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Abstract

This paper constructs an economic analysis of some organ donation orga-
nizations. The two main examples are voluntary marrow donor registries and
cord blood banks. The main characteristic of this system is to facilitate the
graft of bone marrow or cord blood to patients. These grafts require a high
degree of compatibility between donors and receivers and the e�ciency of this
system is not always satisfactory despite sizes of the registries. This paper gives
a framework to understand the key parameters of this problem and to proceed
to simulations. We consider the case without screening or the case of optimal
selection. These models may be used to infer an economic evaluation of the
registries and of cord blood banks.

Keywords: Decision theory, evaluation of information system, marrow
donors registry.

JEL Classi�cation: I18, C70, C61.

2



1 Introduction and Motivations

The treatment of certain blood diseases (leukaemia in particular) sometimes re-
quires the appeal to a transplant of HSC (Hematopoietic Stem Cell, known as "
bone marrow"). This requires the use of a compatible donor and a donor family
member of the recipient is sought on a priority basis. Such a compatible donor
family exists only in 30% of cases. To treat other patients, a record of voluntary
donors was organized in some countries. The �rst registry was established in
United Kingdom (Anthony Nolan 1). A registry consists in a list of volunteers
individuals for whom a number of genetic characteristics determining compat-
ibility are recorded. For a given patient, we search through the registry if one
or more donors exist. If so, a more precise analysis of the compatibility will be
conducted and whether the customer is always voluntary graft will be possible.
It will be achieved only in the light of the state of health of the recipient but
this is beyond the scope of this paper. The compatibility "principal recipient"
can be summarized in the identity of the HLA (Human Leucocytes Antigens)
system characterized by a set of genes on the 6th chromosome. Each individual
has a pair of these chromosomes. On each of them a set of genetic positions
(loci) could take several modalities (alleles) and two people are compatible if
their alleles coincide at each locus. This system can be encoded at multiple lev-
els of detail (choice of the number of loci-3 to 6 - and precision tracking alleles
- among 20 to 40-per locus). But even at a level of precision enough roughage,
then the number of possible types is immense. This great heterogeneity of HLA
types explains the low e�ciency of the system registry. More than 130,000
donors are recorded in the French registry and less than 10% of the patients
involved (approximately 1,000 per year) �nds a donor perfectly compatible and
available. It is therefore natural to ask how to improve the e�ectiveness of the
system. Two approaches are possible: either swell the size of the registry by
recruiting more donors (a doubling in 10 years is scheduled in France) or by
developing the international connection of registries or select the best donors.
Indeed the size of the registry is constrained both by the cost of typing and
the limited budget of the association in charge of the registry. The selection of
donors is di�cult: it could be based on observable variables (birthplace), or on
genetic testing, but it is necessary before considering such an approach to study
potential improvements.

1www.anthonynolan.org.uk
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To address these two issues, we develop a mathematical model of registry system
that simulates the e�ect of the increase and the maximum e�ect of selection un-
der reasonable assumptions based on the distribution of types in the population.
Our results show that, unfortunately, only a very signi�cant increase in the reg-
istry would be useful and selection procedures would be marginal e�ectiveness
on the system's e�ciency.
The process of selecting a donor in a register to satisfy a particular recipient
comprises two stages. The register contains a set of individuals and their phe-
notypes. It tries in the register all donors who have the same type A, B, DR
low resolution (Speiser et al., 1994) that the receiver (Sonnenberg et al., 1994).
If no compatible donor is the process stops (Oudshoorn et al. 1997). If further
examinations are carried out on donors (including the search for e�ective avail-
ability of donor), so as to re�ne the compatibility test. If a fully compatible
donor is found, the transplant can take place, provided that the patient's con-
dition allows. It was thus two levels of compatibility criteria: a �rst level that
is revealed by the register and a second level which is unknown until the donor
is considered for a particular recipient.

The division between the two types of compatibility poses a relevant eco-
nomic issue which will be simply referred to here, so as to clarify the interpreta-
tion of parameters. It is clear that all the criteria of compatibility or availability
varying over time (incompatibility resulting from the fact that the donor himself
may be sick or unavailability of a donor due to pregnancy, for example) can only
part of the second level (unregistered and revealed during the search.

However �xed criteria (sex, HLA typing at high resolution, Speiser et al.,1994)
can be completed in the registry (at a cost of typing high, therefore a smaller
size of the register given budget) or not all be sought at the time of registration.

The number of new registered donors each year in the registry is determined
by a budget. The price of typing is expressed by a rate which has been eval-
uated and that is the price paid to laboratories responsible for this bene�t.
The number of volunteers could exceed the number of individuals that may be
typed or may not correspond to the territorial distribution sought. The level
of dissemination of recruitment campaigns trying to bring closer the number
of volunteers searched over a given period (depending on the available budget)
and the number of volunteers who present themselves e�ectively. The 34 french
centers approved nationally and internationally (accreditation by the WMDA
and the European Federation for Immunogenetics (EFI))are responsible for the
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recruitment of donors and are responsible for their HLA typing and their in-
clusion on the national registry. For example in France, they receive a lump
sum of 183=C by typing in return. The techniques vary typing laboratories. All
laboratories are subject to quality control organized by the AFSSAPS (French
Agency for Health Safety of Health Products). In the case of a hospital struc-
ture, which carries out typages register for the french for example, increasing
returns to scale mean that the average cost in the long term is decreasing: there
is economies of scale and marginal cost is still below the average cost. The
optimum pricing which would equalize the prices and the marginal cost then
inevitably lead to a de�cit of the hospital structure. The �nancing of typing
therefore funding �xed costs of hospitals in charge of typing, by the powers of
public funds. Subsidies aimed at eliminating the de�cit of a public monopoly
(which is the case of the hospital here) can not always be put in place (especially
long-term), even if the de�cit is justi�ed by the criterion of 'optimality collec-
tive that represents the marginal cost pricing. It is often more reasonable to
assume that the public monopoly is required to comply with a balanced budget
constraint: �nance production costs by income at least equivalent becomes a
constraint that should be taken into account to set the tari� policy. It is then
led to de�ne pricing that maximizes the collective surplus, or welfare, under this
additional constraint is a balanced budget. The collective surplus is a measure
of the net bene�t provided by the constitution and management of a register of
bone marrow donors (CSH).

This article focuses on this model and only considers the economic aspects
(see Fève et al 2007) in the conclusion and it does not analyse the statistical
inference on distributions types (see Fève 2006). We believe the e�ectiveness
in terms of probability of �nding a donor for a recipient without any objec-
tive equity between social groups. (with same probabilities considered for the
various ethnic minorities). Moreover, it will focus on a model for a single coun-
try, although in reality the �les of donors are interconnected. Our model could
nevertheless be applied throughout the world with an appropriate adjustment
parameters.

Under these hypotheses, our model shows that, for increasing the register has
an impact within the meaning of our e�ciency criterion, it is necessary that
it is massive. Also optimize the register has little impact (optimization would
be optimal in eliminating donors rare). The equality between ethnic groups
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also had little impact. It should ensure that the mismatch is possible, whatever
the type of transplant, grafting haematopoietic stem cells (CSH) or from cord
blood. This article focuses on CSH but it can be easily applied to other bank
management: the cord blood banks pose problems of a similar nature. In cord
blood banks, cord bloods are preserved during long time and are recorded with
their types. The main di�erences between voluntary donors registries and cord
blood banks are the following. The number of cord bloods in the bank is small
(5 000 in France) but the types are recorded at a high precision and if a cord
blood is compatible at the level of the recording in the bank, the probability to
realize the graft is very high. The main interest of cord blood transplantation is
that the perfect matching between donor and receiver is not required and some
mismatches are accepted. To cover this case we extend our model in section 6
to the case of graft with mismatches. In that case the model may cover volun-
tary donors registries and cord blood banks simultaneously by suitable choice
of parameters.
Our paper is organized in the following way: section 2 de�nes the model of
registry without mismatches and optimal registry is analysed in that case in
section 3. In section 4 we perform some simulations experiments derived from
the French data. In section 5 we introduce some equality constraints between
ethnic groups.Section 6 extends our approach to mismatch with empirical analy-
sis of the cord blood banks. In a last section, we brie�y discuss the economical
implications of our study.
Di�erent previous analysis have considered the matching probabilities for bone
marrow donors registries. Most of these papers have an empirical approach
based on a set of observations (see Ottinger et al. 1994, Oudshoorn et al. 1997,
Rendine et al. 1999, Schipper et al. 1996, Speiser et al. 1994, Tiercy et al.
2000) or propose algorithms to determine these probabilities (Ho�man-Smith
1993, Muller 2002, Schuler et al. 2000, Takahashi 1989, Kollman et al. 2004,
Sonnenberg et al. 1989). The case of minorities has also been treated in few
papers (see Anderson et al. 1996).
Numerous references exist on the number and the distribution of HLA in the
population (see Hurley et al. 1997, Lonjou et al. 1995, Mori et al. 1997 for
example).
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2 Donors, receivers and registry

Each individual of the population possesses a set of characteristics and a graft is
possible between individuals having the same characteristics. We call type the
part of these characteristics which is recorded in the registry of voluntary donors.
For example, the type may be the HLA phenotype restricted to a set of loci on
the two chromosomes. The more frequent case for the type is to consider the
A, B and DR loci and to record the alleles at a low precision level ("two digits"
coding). A registry is de�ned by the list of recorded types 1, ....., J . The receivers
are assumed to be drawn in the population where the frequencies of types are
described by a probability vector pj (pj > 0,

∑J
j=1 pj = 1). By construction of

the list of the types all the pj are strictly positive. Two conditions are necessary
in order to do a transplant to a given receiver :

i, The existence in the registry of individual of the same type. We assume
�rst that only perfect matching transplants are realized. Such a hypothesis
will be relaxed in section 5.

ii, The compatibility at the level of coding in the registry is not su�cient:
more compatibility tests should be done. Moreover, some donors may
also be not available (pregnancy, professional requirements, illness...). We
summarize these complex phenomena by assuming that a donor compat-
ible with a receiver of type j has a probability aj to be fully compatible
and to accept a transplant. Full compatibility and acceptation for di�er-
ent donors are independent events. In general we consider cases where a

depends on j. Indeed if the typing is done in the registry at a low pre-
cision, a graft will be done only under high precision compatibility. The
number of possible high precision types corresponding to a low precision
type depends on the type and usually determines a speci�c to j.

Remark 1: The level of recorded types determines jointly the list (and
the probabilities) of types and the aj 's values. A low level of typing will
generate a "small" number J of types and small aj 's values. Reciprocally a
very precise typing in the registry ("Four digits" and more alleles) increases
J and determines aj 's probabilities closer to 1. The decision between levels
of typing in the registry is an economic decision : the cost of typing is
higher for a precise typing but the search of a donor is more e�cient and
increases the value of the registry.
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A registry design is de�ned by two components :

1. an initial registry : this initial registry is characterized by its size N0 and
by the number N0j of donors of type j. This number may be equal to 0
for many types.

2. an increment process de�ned by the number N of new donors introduced
in the registry and by a sampling mechanism of the types described by
a vector qj (qj ≥ 0,

∑J
j=1 qj = 1) of frequencies. For example if donors

and receivers are drawn randomly in the same population pj = qj and are
equal to the frequency of type j in the population.

We should underline that individuals in the population and registry man-
agement ignore the types. Typing is a complex operation only realized where a
new donor is introduced in the registry. Then, in practice, the registry manage-
ment cannot choose qj . However we �rst imagine situation where (qj)j can be
selected arbitrarily by the registry management and we may imagine optimal
choice for the qj . This optimal qj mechanisms will give an upper bound for the
e�ciency of the registry. In practice the policy of the registry management may
consist in the implementation of screening procedure for the selection of the
donors. These screening mechanism are not considered here (see Fève 2006). In
the paper we will analyse di�erent values of the level N of the increment of the
registry but this value may be constrained by the arrival process of voluntary
or by economic considerations (see Fève et alii, 2007).

We consider in this paper only a single period model : starting for an initial
registry we consider its improvement by a unique increment and not by several
increments through multiple periods. This multiple period problem is a dynamic
programming problem and more mathematical tools are needed and are beyond
the scope of this paper.

As an illustration consider the French registry of bone marrow donors. The
types are de�ned by HLA haplotypes A,B,DR recorded at low precision. The
current registry contains approximatively 130 000 donors and an increment of
10000 by year is scheduled. If we want to analyze the one year mechanism N

is 10 000 but we may also consider a long term variation N = 100 000 or more.
The number J of possible types is a crucial element of the analysis and will be
discussed later on. More than 66 000 di�erent types are present in the registry.
At the world level the interconnection between the national registries gives a
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total registry of more than 11 millions which also increases by several hundred
of thousands people each year. More than 400 000 types have been observed.2

Dé�nition 1: A registry system is de�ned by the list types {1, ..., J}, their
probability in the population pj , the values a′js, the initial registry, the size N

of the increment and the sampling probabilities q′js.

We propose to evaluate a registry by the expected probability to �nd a donor
for a receiver. To illustrate this concept consider just the simple case where
N0 = 0 (no stock) and a = 1 (all compatible donors are fully compatible).
For any receiver the non-realization of a transplant (all the donors have a type
di�erent of j) is a random event which has a probability of (1− qj)N if the type
of the receiver is j. As the types of the future receivers are not given when the
registry is designed we consider the expectation of these probabilities through
the di�erent types :

π = 1−
J∑

j=1

pj(1− qj)N .

This quantity may be viewed as the value of the registry system.

Remark 2: An alternative criterium for the evaluation of the registry design
would be based on the expected waiting time of a patient. Let us assume that
N new donors are drawn with probabilities (qj)j=1,...,J at each period. For a
patient where type is j, the waiting time is 0 with probability 1 − (1 − qj)N , 1

with a probability of (1− qj)N (1− (1− qj)N ). In general the waiting time is t

with a probability of (1 − qj)Nt(1 − (1 − qj)N ). The expected waiting time of
this Pascal distribution is equal to 1

1−(1−qj)N . We average this expected time
with respect to the patient's type and we get the following evaluation criterion:

L =
J∑

j=1

pj
1

1− (1− qj)N
.

Remark 3: We may also introduce a value A for �nding a donor and of cost B

if a donor is not found. In that case the evaluation of the registry in our simple
2The list of possible alleles on each locus A,B, DR is probably known and then de�nes

a huge list of potential types. However most of associations don't exist and the number of
sequences A,B, DR is smaller than the product of the number of alleles on each locus.
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case (N0 = 0 aj = 1 ∀j) becomes :

∑

j

pj

{
A[1− (1− qj)N ]−B(1− qj)N

}
.

We concentrate our analysis to the �rst criterium (the probability to �nd a
donor) and this probability will be evaluate in the general case.

Proposition 1: For N large and qj small, the value of the registry may be
approximated by :

π = 1−
J∑

j=1

pj(1− aj)N0je−ajNqj .

Proof : let �x j the type of a receiver. The number of donors of this type is
N0j + mj where mj is drawn by a Binomial distribution :

Prob(mj) =

(
mj

N

)
q
mj

j (1− qj)N−mj .

Given j and mj the probability of �nding no donor is (1 − aj)N0j+mj . Then
given j only, the probability to not �nd a donor is

N∑

mj=0

(1− aj)N0j+mj

(
mj

N

)
q
mj

j (1− qj)N−mj .

Then

π = 1−
J∑

j=1

pj

N∑

mj=0

(1− aj)N0j+mj

(
mj

N

)
q
mj

j (1− qj)N−mj

π = 1−
J∑

j=1

pj(1− aj)N0jE[(1− aj)mj ],

where mj is drawn by the binomial distribution. For large N and small qj it
is wellknown that this Binomial distribution is approximatively a Poisson distri-
bution parametrized by λj = Nqj . If X is generated by a Poisson distribution
of parameter λ, then E(bX) = eλ(b−1). Then :

π = 1−
J∑

j=1

pj(1− aj)N0je−ajNqj .

2

We will use in section 4 this formula to evaluate this probability in some
particular examples.
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3 Optimal registry

The problem then reduces to maximize the evaluation criterion with respect to
the drawing design of the donors (qj)j=1,...,J for any given value of N . This
analysis has only a theoretical objective because the result will require to be
implemented the knowledge of the types. The result has however an interest as
a reference theoretical optimal registry.

Equivalently the problem is to minimize

1− π =
J∑

j=1

pj(1− a)N0je−aNqj

with respect to the qj 's under the constraints:

J∑

j=1

qj = 1 and qj ≥ 0 ∀j = 1, ..., J.

Proposition 2 : Let rj = ajpj(1 − aj)Noj . We assume that the types j ∈
{1, . . . , J} are ranked such that the rj are non increasing. Then there exists
Jo ≤ J such that :

i) The optimal selection mechanism veri�es :

q0
j = 0 if j > J0

q0
j =

1
aj

J0∑

j=1

1
aj

+
1

ajN
{ln aj − ln ā + ln rj − ln r̄ + ln sj − ln s̄}

where

ln ā =

J0∑

j=1

1
aj

ln aj

J0∑

j=1

1
aj

ln r̄ =

J0∑

j=1

1
aj

ln rj

J0∑

j=1

1
aj

sj = (1− aj) ln s̄ =

J0∑

j=1

1
aj

ln sj

J0∑

j=1

1
aj
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(ā, r̄ and s̄ are the weighted geometric means of the aj , rj and sj)

ii) The optimal probability to �nd a donor is

π0 = 1−





ā p̄ s̄

J0∑

j=1

1
aj

e

− N
J0P

j=1

1
aj +

J∑

j=J0+1

pj(1− aj)Noj





Proof: We consider the optimization problem:

min
(qj)j

J∑

j=1

pj(1− aj)Noje−ajNqj

under
J∑

j=1

qj = 1 and qj ≥ 0.

Consider the Lagrangian :

ϕ(q) =
J∑

j=1

pj(1− aj)Noje−ajNqj + ρ




J∑

j=1

qj − 1




The usual Kuhn and Tucker method leads to the conditions :
∂ϕ

∂qj
= −ajNpj (1− aj)Noje−ajNqj + ρ = 0 if qj ≥ 0

≥ 0 else

The �rst equality is equivalent to :

qj =
1

ajN
ln

ajpj(1− aj)Noj

ρ

and qj ≥ 0 if and only if rj = ajpj(1− aj)Noj ≥ λ
N

As rj is non increasing this is equivalent to say that there exists a unique
J0 ∈ IN such that j ≤ J0 ≤ J implies qj ≥ 0.

Moreover j > J0 implies qj = 0.
The condition

∑J
j=1 qj = 1 is used to determine λ and the optimal solution

for the qj is :




q0
j =

1
aj

J0P
j=1

1
aj

+ 1
ajN





lnrj −
J0P

j=1

1
aj

lnrj

J0P
j=1

1
aj





j ≤ J0

q0
j = 0 j > J0
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which leads to the formula given in the theorem.
The value of π0 is obtained by replacing qj by q0

j .

2

The search of J0 is simpli�ed if we assume that the probabilities aj do not de-
pend on j (aj = a ∀j). In that case the q0

j are non increasing (with the same
ranking as above) because q0

j = 1
aN ln rj + constant (or 0 after J0). So before

the breakpoint J0 the optimal selection probability is an a�ne transformation
of the logarithm of pj(1− a)Noj .

Select an arbitrary J1 and construct qj(J1) exactly as q0
j by replacing J0 by J1.

The minimum value of the qj(J1) is qJ1(J1). Then we may increase J1 until the
two inequalities : qJ1(J1) ≥ 0 and qJ1+1(J1 + 1) < 0. In that case J0 is equal to
J1.

In order to illustrate this general result, we consider a version of the model
where no initial registry is available and where aj = a ∀j. In that case the
optimal sampling frequencies are:





qj = 0 j ≥ J0

qj = 1
J0

+ 1
aN {ln pj − 1

J0

J0∑

j=1

ln pj} j ≤ J0

This optimal mechanism eliminates the rare types (remember that the j are
ranked by decreasing frequencies). For the sampled types the qj are equal to
the uniform probability ( 1

J0
) plus a term depending on the di�erence between

the logarithm of the pj and the mean of the logarithms of the pj . Frequent
types (with a frequency larger than the geometrical mean) should be sampled
with a superior probability than the uniform.
The value of the registry for the optimal sampling is equal to:

π0 = 1− {J0p̄ e
−aN

J0 +
∑

j>J0

pj}

where p̄ is the geometrical mean of the pj truncated at J0. Note that

π0 ≤ 1− J ¯̄p e−
aN
J
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where J ¯̄p is the geometrical mean of all the pj . This bound is obtained by
maximizing π relaxing the positivity constraint on the qj and is then larger
than the maximum under constraints. This upper bound of the e�ciency is a
decreasing function of the number of types and increases with the size of the
registry and with a. This dependance between N and π shows that π0 increases
slowly with N . Remember that this value dominates the e�ciency for all the
sampling mechanism for the donors. The value of J ¯̄p is an element of [0, 1]

(because the geometrical mean is smaller than the arithmetical mean of the pj

equal to 1
J ) and may be viewed as a measurement of the heterogeneity of the

probabilities of the types. For populations with almost uniform distribution
the types J ¯̄p is almost equal to 1 but for heterogenous populations J ¯̄p declines.
Contrarily to some intuition the e�ciency of the optimal registry is higher for
heterogenous populations, because the optimal mechanism will sample in the
frequent types.

4 Simulations

We illustrate our theoretical results by simulations experiments comparable to
real situations. We essentially based our examples on the French registry system
(France Gre�e de Moelle) now managed by a public organization, l'Agence de
Biomédecine. This registry records individuals' typings for three loci (A,B,DR)
at a low precision (two digits). A type is then constituted by three pairs of num-
bers representing the alleles of the genes A,B and DR on the two chromosomes.
At the end of 2003, 107 925 individuals were recorded, 66 164 di�erent types
are observed. Due to the large number of types the individuals values aj are
ignored and we will assume that aj = a for all j. A realistic value for a is 1

3 (1
3 of

donors compatible at the registry level are fully compatible and available for a
graft. This choice is based on a qualitative opinion provided by France Gre�e de
Moelle Registry). The calibration of a registry model using real data is di�cult.
Indeed even if, for example, the French sample is large, its size remains small
with respect to the number of types. Di�erent models have been developed to
estimate the number of HLA genotypes in the French population and an esti-
mation of 500 000 seems valid (see Fève and Florens, 2007). The estimation of
the characteristics of the distribution is also di�cult and we prefer to calibrate
the model with di�erent scenarii and not to use a statistical estimation.
In order to compute the probability to �nd a donor for di�erent sizes of the reg-

14



istry 3, we will make a mathematical tractable approximation of the problem.
Even if the number of types is discrete, we assume a continuous distribution on
the real positive numbers. Let us underline that we do not develop a registry
model with a continuous number of types but we approximate the result ob-
tained in discrete case by a continuous model. All the previous results remain
valid where the sum are transformed into integrals. To simplify our example
we consider cases where no initial registry is available. More precisely we as-
sume that the types are randomly generated from an exponential distribution
of density λ e−λj (j ∈ [0, +∞[). Then, π is given by:

π = 1−
∫ ∞

0
λe−λje−aNq(j)dj.

In case of no selection q(j) = p(j) and this formulae becomes:

π = 1−
∫ ∞

0
λe−λje−aNλe−λj

dj

π = 1− 1
aNλ

(1− e−aNλ)

We need to evaluate λ. This will be done by �xing the median of the distribu-
tion. For example, if we assume that the X more frequent types represent 50%

of the population we have λ = − 1
X ln 1

2 .

We consider six scenarii from X = 30 000 to X = 800 000

Scenario A X = 30 000

Scenario B X = 50 000

Scenario C X = 150 000

Scenario D X = 300 000

Scenario E X = 500 000

Scenario F X = 800 000

We then evaluate the e�ciency of the registry with and without screening (see
Figure 1).

3what was one of the objectives of the MADO project (2001-2005): Optimisation of typing
policies for European hematopoïetic stem cell donor Registries: socioeconomic evaluation of
molecular techniques and recruitment strategies.
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Figure 1:
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Under this exponential approximation the optimal sampling mechanism for the
donors has the following structure. The �rst order condition of the maximization
of π gives:

qj =
1

aN
ln

aNpj

ρ

if qj ≥ 0 where ρ is the Lagrange multiplier of the constraint
∫

q(j)dj = 1. The
condition pj ≥ 0 is equivalent to aNpj

ρ ≥ 1 or to pj greater to some value which
is equivalent to j ≤ J0. We compute J0 from the inequality:

qj =
1
J0

+
1

aN
{ln pj −

∫ J0

0
ln pj dj} ≥ 0

which gives J0 solution of

J0 ln pj −
∫ J0

0
ln pj dj − aN = 0

or in the exponential case

J0 =

√
2aN

λ
.

In that case, we easily get:

π0 = 1− {J0 λe
−λJ0

2
−aN

J0 + e−λ J0}

and the optimal sampling mechanism is:

{
qj = 1

J0
+ λ

aN {J0
2 − j} j ≤ J0

qj = 0 j > J0

We illustrate this mechanism by the following graph (see Figure 2):
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Figure 2:

Finally the e�ciency of the optimal mechanism is represented in �gure 1 for
di�erent values of X.
The two main comments following from these results are the requirement of a
large registry and the low e�ciency of a screening procedure. Even for scenario
B (which is "optimistic" in terms of heterogeneity of HLA genotypes) a multipli-
cation by 10 of the present French registry is required to reach more than 80% of
e�ciency. Moreover the di�erence between dashed and continuous curves shows
that the impact of any selection of donors would be very low. Contrarily to
the intuition of numerous researchers in this �eld the optimal mechanism is not
oriented to over sample the rare types but to the reverse. In our case (Figure
2), e−J0λ = 0.25 of the population is excluded of the possibility of a graft and
frequent types should be over sampled. If a population has for example ethnic
minorities (and then very rare types) the strict argument of e�ciency leads to
an elimination of this group. In other terms the objective to give the same
chance to receive a graft for each member of an ethnic group requires a size of
the registry (and then a cost) larger than the size required to get this chance
for an individual randomly drawn in the population.
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5 Equality constraints between ethnic groups

If a registry of voluntary donors is formed without donor's selection the probabil-
ity of �nding a donor may be very di�erent between ethnic groups, for example
in the case where the groups are a large majority of people and a small eth-
nic minority (see Bergstrom et al., 2008). As we have shown in the previous
sections, an optimal selection of donors which maximizes the ex-ante matching
probability strenghtens this phenomena by the elimination of the "rare" types
which belongs to the minority's types. Then the objective of the registry regula-
tor may be to design the registry in order to equalize the probability of �nding a
donor in each group. We assume that the belonging to a group is unambiguous
and known both by the registry management and the individuals.
We simplify our presentation by considering two groups in the population. The
extension to some groups follows obviously.
Let us assume that each group is characterized by the following characteristics:

i) A set of types and a probability distribution (pr
j)j=1,...,Jr for group r(r =

1, 2)

ii) a value of ar for each group. For simplicity we don't consider various
values for ar for di�erent types but a may depends on the group.

At the level of the whole population we still have a single list of types, a dis-
tribution (pj)j=1,...,J and a value a equal to the mean between the ar weighted
by the proportions of the two populations; We specify also our presentation by
considering the case where no initial registry exists but here also the extension
is obvious.
Let us assume that the total size N of the registry if �xed and the objective of
the registry is to equalize the probability of �nding a donor by �xing N1 and
N2 = N − N1, the size of the registry in each community. Two cases may be
considered:

- no optimal selection in each group. In that case it follows from proposition
1 that N1 is obtained by solving in N1:

J1∑

j=1

p1
j e−a1N1p1

j =
J2∑

j=2

p2
j e−a2(N−N1)p2

j .
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The cost in term of ex-ante probability may be obtained by comparing 1
minus the previous value to

1−
J∑

j=1

pj e−aNpj

- optimal selection in each group. We may apply the results of proposition
2ii). From each group we derive an optimal probability π01

(N1) and π02
(N−N1)

and N1 is obtained by solving:

π01(N1) = π02(N −N1)

This value may be compared to π0(N), the optimal value without equality
constraint. If more than two groups are considered we get r − 1 unknowns
values (N1, ..., N r−1 if r groups exist and we have r − 1 equations. In the case
of optimal selection, we have:

π01(N1) = π02(N2)..... = π0r−1(Nr − 1)

= π0r(N − (N1 + ..... + Nr−1)).

This computation may be illustrated by considering the case of two groups with
no selection where the frequencies of the types are approximated by exponential
distributions in the two groups. Following the notations of section 2 where
the characteristics of each group are indexed by 1 and 2, the sizes of the two
registries N1 and N − N1 which equalize the probabilities of �nding a donor,
satis�es:

1
a1N1λ1

(1− e−a1N1λ1
) =

1
a2N2λ2

(1− e−a2N2λ2
)

which is equivalent to:

a1N1λ1 = a2N2λ2

or, using the relation between λ1, λ2 and X1, X2:
a1N1

X1
=

a2(N −N1)
X2

a1N1

X1 = a2(N−N1)
X2 ⇒





N1 =
a2

X2

a1

X1 + a2

X2

N

N2 =
a1

X1

a1

X1 + a2

X2

N
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Let us simplify by assuming a1 = a2 and de�ne α1 and α2 by X1 = α1P1 and
X2 = α2P2 where P1 and P2 are the populations of the groups. The values α1

and α2 are in [0, 1] and measure the heterogeneity in each group. Hence,

N1 =
α1
α2

P1
P2

1 + α1
α2

P1
P2

N

N2 =
α2
α1

P2
P1

1 + α2
α1

P2
P1

N

The size of each group depends on the two ratios P1
P2

and α1
α2

the relative size
and the relative heterogeneity of each group. The extension of this results to
many groups and gives:

N0 =
αlP l

∑r
l=1 αlP l

N

where r is the number of groups.
In order to evaluate the impact of the equality constraint under the probability
of �nding a donor, we have performed some simulations in the spirit of section
4. We assume that the shape of frequencies probabilities may be approximated
by exponential densities both in each group and in the whole population. If
X, X1, X2 represent the number of types of the whole population and for the
two sub groups needed to describe one half of the population, we assume �rstly
that the families of genotypes are totally distinct (X = X1 + X2). Then it is
possible to consider the case where some types are common (X ≤ X1 + X2).
We assume a di�erence between the a1 and a2 parameters and several values of
the size of the registry N are selected.
From previous results, we obtain (see table 1):

- the value of π (no selection, no equality constraint)

- the values of π1 = π2 (no selection, under equality)

- the value of π0 (optimal selection, no constraint)

- the values of π01 = π02 (optimal selection in each group under equality
constraint)

The table shows also the size of N1, N2 the two registries for the two groups
under equality constraint.
The �nal empirical simulation consists in the computation of the size Ñ of the
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whole registry which gives the same probability for each group (as the proba-
bility without constraint with a registry of size N). Intuitively, Ñ − N is the
price to pay (in terms of the increment of the registry) of the equality constraint
keeping the probability of �nding a compatible donor.

Table 1: Impact of equality constraint between ethnic groups under e�ciency
N 200 000

pop1 50 000 000

pop2 13 000 000

a1 0.40

a2 0.30

X1 200 000 X1 200 000 X1 200 000 X1 200 000
X2 500 000 X2 500 000 X2 100 000 X2 100 000

N1 46 154 N1 46 154 N1 120 000 N1 120 000
N2 153 846 N2 153 846 N2 80 000 N2 80 000

X 700 000 X 500 000 X 300 000 X 200 000
Ñ 234 845 Ñ 328 783 Ñ 210 758 Ñ 316 138
π π1 = π2 ∆ π π π1 = π2 ∆ π π1 = π2 ∆ π π π π1 = π2 ∆ π

0.037 0.031 0.005 0.051 0.031 0.019 0.083 0.079 0.004 0.121 0.079 0.042

π0 π01 = π02 ∆ π0 π0 π01 = π02 ∆ π0 π0 π01 = π02 ∆ π0 π0 π01 = π02 ∆ π0

0.058 0.051 0.008 0.078 0.051 0.027 0.119 0.114 0.005 0.165 0.114 0.050
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N 500 000

pop1 58 000 000

pop2 3 000 000

a1 0.40

a2 0.30

X1 200 000 X1 200 000 X1 200 000 X1 200 000
X2 300 000 X2 300 000 X2 50 000 X2 50 000

N1 166 667 N1 166 667 N1 375 000 N1 375 000
N2 333 333 N2 333 333 N2 125 000 N2 125 000

X 500 000 X 250 000 X 250 000 X 220 000
Ñ 592 623 Ñ 1 185 246 Ñ 526 776 Ñ 598 609
π π1 = π2 ∆ π π π1 = π2 ∆ π π1 = π2 ∆ π π π π1 = π2 ∆ π

0.125 0.107 0.018 0.023 0.107 0.123 0.230 0.220 0.010 0.256 0.220 0.035

π0 π01 = π02 ∆ π0 π0 π01 = π02 ∆ π0 π0 π01 = π02 ∆ π0 π0 π01 = π02 ∆ π0

0.170 0.149 0.021 0.281 0.149 0.133 0.281 0.271 0.010 0.307 0.271 0.035
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N 1 000 000

pop1 62 000 000
pop2 1 000 000

a1 0.4
a2 0.3

X1 250 000
X2 20 000

N1 903 614
N2 96 386

X 270 000
Ñ 1 020 625

π π1 = π2 ∆ π

0.374 0.368 0.005
π0 π01 = π02 ∆ π0

0.419 0.414 0.005

These simulations are just examples and we see that in most of cases the di�er-
ence between cases without or with constraint (∆π or ∆π0) is not very impor-
tant or equivalently that the value of Ñ −N is relatively small. An important
di�erence is computed in the case of a small minority (3 000 000 compared to
58 000 000) very heterogenous (X1 = 200000, X2 = 300000 and α1

α2
= 0.034).

This situation may be realistic in some circumstances. In that case the cost of
equality is a division by 2 of the e�ciency of the registry and the registry should
be multiply by more than 2 in order to keep the e�ciency constraint.
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6 Extension to the possibility of mismatch:
Application to cord blood bank e�ciency

In the previous analysis only perfect matching between donor and receiver is
considered. We now analyze a model where mismatch is accepted under some
conditions. This generalized hypothesis is suitable to consider the application
of our model to cord blood banks. Cord blood are preserved in several banks
in di�erent countries (see Katz�Benichou, 2007). The size of these banks are
smaller than the size of the registries (5 000 in France for example) but non
fully compatible transplants are realized. For example it is commonly accepted
that four identical alleles under the six considered are su�cient to decide the
transplant.
The model is identical to the previous one but we introduce a supplementary
mechanism. We call Zj ⊂ {1, ..., J} the set of types compatible to a speci�c
receiver of type j. In case of perfect matching Zj reduces to {j} but in case of
imperfect matching Zj may have many components (including j).
We consider the extension of our previous analysis under two simpli�cations:
we assume that no initial registry or bank exists (we evaluate the e�ciency of
the realization of a bank and not of the increment of an existing bank ) and we
consider the case where aj = a ∀j. In the case of cord blood the level of typing
is usually high and there is no individual decision to accept to be a donor or
not. The main element determining the non use of the cord blood is its possible
bad quality which may be assumed to have a probability independent of the
type. It is natural to consider case where a is high (0.9 for example) but with
a great number of types because the typing is extremely precise. Note that
the possibility of mismatch concerns only the recorded type and not the hidden
phenomena modelized by the a′js.
We �rst extend proposition 1.

Proposition 3: The e�ciency of a registry or a bank in case of imperfect
matching is approximated by:

π = 1−
J∑

j=1

pj e

−aN

J∑

j=1

1(l ∈ Zj)qj

where 1(l ∈ Zj) = 1 if l ∈ Zj and 0 else.
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Proof: The proof is immediate. Fix j and consider that all the types in Zj

are identical for the purpose of the graft. This group of types has a probabil-

ity of
J∑

l=1

1(l ∈ Zj)qj = Qj . The proof of proposition 1 may be reproduced

replacing qj by Qj and we get the result.

2

Let us remark that the family (Qj)j=1,...,J does not constitute a probability

because
J∑

j=1

Qj = K 6= 1. We call K the weighted average number of compatible

types and we may normalize the Qj into q̃j = 1
K Qj which satisfy the condition

of a probability measure on {1, ..., J}. Then the e�ciency may be rewritten:

π = 1−
J∑

j=1

pj e−aNKq̃j .

The e�ect of mismatch is then to transform the initial sampling mechanism from
qj to q̃j and to multiply the size N of the registry by K.
We have used in the section 4 an exponential approximation to calibrate the
e�ciency of the registry. An identical computation may be realized here.
Assume that the number of types is in�nite and exponentially distributed with
a parameter λ and that q̃j is also exponentially distributed with a parameter µ

then the e�ciency of the registry is equal to:

π = 1− λ

µ(aNKµ)
λ
µ

γ(
λ

µ
, aNKµ)

where γ(a, x) is the lower incomplete gamma function (γ(a, x) =
∫ x
0 ta−1e−tdt).

This result follows immediately from the computation:
∫

p(j) e−aNq̃(j)dj =
∫

λ e−λje−aNKµ e−µj
dj

=
λ

µ(aNKµ)
λ
µ

∫ anKµ

0
y

λ
µ
−1

e−y dy

by change of variable (y = aNKµ e−µj).
This result may be used to perform some calibrations reproducing the French
situation. We know that the French cord blood bank has around 5 000 cord
bloods and that 30% of the potential receivers �nd a compatible cord blood in

26



the French bank. The exercise is then to �nd a reasonable set of parameters
compatible to this result.
Our simulations are realized under the assumption of absence of screening (pj =

qj) and under continuous approximation. We will consider two cases: �rst λ = µ

(the frequencies of the aggregated types are similar to the original one) and
second that λ = 1.5 µ. This second case is motivated by an empirical argument:
using our French data set and using the de�nition of mismatch founded of at
least four alleles in common over six, we estimate this ratio to 1.424. In the
cord blood case types are more precise than in the marrow donor registries
(four digits typing plus more information on the compatibility criteria). As in
section 4 we calibrate λ by choosing a value X such that the 50% more frequent
individuals has a type smaller than X (if the types are ranked by decreasing
frequencies). We select X = 500 000, 1 000 000 and 1 500 000. Remember that
λ = − 1

X ln 1
2 and the X is higher as in section 4 because we have in mind a high

precision typing.

- The value of a is high in the cord blood bank and we choose a = 0.9.

- The value of K is a key parameter. To evaluate this number we use
the French registry of voluntary donors which gives 66 164 types and
we compute K = 297 with the previous de�nition of mismatch. This
number may be interpreted: it means that at a low typing precision, a cord
blood is equivalent to 297 donors. This number should be manipulated
with caution: this result is derived from a sample and computed to a low
precision typing. The actual value is probably lower than this value and
we try K = 100, 200 and 300.

The results are summarized in Table 1:
Under the previous assumption, if we consider for example the case where
K=200, X=500 000, λ

µ = 1.5 and a=0.9 the evolution of the e�ciency as a
function of the size of the cord blood bank is summarized in the following table:

4The estimations of λ
µ

is based on the property that for exponential distribution, λ
µ

is
proportional to the ratio of eE ln(p)/eE ln(q)) and this ratio is estimated by the ratio of the
geometrical means of pj and qj .
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Table 2: E�ciency of a cord blood bank of size 5 000

λ = µ

X \K 100 200 300
500 000 0.26 0.43 0.55

1 000 000 0.14 0.26 0.35

1 500 000 0.10 0.18 0.26

λ
µ = 1.5

X \K 100 200 300
500 000 0.22 0.38 0.50

1 000 000 0.12 0.22 0.30

1 500 000 0.08 0.15 0.22

Table 3: E�ciency of a cord blood bank as function of its size

X π

5 000 0.38

10 000 0.59

15 000 0.72

20 000 0.80

25 000 0.85

30 000 0.88

We see that the observed performance may be reproduced by these values but
more statistical analysis are required to con�rm these results.
The computation of the optimal registry under mismatch assumption is di�cult
and up to our knowledge no solution on closer form may be derived; However
if we optimize the e�ciency without imposing the constraint qj ≥ 0 we may
derive an upper bound of the e�ciency.
Let us de�ne the following matrices:

B = (bjl)j,l bjl = 1(l ∈ Zj)

where B is assumed to be invertible

P =




p1 0

.

.

0 pj




p =




p1

.

.

pJ




A = BP

28



where 1 ∈ RJ =




1

.

.

.

1




if x =




x1

.

.

xJ




ln x =




lnx1

.

.

lnxJ




ex =




ex1

.

.

exJ




Proposition 4: The optimal e�ciency π0 in presence of mismatch satis�es the
inequality:

π0 ≤ 1− (1′ B−1 1) e
1′ B−1 ln(B−11)

1′ B−1 1 e
1′ B−1 ln(p)

1′ B−1 1 e
−aN

1′B−11

Proof:

We maximise π = 1−
∑

j

pj e

−aN

∑

l

ql1(l ∈ Zj)
under the constraint

∑

j

qj = 1

and not under the positivity constraints. As some constraints are relaxed the
maximum reached is greater than the maximum under constraints.
Technically using the previous notations the �rst order conditions are summa-
rized by:

A e−aNBq = λ1

Or equivalently there exists a constant c such that:

q = − 1
aN

B−1 ln(A−11) + c B−11

using 1′q = 1 we get

c =
1

1′B−11
(1 +

1
aN

1′B−1 ln(A−11))

and

q = − 1
aN

B−1 ln(A−11) +
1

1′B−11
B−11+

1
aN1′B−11

1′B−1 ln(A−11)B−11

and plugging this value, we get:

π0 ≤ 1− (p′A−11) e
−1B−1 ln(A−11)

−1B−11 e
−aN

−1B−11

objective function. Moreover, elementary computation shows that p′A−11 =

1′B−1P−1p = 1′B−11 and 1′B−1 ln(A−11) = 1′B−1 ln(p) + 1′B−1 ln(B−11)

and the result follows.

2
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This result is complex but it may be simpli�ed in a particular case. Let us
assume that the cardinality of each Zj is identical for any j and equal to L. In
that case B−11 = 1

L1 and 1′B−11 = J
L , the total number of types divided by

the number of types compatible to any type. In that case 1′B−1 ln(B−11) =

−1′B−11 ln L and the inequality becomes:

π0 ≤ 1− J e
L
J
1′B−1 ln p e

−aNL
J

In the case of cord blood banks the matrix B is usually symmetric: for example,
the mismatch is possible if donors and receivers have four alleles in common
among the six. In that case using the previous argument 1′B−1 = 1

L1
′ and the

formulae may be simpli�ed by :

π0 ≤ 1− J ¯̄p e
−aNL

J

where ¯̄p has been de�ned as the geometrical mean of the frequencies. In that
case the upper bound is exactly identical to one obtained in section 4 except
that J is replaced by J

L .

We may see if our assumption (cardZj constant) is validated empirically. If we
take the French sample of marrow donor registry and the previous de�nition of
possible mismatch, the cardinality of Zj is not constant as shown in Figure 3.
Let us remind that our sample is small in comparison to the number of types. A
statistical theory of this estimation is needed to reject correctly our assumption.
This assumption may be used to give an order of magnitude of the e�ciency of
a cord blood bank without very complex computations.

7 Conclusion

In this paper we have constructed a model which formalizes the matching be-
tween donors and receivers of Haematopoietic Stem cells. This model has been
extended to some possibility of mismatch between the type of the donor and
the type of the receiver and then it may be used to compare the e�ciency of
the two systems. A registry of size N determines a probability π(N) of �nding
a fully compatible donor to any receiver. If the number of receivers during a
given period is equal to M and if the value of �nding a compatible donor is
V , the value of the registry is equal to π(N)MV and its cost is evaluated to
(1+o)C(N) where C(N) is the cost function of a registry of size N and o is the
opportunity cost of public fund in a case where the registry is �nanced by the
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Figure 3: Histogram of the cardinality of the group of possible donors (Zj)
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state. 5Then the �rst order condition which determines the optimal size of the
registry is equal to:

∂

∂N
π(N) =

(1 + o)
V M

∂

∂N
C(N).

This equality is obtained by equalizing the derivative of the value of the system
Π(N)V M and of the cost (1+ o)C(N) (see Fève et al. 2007). We illustrate this
computation for two cases roughly representing the value of a voluntary donor
registry and a cord blood bank for a country like France. The cost is assumed
to be linear with no �xed cost and a marginal cost equal to c.
We consider the case where the model is approximated by a model of continuous
types exponentially distributed. In case of mismatches, we assume that there
is no selection of donors and that the normalized frequencies of the groups of
possible donors are also exponential. The scenarii are then characterized by λ

(or the median X), the ratio λ
µ , a, M, K, c and o. The previous equation is used

to compute numerically the optimal size of the registry and we derive the value
π(N) and π(N)− (1 + o) C(N).

5The costs considered in the model are only the costs of the registration and the costs of
maintenance of the registry and not the search costs which are negligible
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Table 4: Economic evaluation of registries and cord blood banks

Voluntary donors Cord blood
Parameters registry bank

I II III IV
X 100 000 200 000 500 000 1 000 000

λ/µ* - - 1.5 1.5
K 1 1 200 200
a 1/3 1/3 0.9 0.9
V 60 000 =C 60 000 =C 60 000 =C 60 000 =C

M (for 10 years) 10 000 10 000 10 000 10 000
δ 180 =C 180 =C 1 850 =C 1 850 =C
o 0.5 0.5 0.5 0.5

Optimal dimension 655 966 329 494 32 456 46 737
Probability to �nd a donor 0.48 0.17 0.89 0.83

Social value ** 291 M̄ =C 100 M̄ =C 537 M̄ =C 501 M̄ =C

*λ = −1
X ln1

2 **π(N)V M − cN

The registry of voluntary donors is assumed to be recorded at a low precision
but the cord bloods are typed at a high precision and we have considered a
low hypothesis about the number of types (I and III) and a high hypothesis (II
and IV). This result should be taken with caution because the number and the
distribution of HLA genotypes at a high precision coding is largely unknown;
These results are calibrated for a country like France. The costs are the values
usually accepted and the value of �nding a donor is derived from Fève (2006)
and the value V is obtained by Fève et al. (2007),(see also Viscusi,Aldy, 2003).
We assume that the value of a marrow transplant and of a cord blood transplant
are the same. We also assume that this value does not depend on the quality
of matching between the cord blood and the receiver. The cost of cord blood
bank comes from a private communication given by Gregory Katz�Benichou.
We have discussed in the present paper the value of K.
Under these hypotheses the results are non ambiguous in favor of the cord blood
bank which seems to give an excellent e�ciency at a low cost. This result shows
that the size of the actual French bank should be multiplied by at least 6 to get
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the optimal e�ciency. We want to insist on the fact that these results require
more empirical studies to �x the parameters:the comparison between the two
systems seems to be very robust.
At least two aspects of registries and cord blood banks are not considered in this
paper: the international interconnection and the minorities. These two aspects
are related because the improvement of the probability of a graft in a minority
may be obtained in a better way with international collaboration than by a
distortion of the national registry. We are working as extension on our model
where we quantify this type of question.
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