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tinuous time, in particular for diffusions and counting processes. We first provide an extension of the
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1 INTRODUCTION

1.1 Motivations

An econometric model has often the form of a relation where a random elémaepends on a set of
random elementg and a random noisg. If Z is exogenous (see for precise definition of this concept
[Engle et al., 1983] of [Florens and Mouchart, 1982]) some independence or non correlation property is
assumed between th& and theU in order to characterize uniquely the relation. For example, if the
relation has the fornt” = ¢(Z) + U the conditionE[U|Z] = 0 characterizes) as the conditional
expectation and it” = ¢(Z, U) with ¢ monotonous ir/, U uniform, the condition thaZ andU are
independent characterizésas the conditional quantile function. This exogeneity condition is usually
not satisfied (as for instance in market models, treatment effect models, selection models...) and the
relation should be characterized by other assumptions.

The instrumental variables approach replaces the independence befveeetl/ by an independence
condition betweerl/ and another set of variabldd called the instruments. For example, in the
separable cas¥ = ¢(Z) + U the assumption becomd@3U|W] = 0 (see for a recent literature
[Florens, 2003], [Newey and Powell, 2003], [Hall and Horowitz, 2005]). In the nonseparable model, it
is assumed thdf 1L W (see contributions of [Horowitz and Lee, 2007], [Chernozhukov et al., 2007a],
or [Chernozhukov et al., 2007b]). In these cases the characterization of the relation is not fully deter-
mined by the independence condition but also by a dependence condition betweéearidehelV'.

This dependence determines the identifiability of the relation: in a nonparametric framework, this im-
pacts the speed of convergence of the estimators.

The objective of this paper is to analyze dynamic models with endogenous elements. The goal is concen-
trated on the specification of the models in such a way that the functional parameter of interest appears
as the solution of a functional equation (essentially linear or nonlinear integral equation). Using this
equation, identification or local identification condition may be discussed. This paper is not concerned
by statistical inference but shows how the functional parameter may be derived from objects which may
be estimable using data. The theory of nonparametric estimation in these cases belongs to the theory
of ill-posed inverse problems (see [Darolles et al., 2010], [Carrasco et al), 2003], [Carrasco, 2008]) and
will be treated in specific cases in other papers.

We address the question of endogeneity in dynamic models in two ways. First we consider a separable
case which extends the usual model= ¢(Z) + U with E[U|W]. However, this case is not suffi-

cient to cover the endogeneity question in models where the structure of the process gefrersting
given (counting processes or diffusions for instance). In this case, we analyze the impact of endogenous
variables through a change of time depending on the endogenous variables. This approach covers the
example of the duration models, the counting processes, the diffusion with a volatility depending on the
endogenous for example. It will be shown that those change of time models give an interesting exten-
sion of non-separable models in the dynamic case. These two approaches will be treated irf Bection 2
and[3 of the paper and will be illustrated by examples. We first recall in the next paragraph the main
mathematical tools we will use.



1.2 Mathematical framework

In this paper we essentially analyze a large class of stochastic processes verifying a decomposition prop-
erty. Let(X;):>o (¢ may be discrete or continuous) af a filtration of o-fields such thakX; is cadiag

(its trajectories are right-continuous and have a left-limit) and ti#}; is right-continuous (that is to

say thai",., 7, = F;). In the usual terminology of the general theory of stochastic processes we will
say thatF; satisfies theonditions habituellé's

A processX; is a special semi-martingale w.r(tF; ), if there exists two processés and M, such that:

Xy = Xo + Hy + M;; 1)

e M, is anF;-martingale;

e H,is F;-predictable.

A more general definition only assumes tiiét is a local martingale but for sake of simplicity only the
martingale case is treated in this paper. We also simplify the expressions by always as&ygmingy
Extension to local martingales and to cases whége# 0 requires more technicalities (in particular in
Sectior] B). Let us note that the decomposit[dn (1) is a.s. unique. These concepts are fundamental in the
theory of stochastic processes (see in particllar [Dellacherie and Meyer, 1971] - Vol Il - Chap VII).

We may easily illustrate this definition in the case of discrete time models. In that case wéhawe0,
My = My_q + (X — E[X¢|Feq]) andH, = Hy—1 + [E[X|Fi—1] — Xi—1] (see[[Protter, 2003] - Chap
). Equivalently AX; = X; — X;_1 may also be written:

AXy =Xy — X = (BIXy|Fooa] — Xim1) + (X — E[X(| Fia)).

In case of continuous time processes, we also restrict our study to casesAyhsrdifferentiable and
we have the expression:
dX: = hydt + dM;

whereH; = fot hsds. Some particular cases will be analyzed in details. The first one is the single du-
ration model with endogenous cofactors possibly time-dependent. More generally, we analyze counting
processes and an example of Markovian transition model is also discussed. Finally, we also applied our
approach to diffusion models.

2 THE ADDITIVELY SEPARABLE CASE . THE INSTRUMENTAL
VARIABLES DECOMPOSITION OF SEMI-MARTINGALES

2.1 The framework

Let us consider a multivariate stochastic proc&ss= (Y;, Z;, W;) (with Y; € R, Z, € RP, W, € R9)
andX; the filtration generated hy, i.e. X, is theo-field generated by(ts, Z,, Ws)s<:). We consider
different subfiltrations oft;:

1. YV, Z¢, W, are the filtrations generated by each subprocess;

2. we call theendogenous filtratiothe filtration generated hy,; andZ;, and thanstrumental filtra-
tion the filtration), V W, generated by; andW,.



We first extend the usual decomposition of semi-martingales in the following way.:

Definition 2.1. The proces%; has a Doob-Meyer Instrumental Variable (DMIV) decomposition if:
Yi=A+U;

where:
1. Al- A is ), VvV Z; predictable ;
2. AZ-E[Ut —Us‘yt\/Wt] =0for0<s<t.

O

Equivalently we may say thaf is an IV semi-martingale w.r.{); v Z;); and(), V W;),. First we can

note that ifWW, = Z; this definition reduces to the usual Doob-Meyer decomposition. If the filtration
(Vi V Z), is included into(Y; vV W;), the problem becomes a problem of enlargement of filtrations and
preservation of the martingale property. This question is central in the theory of non-causality treated
e.g. by [Florens and Foege, 1995].

We consider then the more general case wiigtev Z;), and(); vV W;); have no inclusion relation.
Moreover, the two filtrations do not need to be generated by processé¥,and; ), and(),VW;):, and

may be replaced by more general filtratighsandG; under the condition thdt; has to be adapted to
each of them. Assumptiohl means that the predictable process “only depends” on the pesaofl on

the past ofZ;. AssumptiorA2 is the independence condition between the “nolggdnd the instruments

W,. Equality in A2 is a mean independence only (like in the static separable model¢(Z) + U)

and looks like a martingale property. It's not strictly speaking a martingale property beGaisaot
assumed to be adapted(f3; vV W;).. The usual decomposition whéw; v Z;): = (J: VW;); is unique

a.s. but in the general case, it should be noted that this unicity result is not true: this will be precisely
the object of the identification condition analyzed below.

2.2 Identification
Let us first consider the characterization of the decomposition in term of conditional expectation.

Theorem 2.1. Let us assume thaf; is a special semi-martingale w.r¥; v W; and that :
dY; = hydt + dM;
whereH,; = fg hsds is Y, V W,-predictable and/; is a); vV W;-martingale.
If the following family of integral equations:
hi = E[ | Ve VW] t2>0 2
with \; ), V Z;-measurable and integrable

has a sequence of solutioAg thenY; is an IV semi-martingale andl; = fot Agds .



Roughly speaking, Equatiop|(2) means that we have to solve:

hedt = E[dX|(Ys, We)o<s<t]

[/ A ((Yss Zs)o<s<t) f((Zs)o<s<t|(Ys, Wis)o<s<t)d(Zs)o<s<t | dt-

This expression is not mathematically rigorous because the arguments of the functions are infinite di-
mensional but it shows how our definition extends the static separable case.

A DMIV decomposition exists if and only if.; belongs to the range of the “instrumental” conditional
expectation operator. If we restrict our attention to square integrable variables, this operator is defined
on L?(); V W,). Note that the conditional expectation operator is compact under minor regularity
conditions. Its range is then a strict subspacéf); V W;) and the existence assumption is an over-
identification condition on the model. The main question concerns the unicity of the solution, which
is equivalently the identifiability problem. Given the distribution of the procEgsthe functionh,,

and the conditional expectation operalof..|); Vv W;| defined onL?(); Vv Z;) are identifiable. The

DMIV decomposition is then unique (or equivalently is identifiable) if and only if the conditional
expectation operator is one-to-one. The following concept extends the full known case of static models.

Definition 2.2. The filtration () V Z;), is strongly identified by the filtratio); v W), (or Z; is
strongly identified by, given)) if and only if for ¢ > 0:

Vip € L2V V Z),Ep| Vs VW] =0= 9 =0 a.s.

Corollary 2.1. The DMIV is unique is(); V Z;) strongly identified by, v W;).

O
For a good treatment of conditional strong identification and its relation with the completeness concept
in statistics, see [Florens et al., 1990] - Chap 5. The#;ifs strongly identified by, given), the
conditional expectation operator is one-to-one ands identified. Several papers give more primary
conditions which link this property to the conditional expectation operator (see a recent contribution of
[d’Haultfoeuille, 2008]). We want to illustrate this concept in two examples : discrete-time models and
diffusions.
2.3 Examples
2.3.1 Example 1: discrete time model
Suppose that we have a discrete time model such as:

Yyr = A(&t) + e

with Elet|yt—1, ..., &—1,...] = 0. In our framework, we have then:

Yi=yo+ ...ty Ay = A&o) + -+ A(&) U =€+ ...
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Moreover if we define:

Zy = U{ft+1aft> .- } Yy = U{ytaytfla .- } Wy = 0{§t7€t713 .. }
then we have the following properties:

e Y, is), Vv Z;-adapted an@d); v W;-adapted;
e A, is), VvV Z,_i-measurable anyy; v Z;-predictable;
° E[Ut|Wt,1] =U;_4 aSE[EtD)t V Wtfl] =0 and]E[eSD)t V Wtfl] =e ifs<t—1.

In that caseyy VW, C WV 2, N = )\(gt): hy = E[)\t‘gt—h ey Yt—1, - - .], i.e.:

ht = E[)\(gt”ft*h ey Yr—15. 0y ]

If (y¢, &) is Markovian, then we have moreover:

Ely|&i—1,y1—1] = E[AE)|E=1, yi—1]-

One can then proceed to nonparametric estimation:
o for weakly dependent stationary processes, we face inverse problems as in the usual i.i.d. case;

e when studying unit root processes, we can use ordinary kernel estimation but there is a second
order bias. [[Wang and Phillips, 2009] treats it with a control function, but this does not address
the case of the second order bias of instrumental variables. This is therefore an argument for pure
IV in non-stationary models.

More generally, we could consider:
Y = Me(26, 201, Yp-1,- ) T €&
with E[et|wt,wt,17 ey Yp—1y- ] = 0, Zt = O'(Zt,thl, ey Yty ) anth = O'(U}t+1, ey Yty )

The decomposition of; = yg + ... + y; W.r.t. W, writes:

Y=Y Bly; W]+
T

(y; — Ely;IWj-1])

t
=1

with i, = >°_, h;. We must then solve:
he = E[Ae(2e, -5 ye—1,...) [ W]

2.3.2 Example 2 : diffusions

Let us assume that the structural model has the following form :

aYy = \(Yy, Zy)dt + 04 (Yy)d By 3

whereB; is a Brownian motion. This means that4f is fixed (or randomized, and not generated by the
distribution mechanism; follows a diffusion process with a drift equal #q and a volatility equal to
o+(Y;). Note that we assume th&t does not appear in the volatility term. Let us assume that:

E[dB:|Y, vV W,] = 0.



In that case Equatiof(3) characterizes the DMIV decompositidn.oiih order to identify\, we need
to construct the decomposition Bf w.r.t. the filtration); V W, (that we writedY; = h;dt 4+ dM;) and
to solve:

he = B[\ |V VW, (4)

Note that the “reduced form” modély; = h;dt+dM; has no reason to be a diffusion. Conditionally on

W;, the process may be non Markovian alg maybe different from a Brownian motion. This general
framework may be applied to particular cases, and simplifies the estimation problem. For example, let's
assume that the structural model has an Ornstein-Uhlenbeck form:

M(Ye, Zt) = 0(u(Zr) = Yz) and oy(Yy) = o
wheref is a constant. In that case the model becomes a semi-parametric problem:
he = O(E[u(Ze)| Ve vV Z4] = V7).

We may project this equation under thdield generated by; and;, only having then to solve:

Eh| Ve vV 2¢) = 0(E[u(Z)|Ve V 2] — V).

This construction may not be generalized if the volatility depend&obecausét[o(Y;, Z;)dB| Vi V

W;| does not cancel. The change of time models we will present in the next section, will solve this
problem as it will be shown in paragrajph 3]4.5. An other approach may be however adapted in the same
direction as the DMIV decomposition. We briefly introduce this approach which will be treated in an
other paper.

Let us start with a structural modef (fixed or assigned).
dY; = MYz, 2)dt + o (Y, Z)d B,

which is assumed to be stationary aridthe endogenous element is assumed to be not time-dependent.
Following a methc@presented by [A-Sahalia, 2002], let us introduce the transformatipg- v(Ys, 2) =

Jo* 5 which lead to the equation:

dy, = M(Yt, z)dt + db;

where: Al 2)s) 18
_ AT (mz)z) 100 gL
M(naz) - 0'(’}/_1(7’],2),2) 2 Ou (/7 (777 )a )

The model may be completed by two assumptions:
E[dB:|Y: VW] =0

E[(dB:)*|Y: VWi =1

which are satisfied in particular éB; is independent o}, vV W;. This two equations may be used to
characterize\ ando. The main difficulty is coming from the fact that depends on the parameters and
this type of model may be viewed as a dynamic extension to transformation models.

We thank Nour Meddahi for helpful discussions on this topic.



3 THE NON-SEPARABLE CASE: THE TIME -CHANGE MODELS

The DMIV decomposition is not sufficient to cover models like counting processes models, or diffu-
sion models with volatility dependent on endogenous variables. We need to propose an other concept
for instrumental variables analysis, which we will extend to dynamic models in the non-separable case
(treated in the static case by e.g. [Horowitz and Lee, 2007]). In order to motivate our presentation, we
start by the basic example of duration models.

3.1 Duration models: a motivating example

Let a be duration, i.e. a positive random variable. The distributioniefcharacterized by its survivor
function S(t) = P(¢t < 7) assumed to be differentiable. Litt) denotes the hazard function i.e. (that

is A = —5’/S) andA(t) the integrated hazard functioA(t) = fot A(s)ds = —In(S(t))). We assume

that A is strictly increasing. Such a duration model has a counting process representation through the
processN; = 1{t > 7}. This process is a sub-martingale and then a semi-martingale that may be
represented w.r.t. the filtration generated by the historothrough:

N; = /t A($)1(s < T)ds + M. (5)
0

The intensity ofV; (relatively to its history) is equal 8 1{r > t} = \;(1—N;-) (see e.g.[Karr, 1991]).
A fundamental property we will use in the following is th&atr) has an exponential distribution with
parameteil. Then, ifU; is the counting procesk{t > A(7)} we have:

U, = /t 1{s < A(r)}ds + MV 6)
0

because the hazard function of the exponential is constant equal to 1. Equivalently, these relations imply
that:
NA—I(t) = Ut (7)

and the givenV becomes the processvia a change of time.

We want now to introduce a random endogenous fagtor the duration model and an instrumeéft
For sake of simplicity, bottZ and W are not time-dependent in this paragraph. An important litera-
ture analyzes endogenous variables in duration models|(see [VanDenBerg, 2008]) and is in particular
motivated by treatment models where outcomes are durations (see [Abbring and VanDenBerg, 2003]).
Our approach does not depend on any specific statistical models and extends the instrumental variable
analysis to this problem. Itis natural to assume that the integrated hazard fuhdtemmomes a function
A(t, Z) of Z (also noted\;(Z)); the “noise” of the model, equal td,(Z), is assumed to be indepen-
dent of the instrumentd/, and has an exponential distribution with paraméteirhe model may be
written in the usual way:

T=®U,2Z) =AU, 2) (8)

whereA(., Z) is strictly increasingl/ L W and the distribution ot/ is given. This model becomes
an example of non-separable IV model and generates a non-linear integral equation which characterizes
A(Z) or equivalentlyd, (Z) = A; ' (Z). Let us consider the following function :

S(t, zlw) = %IP(TZt,ZSZ‘W:w) 9



which may be seen as the joint survivorofind density ofZ conditionally onW/ = w, identified by
the joint observation ofr, Z, W). Then the independence condition betwéeandW implies:

/ S(®i(2),zlw)dz = P(U >t) =e " (10)

becausd/ is exponential with parametér We will discuss later the identification df i.e. the unicity
of the solution of this equation.

We may wish to apply the DMIV decomposition to thg process considering the two filtration§ v Z
and NV; vV W, generated by the history df; and respectively the endogenous and the instrumental
variable. We then obtain a decompositidh = A, + U, whereA, = [; (s, z)ds and A(s, z) =
Xo(s, z)1{7 > t}. In this context, the function, (s, z) should then become the solution of:

L = ol ) folelun > )z (1)
where the left hand-side is the hazard functionr g@fiven W = w (in that casé, = 5 (i% 1{r > t})

and f-(z|w, T > t) is the conditional density of givenW = w and the even{r > t}. However the
Xo(s, z) function is the derivative o, but not the derivative oA (z, z) we have introduced above, and
is not in general the hazard rate of the counting process associated to the duration.

The counting process version of the non-separable mpplel (8) follows from the previous remarks. We
may consideiV; = 1{r < ¢} and assume that there exists a time-change fundid¥) strictly in-
creasing and depending ¢hsuch thatVe, ) = U; whereU, is a counting process associated to an
exponential distribution of parametérand such that/; is independent of/’. We will see later that

these assumptions generates a non-linear integral equation deriving from semi-martingale decomposi-
tions which is equivalent in this particular case to Equafiof (10).

3.2 Time-change models

We use the notations introduced at the beginning of Seflion 2. We consider a stochastic process
and two filtrations#, = ); vV Z; (the “endogenous filtration”) and;, = ); vV W, (the “instrumental
filtration”) such thatY; is adapted to both. We also introdugg = F; V G, generated by the three
processesy;, Z; andW,.

Definition 3.1. The proces%’; has an instrumental variable non-separable representation if there exists
a stochastic proceds, such that:

1. (9,); is an increasing sequence of stopping times relatively to the filtréfion
2. (Y,): (the procesy” stopped at tim®,) is equal to a proceds; independent of th&/; process;

3. U, is a semi-martingale w.r.t. to its own histoy(= HY + M) with a given compensatdi” .

O

Remember that the property that for> 0, &, is a stopping time w.r.t. 7 means that’'s > 0,
{®; < s} € Fs. Inthe introducing example of the duration model of Sec Z.1s not time-
dependent and this property only means thats measurable w.r.tZ for anyt. The property that



d, is a F-stopping time formalizes the idea that only depends or¥ and on the past of” but not

on . However, Assumption (1) of Definitign 3.1 implies that is also a stopping time for the fil-

tration ;. An important literature exists in abstract probability theory about the increasing sequences
of stopping times and about the properties of processes stopped at these stopping times and the au-
thors usually look at the properties (martingale, local martingale, ...) preserved by the change of time.
Examples of this (not very recent) literature are [Kazamaki, 1972], [ElI-Karoui and Weidenfeld, 1977],
[El-Karoui and Meyer, 1977]| [LeJan, 1979].

3.3 Identification

Our objective is now to characterize the functidp (depending also on th&, process) from objects
identified by the obtention of the joint proced§, Z;, W;). We adopt a strategy based on the decompo-
sition of theY; process w.r.t. the larger filtratioH.

Theorem 3.1. Let us assume that:

1. Y; is a semi-martingale w.r.t. filtratioi and that we have:
dY; = kidt + dEy

whereK; = fot ksds is anH,-predictable process arg, is anH, martingale.

2. Y, has an instrumental variable non-separable representation as defined in D¢finjtion 3d,when
is assumed to be continuous and differentiable (possibly except at a discrete set of points).

3. The distribution of( Z,),, conditionally ono-fields Y, V W for any s, is dominated by a measure
@ and has a density denote@:|Ys v W;).

Then: o
/Q(dz) / keg(2|Vs V Wy)ds = HY (12)
0

O

This equation shows thab, is the solution of a non-linear integral equation where the right-hand
side term is given and all the left-hand sidegnd g) are identified by the distribution of the process
(Y, Z,, Wy). We assume that the model is well specified or equivalently that a solution exists to the
Equation[(IR). The identification question is concerned with the unicity of the solution. As the problem
is non-linear it is natural to look at local unicity of the solution. Let us assumelthigtthe true process

and we compute the Gateaux-derivative of the left hand-side, tak®n in direction of a functiond, :

Ty, (®:). We get obviously for any.

T} (B,) = / Bykag(2|Va, V Wa,)Q(d2).

We note thafly, (®,) is linear and we assume that it is equal to the Frechet-derivative. Local unicity is
then obtained through the condition :

T&)t (ét) =0 = &)t =0 a.s. (13)

If ®; (the derivative w.r.t£) does not cancel, this implication is true as soon as:

/Rsksg(zwszS)Q(dz):O ~ R,=0 as

whereR, = g1 ().
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3.4 Examples

3.4.1 Duration model with constant covariates

We take here the example of Sectjon|3.1 in the case where varidplesZ andW, = W are fixed
and known at time-origin. We havé = 1{t > 7}, and we suppose that there exists a sequén(g)

of stopping-times such thaty, ;) = U; with U; = 1{t > U} whereU follows an exponential of
parameterl, U 1L W. In this framework, we want to use Equatign](12) of Theorpm]|(3.1). In this
context,k is the intensity oft; w.r.t. toH; (with H,; equal here ter(Y;, Z, W) = o ({7 > t}, Z, W)).
Equivalently,g(z|Ys V Ws) = g(z|t > t,W). As Z is a random variable and not a procefs(dz)

will then be an integral over the supportGfrelatively to the Lebesgue measure. lAss an exponential
variable, the compensator 6f = 1{t > U} is trivially equal toHY =t A U. If we apply Theorem

[3.1, we get:
Qyuat(2)
/dz/ k(s|T > s,2,W)g(z|T > s,W)ds =U At. (14)
0

As we will work with a fixed, arbitrary, we can therefore conceptually elimindfen all calculations

and replacé/ A t with ¢. We already had the result of Equati¢n](10) and we want to show that it leads
to the same equation than Equatipn|(14). Now, we wfite Z|W) the joint law of (7, Z) conditional
onW. Havingr = ®,(2), if we noteg(U, Z|W) the joint law of(U, Z) conditional oni¥, we have:

g(U, Z|W) = @y,(Z) x f(Qu(Z), Z|W).

Our main assumption was tht= A(7, z) ~ Exp(1) conditionally oniW. Then, this leads to :

eV = /g(U,z\W)dz - /%(z)f(%(z),z\wmz

Then we have the two following expressions, holding> 0:

{f@’ )Z|W) —eu
[ S, (®

2),z|W)dz =e ™

If we divide the first equation by the second, we get:

1 D7, (2)f(Pu(2), 2[W)
[ SH( @y (2"), 2'|W)dz!
_ / () f(®u(z ) AW) ST( ( ), 2[W)
S (D (2), 2|W) fS 2", 2" |W)dz
I Iy

I, is the hazard function of the procegg, } taken in®,(z) conditional onZ = z, W. Indeed:

Ft W) fEHzW)FGEIW) _ f(Hz W)
S(t,z|W) S|z, W)f(z|W)  S(t[z, W)
I, is the law ofZ conditional tolW andU > u. Finally:

k(t]z, W).

[ B Z =2 WglalU = W) =

If we integrate inu for » varying from0 to ¢ we get:

/ du/@' )Z =2,W)g(z|W,U > u)dz = t.

11



If we commute the integral terms and make the change of variabl@®,, (z), and remark thafU > u}
is equivalent to{ @y (z) > ®,(z)} = {r > s}, then we recover Equatiop (14):

. Py (2)
/ dz/ k(s|T > s,2,W)g(z|T > s, W)ds = t.
0

3.4.2 An example of duration model with process covariate

Let Ny = 1(¢t > 7) the explained process associated to the duratemdZ; be an endogenous covariate
process assumed to be a jump procégs= 1{t > e}. The process; may be a treatment equal to
0 up to a random time and tol after. The structural model may be interpreted in the following way:
if Z, is “fixed” or assigned we assume thist has a structural hazard function equalMo= o + 57
with a, 8 > 0 and its compensator i§; = fot As(Z)ds = at + (t — €)1{t > ¢} and then:

t+ Ce
a+ 0

which is an increasing sequence of stopping times adﬁm@t.

®,(2) = A;N(Z) = él{t < ae) + 1{t > ae)

In that case the model is parametric and the structural parametersagzig5. Let us now consider an
instrument constant in timB” and we assume tha&fg, = 1{¢t > u} with u ~ Exp(1) andU L W.
Now considemp the hazard rate of given theZ; process and thB’ variable. We have:

p(t) = pr(tle, W)L{e < t} + paltle > £, W)1{e > 1}

wherep; andp, are the hazard rates efgiven W and respectively or ¢ > ¢t. Thena and 3 are
characterized as the solution of:

Dy
/de/ p(s)g(elm > s,W)ds =1 (15)
0

whereg(e|r > s, W) is the conditional density of givenT > s andW. In this equatiorp andg are
identified andy and 3 follows from the resolution of Equatiof ([L5).

3.4.3 Counting process with endogenous cofactor

Let us assume thaf, is a counting process, i.e. a process valuely isuch that, = 0 and with adlag
trajectories which are step functions having jumps of $ize. there exists a sequence(of) such that:

Y, =Y 1{t>7}.

j>1
If Z is assumed first to be fixed or assigned at a value z the proces¥; is modelled by its stochastic
intensity\;(z) or by its compensatak;(z) = fot As(z)ds. Itis clear that ifA;(z) is invertible and if we
define:
y(z) = A7 (2)

the proces¥’s, .y = U; is an homogenous Poisson process. Indeed we have the decomposition:

Y: = Ae(2) + M,

%Indeed let’s consider for a giveirthe eventt = {®,(Z) < s}. If s > ¢, Z, = o{e} and thenE € Z, for anys. If s < e,
Z, =0{1(e > s)}. Inthat case it < a¢, F is always true and if > ae, E is always false.

12



and
Yo,2) =t + Mo, (z)-

Therefore the compensator is equat tavhich fully characterizes the Poisson process.
If Z is now randomly generated but not necessarily independetit btit if U; is independent ofi/,

we face the situation described in Definitjon|3.1 . We limit ourself in the following to the case Where
andW are time-independent for sake of simplicity.

We first rewrite in that case the integral equation characterikirig). Note that the intensity, verifies
ki = 2321 kt(j)l{Tj—l <t < 7} with:

w0 _ fils Wz, 7o)
¢ Sj(S+Tj71|VV,Z7T1,...,Tj,l)

where f; and S; are the density and the survivor function of the (difference in) duratigns 7;_;
conditional toW, Z, and the past of the durations. The equatjor} (12) becomes the following sequence
of integral equations:

LT 1f18+7'l 1|WZ Tl,...,Tlfl)
E dz z|W, e, T—1,T1 > S+ T1_1)ds  +
/ / Si(s+m-1|W, 2,714, ..., Tl_l)g( (Worns s i1, m -1

®u(2)- TJf s+ 7 1|W,z, T ;)
d i1 LAREE: W, T, Tii, T > Nds = t
/Z/ Si(s+1j_1|W, 2, 7'1,...,7']) 9(2W, 7 Tim1,7; > 8 4 7)ds

(16)
One may add that

fils +n—1|W,z,71,...,11-1)
Sl(s + Tl_1|W727T1a ... 7Tl—1)

fl(S+Tl 1,Z‘W T1,...7Tl,1)
SZ(S+TZ_1|VV,7‘1,...,T1_1) '

gZ|W, T, i, > s+ T-) =

All the elements inside the integral may be estimated and this sequence of integral equations character-
izes®;(z) by intervals. Let us now analyze in more details the nature of the fun@j¢n) and come

back to the structural model whefeis fixed or assigned. In this structural model the€z) function

takes the form\;(z) = At_T]@l(z for t €|r;_1; 7] where)\(j)(z) is the hazard rate of; — 7,1

conditional on the pastr,...,7;_1) and givenz. ThenA.(z) = fO z)ds which implies that
Ae(2) = Ary s () + J 7 AD L (2)dsif o <t <7y From this foIIows.

if Ar, . (2) <t <A (2), then®y(z) = 7j_1 + (A@Ahl(z))fl(z)
whereA Y (2) is the integral of\() (2).

In practice @, (Z) will be selected such that some properties are satisfied in the modelXvisdiixed.
For exampleY; may be in that case an accelerated life non homogenous Poisson process i.e.:

Yy = F((2)t) + M,

wherey)(Z) is a function depending on the variablésand F' is a baseline, cumulative function @'.
In that case we have obviously:




depending on the functional parametérand F'. Note however that this assumptidoes not imply
thatY; givenZ andW is a Poisson process.

An other example of structural modelling is given by the Hawkes process. Let us assume that for
fixedY; is an Hawkes process whose intensity is:

t
M) = [ gt s)ay.
0

where the parameters aieandg function of Z, t ands. For example; may take the semi-parametric
form:

gz(tv S) = e_B(Z)(t—s)

whereg is an unknown positive function df. More generallyZ may be a stochastic process anmay

be equal tay. (¢, s) = e A(Z)(t=9) or ¢=B(Z:)(t=5)  For simplicity, we concentrate our presentation to
the case wher& is constant w.r.t. the time index. The compensatay;dior any fixed value ofZ = z

is equal to:

t u
A(2) = ut—‘—/ du/ g-(u, 8)dN,
0 0
t ¢
= ut+/ dNS/ gz (u, s)du

ut—&—Z/ gz (u, 7j)dul{t > 7;}

The inverse functio®, (z) = A; '(z) has not an explicit form but may be easily numerically computed
if g is given and Theorefn 3.1 gives the way to estimiter) and thery. (¢, u). As in the Poisson case
let us note that; givenZ andW is not in general an Hawkes process.

3.4.4 Markovian transition models

An other application could concern Markov processes with multiple states. We begin by considering a
Markov proces¥; with two states{1,2}. We write /¥ the generator of” and suppose thdt” has the
form ¢;(Z)I wherel is the following matrix:

wherea € R . We noteQ, (Z fo qs(Z)ds. Z is assumed here to be static, endogenous. We assume
that there exists a change of tim¢Z) = A~*(Z) such thaty; = Uy, () whereU, is a homogenous
Markov process with two states and with a generétde make the assumption tHat is independent
from given instrument$V. In the following we will skip the indexation itX for simplicity (Z will be
assumed to be fixed or assigned). It is possible to hlbat:

_ o(14a)t
()

3See Appendix .
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We verify easily that this function is increasingtin

We now consider the counting process$é¥ (t) and N2(t) that jump when respectively the process
Y; jumps from statd to 2 conditional on the fact thalt; is in 1, and whenY; jumps from state to 1
conditional on the fact that; is in state2. We remark that in the general casg,conditional onz, W
has no reason to remain Markovian. We nhté (respectivelyk?!) the intensity of N'? (resp. N2')
conditional onZ, W, H,. Applying Theorenh 3]1 we get:

‘I’t(z) t
// k;29(2|W, Vi)ds = / 1{U, = 1}ds,
zJ0 0

CI’t(Z) t
// kflg(ZIW,yt)ds:/ al{U, = 2}ds.
zJ0 0

These equations are not useful becalises not observed and this right-hand side cannot be computed.
But dividing the second equation ly summing both and remarking that for eaghl {U, = 1} +
1{U, = 2} =1, then we get:

B(2) 12, 1o
// (k°+ gks Vg(z|W, Vs )ds = t.
zJ0

3.4.5 The diffusion model

Let us first consider a structural model which generates a zero-mean diffusion procgs@ézumed
to be time-independent) fixed:
dY; = o(Yy, Z)dB, 17

We simplify our presentation by assumiagndependent from. Let us consider the quadratic variation
of ;.
t
MN(Z) =< Y, >:/ o?(Ys, Z)ds.
0
We define®,(Z) the inverse function of\(Z) (which is invertible because is assumed not null for

anyY;). This function characterizes an increasing sequence of stopping times (thee(@Bnt< s is
equivalent ta < A;(Z), and only depends on the pastiofuntil s). The process:

Yo,02) = Ut

is then a Brownian motion (sele [Protter, 2003]). We now considerZhatrandomly generated and that
W is an instrument. The model still assumes Equafiop (17) and that the pfoéegsdependent of the
filtration YW, generated byl and the past of’. In order to characterize or ® we applied Theorem
[3.1 to the relation:

Ye, (2 = UL (18)

The compensator df? is equal tot. Let k the stochastic intensity &f2 w.r.t. Z; V W,. We have:

Py (2)
/dz/ ksgs(2|Ws)ds = t.
0

In this expressiolk andg are identifiable for the DGP anblis obtained by solving this nonlinear, inte-
gral equation.
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This approach may be generalized by considering a pra¢essstead of a fixed valug if we assume

o depending only on the past up t@f Z (e.g. o(Y;, Z;)) andW; may be a filtration generated by a
process¥; andY;. Let us underline that even if the structural mddel 17 is a zero-mean diffusion, this
is in general not the case for the proc&sgiven the filtrationZ; v W, and even ifk is identifiable, its
estimate may be complex.

An other extension is to consider a structural model with driff is fixed or assigned we assume the
model:

dY; = my(Ys, Z)dt + o(Yy, Z)dB,.

We consider the same stopping time as before and the sequence of equations:

®:(2)
Yq;t(z) :/ m(YS,Z)ds—i—Ut
0

The parameters of the model abg(Z) andm(Y;, Z) and in the case wher# is random we assume
thatU; is a Brownian motion independent ©f;. We then apply twice Theorem 3.1: we compute the
stochastic intensitiesgl) of Y; — fo m(Ys, Z)ds w.rt. 2 vV W, andk;( of [Yt fo m(Ys, Z ds}
w.r.t. Z; V W, also and we derive from Theordm 3.1 that:

Dy (2)
/dz/ E® gy (z)W,)ds = t.
0

The functional parametetsandm are solution of this system of nonlinear equations.

4 CONCLUSION

We have presented two classes of models for stochastic processes with endogenous variables treated
with the instrumental variables method. Dynamic extension of separable models gives a generalization
of the standard Doob-Meyer decomposition of semi-martingales and some probabilistic aspects of this
model should be developed (extension for example to the case when martingales are only local). In
the two kinds of approaches the functional parameters of interest are characterized as solutions of in-
tegral equations and their identification (unicity of the solution) is discussed. We have illustrated these
concepts to many kinds if stochastic processes used in many fields of applied econometrics. All these
examples need to be developed in connection with the infinitesimal generator.

This paper only treats modelling and not the practical aspects and the theoretical properties of the in-
ference. In practice, many objects we have introduces depend on infinite past and cannot be estimated
under this form. We have introduced models where the specification is made on the structural form
and reduced forms are implicitly left unconstrained for the estimation. Tractable approximations for
the reduced form should be selected in order to implement the presented methods. In the considered
cases, the parameters are solutions of ill-posed inverse problems and their statistical properties have to
be analyzed.
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A APPENDIX

A.1 Proof of Theorem[2.1

Let us definel/; by Y; — fot Aods. As A, = fot A\sds is predictable by construction, we just have to
proove thatU; satisfies conditiod2 of Definition[2.]. We have:

t
E[U, — UV, VW) = Em—Ys—/ Nacdul Y, v W]

t t
= E[/ huduf/ Audu] Vs VW]

becausé&[M; — M,|Ys V Ws] = 0. We can commute the integration and the conditional expectation
terms, and we get:

t t
/ Elhy — Aa|Vs V Wldu = / Elhy — B[V V W) | Vs V Wildu

becausg), v W, C Y, VW, for eachs < u. The second assumption allows then to conclude and to
obtain the desired resul[U; — U;|Y, V Ws] = 0 andY; has a DMIV decomposition.

A.2 Proof of Theorem[3.1

Let us start with the decomposition Bf w.r.t. H,:

We considef{H s, ); the filtration where for any, Hg, is the stopping-time su-field of ., associated
to @y, i.e. :

Ho, = 0{A € Hoo|[{®: < s} NA € H,}. (20)

Note that(Hs, ): is a filtration becaus@;, is increasing. Equivalently (sege [Protter, 2003] - Chap. | -
Theorem 6):

Ho, = 0{Vs,, Z6,, Wa, }. (21)

Then:
Y, = K3, + Eg,

is the semi-martingale decomposition @fs, ), w.r.t. the filtration(Hs,):. This result follows from
Proposition 1 of[[Kazamaki, 1972] which implies th&§, remains a martingale w.rtHs, ), and K,
is predictable under our assumptiiip = ﬁf ksds. The continuity condition o, is obviously satisfied
under our assumptions. Under the model specificédtipn= U; and :

Hq;-t = ut V Zq;.t V Wq>t (22)

wherel{, is theco-field generated byU;)o<s<:. Then the decompositiol) rewrites :
Ui = Ks, + Es, (23)
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and is also the semi-martingale decompositiopfv.r.t. (U V Zs, V Wa, ). Equivalently Equation
(23) becomes:

t
U, = / ' kg, ds + Ea, (24)
0

where®; is the derivative w.r.tt of ®;.

If ®, is not differentiable at some point, we partition the integral before and after the point. For simplic-
ity we assume her to be differentiable.

The next step is to derive from Equati24) the decompositiobi,ofv.r.t. the sub-filtrationt4; v
Wa, ):. We have (see [Karr, 1991]):

U NV Wa,|ds + E,

t
Ut:/ E[®) kg,
0

whereE, is a martingale adapted {&f; V Ws, ):. The computation of the conditional expectation inside
the integral may be conventionally written as an integral w.r.t. a conditional densitymcess given
U,V Wy, notedg(z|Us V W, ):

¢
Uy = / ds/CI)’Sk¢Sg(z|Z/{S vV We,)dz+ E;
0

We commute the integrals and, after a change of variabled;, we get:

t o, ~
U, = / Q(dz)/ kvg(z| Yy VW, )dv + E;.
0 0

Finally let us consider the decompositionldf w.r.t. its own filtration:
U =H +EY.

As (U;): and(W;),; are independent[/;) and(Ws, ), are also independent and this last decomposition
is also the decomposition w.r(i4; V Was, ). By unicity of the decomposition we get:

Dy
/dz/ kog(2| Vs VW, )dv = HY .
0

A.3 Expression of®, for Markov models with two states

By definition, we have thaP[U,, ;|U;] = e!*. We remark thaf has for eigenvaluegand— (1 +a) and
U writesU = DLD~! with D the matrix of eigenvectors which are respectividlyl)’ and(—1;1)’. It
follows that for¢, s > 0:

P[Yy15|Ys] = P[Up45)[Unpy] = e’ AT,
Matrix el (A(t+s)=A(s)) rewrites:

1 0 )
Dl emraaers-aey [P

18



The generatofY of Y is then given by the derivative if) taken ins = 0 of the former expression. That
is:

0 0

1Y =
0 —(14a)A (t)e” 1HOAD)

] D7l = N(t)emWHIAO DL DY = A (t)e~ AFOAD T

Consequently, the generator matfix is of the formg(¢) I with ¢(t) = A’ (t)e~(1+9)A® Then we have
that

1
_ _—(1+a)AQ)
QW =1, (1 € )

The expression gb follows.
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