtd®(s). This implies that the amount of
money the firm has to pay back in (¢,¢ + dt) due to all debt issued up to current time 0 is

(K;-fm%@@—vo _ —d(Klfm¢@—v0
(lmf@wym)
) dt.

—d
= fo (8)

Taking t = 0 in (8), we see that the amount to be paid back in time interval (0, dt) due to
all pending debt at time ¢t = 0 is f dt, the same as the face value of the newly-issued debt in
(0,dt). Thus, at each instant of time, the face value of all pending debt is constant, equal
to

F:fAmﬂﬂﬁ

Now, each newly issued debt (with principal fdt) pays coupons at rate ¢ until default. In
any time interval (¢,t + dt) the market value of newly issued debt is d(¢; 7) dt with

dit;7)=f /000 b(t,t + u;7)[—d®(u)] (9)

where b(t,t + u; 7) is the value of a bond issued at time ¢ with coupon rate ¢, face value 1,
maturity ¢ + u and default time 7. That is we have

(t+u)AT
/ ce "D ds | F,
t

1
+ 51— a)E (Vee " T, | Fo] - (10)

b(tat + u; T) = E + K [e_ru]l‘th-i-u ’ Ft}

The first term on the right of (10) is interpreted as the net present value of all coupons
paid up to date t + u or default time 7, whichever is sooner. The second term is the net
present value of the principal repayment, if it occurs before bankruptcy. The final term is the
net present value of what is recovered upon default, if this happens before maturity. In line
with the literature, the fraction of firm asset value lost in bankruptcy is & and the remaining
value (1 — «)V; is distributed to debt holders. Of this, the debt holder with face value 1
gets the fraction %, since his debt represents this fraction of the total debt outstanding.

Note that, taking into account all previously issued debt, the aggregate coupon paid in
(t,t+dt) is

/0 — fedvd®(t —v) = fed(t) dt.

—0o0

It follows that the total coupon C paid at any time is

C= /0°° fed(t)dt = cF.
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Finally, remark that the expected maturity of each newly issued debt satisfies the relation

/OOO tu(dt) = /Ooocb(u)du.

We shall assume thereafter that the maturity profile 4 is such that ®(0) = [ ®(u)du < oo.
In words, the debt profile has a finite expected maturity.

To summarize, the aggregate debt structure on which the firm pre-commits is fully
characterized by the triplet (C, F,u). By rolling-over the debt according to the matu-
rity profile p, the firm maintains at any time before default a constant debt level both
in face value and coupon payments. The concept of maturity profile has been introduced
by Hilberink and Rogers [14] and allows a general presentation of models with roll-over
debt. Specifically, the case pu(ds) = dr(ds) where dr is the Dirac measure at T' corre-
sponds to the Leland and Toft [22] model where each new debt is issued with maturity
D(0) = [.7 splds) = [ s6p(ds) = T. The case p(ds) = me ™ ds with m > 0 corresponds
to the exponential model of Leland [18] where the maturity of each new debt is chosen ran-
domly according to an exponentially distributed random variable with mean ®(0) = -.

Always following this well established literature, we now write D(0;7), the value of all
outstanding debt at time 0:

D(0:7) — / (0,4 7D () di

= [fcE [/ / dud51 + fE UOT 6_“@(8)655} (11)

1—a

+TE {vfe” / B(u) du]

which simplifies to

pom) = e[ o) ds + S v e

(c®
! 1 B —7‘76(7)
W (C®(s) + FO(s)) ds+ (1 — a)V;e }

where <I> f O(u

Equation (12) accounts for the future debt cash flow that is extant at time 0. Accord-
ingly, in Equation (12), the coupon and the remaining principal of currently-extant debt
decline with time. The same remark applies to the total payment at bankruptcy time 7
Formally, the maturity profile of the existing debt at any moment is described by % dt.

There is a corporate tax rate 6, and the total coupon C' paid at any time can be offset
against tax. The corporate tax 6 does not lead to a riskless debt and we consider thereafter
that

QC

> —rs 1 = e S
/0 €T + Fals ))ds>/0 0 ds = (13)
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where the left hand side of Equation (13) is deduced from Equation (12) and represents
the value of a riskless roll-over debt.’ Therefore, for any default policy 7, the firm cash
flow is time homogenous and is equal to (§Vi + 6C')ds. The firm value has thus a similar
representation to the one derived when the debt has an infinite maturity, that is

v(0;7) = E [/OT e " (0Vs+0C) ds + (1 —a)e "V, | . (14)

Based on the results obtained when the debt maturity is infinite, the literature agrees®

to restrict the set of default policies to constant barrier rules 75 = inf{s : Vi, < B}; to
define the value at time 0 of the firm’s equity as

E(0;75) = v(0;75) — D(0;7p) (15)

and to invoke the smooth-pasting condition (7) to determine the optimal bankruptcy thresh-
old B*. This treatment of models with roll-over debt raises several questions. Let us closely
examine the above statements that are taken for granted by the literature. Three inter-
related remarks drive our analysis.

1. Does Equation (15) account for all the cash flow due to roll-over? The firm value (14)
clearly accounts for all the firm’s cash flow up to the default time 7. This is however
not the case for the debt value (12) that only accounts for the future debt cash flow
that is extant at time 0. Precisely, D(0; 7) is the debt value at current time 0 and does
not take into account that new debt will be issued and withdrawn beyond that date.
In a model with roll-over debt, the net cash flow rate to debt at any future time s is
on the set {7 > s} the sum of the total coupon C, plus the retirement of principal f,
and less d(s;T), the instantaneous market value of the newly issued bond. Therefore,
taking into account all cash inflow and cash outflow due to roll-over, the value at date
0 of the total debt for a given default policy 7 is

Dyt (0;7) = E {/OT e "(CH f—d(s;7))ds + (1 —a)e "V, (16)

where (1 — «)V; is the payment generated by the total debt at default. It follows that
the actual cash flow to equity on time interval [s, s + ds] is

(0Vs—(1—=0)C — f+d(s;7))ds

yielding the equity value

E [/0 e (0Ve—(1—-0)C — f+d(s;7))ds| . (17)

5Using an integration by parts, it is easy to show that the condition F > ? implies the inequality (13)
for any maturity profile u.

6See for instance Leland and Toft [22], Equations (7)-(10) or Hilberink and Rogers [14], Equations (2.7)-
(2.10).



Equation (17) is therefore the correct equity value at time 0 when the debt is rolled-over
until the default time 7. The literature however considers expression

v(0;7) — D(0;7) (18)

to study the equity value. Thus the following questions: Is (18) a correct expression
for the equity value? What is the link between the debt values D(0;7) and D;(0;7)7
How to formulate the equity holders’ problem within a dynamic capital structure model
with roll-over debt?

2. As we saw, the commitment to roll-over the debt according to a maturity profile u
yields a capital structure in which the total debt has a constant face value F' and pays
a constant total coupon C'. This capital structure is maintained until default because
at any time the firm retires the amount f ds and replaces it with a like amount of new
debt. From this the literature argues that the asset value Vj is a sufficient statistics for
the newly issued debt. The overall conclusion is that corporate models with roll-over
debt are time homogenous meaning that the firm, debt and equity cash flows do not
change as a function of s but simply vary with V, and that, consequently, the optimal
default policy must be characterized by a constant barrier rule exactly as in the case
of a debt with infinite maturity. Things are actually more complex than that. As a
matter of fact consider a default policy 7,.) defined by the first time such that the
firm’s asset value crosses a deterministic time-dependent function a(s). Clearly, the
law of 7, given the available information at s is time-dependent, so also will be the
bond with coupon ¢ and face value 1 which price is given in (10) and in turn the
instantaneous market value of newly issued bond d(s; 7,()). Without any restrictions’
on the default policy 7, there is no reason to believe that the newly issued debt is
time-independent. In models with roll-over debt, the debt and equity cash flows are
not time-homogenous for any default policy 7 as it is the case when debt is a consol
bond. This in turn raises questions about the assumed optimality of a constant barrier
rule for the equity holders’ problem.

3. The literature invokes the so called “smooth-pasting condition” for solving the equity
holders’ problem. The smooth pasting condition relies on stopping theory and reflects
the C' nature of the value function associated with a stopping problem across the
optimal boundary. When debt is a consol bond stopping problem (6) defines the
equity value and the smooth-pasting condition can be correctly invoked.® Things are
different in a model with roll-over debt. Using Equations (12) and (14) together with
the Ito’s formula, expression (18) can be written as

0(0;7) — D(0,7) =E UO e h(s, V) ds} (19)

If the default policy is restricted to be a constant barrier rule then the cash flow to equity is time-
independent.

8For a recent contribution on threshold strategies and smooth pasting condition, we refer to Dayanik
and Karatzas [3] or to Villeneuve [27] whose Theorem 4.2 and Proposition 4.6 give simple conditions under
which an optimal stopping time is given by a constant barrier rule.



where the time-dependent function h(s,z) is defined by the relation

1

h(s,z) =x (a5 +(1— a)q)(o)

(65(s) + q><s))) +Ch— % (CB(s) + FB(s)) . (20)

All the previous articles restrict the study to constant barrier rules 75 = inf{s : V; <
B} and use Equation (19) to derive closed form formula for the equity value. Under
the assumption that the default policy is a constant barrier rule the right hand side
of (19) is a function of the current value of the firm’s asset and the smooth-pasting
condition (7) posed in the literature can be written as

% (Ev UDB e (s, V) ds] > 0 (21)

Assuming that Equation (18) is a correct representation for the equity value (which
again must be proven), is condition (21) really a smooth-pasting condition? What is
the stopping problem associated with condition (21)? Is the equity holders’ problem
a standard stopping problem with solution characterized by the smooth-pasting prin-
ciple?

Our clarification work goes through several steps that we develop in sections 3,4 and 5.
Section 3 presents the equity holders’ problem in a model with roll-over debt. Section 4
confronts the existing literature with the equity holders’ problem and answers to the above
questions. Section 5 discusses our results and investigates research directions for future
work.

3 Capital structure models with roll-over debt: The
equity holders’ problem.

We show that the equity holders’ problem involves a rational expectations equilibrium prob-
lem that requires to define and to characterize equilibrium default policies. We shall proceed
as follows. First, we focus on the value process of equity in a model with roll-over debt in
which equity holders do not take any strategic default decision. Thereby, we highlight a
property of inter-temporal consistency that any model with roll-over debt must satisfy. Sec-
ond, we introduce into the analysis the strategic behavior of equity holders. This leads us to
define and to characterize equilibrium default policies. Third, we present the equity holders’
problem. We shall see that it aims at selecting a dominant payoff equilibrium default policy.

3.1 Coherent default policies

Let us consider an environment in which equity holders pre-commit at date 0 to roll over the
debt and cannot take any strategic decision ex-post. The characteristics of the collection
of debts that are continuously rolled over are the coupon rate ¢, the principal f dt, and the
default policy of each newly issued debt. This yields a firm’s default policy defined by a

10



collection of stopping times 7 = (7;);>0 With 7 € Ti . Thus, the cash flow to equity on
time interval [¢,t 4 dt] is

(0V, = (1—=0)C — f+d(t; 7)) dt, (22)

where d(t;7;) is the instantaneous market value of the newly issued debt at time ¢ > 0
with default at time 7. What conditions must satisfy a default policy 7 = (73)i>0? Since
all newly issued debts pay the same coupon rate ¢, have the same principal fdt and the
same maturity profile u, they must carry the same market price. Specifically, d(t,7,) =
fJs7 b(t, t+u; 75)[—d®(u)], the instantaneous market price at date ¢ of the debt of generation
s (that is the debt issued at time s < ¢t with default at time 7,) must coincide with d(¢, 7;) =
fJ37 b(t, t4u; 7) [—d®(u)], the instantaneous market price at date ¢ of the debt of generation
t (that is the debt issued at time t with default at time 7;). This requires that 7, and 75
coincide on the set {75 > t}. This leads to the concept of coherent default policy:

Definition 1 We shall say that a default policy T = (7¢)i>0 is coherent if for every stopping
time S <T in Tyeo, Ts = Tr almost surely on the set {7¢ > T'}.

Example 1 Let D be an open set of (0,00)% and let us consider the stopping time
mh =inf{u>0: (t+u,Virw) € D} € To.0o- (23)
It results from the Strong Markov Property that the strategy 72 = (1F)i>0 with
TZ)ILL—FT%O@t € Tico

s a coherent strategy. Observe that the constant barrier rule strategies used in the literature
are coherent. There are defined by relation (23) with D = (0,00) x (B,00) and B > 0.

The coherence property relies on the fact that each new debt is issued at market value.
Although not formalized, the coherence property is fully recognized in the seminal paper of
Leland [19].° The coherence property guarantees that a dynamic capital structure model
with roll-over debt is coherent with a well functioning market.'® It implies that all issued
debts must default simultaneously. Thus, the default time 7y of the debt of generation zero
pins down the default policy of the firm. Consequently, the default policy 7; of the debt
of generation t satisfies 7, = 7y on {7y > t} and we can write (F});>o, the value process of
equity, under the form

E,=E {/ e GV, — (1= 0)C — f+d(s; 7)) ds| Fi|  on {7 > t},
t
E, =0 on {7y <t}

(24)

We now turn to the strategic behavior of equity holders.

9See the last paragraph of page 9 and footnote 10 in Leland [19].
10Tn absence of the coherence property an arbitrage opportunity at date ¢ would consist in selling (buying)
the debt of generation t and buying (selling) the debt of generation s.
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3.2 Equilibrium default policies.

The timing of bankruptcy is determined by the decision of equity holders to cease rolling-
over the debt. This strategic decision is taken after the roll-over debt being in place, that is
after the default time 7, of the debt of generation 0 being announced. Intuitively, a default
time 7y is an equilibrium default policy if and only if rational debt holders anticipate that
default will indeed occur at 7. We develop our equilibrium concept under the assumption
that equity holders commit not to roll-over the debt beyond the announced date 7. In
this setting the only strategic decision to be taken by equity holders is to decide whether
or not to trigger bankruptcy before the announced default time 7. Rational debt holders
anticipate that strategic behavior and accept to buy at every time newly issued debt only
if they anticipate that equity holders will indeed roll over the debt until time 7,. We prove
below that the limited liability characterizes our equilibrium concept. We shall discuss in
section 5 our assumption of equilibrium with commitment.

Thus, rational debt holders accept to buy the debt of generation 0 (issued in time in-
terval [0,ds]) if and only if they anticipate that equity holders will never deviate from the
announced default time 7y. This will be the case if and only if the announced default time
7o is the smallest optimal stopping time solution to problem

Tt ATo
U =ess sup E [/ e (§V, — (1 = 0)C — f+d(s; 7)) ds | Fo| . (25)
t

Ttelrt,oo

The upper bound 7; A 7y in the integral reflects the commitment that debt is not rolled-over
beyond time 7y. Note that if there is an other stopping time 7 solution to problem (25) with
P(r < 79) > 0, then equity holders can profitably deviate by triggering default sooner at
time 7 on the set {7 < 7o}. This is the reason why we require 7, to be the smallest stopping
time solution to (25). Therefore, for every ¢, an equilibrium default time 7, satisfies on
{70 > t} the equality 7o = inf{s > t, Us; = 0} a.s.

Definition 2 We shall say that a default time Ty is an equilibrium default policy if and only
if 7o is the smallest optimal stopping time for (25).

Definition 2 implies that a default time 7y is an equilibrium default policy if and only if
for every t > 0 E; = U, almost surely where E; and U; are defined in (24) and (25). Thus,
if 79 is an equilibrium and E; = 0, then 75 = t almost surely. It is worth noting that any
equilibrium default policy is clearly compatible with the limited liability condition that says
that the value of equity remains non-negative at all times. Indeed, taking 7, = t in (25)
yields the value 0 from which it we deduce that for any equilibrium 7, the value of equity
remains non-negative at all times as it must be. The next Proposition goes further and
shows that the limited liability condition fully characterizes the equilibrium strategies.

Proposition 1 A default time 7y is an equilibrium default policy if and only if, for every
t >0, we have E; > 0.

Proof: We simply have to show the sufficient condition, that is, for every t > 0, U, = F,.

12



Without loss of generality we write the proof for ¢ = 0. For any stopping time 7 € 7 o, We
have

Ey = E /TMO eV, — (1= 0)C — [+ d(s: 7)) ds}
0

_— [/ e (6V, — (1 — 8)C — f +d(s;70)) ds| me

TATY
- E / e "0V, — (1= 0)C — f+d(s; 7)) ds] +E[e"E ]
0

> E /TATO e "0V —(1—=0)C — f+d(s;70)) ds] :
0

where the second equality comes from the Strong Markov property and the last inequality
comes from the assumption that E; is positive on [0,00) for every ¢t > 0. Taking the
supremum over all stopping times, we obtain that

TATo
Bz sw B| [ eV (1= 0)0 -+ dlsi) ds| = U
TE€T0,00 0

This ends the proof because the reverse inequality holds by definition. o

In the previous literature the limited liability is often introduced as a necessary additional
constraint to the equity holders’ problem. The limited liability condition appears here
naturally and is proven to characterize our equilibrium concept. The next section formulates
the equity holders’ problem.

3.3 The equity holders’ problem.

We denote by £ C T~ the set of equilibrium default policies. We write the equity holders’
problem as follows:

The equity holders’ problem. In a dynamic capital structure model with roll-over debt
equity holders select the default time T in the set £ in order to maximize at date 0 the value
of equity. Formally, they solve the constrained optimal stopping problem

sup E [/OT e (0Ve—(1—-0)C — f+d(s;7))ds| . (26)

TEE
We shall say that a solution to problem (26) is a dominant equilibrium default policy.*!

Our formulation of the equity holders’ problem deserves some comments.

First, our formulation shows that the equity holders’ problem is one of equilibrium se-
lection. Describing the set £ and ranking its elements is not an easy task. The question

1 This vocabulary refers to the concept of payoff dominant equilibrium introduced by Harsanyi and Selten
[13].
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of existence and multiplicity of equilibria arises naturally. In the next section we study
equilibrium policies that are hitting times of constant boundaries.

Second, our equilibrium concept and stopping problem (26) rationalize the key idea
stated in Leland (1994) that the equity holders’ objective is to maximize the present value
of their claim while preserving the limited liability of equity. Indeed, a default time 7*
solution to problem (26) maximizes the present value of equity among default policies that
yield a positive value of equity at any time before default.

Third, it is very intuitive that, at a stopping time solution to (26) the net cash flow rate
to equity, 0Vs; — (1 — 0)C — f + d(s; 7), must be negative (otherwise it would be optimal to
continue the firm’s activity at least for a short period of time). That is, at a stopping time
solution to (26), net debt service requirements ((1 —0)C' — f) must exceed the available cash
flow (6Vi + d(s;7)). As emphasized in the literature, the firm survives to this time because
equity holders will issue new shares to absorb current losses.'? Default policies that generate
a positive cash flow to equity at any time before default satisfy clearly the limited liability
condition but are not solution to the equity holders’ problem (26).

Finally, it is fair and important to say that Leland and Toft [22] have clearly in mind the
question of rational equilibrium default policies when they write page 992 “To determine
the equilibrium bankruptcy-triggering asset value Vg endogenously, we invoke the smooth
pasting condition”. However, Leland and Toft [22] as well as the rest of the literature did not
define equilibrium default policies neither formulate the equity holders’ problem nor justify
representation (18) for the equity value. In addition, invoking the smooth pasting condition
is questionable. To the best of our knowledge, its connection to the determination of an
equilibrium default policy has never been explained.

4  Solving the equity holders’ problem.

We are now in a position to analyse the solution proposed in the literature and to answer
the questions we raised in section 2. In section 4.1, we justify the representation (18)
for the equity value used in the previous studies and we derive a new formulation for the
equity holders’ problem. In section 4.2, we focus default policies defined by constant barrier
rules. Within this class we study equilibrium default policies and explain the smooth-pasting
condition conjectured in the literature. Finally, we prove that the constant barrier rule posed
in the literature solves the equity holders’ problem (26) when the firm loses all its value at
bankruptcy.

4.1 An equivalent formulation for the equity holders’ problem

We prove below that the representation (18) of the equity value accounts for all the cash flow
due to roll-over and thus coincides with expression (17) or equivalently that the value of all

12Gee for instance Leland and Toft [22] page 994.
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outstanding debt (12) and the total debt value (16) are the same.'® The underlying intuition
is as follows: In corporate models with roll-over debt market frictions only come from interest
tax shield and bankruptcy costs. It implies that the current value of the firm equals the
current value of the firm without leverage plus the present value of the tax savings from
debt, less the present value of bankruptcy costs (Equation (14)). In addition, the current
value of the firm must agree with the sum of current values of equity and debt. The current
value of equity equals the present value of the future cash flows to equity (Equation (17)).
The current value of debt equals the present value of cash flows due to the existing debts
(that is, due to rolling-over the debt up to the current time, Equation (12)). Thus, in a
model with roll-over debt, the current value of the firm equals the sum of current values of
equity and debt if and only if the value of all outstanding debt (12) equals the total debt
value (16). The next Proposition, proven in Appendix A, confirms this intuition.

Proposition 2 For every stopping time T € Ty oo, we have D(0,7) = Dy (0, 7).

Proposition 2 implies that the equity value (17) has also the representation (18) and that
we have for every stopping time 7 € Tj o

E UO T (GVs — (1= 0)C — f +d(s: 7)) ds] _E UO " h(s, V) ds} (27)

where Equation (20) defines the function h. Therefore, the right hand side of (27) is a
correct representation for the equity value. Interestingly, the function A under the integral
does not depend on the default policy 7. This allows to derive closed form formula for the
equity value once the maturity profile has been fixed. This is actually what the literature
did assuming that 7 is defined by a constant barrier rule.

Thus, a consequence of Proposition 2 is that the equity holders’ problem (26) can be
written under the form .
supE {/ e "*h(s, Vi) ds} : (28)
Tel 0
A natural question is then to determine the stopping time solution to the unconstrained
problem

sup E [ /0 " h(s, V) ds} (29)

7€70,00
and to study whether or not it is an equilibrium default policy. We prove in Appendix B
the following.

Proposition 3 There ezists a non constant boundary a*(.) defined on [0,00) such that
Tor() = inf{s : V; < a*(s)} is an optimal stopping time for the problem

sup E {/ e‘”h(s,\/;)ds} . (30)
7€70,00 0

The coherent strategy (t + Tox(14.) © O)i>0 With Texgyy = inf{u >0 : Vi, < a*(t+u)} does
not belong to the set € of equilibrium default policies.

13We thank a referee for suggesting us this result.
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In words, optimal stopping time 7,+() would indeed maximize the value of equity right after
the firm has issued its debt initially. However, debt holders anticipate that rolling over the
debt until 74-(y will not remain optimal as the time goes by. That is ¢ + 74« (;1)00, does not
solve Problem (25). Consequently debt holders refuse to buy the newly issued debt on time
interval [0, ds] at price d(0, 7,-()) and thus the coherent policy (¢4 74+ (14.) © O¢)s>0 is not an
equilibrium.

4.2 Constant barrier rules as equilibrium default policies

Following the literature we assume in this section that equity holders plan to roll-over the
debt until the value of the firm’s asset reaches a constant barrier B. When default policies
are assumed to be constant barrier rules, the market value of the newly issued debt in
every time interval (s, s + ds) only depends on the current value of the firm’s asset. Noting
7 = inf{s > 0 : Vi, < B} and using the Strong Markov Property we write Equation (24)
under the form

Ep(z) = E, [/OB e (6V, — (1 — 0)C — f + dg(V})) ds} it 2> B, g
0

Ep(x) if ©<B.

where dp(V;) denotes the time-independent value of every newly issued debt. The next
corollary is a direct consequence of our previous results.

Corollary 1 The following assertions are equivalent.
(i) T is an equilibrium default policy.

(ii) Tp is an optimal stopping time for stopping problem

sup E, VOWB eV, — (1= 0)C — f +du(V2)) ds] | (32)

7'676,00

(i1i) For every positive x, Eg(x) = Jg(x) where Jp is the value function associated with
optimal stopping problem (32).

(iv) For every positive x,

E, {/0 eV, — (1 0)C — f + dp(V)) ds} >0, (33)

B
(v) For every positive x, vgp(x) — Dp(z) = E, [/ e "h(s, Vs) ds] > 0 where vg and
0
Dg are obtained from Equations (11) and (14) with T = Tg.

We now prove that the default policy considered in the literature is an equilibrium policy.
We restrict thereafter the analysis to constant barriers B such that B(1 — «) < F'. That is,
the net value of the firm’s assets in default is lower than the face value of debt. We shall
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also assume that B (1 — «) < F where By, is the optimal default boundary when debt has
an infinite maturity.!* The next proposition shows that the study of the right derivative
of the function Ep evaluated at B leads to a simple characterization of time-homogenous
equilibrium default policies 75.

Proposition 4 For any maturity profile u, there is a unique threshold B* < % such that

Ep- is of class C*. Moreover, for any B € [B*, %], 7B s an equilibrium default policy.

Proof: The proof relies on the following lemmas

Lemma 1 Let us consider B < % The policy T 1s an equilibrium default policy if and
only if Ex(B+) = liinéEjB(ac) is nonnegative.

Proof of Lemma 1 The necessary condition is easy to establish. Indeed, if E5(B+) <
0 then the equality Ep(B) = 0 implies that the equity-value Ep is negative on a right
neighborhood of B and therefore (33) is not satisfied and 75 cannot be an equilibrium
policy. Let us now assume that E(B+) > 0. It follows from Equation (31) that the
function Fp satisfies the ordinary differential equation

o’x?

2

with Fg(z) = 0 for x < B and where gg(z) = éx — (1 — 0)C — f + dp(zx) is the cash
flow to equity. We prove in Appendix C that the cash flow to equity ¢gp is increasing over
(0,00) for B < =. We now show that E(B+) > 0 implies Ep positive for every z.
Assume the contrary, since Ep is smooth for z > B with glclTrgéEB(x) > 0, the function

E%(x)+ (r —8)xEy(x) — rEg(x) + gg(x) = 0 for z > B,

Ep can only be negative if there exist at least two real numbers B < zy < z; such that
Eg(xg) >0, Eg(zo) =0, Ef%(z9) <0 and Ep(z1) <0, E(z1) =0, E%(x;) > 0. This in
turn implies that gg(zo) > 0 and gg(z1) < 0 which contradicts the fact that gp is increasing.
The function Ep is thus positive, Equation (33) holds for every positive x and therefore 75
is an equilibrium default policy. This ends the proof of Lemma 1. Proposition 4 is then a
consequence of the next lemma

Lemma 2 The following equality holds
BEL(B+) = ki + k2B, (34)
where ko > 0 and k; < 0.

We develop in Appendix C the proof of Lemma 2. It relies on equality

Bale) = valo) - Dae) =, | [ e ns vi) s

and on standard properties of Geometric Brownian Motion. We also show in Appendix C

that the inequality (1 — a)By < F implies that B* = _k—lzl < % Then, it follows from

“Equation (7) defines the barrier By..
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Lemma 1 and Lemma 2 that 75 with B € [B*, -£-] is an equilibrium default policy and that

l—a
Ep- is of class C. o
The default policy 7« is the default policy considered in the literature. Reinterpreting
our results within the optimal stopping theory allows to clarify the use of the smooth pasting
condition. Indeed, let us consider the optimal stopping problem

Jg(z) = sup E, {/OT e (0Vs—(1—-0)C — f+dp-(Vs))ds| . (35)

TE%,oo

According to Theorem 4.2 in [27], a threshold strategy B(B*) is optimal for Problem (35)
and the pair (Jp«, B(B*)) is a C! solution of the free boundary problem

o2

2

max(—u, u'(z) + (r = 0)zu/(x) — ru(z) + gp-(x)) = 0. (36)

Now, the pair (Eg-, B*) is also a C' solution to problem (36) and therefore Jg. = Eg+ and
B (B*) = B*. It follows from our results that the policy 75+ is an equilibrium default policy
that solves problem (35) and the smooth-pasting condition takes the form (21) that has
been postulated in the literature. These results are new and connect equilibrium constant
barrier rules with optimal stopping theory. Furthermore the proof of Proposition 4 leads
to an explicit formula for the threshold B* that holds for any maturity profile 4 and thus
encompasses formula derived in the literature when the firm’s asset follows a Geometric
Brownian Motion. It is worthy to note that, up to section 4.2 our study does not rely on
the assumption that the state variable follows a Geometric Brownian Motion. This is no
more the case for Proposition 4 that heavily relies on the property of the density function
of the first passage time of a Geometric Brownian Motion to a barrier B. In particular, it
is unlikely that BE%;(By) being a linear function of B for any diffusion process. Observe
also that, for any threshold B < B*, there is a threshold B(B) such that the hitting time
Tp(p) 1 optimal for stopping problem Jg. Note that B* is a fixed point of the mapping B.

The threshold B (B) satisfies B(B) > B for B < B* and is characterized by the smooth
pasting condition J5(B(B)) = 0. The hitting time 74, is not an equilibrium policy since
B (B) > B. The mapping B will play an important role in Proposition 5.

Proposition 4 shows that the set £ of equilibrium default policies contains the Markovian
time-homogenous strategy 7z« advocated by the literature to be the optimal default strategy
in capital structure models with roll-over debt. However, at this stage, we can only say that
the policy 7p+ is an interesting candidate for solving problem (26). The next Proposition
shows that, when the firm loses all its value at bankruptcy, the candidate 7« is indeed a
dominant equilibrium default policy and thus solves the equity holders’ problem (26). The
reason why bankruptcy costs play a central role is as follows. In corporate models where
debt is not rolled-over equity holders do not care about bankruptcy costs «, which are borne
at default by debt holders and the optimal stopping rule chosen by equity holders is invariant
to a. In corporate models with roll-over debt equity holders care about bankruptcy costs
because each newly issued debt is issued at market value. Other things equal, the equity cash
flow increases with the market value of the newly issued debt. When there is no recovery
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at default, an increase of the length of time before bankruptcy always increases the market
value of the newly issued debt and consequently also increases the equity-cash flow. We
prove below that this monotonicity property implies that the constant barrier rule 75« is a
dominant equilibrium default policy.

Proposition 5 If there is no recovery at default (o = 1), the constant barrier strateqy Tp=
solves the equity holders’ problem (26).

Proof:  Suppose a = 1. A direct computation shows that the instantaneous market
value of a newly issued debt d(s;7) satisfies the monotonicity property: if 7 < 7 then
d(s;7) < d(s;7). In words, the larger the length of time before default, the larger the mar-
ket debt value issued at s is. Let us consider an equilibrium strategy 7*. Using the mapping
B and the monotonicity property, we prove below that 7% < 75 Q,-a.s. This latter inequal-
ity and again the monotonicity property will imply Proposition 5.

Let us consider Jy, the value function associated with optimal stopping problem (32) for
the boundary B = 0. That is,

Jolz) = sup E, UO eS8V, — (1 — 0)C — f + do) ds}

TE€T0,00

where, with a slight abuse of notation, dy denotes the market value of the roll-over riskless
debt.!® Let us denote by Tj() AN optimal stopping time for the above problem and let us
show that 7" < 75 0) Q,-a.s. Suppose by way of contradiction that Q,(7* > TB(O)) > (0. On
the set {7* > TB(O)(}, Proposition 1 implies that

E =E /T* B_T(S—TB(O))((SVS —(1-0)C—f+d(s;7))ds | Fr. ] > 0. (37)

TBO) B(0)

B(0)

On the other hand the monotonicity property yields

o < E / e*T(S*TB(O))((ﬂ/s — (1 — 9)0 —f+ do) ds | ’;CTB(O)]
TB(0)
T80 F7075) —r(s—Tp0)
< ess sup E / e BONGVs = (1= 0)C — f+do)ds | Froo
TET000 TB(0)
= Fy(B(0)) (38)
— 0 (39)

where (38) comes from the Strong Markov Property. Inequalities (37) and (39) contradict
inequality Q,(7* > TB(O)) > 0, thus 7* < T5(0) Q.-a.s. Proceeding recursively, we construct

~ A

an increasing sequence (by,),>o with by = B(0) such that b, = B(b,) and 7 < 7,, Q,-a.s.

15We have do = f /C>C (;(1 —e ") + e—ru) [—d®(u)).
0
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for any n. Two cases have to be considered. Either there exists n such that b, > B*, or
for every n we have b, < B*. The first case clearly yields the result. In the second case
the sequence (b,),>o is increasing and bounded and converges to B*, the fixed point of the
mapping B. This again yields the result. Thus, in any case we have that 7* < 75 Q,-a.s.
Now, using for the last time the monotonicity property one gets

*

E0;7") < E, {/ e "0V —(1—-0)C — f+dp-(Vs))ds
0
< Jpe(x)
= EB* (ZE)
which proves the optimality of the hitting time 75+ for equity holders. o

The fact that 75+ is a dominant equilibrium relies on the monotonicity property of the
equity cash flow. An easy computation shows that, when there is a strictly positive recovery
at default, postponing default and paying to debt holders the payment flow cdt for some
additional period of time does not necessarily increase the value of the newly issued debt.
The monotonicity property of the equity cash low does not hold anymore and, unfortunately,
we lose our argument for proving that 75+ is solution to (26). In that case there are actually
no clear reasons why 75+ should be again a dominant equilibrium policy and, to the best of
our knowledge, solving the equity holders’ problem (26) still remains an open question.

5 Discussion

In this section, we discuss our results and address challenging questions for future work.

5.1 Dominant equilibrium among constant barriers.

Proposition 5 shows that the constant barrier rule 75+ found in the literature solves the equity
holders’ problem (26) when there is no recovery at default. One might wonder whether the
policy 7p+ is always a dominant equilibrium among constant barriers. This amounts to show
that for any barrier B associated to an equilibrium policy 75 we have

Ep«(xz) > Eg(x) Yx > B. (40)
The next proposition shows that (40) holds in the exponential model of Leland [19].

Proposition 6 Let us consider the exponential model of Leland [19]. The policy T+ is a
dominant equilibrium among constant barriers.

Proof: Throughout the proof we use notations introduced in the proof of Lemma 2. In
the exponential model the maturity profile admits a density which is proportional to its tail
function: We have ju(ds) = me ™ ds with m > 0 and ®(s) = m®(s) = e™™°. It implies
that the market value of the newly issued debt is proportional to the value of the total debt.
For any = > B,

B
Dp(z) = —dp(x) = E, [/ e~ UTMS(C 4 mF)ds + e "TME(1 —a)B
0
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Standard computations yield'¢

Ep(z)=ax+% -Gl _ (op 4 9) ()77 4 (S2E —(1—-a)B) (5) "™ if 2> B,
Eg(x) =0 if z < B.
where , )
r+m—0—-% (a2, 0" + 2ro?)2
am = < 2 =
o? o?

Furthermore the threshold B* can be written under the form

% (—a—2) + S (ay, + 2m,)

_a(l—l—a—l—z)—l—(l—a)(l—i—am—i—zm)'

We then deduce that

B B(r) = <9f< a_z>_aB(1+a+Z)> (5"
(Cr—:?:,LF m— Zm) + (1 —a)B(1+am+zm)> (%)*amfzm

[ —a—2z)—aB(l4+a+2)

X

LM ) — (1= a)B(1+ ap + zm))} (—)_“’"—Zm

r+m B

where the last equation comes from the inequalities %¢(—a — z) — aB (1 +a+z) <0 and

(£)™" ™™ < (%)™ which holds for any = > B. It follows that ;2 Ep(z) < 0 for any

couple (x, B) with > B > B*, hence the result. o

The proof of Proposition 6 follows from the properties of the exponential distribution
and cannot be generalized to other maturity profiles. In particular, Equation (40) is not
proven for the Leland and Toft model. The main challenge is to show that the dominance
property of 7« follows from the smooth-pasting property of Ep at B* as claimed by the
literature.

5.2 Bankruptcy allocation.

Following the literature, we have assumed that, in default, debt holders receive all assets and
equity holders none. Assume now that equity holders get at bankruptcy max ((1 — o)V, — F,0)
(and debt holders min((1 — «)V;, F')). How do these payoffs impact our results on equilib-
rium policies which are hitting times of constant barriers? Proceeding analogously as in the
proof of Proposition 1, we obtain the following characterization.

Proposition 7 A constant barrier rule g is an equilibrium default policy if and only if, for
every x > 0, we have Eg(z) > (1 — a)x — F)4.

16See for instance Leland [19]

21



Whether the constant barrier rule 7z« remains an equilibrium depends on the value of the
parameters of the model. For instance, in the framework of the exponential model, we get
from (35),

Ep(z) > E, {/ e " (0Vs—(1—=0)C —mF +dp-(Vs)ds
0

0C C+mF
> o

> z—F

for F > (1 —6)% and m small enough. Therefore, within this set of parameters, Ep-(x)
dominates ((1 — a)x — F)4 for every > 0 and 75+ is still an equilibrium policy. On the

contrary, the policy 7z« is no more an equilibrium if F' < (1 — 9)%, a = 0 and m sufficiently
oCc C F
small. Indeed, o = 0 implies Ep«(z) ~ z + — — % and F < (1 — 6)€ yields
00 T r m

0
F < % — — for m small. It follows that Ep:(x) cannot dominate (x — F') for x large

which means that 7z« is not an equilibrium. Thus, depending on the parameter values, the
bankruptcy allocation can have a dramatic impact on the equilibrium outcomes and remains
an important issue for future work.

5.3 Equilibrium concept

Throughout the paper we have assumed that equity holders commit not to roll-over the debt
beyond the announced date 7p. In this framework our equilibrium concept is equivalent to
the limited liability condition. In the exponential model of Leland [19], the lowest barrier
compatible with the limited liability condition characterizes a dominant equilibrium among
constant barriers. We discuss below how these results are modified when we take explicitly
into account equity holders’ deviations after the announced date 7.

Taking into account these deviations requires to specify off-equilibrium debt prices after
To, that is d(s; 7p) for s > 7. A consistent way of formalizing this is to consider that, when
s > Ty, debt holders place the harshest belief regarding the new debt issued. The harshest
belief is that debt holders believe equity holders will default immediately after s > 7, and
thus get back (1 — «)V;. Hence the off-equilibrium debt price is just £(1 —a)V;. This leads
us to restate definition 2 as follows
Definition 3 We shall say that a default time 7y is an equilibrium default policy if and only
if To 1s the smallest optimal stopping time for the problem

U, =ess sup E {/ e SV, — (1= 0)C — f +d(s; 7)) ds | ]-'t] (37)
Tteln,oo t

where d(s;Ty) = %(1 — a)V; on the event {s > To}.

Using the dynamic programming principle and the Strong Markov Property, we have

Tt ATo
U = ess sup E {/ e (§V, — (1 = 0)C — f 4 d(s; 7)) ds | ]:t}
t

Tt€Tt,00

FE [TV 00)| ]
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where

0(x) = sup E, {/OTG—TS<5+(1—a)%)\/S—<1—9)0—de}. (39)

T€T0,00
According to optimal stopping theory, the stopping time 75 is optimal for U with

50— )C+f)( atz ) (39)

r6+(1—a)f)y \I+a+z

How does Definition 3 impact our findings on constant barriers? If B > B*, then the
policy 75 is an equilibrium for any B € [B*, B A £ since U(B) = 0 and thus U, =
E5(V,). Interestingly, Proposition 6 remains unchanged: In the exponential model, if B >
B*, the equilibrium 75+ is dominant among constant barriers. By contrast, if B < B,
then it does not exist equilibria defined by constant barriers and the solution posed in the
literature cannot be rationalized. It is worth noting that, depending on the value of the
parameters, both inequalities B > B* and B < B* can be satisfied. For instance, in the
exponential model, the inequality B < B* holds for sufficiently low values of ¢ and thus
Tp+ is not an equilibrium. We cannot formulate a general result that does not depend on
the parameter values of the model. It seems difficult to relax our assumption of equilibrium
with commitment and to specify off-equilibrium beliefs that yield a full justification of the
literature.

6 Conclusion.

Roll-over debt structure models are much more involved than what academics were thinking
and require to solve a difficult rational expectations equilibrium problem. This paper studies
this equilibrium problem. We show that the equity holders’ decision problem is to select a
payoff dominant equilibrium. We prove that the limited liability condition characterizes the
set of equilibrium default policies. We justify the representation of the equity value found in
the literature. We study equilibrium policies which are hitting times of constant boundaries
and explain the smooth-pasting condition conjectured in previous articles. We prove that
the constant default boundary considered in the literature solves the equity holders’ problem
when the firm loses all its value at default time. Still, we need to increase our understanding
of corporate model with roll-over debt. In particular we do not know whether the default
policy used in previous studies solves the equity holders’ problem when there is a recovery
at default. Another important issue is the linkage between the smooth-pasting property and
the concept of dominant equilibrium. These, and related questions, await future work.
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7 Appendix A

Appendix A develops the proof of Proposition 2. Proceeding analogously as in Equation
(12), we write d(s;7) under the form:

d(s;7) = fcE { / ' e TID(y — s) du|.7:s} + fE { / ' e ") (—dd(u — s)) du|fs}

n (]_ —Fa)f]E [e—r(T—s)V'T(I)(T _ S)|FS} )

We then develop Equation (16) as follows:
Diy(0;7) = E [/ e "(C+f) ds} —cfE [/ e "E [/ e "By — 5) dUI}}] ds}
0 0 s

- fE { /0 "R { / ' e ") (—dd(u — s))dum] ds]

- %E [ /0 TR [V — 5)|F) ds} + (1 - a)E(eV;)

= A1+A2—|—A3—|—A4—|—A5.

Fubini-Tonelli Theorem yields
1 _ T
Ay = —ME {/ e "V P(T — 5) ds]
0

F
_ (1 —Fa)fE |:e—r7"/7_ /OT @(U) du:|
. (1 - Oé)f —rT iy D
= R [eTVA®(0) - (1))

Because F = f®(0), we get

Ai+As = (1-a)E {e”végi )} .

We also have that,

Ay = —cfE :/OT/STe_T“Q(u—s)duds]
_ _fE :/OTe_T“/OuCD(u—s)dsdu}
R /0 e—m/oucp(t) dtdu]

_ _¢fE /0 " @(0) — B(u)) du]
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In the same manner,

Ay = —fE[/ / —dD(u— s)) du}
_ _fE[/ e (1 — D(u ))du].

Because C' = cF', we get

Ay +Ay+ A3 = E {/076” (C+ f—cf(®(0) — D(s)) — f(1 — D(s))) ds]

- ()

from which, we deduce the result.

8 Appendix B

Appendix B is devoted to the proof of Proposition 3. We first prove that for every x > 0
and t > 0,

e}
Et,a} |:/ €_T8|h<t + s, ‘/;5+5>| d8:| < +00.
0
Relation (20) gives |h(t + s,z)| < Koz + K; where K, K| are two positive constants.

Therefore, it suffices to prove that fooo e "*Viis ds is integrable under Q; ,. This comes from
Fubini-Tonelli Theorem which yields

Et,a: |:/ e_rs‘/t-‘,-s d5:| = / Et,x(e_rs‘/;f—&—s) ds
0 0

Let us denote

H(t7 ZE) - Et,z {/ e_rsh(t + s, ‘/t—&-s) d8:| :
0
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Assuming that Vy = z, we deduce from Equations (12) and (14) that

v(0:7) — D(0:7) = E, {/OTe‘”h(s,Vs)ds]

with

[ L (At s) Ot +5)
ﬂ(t)/o e (C B(0) + F () 90) ds,

and

t)y=a+ (1 —a)=—=.
YO =a+(1-a)s
Note that the functions f and v are bounded. Therefore,

(s) | ()
W—FF% —00) dS

+ sup E, [G_TT(B(T) - 'Y(T)VT)} :

TE€T0,00

sup (v(0;7) — D(0;7)) = x—/oooe—rs (c

T€T0,00

To prove Proposition 3 we have to study the stopping problem

P(z) = sup E, [e7"(B(1) —y(n)V7)], (40)

7€70,00
with the convention that 5(7) —v(7)V; = 0 on {7 = co}. Four lemmas drive the proof.

Lemma 3 Let P : [0,00) X (0,00) — R be the value function associated with the Markov
bi-dimensional optimal stopping problem in the (t,z) space

P(t,x) = sup E, [e‘”g(t —I—T,VT)] , (41)

T7€70,00

where g(t,u) = P(t) — y(t)u. Then the value function P associated with stopping problem
(40) satisfies
P(z) = P(0,z).

Furthermore, the stopping time
™ =inf{s > 0|P(t+s,Vs) =g(t+s,Vs)} (42)

is optimal for problem (41).
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Proof of Lemma 3 We follow the optimal stopping theory (see [15]) and consider the Snell
envelope process

TETt,00

(P)i=o = (ess sup E [e’”g(r7 VT)‘]-“t}) )
t>0

Because /3 is bounded, we have sup,s,Ele”""P;] < 4o00. Thus, P, is the smallest super-
martingale that dominates (e "*g(¢,V})) We have that

t>0"

P, = e ess sup Ele gt + 7, Vier )| F

7'676,00
= e sup Eyle gt + 7, V)]

7€70,00

= e "P(t, V),

where the second equality comes from the Markov property. It therefore results that, as
announced,

P(x) = sup E,le”""g(7,V,)] = P(0,x). (43)

7€70,00

Moreover, according to the optimal stopping theory, the process (Pu/\n*)u>t is an

(F,)-martingale with
=it > Py = e g V)

Therefore, Optional Sampling Theorem gives for every integer n,
Pi = E[Prlpan|F] +E [Pallirem | 7]

< E [e_”t g1, VTt*)Il{Tt*@}].E} + e_m/ e ™ (05
0

where the last inequality results from the relation

E [Poll(r;>ny | Fi) e "E [B(n) L7y >ny | F7]

e B(n)

e /0 e (ngi +F§§))) du.

IA A

IA

Letting n tend to infinity in (44), we obtain
P <E e (7], Ver ) Ui o) | F)
Using the convention on the set {7;" = oo}, we have

Py <E[e " g(r], Vi)

Fi -
Because the reverse inequality always holds, we get

P =K [e_TTt*g(Tt*, ‘/T,*)

Fi] -
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Using the Markov Property and the equality P, = e ""P(t,V;), we get

Pt V;) = Ele " g(r,V,2)|F)
= By e g(t+ 7, V0]

with 7* defined by Equation (42). This ends the proof of Lemma 2.

Let us now consider the stopping region of problem (41):
S={(t,z) € [0,00[*| P(t, x) = g(t,x)}

and its t-sections
Sy ={V € [0,00[| P(t,z) = g(t,2)}.

Remark that the stopping region S can be written as S = U;>o{t} x S; and that the optimal
stopping time 7* is the first time when the process (t,V;) hits the stopping region S. We
show the following.

Lemma 4 The t-sections S; are left-connected. That s, there is a function a* defined on
(0,00) such that, for every t >0, Sy = (0, a*(t)].

Proof of Lemma 4 We have to prove that, if P(¢,y) = g(t,y) then P(t,z) = g(¢, x) for all
x < y. According to (2), we obtain that

B, [e7 (Bt +7) =t +7)Vo)] <By [e7T(B(E+7) = y(t + 7)Ve) [ 4By [Ty (t 4 7)V7] -

(45)
The positive supermartingale (e "'V} )o<i<oo admits zero as a last element and thus Optional
Sampling Theorem yields E,(e”""V,) < z for every 7 and every z > 0. Using the fact that
the positive function v is decreasing, we get

By [e7(t+7T)V2] < (0 (y — 2). (46)
Now, using (46) and taking the supremum over 7 in (45) yields
P(t,x) < P(t,y) +7()(y — ).
Since y € Sy, we obtain P(t,y) = (t) — v(t)y and thus the inequality
P(t,x) < B(t) — ().

We then deduce that = € S; since, by definition, P(t,x) > p(t) — vy(t)x. Therefore, it
follows that S; is an interval (0, a*(t)] where a*(t) is defined as sup{z € (0,00) : (t,z) € S}.
Moreover, the optimal stopping time 7* can be expressed as

™ =inf{s >0 : V;<a*(t+s)}. (47)
We now show that the function a¢* is not constant.

Lemma 5 The optimal boundary function a* is not constant.
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Proof of Lemma 5 Because ®(¢) and ®(t) are decreasing and tend to 0 when t goes to
infinity, we have 3(t) < 0, for all ¢ > ¢, where t is implicitly defined by the equation

20 g2 oy, (48)
®0)  @(0)
Thus, for all t > ¢, g(t,x) = B(t) — v(t)z < 0, for all z > 0. Therefore, for all t > ¢,

P(t,x) <0 as the supremum of non positive real numbers. Now, for s > 0, we have

Pt,x) = e ™B(s+1t) —y(s +t)Es[e V]
= e "B(s+t) —y(s+t)xe .

Letting s tend to infinity yields P(¢,z) > 0. Therefore, P(t,z) = 0 for all ¢ > ¢ which
implies that S; = () for all ¢t > (7% = o0), or, equivalently, that a*(¢t) = 0 for all ¢ > t.

We now show that S # ), from which it will result that there exists ¢ € [0,) such that
a*(t) > 0. This will end the proof of Lemma 5. We proceed by way of contradiction. Assume
S =0, then 7 = oo is optimal for problem (40) such that we have P(¢t,z) =0 for allt > 0
and for all z > 0. This implies in particular that, for all x > 0,

O(s)

D(s)
3(0) + F@(O) — QC) ds —x, (49)

P(0,z) = P(xr) = 0> 3(0) —v(0)z = /000 e " (O

where the right hand side of (49) is the payoff function of problem (41) according to the
stopping strategy 7 = 0. Now, it follows from assumption (13) that Equation (49) cannot
be satisfied for all > 0. This yields a contradiction. Therefore, S # () and a*(t) > 0 for
some t € [0,7).

Lemma 6 The strategy 7,+() 1s not an equilibrium default policy.
Proof of Lemma 6 Let us assume that equity holders follow the strategy 7,+(). Then, on

the set {7,-() > t} the equity value is

Ta*(.)
E U e (§V — (1= 0)C — f+d(s,Tur(y)) ds| F| -
t

Now, from Lemma 5, we know that a*(¢) = 0 for all ¢ > . We then deduce that 7,«(4) = 00
for all ¢+ > ¢ and thus equity holders issue riskless debt yielding a value of newly issued debt
equal to!”

fds /0 h (f(1 — e + e—m) [—dd(u)).

r

However, never going default for ¢ > ¢ is clearly sub-optimal since the associated equity

value
E VOOO e <(5Vs —(1-0)C—f+ f/ooo (5(1 — e 4 e””“) [—dcb(u)]) ds}

17This is easily deduced from (9)
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would be negative for a current value of the firm’s asset sufficiently small'®. The strategy
Ta+(.) does not satisfy Proposition 1. It is not an equilibrium default policy. This concludes
the proof of Proposition 3.

9 Appendix C

The following lemma completes the proof of Lemma 1

Lemma 7 The cash flow to equity gg(x) = dx — (1 — 0)C — f + dg(x) is increasing over
(0,00).

To show that the function z — dp(x) is increasing over (B, co) we prove that the value
bp(x) of a bond with face value 1, maturity u and default time 75 increases with the current
value of the firm’s asset x. When the default policy is a constant barrier rule 75, we have

o) = & + (1= e (1~ Kp(w,2) + (50~ 0)B - Calwa)  (50)

where

KB(u,x):/ kg(s,x)ds, GB(u,a:):/ e "kp(s,x)ds
0 0

and where kp(s,z) is the density function of the first passage time of the process V; to the
barrier B. A standard computation shows that the density kp decreases with the current
value of the firm’s asset x. Then, the computation of the derivative of bg yields the relations

tole) = ~(1= 9B 0y (11— 0)B) 2 )
> (1= e 0y 008, ) 51)
> 0,

where Equation (51) comes from the inequality B < % and the last inequality from the
relation' 1 < ¢ together with the fact that

—ruaKB dGp
—e (u,x) + 9 (u,x)
= —e i aai;(s,x) ds+/0 e_”aaif(s,x) ds <0

Proof of Lemma 2.

18 An easy computation shows that the inequality [~ e~"“[~d®(u)] > 1—7®(0) and the condition F > ¢
imply that —(1 —0)C — f+ f [, (¢(1 —e™™) + ™) [-d®(u)] < 0.

9Following the literature, we consider that the total debt is issued at par. At issuance its value F is lower
than a risk-less bond with infinite maturity and coupon payment C'. This yields the inequality F' < % or

equivalently 1 < £.

30



We use the relation
Ep(z) = E, [ / e h(s, V) ds} — up(a) — Dy(x)
0

where the expressions for vg(x) and Dp(z) are deduced from Equations (14) and (11) when
the default policy is a constant barrier rule 75. We have

vp(x) =2+ ? (1 —/ e kp(s,x) ds) - aB/ e "kp(s,x)ds
0 0

and

/Oof@(s) -G ds—/ FR(s)(1 — ) Kns, ) ds

/f@ ( 1—@)B—;>GB(s,x)ds

where functions kg, Kp and Gp were introduced in Lemma 7. The expressions for K (s, )
and for G(s, x) are standard and can be found for instance in Leland and Toft [22] page 990.
We have

T —2a
Kpls,0) = N(u(sziB)+ (5)  Nlhal(s,z:B))
T\ —atz T\ —a—=2
Gg(s,z) = (E) N(ql(s,a:,B))—i-(E) N(q2(s,x; B))
where
1 T
¢(s,2;B) = ———=1n (—>—ZU s, @(s,2; B) = (s, z; B) + 2z04/s,
o+/S B
hi(s, 25 B) — ———1 ($>— ha(s, x; B) = hu (s, x; B) + 2a0y/5
1(s,2;B) = U\/gn B ao+/s, o(s,2; B) = hi(s, x; ao+/s,

o2

and where N is the cumulative distribution function of a standard normal law. Then, taking
the derivative of expression Fp(z) = vp(z) — Dp(x) one gets, BE'(BT) = ki + k2B where

k= 1+ aa+2) —(1—a) /OOO %@(s) (—a+ 2) — Tu(s)) ds (52)

2

where T',(s) = 22N (zo/s) + (zo\/_) and n(z) = \/1276_’“; , and

D=

k=202 /f(b —a+z—T. ))ds+/ooof¢>(s)(§—1)6_”1“a(s)ds.

Because I',(s) > 2z, the real number k; is clearly positive and more precisely, ko > 1+ (a +
z) > 0.
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It remains to check that k; < 0. Using equalities e "*n(acy/s) = n(zoy/s) and C =
Iy fe®(s) ds = cF we obtain that

o= Cwm+a+z—@+-——1/ J®(s) (2ac 7" N(ao/3) — 2:N(20/5)) ds

/’f@ (53)

The function s — 2ae™"*N(ao+/s) — 22N (zo+/s) is decreasing and thus bounded by a — .
Therefore, using I'.(s) > 2z for all s > 0 together with the condition F' > %, we deduce
from (53) that k; < 0.

Finally, we show that the inequality B, < % implies B* = ’kl < 7. Note that the

threshold B is solution to Equation (7) and satisfies Bo, = (1 — 9)(: li:jz Using (52) and
(53) one obtains

kol + (1 —a)ky = F(l+a(a+z))+(1—a)?(a+z)+(l—a)(g—1)(—a+z)F

—u—axg—n[fj¢@mnN@mﬁy—ma”Nmmﬁnw

> F(l+ala+2)+(1- a)?(a—l— 2)+ (1 — a)(; —1)(—a+2)F

—%O—axg—UF

= (tat2)F—(-a)at2)1-0)",

The result follows.
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