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Abstract

We model investments in capacity in a homogeneous product duopoly facing uncertain demand growth. Capacity

building is achieved through adding production units that are durable and lumpy and whose cost is irreversible.

There is no exogenous order of moves, no first-mover or second-mover advantage, no commitment, and no finite

horizon; while building their capacity over time, firms compete à la Cournot in the product market. We investigate

Markov Perfect Equilibrium (MPE) paths of the investment game, which may include preemption episodes and

tacit collusion episodes. However, when firms have not yet invested in capacity, the sole pattern that is MPE-

compatible is a preemption episode with firms investing at different times, but both have equal value. The

first such investment may occur earlier, and therefore be riskier, than socially optimal. When both firms hold

capacity, tacit collusion episodes may be MPE-compatible with firms investing simultaneously at a postponed

time (generating an investment wave in the industry). We show that the emergence of such episodes is favored

by higher demand volatility, faster market growth, and lower discount rate (cost of capital).

Key words: Real Options; Dynamic Duopoly; Lumpy Investments; Preemption; Investment Waves; Tacit Collu-

sion.

J.E.L. classification: C73, D43, D92, L13.



1. Introduction

Investment games played by competing firms in oligopolistic markets typically share, not always but often, the

following stylized characteristics: (i) the development of the market is uncertain and firms have similar knowledge

of the underlying random process; (ii) the firms’ production capacities are built over time through new units of

significant size; (iii) investments in real assets are substantially irreversible; (iv) firms compete in the product

market, given their installed production capacity, while they develop that capacity over time; (v) a firm may

invest at any time as the market develops and as its competitors build their own capacity; (vi) at the industry

level, new investments sometimes come in waves with firms building new plants simultaneously and sometimes in

sequences with firms investing at different dates; (vii) as the market matures, absent drastic innovations, capacity

building eventually comes to an end with capacities remaining essentially the same for an indefinite time.

We develop a model with features (i) to (v) above, which generates results (vi) and (vii). Moreover, we are

able to address the following questions at some level of generality: What is the link between the level of market

or industry development and the level of competition? Do simultaneous investments (investment waves) signal

intense competition or tacit collusion? Can investments occur earlier than in perfect competition or in a social

optimum? What is the effect of demand volatility, market growth rate, and cost of capital (discount rate) on the

intensity of competition?

More specifically, we consider a homogeneous product duopoly industry whose market demand growth is

stochastic. Firms compete continuously à la Cournot, while building up their capacity through the acquisition

of multiple discrete (lumpy) units of capacity at times that are endogenously determined. There is no assumed

order of moves in capacity building, no first-mover or second-mover advantage, and no commitment on future

investments or strategies. Rather, firms hold investment options that they exercise strategically at optimally

chosen dates, which we characterize. We determine the value of those options as well as the value of the firms

holding them.1 This is clearly a complex agenda and the analysis, although simplified as much as possible, remains

1Remarkable progresses in the analysis of real option games have been realized in recent years. Among major contributors,
Grenadier (1996) uses a game theoretic approach to determine the timing of options exercise in the real estate market; Smets
(1995) provides a treatment of the duopoly in a multinational setup, which serves as a basis for the oligopoly discussion in Dixit
and Pindyck (1994); Lambrecht and Perraudin (1996), Décamps and Mariotti (2004), and Pawlina and Kort (2006) investigate the
impact of asymmetric cost on firms’ investment strategies; Baldursson (1998) considers a duopoly model where firms make continuous
incremental investments in capacity showing that when firms differ in size initially, substantial time may pass until they are of the
same size; Grenadier (2002) provides a general solution approach for deriving the equilibrium investment strategies of symmetric
firms facing a sequence of investment opportunities with incremental capacity investments; Weeds (2002), Huisman (2001), Huisman
and Kort (2003) study option games in a technology adoption context; Boyer et al. (2004) study a duopoly with multiple investments
under Bertrand competition; Smit and Trigeorgis (2004) discuss different strategic competition models in the context of real options,

1



somewhat intricate.

Methodologically, we consider games involving multiple investments and admitting one or several equilibrium

sequences of investments. We assume that investments are irreversible and capacity units do not depreciate.

As a result capacity can only increase and it is reasonable to refer to the initial capacities held by the firms at

the beginning of the game. A state of the game is characterized by a market development level and installed

production capacities. If a MPE of the game is such that both firms invest simultaneously in some state, we

say that there is tacit collusion in that state, no matter the sequence of previous or subsequent investments

may be. If a MPE of the game is such that one firm invests earlier than the other in some state, we say that

there is preemption in that state, no matter the sequence of previous or subsequent investments may be. We

characterize the factors and conditions (market demand growth and volatility, discount rate) for which along a

given equilibrium sequence one may encounter both preemption investment episodes and collusion-like ones.

As market grows, a MPE investment sequence involves several investments as additions to capacity carried

out at different times by each firm. Firms may sometimes invest separately, in an episode of preemption, and

sometimes simultaneously, in an episode of tacit collusion. Authors focusing on single investment episodes (e.g.

Nocke, 2007; Fudenberg and Tirole, 1985) then refer to underinvestment (joint investment, tacit collusion) MPE

or to diffusion (preemption) MPE as such classification raises no ambiguity. But in our case, a MPE path may

contain both tacit collusion episodes at some times or in some states, and preemption episodes at other times or

in other states.

Our main results are as follows. For any combination of firm capacities at which further investment is profitable

for both firms, there exists aMPE starting with an episode of preemption. For some capacity combinations, which

we characterize, there exists also MPE exhibiting an initial episode of tacit collusion. Episodes of tacit collusion

never exist in the early stages of market development, that is, when at least one firm holds no capacity.

In preemption episodes, incremental rents are equalized and partly dissipated. In tacit-collusion episodes,

firms exercise market power by postponing their respective investments: the next investments by each firm occur

simultaneous at a chosen development threshold, thereby generating an investment wave in the industry. When a

MPE exhibiting an initial episode of tacit collusion exists, there are typically numerous ones, which are all Pareto

superior from the firms’ viewpoint to MPE exhibiting an initial episode of preemption. Furthermore, the market

while Chevalier-Roignant and Trigeorgis (2010) discuss option games. Boyer, Gravel and Lasserre (2010) review that literature.
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development level at which joint investment would maximize combined profits is MPE compatible only if firms

are of equal size; when firms differ in size tacit collusion falls short of maximizing combined profits.

Even though the investment game has no finite horizon, it eventually comes to an end. We characterize

the endgame conditions. This allows us to use backward induction to characterize the equilibrium investment

sequence. As discussed further below, this result is closely dependent on the way we model market demand

growth. If along an equilibrium investment sequence, a point is reached where endgame conditions are close to

be met while firms have different capacities, then the smaller firm will be the sole investor for the remainder

of the game. Thus, while firms may be of different sizes along the equilibrium path, no size advantage can be

maintained forever.

We also show that higher market volatility enlarges the set of conditions under whichMPE with tacit collusion

episodes may exist. Similarly, this set of conditions is enlarged by higher expected market growth as well as by a

lower cost of capital. Investment waves (simultaneous investments by both firms) may then signal the collusive

exercise of market power in tacit collusion episodes of a MPE.

The related literature

The present paper extends the literature on strategic investment, most notably the seminal contributions

of Gilbert and Harris (1984), Fudenberg and Tirole (1985), and the more recent contribution of Genc et al.

(2007), Besanko and Doraszelski (2004) and Besanko et al. (2010). These contributions brought forward the

analysis of the role of investment competition in shaping the structure of a developing industry, including rent

equalization and dissipation in dynamic investment games, tacit-collusion conditions in such games, and the

durability of a first-mover advantage. Investigating the role of investment in acquiring market dominance in a

very general framework, Athey and Schmutzler (2001) came to the conclusion that, without firms’ commitment

to future strategic investment plans, there is little hope to obtain definitive predictions outside specific models.

In an effort to provide tractable results, modern investment games indeed were often modeled in a way that

failed to exhibit some of the stylized facts mentioned above. Such models include models of technology adoption,

models of entry, and numerous two-stage models where firms first make and commit to long-term decisions (stage

one) before competing in short-term decisions afterwards (stage two). Although the possibility of preemption

and collusion equilibria has been widely described within two-stage games,2 such games cannot account for the

2Kreps & Scheinkman (1983), Deneckere & Kovenock (1996), Allen et al. (2000), and Mason and Weeds (2005), to name a few.
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possible succession of competitive and collusive episodes within a given industry investment path.

Gilbert and Harris recognized early the role of lumpy and strategic investments in dynamic frameworks. Our

endgame characterization (no size advantage can be maintained forever) is reminiscent of Gilbert and Harris

(1984, Proposition 1) who find an open-loop Cournot-Nash equilibrium where capacities stay within one unit

of each other during the whole duopoly development. However, when the commitment assumption that goes

with open loop is removed, a drastic change occurs: one firm builds all plants while the other builds none

(Proposition 6). This result can be traced back to an ad hoc asymmetry in their game formulation to do away

with commitment. Fudenberg and Tirole provided the methodological tool for analyzing preemption and joint

investment in continuous time without precommitment nor ad hoc asymmetry. We use their methodology, adapted

to a continuous diffusion process.

Genc et al. used the concept of S-adapted open-loop equilibrium of Haurie and Zaccour (2005) to analyze

different formulations of dynamic investment games. They showed in particular that more volatility in demand,

providing higher profits for firms, could favor entry in the relevant markets. Besanko and Doraszelski developed

a computational approach to study discrete dynamic investment games for which both preemption and tacit

collusion episodes exist within MPE, that is, in their case, a preemption race in the early stages followed by

capacity coordination through capital depreciation in later stages. They show that low product differentiation

and low sunkness of investments favor such sequences of investments. An important characteristic of these

works is the intended and successful application of the models to real industrial cases. Besanko et al. wonder

why “... some industries experience both preemption races and capacity coordination, (while) others seem to

sidestep preemption races altogether.” (p. 2). While the comparison with our model is difficult (we have quantity

competition and homogenous products while they have price competition and differentiated products; we have

infinite Markovian dynamic market uncertainty while they have infinitely repeated independent draws; we have

irreversible investment while they have some degree of reversibility), their analysis and ours are first steps in

identifying conditions under which episodes of competition may alternate with episodes of tacit collusion in an

equilibrium sequence of industry investments.

Our model has some similarities with Nocke (2007)’s dynamic game of quality adoption. However, besides

differences discussed by Nocke between quality investment games and capacity investment games, the main

difference is that we study an industry under continuous stochastic development rather than an industry having
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reached a given level of development. As a result, investments are not concentrated in equilibrium at any single

date or level of market development, but occur in a sequence. Competition intensity may vary as investments

proceed along an equilibrium sequence.

As mentioned above, we show that the set of conditions under which tacit collusion episodes may exist within

MPE is enlarged with higher discount factors (lower discount rates). This is a form of folk theorem which is

reminiscent of but different from Dutta’s theorem (1995a, 1995b) stating that, for sufficiently patient players,

there exist a tacitly collusive MPE equilibrium along which firms maximize their joint value. In our model, joint

profit maximization can appear in tacit collusion episodes. However, the investment game eventually comes to

an end so that players may not be able to benefit from being sufficiently patient as in Dutta. Consequently other

considerations affecting the ability to punish deviations come into play. It turns out that joint value maximization

is reachable only if firms are of equal size.

This paper is organized as follows. We present the model, the competition framework, the multiple unit

investment game, and we characterize the endgame conditions in Section 2. We begin Section 3 with the explicit

analysis of three different situations that essentially cover all relevant ones: no existing capacity; identical positive

capacity levels; positive but different capacity levels. We then combine these special cases in such a way that

they correspond to alternative states in a single dynamic investment game. We conclude in Section 4. Detailed

proofs are provided in the Appendix.

2. The model

2.1 Industry characteristics

We consider the development of an industry where demand is affected by multiplicative random shocks. The

inverse demand function at time t ≥ 0 is given by:

P (t,Xt) = YtD
−1(Xt), (1)

where Xt ≥ 0 is aggregate output, Yt ≥ 0 is a random shock, and D : IR+ → IR+ is the non-stochastic component

of demand.
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Assumption 1

Demand D(·) is strictly decreasing, continuously differentiable and integrable on IR+, and D(0) = limp↓0D(p) <

∞; the mapping x �→ xD−1(x) is strictly concave on (0,D(0)); aggregate shocks (Yt)t≥0 follow a geometric

Brownian motion:

dYt = αYtdt+ σYtdZt (2)

with Y0 > 0, α > 0, σ > 0, and (Zt)t≥0 a standard Brownian motion with respect to the complete probability space

(Ω,F , P ).

Multiplicative separability of the inverse demand function is frequently used in dynamic competition models,

with D−1 referred to as the generic inverse demand. Nocke (2007) uses a unitary elastic version of it in a dynamic

game of quality and capacity investment. Bayer (2007) uses another version in a duopoly model of investment

timings where the function D is reduced to four possible values implied by two alternative levels of capacity and

two states of nature. In contrast, our model involves a continuous volatile market development that proceeds

indefinitely. Since there is no variable cost of production, there is a theoretical possibility for the price to become

arbitrarily close to zero. We assume D (0) to be finite as no good, even if it is free, is consumed in infinite quantity.

This assumption rules out constant elasticity over the entire price-quantity range, but is compatible with any

conventional demand specification such that D (0) is finite, including specifications such as Bayer’s. Multiplicative

separability in (1) may be interpreted as follow: the number of consumers, actual and potential, in the market

remains constant (D(0) is given and finite), but consumers’ valuation of the good grows stochastically. Although

somewhat restrictive, it is a good representation of markets that grow because actual and potential consumers

decide to buy more as they become richer or as their tastes evolve. It also reflects the fact that many if not all

markets experience phases of development and decline before reaching maturity. This assumption also turns out

to be most useful, especially in the derivation of conditions for the investment game to end.

Firms are risk neutral and discount future revenues at the same rate r > α. Investment takes place in a lumpy

way. Each capacity unit costs I , which is constant over time, produces at most Q = 1 unit of output, does not

depreciate, and has no resale value.
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2.2 Competition, output, and investment

We consider a duopoly. In Boyer et al. (2004) we studied a related preemption model with instantaneous

competition in prices (Bertrand) and where each firm may invest at most once. Here, firms make as many

investments as they want at dates that they choose. At all dates, they compete in quantities (à la Cournot)

subject to capacity constraints. Specifically, within the instant [t, t+ τ ), the timing of the game is as follows: (i)

first, each firm f chooses how many capacity units νft to invest in, given the realization of the demand shock Yt and

the existing capital stocks (kft , k
−f
t ); (ii) next, each firm selects an output level within its capacity, xft ≤ k

f
t + ν

f
t ;

(iii) last, market price is determined according to (1), with Xt = x
f
t + x

−f
t .

The specification of inverse demand (1) implies that the short-run Cournot quantities are independent of the

realization of the current industry-wide shock. We can assume that, in the absence of capacity constraints, this

game has a unique equilibrium (xc, xc). Let kc = 	xc
 be the minimum capital stock required to produce xc. It is

then easy to check that, with given capacities kf ≤ k−f , only three Cournot equilibrium outcomes can occur: (i)

both firms are constrained, so that xf = kf and x−f = k−f ; (ii) the smaller firm is constrained, so that xf = kf ,

while the bigger firm is not and reacts optimally by choosing x−f on its reaction function; (iii) both firms are

unconstrained, so that xf = x−f = xc. The corresponding instantaneous profit of a firm with capacity k when its

competitor holds � capacity units can be conveniently denoted Ytπk�, where πk� depends on capacities only. The

explicit treatment of Cournot competition not only makes the analysis more transparent; it also gives economic

foundation to payoff values that are crucial to the solution of the game and would otherwise appear as ad hoc

assumptions.

2.3 Markov strategies

A key assumption of our model is that firms cannot (credibly) commit to future investment and output decisions.

The game typically generates several investments occurring at endogenous (stochastic) dates. There is no com-

mitment by the firms with respect to their role as first or second mover-investor (the order is endogenous) or to

the number of units they will acquire. The natural equilibrium concept here is the Markov perfect equilibrium

(MPE), in which firms’ investment and output decisions at each date depend only on the firms’ capital stocks

measured in capacity units (kf , k−f ) and the current level of the industry-wide shock y. This rules out implicit

collusion between firms when deciding on output: at each date, and given their current capacities, firms play the
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unique equilibrium of the static Cournot game described above.

In situations where two pure-strategy equilibria exist, where either firm invests first and the other firm second,

for identical payoffs, there is a possibility, if firms use pure strategies, that both firms invest simultaneously by

mistake. Fudenberg and Tirole (1985)’s concept of mixed strategies for timing games in continuous time avoids

this sort of coordination failure. They focus on deterministic environments, while we consider stochastic demand.

The basic idea is to construct a continuous-time representation of limits of discrete-time mixed-strategy equilibria

by defining a strategy for firm f as a function sf specifying the intensity s
f

νf
(kf , k−f , y) ∈ [0,1] with which firm

f invests in νf capacity units given the capital stocks (kf , k−f ) and the industry-wide shock Yt = y. A detailed

treatment can be found in Boyer et al. (2004, Appendix A). In the rest of the paper, we will omit firm and

strategy profile indices in the expression of value functions when no ambiguity arises.

2.4 Firm valuation

Since (Yt)t≥0 is a time homogeneous Markov process, an outcome may be described as an ordered sequence

of investment triggers together with the short-run instantaneous profits of both firms Ytπk� and Ytπ�k between

investments. Let yij (with yij = yji), where i and j refers to the firms’ capacities immediately before Yt reaches

yij for the first time, denote the value of Yt that triggers a new investment when total industry capacity is i+ j.

Using the notation yij for the trigger of the next investment, whether that investment is carried out by the firm

of capacity i or by the firm of capacity j, is a convenient way at this stage to avoid discussing which firm is the

next investor. Clearly, in general, firms’ next investments are triggered by different market development levels

and may differ from one MPE to another. Since capacity units do not depreciate, higher triggers along a given

development path correspond to higher industry capacity levels: yij ≤ yk� ⇔ i+ j ≤ k + �. If the game is over,

then, by convention, yij =∞.

Suppose Yt = y and let us consider, for simplicity, investments of one capacity unit only (ν = 1), as investments

in multiple capacity units can be treated as one-unit investments occurring at the same time. Let L (i, j, y) denote

the current value of the firm of capacity i if it carries out an investment immediately, while its opponent has

capacity j. Let F (i, j, y) be the current value of the firm of capacity i when its competitor with capacity j

carries out an investment immediately. Let S (i, j, y) denote the current value of the firm of capacity i, with its

competitor holding capacity j, if both firms make a simultaneous investment at some future date, say when Yt
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reaches yij.

The following lemma gives analytical expressions for the L, F , and S functions. The expressions are divided

into a first part corresponding to the current investment and a second part corresponding to the continuation

of the game. The latter part is not fully specified at this stage; it will be determined recursively by backward

induction, starting from the ‘horizon’, defined in state space as the first (stochastic) time a situation (a capacity

combination) is reached such that no more investment will take place.

Lemma 1 Let Yt = y. The value of the firm of capacity i, when it invests immediately while the firm of capacity

j does not, is given by the following, where k = i+ 1:

L (i, j, y) =
πkj

r −α
y − I +

(
y

ykj

)β [
c (k, j, ykj)−

πkj
r −α

ykj

]
,

where β = 1

2
−α/σ2 +

√
(α/σ2 − 1

2
)2 +2r/σ2 > 1 and c (k, j, y) is the continuation value of the same firm at the

time of the next industry investment, if any (if ykj is finite).

Its value, when it stays put while its competitor of capacity j invests now, is given by the following, where

� = j + 1:

F (i, j, y) =
πi�
r − α

y +

(
y

yi�

)β [
c (i, �, yi�) −

πi�
r − α

yi�

]
.

Its value, when both firms invest simultaneously at some future trigger value yij , is given by the following,

where k = i + 1 and � = j + 1:

S (i, j, y) =
πij
r − α

y +

(
y

yij

)β (
πk� − πij
r −α

yij − I

)
+

(
y

yk�

)β [
c (k, l, yk�)−

πk�
r − α

yk�

]
.

Consider the expression for L (i, j, y). The first part πkj
r−α

y−I gives the expected net present value of the profit

flows achieved by increasing capacity from i to k = i+1 at a cost of I, assuming that no more investment is made.

The second part
(

y
ykj

)β [
c (k, j, ykj)−

πkj
r−α

ykj

]
adjusts the first one for the effect of subsequent investments, that

is for the (equilibrium) exercise by both firms of their investment options. Indeed,
(

y
yij

)β
may be viewed as a

discount factor defined in state space rather than in time space and the function c (k, j, ykj) is the continuation

value function when Yt = ykj. The expressions for F (i, j, y) and S (i, j, y) can be similarly understood.
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2.5 Endgame conditions

Although the investment game imposes no restrictions on capacities, we can characterize endgame conditions:

the investment game is over if and only if it is known with certainty that no firm will ever invest in additional

capacity. The following proposition gives two conditions, one necessary, one sufficient, for the investment game

to be over (recall that capacity units do not depreciate).

Proposition 1 The investment game is over only if (necessity) either condition A or condition B is satisfied,

implying that both firms hold a strictly positive capacity; moreover, the investment game is over if (sufficiency)

Condition A is satisfied:

A Neither capacity constraint is binding in the short-run Cournot game, that is,

kf ≥ kc = min{k ∈ IN | k ≥ xc}, f ∈ {1, 2}.

B Both capacity constraints are binding in the short-run game and would remain binding in case of a unit

investment by any one firm.

Proposition 1 indicates (i) that no firm can keep its opponent out of the market in the long-run, and (ii) that a

firm cannot use excess capacity in order to maintain a dominant position in the long-run. Condition A falls short

of implying equal capacities for both firms. However, it implies that, if capacities are not equal at the end of the

game, the number of units used by each firm is the same. If capacities are not equal, some capacity is idle.

Condition A says that the game is over if no firm experiences a capacity constraint in the choice of its Cournot

output; since the duopoly game is time independent, this situation will not change as Yt evolves over time, so that

no further investment is called for. Condition A is not necessary, however. But if it is not satisfied at the end of

the game, condition B must hold. The latter condition pertains to tacit collusion. It describes a situation where

each firm could still profitably increase its capacity if its rival did not react. For such a situation to last forever

(game over), it must be the case that firms restrict capacity, hence output, in equilibrium. This implies that any

deviation will be adequately punished. Condition B describes a situation where a firm can inflict a punishment

on its competitor if the latter deviates. If the former firm were no longer capacity constrained following an

investment by its opponent (Condition B not satisfied), then it would not be able to retaliate. Consequently,

the (capacity constrained) opponent would invest whenever the level of market development would be adequate,

without considering a potential reaction by its competitor.
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The mere ability to retaliate is not sufficient to sustain a tacit-collusion equilibrium. We characterize below

the conditions under which the retaliatory power is sufficient to offset the gain from deviating. If the firm to be

punished is small, it does not lose as much from an increase in the capacity of its opponent as if it were bigger.

This implies that retaliation, hence collusion, is likely to be easier between firms of similar size, while this explains

also why the investment game cannot be over unless both firms hold strictly positive capacities.

In what follows, firm asymmetry can only take the form of differences in current capacities and may be

thought of as inherited from past moves in the industry development game. As discussed above, Lemma 1

provides only a partial characterization of value functions under alternative investment strategies. Completing

the characterization requires knowledge of the continuation function c (·) and the appropriate trigger values. These

can be determined when the game between the two firms is sufficiently near its end, in the sense of Proposition

1. Once the continuation value function is known in such situations, it is possible to characterize recursively the

value function corresponding to the previous steps.

3. Industry development

Assuming multiplicative demand separability and a finite D(0) guarantees that a finite number of capacity

units are eventually installed so that the investment game eventually comes to an end. Industry development

possibilities are represented in Figure 1 as a tree whose nodes give the number of units held by firms.

(0,0)
↗

↘

(1,0)

(0,1)

↗

↘

↗

↘

(2,0)

(1,1)

(0,2)

...

...

(k′, k′ +1)

...

↗

↘

...

(k′ +1, k′ + 1)

(k′, k′ + 2)

...

... ...

... (k, k)

↗

↘

↗

↘

↗

↘

(k′ +2, k′ + 1)

(k′ +1, k′ + 2)

(k′, k′ +3)

...

...

(k +1, k)

(k, k + 1)

↗

↘

↗

↘

↗

↘

↗

↘

↗

↘

(k′ + 3, k′ +1)

(k′ + 2, k′ +2)

(k′ + 1, k′ +3)

(k′, k′ + 4)

...

(k + 2, k)

(k + 1, k + 1)

(k, k + 2)

Figure 1: Industry capacity development tree
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While the figure indicates possible investment sequences, it does not show any timing, or the market development

thresholds at which nodes are reached.

We characterize the capacity acquisition and the competition intensity prevailing at various stages (called

episodes of capacity acquisition) of market and industry development: first, in the early stage when firms hold

no capacity (Case 1); second, at a later stage, when firms hold similar (Case 2) or different (Case 3) capacities

due to the unraveling of their respective investment strategies.

We first consider situations that are “near” the end of the game: from the nodes considered, a limited number

of investments will lead to a situation where the investment game is over by Proposition 1. Once these investment

developments are characterized, the previous relevant investment episodes can be obtained by backward induction:

a limited number of investments will lead to a situation or node from which the (not necessarily unique) unraveling

of the investment game has been characterized until endgame conditions are met. Once we have characterized

those situations that are “near” the end of the game, we generalize the analysis (in subsection 3.4) to arbitrary

nodes in the industry development tree.

3.1 Case 1: No existing capacity

We start with a situation where initial capacities are zero. Let us assume, to simplify the presentation without loss

of generality, that the market is such that unconstrained firms would produce at most one unit each in Cournot

duopoly (recall subsection 2.2), that is:

Assumption 2 0 < xc ≤ 1.

This assumption indicates that, although no firm holds capacity, we are close to the end of the investment

game. It allows the monopoly output to exceed unity, so that the acquisition of more than one unit may be

considered by any one firm, but it also implies that, if both firms hold one unit or more, the investment game is

over by Proposition 1. Assumption 2 also implies that, whatever the (strictly) positive number of capacity units

held by its opponent, a firm obtains instantaneous profit Ytπ11 once it invests in one unit or more; consequently,

it will typically not acquire more than one unit.
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Therefore, the payoff from not investing immediately is (with π1ν = π11 by Assumption 2)

F (0,0, y) =

(
y

y0ν

)β (
π11

r − α
y0ν − I

)
,

where ν is the number of units acquired by the opponent before the firm acquires its first and single unit. The

stopping problem faced by the firm is then:

F∗(0, 0, y) = sup
y0ν

[(
y

y0ν

)β (
π11

r − α
y0ν − I

)]
(3)

with solution:

y∗
0ν = y∗

01
=

r − α

π11
I

β

β − 1
, ∀ν ≥ 1. (4)

Knowing this, the value for the competitor of acquiring at least one unit immediately at Yt = y, and any

number of additional units before Y reaches the threshold y∗
01

can be computed explicitly. For example, if it

acquires one unit immediately and abstains from any further investment, its value is, according to Lemma 1:3

L (0, 0, y) =
π10

r − α
y − I +

(
y

y∗
01

)β
π11 − π10

r − α
y∗
01
, y < y∗

01
, (5)

where π11
r−α

y∗
01

= c (1,0, y), since no more investment is forthcoming beyond y∗
01

by Proposition 1. Similarly, if the

investment in the first unit is to take place in the future at y00 > y, then the value of the firm is:

L(0,0, y) =

(
y

y00

)β (
π10

r −α
y00 − I

)
+

(
y

y∗
01

)β (
π11 − π10

r −α
y∗
01

)
. (6)

Its maximum L∗ (0, 0, y) with respect to y00 is reached at:

y L
00

=
r − α

π10
I

β

β − 1
. (7)

Figure 2 illustrates the functions L (0, 0, y), L∗ (0, 0, y) and F ∗(0,0, y).

3We leave to the reader the straightforward task to adapt the formula and the rest of the argument for any number of units
acquired by the first investor before the other one invests at y∗

01
. For example, if the firm plans to acquire a second new unit at some

y′, y ≤ y′ < y∗
01
, the candidate value for L (0, 0, y) is π10

r−α
y− I+

(
y

y′

)β [
π20−π10
r−α

y′ − I

]
+

(
y
y∗
01

)β
π21−π20
r−α

y∗
01
, y ≤ y′ < y∗

01
where

π21 = π11 by Assumption 2. If this value is higher than (5), then it gives the correct expression for L (0, 0, y); if it is lower, then (5)
is the appropriate expression. Note that the number of candidates to try is low as it cannot exceed the monopoly capacity under
Assumption 2.
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Figure 2: Firm values under alternative strategies

It is straightforward to check from (3)—(6) that, within the interval (0, y∗
01
), there exists a unique value y

p
00
,

corresponding to the intersection of F∗ with L in Figure 2, such that for y < [>,=] yp
00
, L(0,0, y) < [>,=

] F ∗(0,0, y); the corresponding stochastic stopping time is τp
00

= inf{t ≥ 0 |Yt ≥ y
p
00
}.

We now determine the firms’ equilibrium strategies before any firm has invested, that is, in states of the form

(0,0, y). If y < y
p
00
, investing is for both firms a strictly dominated strategy while, for y ≥ y∗

01
, delaying investment

any further is also a strictly dominated strategy. To determine the equilibrium outcome when y
p
00
≤ y < y∗

01
, it is

helpful to consider what would happen if one of the firms were protected from preemption and could thus choose

its optimal stand-alone investment date as a monopoly. Given a current industry-wide shock y, the maximal

expected payoff that this firm could then achieve by taking the lead is L∗ (0,0, y). This is strictly higher than

F∗ (0, 0, y). In a MPE, however, such a value gap cannot be sustained. If a firm anticipates that its rival will first

invest at yL
00
, then it is better-off preempting its rival at yL

00
− dy. This is true for any y between y

p
00

and yL
00
.

When the industry-wide shock Yt is equal to y
p
00
, the value of both firms is the same, so each firm is indifferent

between investing immediately and letting its rival invest while waiting to invest until Yt reaches y∗
01
, at the

stochastic time τ∗
01

= inf{t ≥ 0 |Yt ≥ y∗
01
}. The following proposition is a transposition of Fudenberg and Tirole

(1985, Proposition 2A) in a stochastic context.

Proposition 2 Under Assumptions 1 and 2, if Y0 ≤ y
p
00
, there exists only one MPE outcome of the investment

game: one firm invests at τ
p
00
, while the other firm waits until τ∗

01
to invest; both times are stochastic. Rents are
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equalized to the value of the second investor given by (3).

The simple preemption MPE episode in this case is characterized by intense competition. The first capacity

unit is installed earlier than under protection from preemption since yp
00

< yL
00
, reflecting a partial dissipation

of monopoly rents (Posner, 1975; Fudenberg and Tirole, 1987). A rise in uncertainty increases both F ∗ and L

(see Figure 2) so that it may hasten investment (reduce yp
00
) in a MPE preemption episode. The possibility that

increased volatility could hasten investment was pointed out by Mason and Weeds (2005).

3.1.1 Socially optimal investment timings

It is more difficult to compare the MPE outcome with the social optimum. Specifically, let k0 = 	D(0)
 be the

minimum capital stock required to produce D(0). The social planner’s problem is to find an increasing sequence

of stopping times that solves:

sup
τ1≤···≤τ

k0


Ey


 k

0∑
k=1

∫ τk+1

τk

e−rtYt

∫ k

0

D−1(q)dq




,

where by convention τk0+1 =∞. Standard computations imply that it is optimal for the social planner to invest

in the first capacity unit when Yt reaches the investment trigger yO such that:

yO
∫

1

0

D−1(q) dq = (r − α)
β

β − 1
I. (8)

From (7), we obtain yO ≤ yL
00
, with the equality satisfied if

∫
1

0
D−1(q) dq = π10. Since yp

00
< yL

00
as well, there is

no obvious way to compare yO and yp
00

in general.

However, let CS =
∫
1

0
D−1(q) dq − π10 represent the generic net consumer surplus on the first capacity unit;

it only depends on the slope of the demand function on [0,1]. In particular, CS = 0 if the inverse demand curve

is a step function, D−1 (Q) = D−1 (	Q
), implying that yO = yL
00
> y

p
00
. Consequently, for any set of parameters

defining yp
00

and yL
00
, there exists a set of demand functions D (.) satisfying Assumption 1 such that CS is small

enough for yO to be higher than yp
00
. This proves the following proposition.

Proposition 3 For any set of parameters determining y
p
00

and yL
00
, there exists a set of demand functions D (.)

satisfying Assumption 1 such that the first industry investment occurs earlier in the preemption MPE than would

be socially optimal.
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Leahy (1993) discusses the timing of entry. In a model of industry capacity investments where investment units

are of negligible size, he shows that the timing of investments is socially optimal under perfect competition, no

matter the demand function. In the duopoly MPE, preemption accelerates entry. However here, the indivisibility

in capacity units also implies that perfect competition is not socially optimal in general: unlike the social planner,

competitive firms do not consider the consumer surplus when they compute profits, so that they underestimate

the benefits of entry relative to the social planner. This factor postpones entry relative to the social optimum

and may dominate the preemption effect when the net-of-price consumer surplus is big; it is small when the slope

of the inverse demand is small and vanishes altogether when the inverse demand is a step function.

The result that the first industry investment may occur earlier under duopoly than is socially optimum does

not depend on the market size assumption kc = 1. In particular it applies in the generalized treatment presented

in Section 3.4 below.

3.2 Case 2: Symmetric capacities

Let us now investigate the role of existing capacity, starting in this section with situations where firms have

identical capacities, as illustrated by the subgame starting at node (k, k) in Figure 1. As in the previous subsection,

we will assume that the firms hold a capacity lower than the unconstrained short-run Cournot output, which

implies that both firms are initially capacity constrained and that a firm remains constrained if its opponent

invests:

Assumption 3 0 < xc − k ≤ 1

Assumption 3 is compatible with an unconstrained monopoly output exceeding k+1, so that it does not rule

out investments exceeding one unit, thereby allowing a firm to get ahead by more than one unit. It does imply

that the end of the game is not too far in the sense that, by Proposition 1, the game is over once both firms

have acquired at least one more unit. To simplify exposition, we take k = 1. Then Assumption 3 implies that

π21 > π11, π22 > π12, and πν2 = π22 = π2ν , ∀ν ≥ 2.

When considering a new investment, firms will now take into account the consequences on the profits they

derive from their existing capacity. We will show that, as a result of the cannibalism effect, MPE exhibiting tacit

collusion at that node (k, k) = (1,1) may exist besides the MPE with preemption, provided that either late joint
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investment or no more investment dominates preemption over the whole relevant market development range.

3.2.1 Preemption MPE episode at (k, k)

A MPE characterized by a preemption episode at (k, k) always exists. Indeed, assume that one of the firms has

taken the lead by acquiring at least one new unit, bringing its total capacity to ν ≥ 2. For its rival, whatever the

number of units held by the first investor, it is a dominant strategy by Assumption 3 to acquire one and only one

unit at the market development threshold determined by the following stopping-time problem: for y < y1ν ,

F∗ (1, ν, y) = sup
y1ν

[
π1ν

r −α
y +

(
y

y1ν

)β (
π22 − π1ν

r −α
y1ν − I

)]
, (9)

that is, at:

y∗
1ν =

r −α

π22 − π1ν
I

β

β − 1
. (10)

The situation is similar to the case with no initial capacity, except that the trigger value at which the second

investor invests depends on the number ν of units held by the first investor. The higher ν is, the earlier the

second investor will invest because its profits π1ν, while he is waiting, are lower, the higher ν is.

The firm that invests first, whether it acquires one single unit or more units, understands the implications

of its investment decision on the behavior of its competitor, so that L (1, 1, y) can be computed explicitly. For

example, if the early investor acquires only one unit, its payoff at the current level of y ≤ y∗
1ν is, for ν = 1:

L (1,1, y) =
π21

r −α
y − I +

(
y

y∗
12

)β (
π22 − π21

r − α
y∗
12

)
. (11)

As before, if the firm could choose the investment threshold in the absence of any threat of preemption, the

maximum L∗ (1,1, y) with respect to y, for ν = 1, would be reached at:4

yL
11

=
r −α

π21 − π11
I

β

β − 1
.

But under a preemption threat, it is not possible for the firm to achieve a value of L exceeding F ∗; it cannot wait

4Again, the reader can adapt the candidate expressions for L (1, 1, y), with y∗
1ν

given by (10), for any new capacity purchase
exceeding one unit (ν > 2). The highest such candidate gives L (1, 1, y). It is certain to exist because, as shown in the proofs, the
candidate for L corresponding to ν = 1 exceeds F ∗ (1, 1, y) for some range of y values lower than y∗

12
.
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until Yt reaches yL
1ν ; the best it can do is to invest at the trigger level y

p

1ν at which L (1, 1, y) = F∗ (1, ν, y), so

that rents are equalized. The following result parallels Proposition 2.

Proposition 4 (Preemption MPE episode at (k, k)) Under Assumptions 1 and 3, the investment game has a

preemption MPE episode at node (k, k) = (1,1) such that one firm invests when Yt reaches y
p

1ν , while the other

firm invests when Yt reaches y
∗

1ν.

In this equilibrium, the threat of preemption leads to rent equalization and thus to the complete dissipation of

any first-mover advantage. However, with positive capacities, the preemption equilibrium episode may not be the

unique equilibrium at node (k, k), as we shall now see.

3.2.2 Tacit-collusion MPE episode at (k, k)

As in Fudenberg and Tirole (1985), the fact that the firms hold strictly positive capacities gives rise to the

possibility of a different type ofMPE , the tacit-collusion (or joint investment)MPE. The strategies involved consist

in coordinating on a random joint investment date or in abstaining from investing forever, thereby increasing firms’

values. Note that short-run output decisions are still determined according to Cournot competition. Collusion is

achieved through investment, not through production decisions. This implies that the only way firms can sustain

a tacit-collusion outcome is by investing simultaneously, rather than at different times, and by doing so at a

threshold ys
12
exceeding y∗

12
. Indeed if one of the firms were to invest at some y < y∗

12
, the other firm’s unique

optimal continuation strategy would be to invest at y∗
12
. This can be part of an MPE only if y = y

p

12
as shown

in the analysis of the preemption MPE episode characterized above. Alternatively, if it were to invest at some

y ≥ y∗
12
, then a dominant strategy for the other firm would be to follow suit immediately. Since simultaneous

investments of one unit imply, by Assumption 3, that both firms then hold more capacity than the unconstrained

Cournot output, they will not acquire more than one unit. Furthermore, the game is then over by Proposition 1.

Postponing investment or not investing restricts output. In that sense the tacit-collusion equilibrium episode

is reminiscent of the early-stopping equilibrium of Fudenberg and Tirole (1983) and of the tacitly collusive

underinvestment equilibria of Nocke (2007) described earlier. However, it is important to mention that Fudenberg

and Tirole considered a dynamic game with downward sloping reaction functions in continuous investment levels.

Such reaction functions imply that capacity is always scarce, leading to a race to invest aimed at inducing the
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competitor to reduce its investment. We consider a dynamic game in lumpy investment. Once the capacity of

the larger firm exceeds a certain level, the smaller firm is able fully to exploit its new capacity irrespective of

any reaction by the larger firm; as a result the larger firm cannot indefinitely induce postponement of the smaller

firm’s investment by acquiring additional capacity. In that sense, even a preemption episode, where one firm

invests early while the other firm waits, does not qualify as a race since both firms end up with the same value.

Suppose that the firms could commit to invest simultaneously at some random future date or to abstain from

investing forever. Given a current industry-wide shock y, the expected payoff that they could achieve in this way

is, according to Lemma 1:

S (1,1, y) =
π11

r −α
y +

(
y

ys
11

)β (
π22 − π11

r −α
ys
11
− I

)
. (12)

If π22 > π11, S (1,1, y) has a maximum with respect to ys
11
, denoted S∗ (1, 1, y), at ys∗

11
:

ys∗
11
=

r − α

π22 − π11
I

β

β − 1
> y∗

12
=

r − α

π22 − π12
I

β

β − 1
, (13)

with τs∗
11
= inf{t ≥ 0 | Yt ≥ ys∗

11
} as the corresponding investment (stochastic) timing. If π22 ≤ π11, S (1, 1, y)

attains a maximum of π11
r−α

y by letting ys∗
11

=∞ (tacit collusion by inaction), in which case τ s∗
11

=∞. Clearly if

L (1, 1, y) exceeds S∗ (1, 1, y) at any y ≤ ys∗
11
, tacit collusion cannot occur in equilibrium since each firm then has

an incentive to deviate and invest earlier. Hence,

Proposition 5 (Tacit-collusion MPE episode at (k, k)) Under Assumptions 1 and 3, if Y0 ≤ y
p

11
,

1. A necessary and sufficient condition for the existence of a MPE with a tacit-collusion episode at (k, k)

is L (1, 1, y) ≤ S∗ (1, 1, y) ∀y < y∗
12
. If this inequality is strict for all such y, there exists a continuum

of tacit-collusion MPE episode, indexed by their joint investment triggers y
s

11
in a range [ys, ys∗

11
], where

y
∗

12
≤ y

s ≤ y
s∗

11
.

2. Rents are equalized in each tacit-collusion MPE episode and exceed the preemption MPE episode rents at

the same node; the Pareto optimal tacit-collusion MPE episode corresponds to the joint-profit maximiz-

ing investment rule under the constraint that firms invest simultaneously if they do.5 In this joint-profit

5In the absence of that constraint, joint-profit maximization would involve sequential investments. Such an investment sequence

cannot be sustained as an MPE outcome as it would generate a strictly higher expected payoff for the first investor and would,

therefore, be subject to preemption.
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maximizing tacit collusion MPE episode, each firm invests in one capacity unit with intensity:

s
f
1
(1,1, y) = s

−f
1
(1,1, y) =




0 if y ∈ [0, ys∗
11
),

1 if y ∈ [ys∗
11
,∞).

3. If π22 > π11, the Pareto optimal tacit collusion MPE episode has both firms investing when Yt reaches ys∗
11
;

otherwise, it is such that neither firm ever invests as ys∗
11

=∞.

Propositions 2 and 5 highlight the role of existing capacity in the exercise of market power. A firm that holds

no capacity has no incentive to restrain output and thus a tacit-collusion MPE episode cannot exist if one firm has

zero capacity (Proposition 2). In the language of contestability, this says that the level of contestability is stronger

when the contesting firm is not yet active. Moreover, the mere existence of an incentive to tacitly collude is not

enough to guarantee that tacit collusion is sustainable in equilibrium: firms must also follow investment strategies

such that a deviation from the tacit-collusion outcome would trigger a reaction leading to a new equilibrium with

a lower value for the deviating firm.

This “punishment” is made difficult because our assumption of a Cournot production equilibrium in any

period implies that restraining output can only be achieved by postponing capacity investments in the industry.

It follows, in particular, that the joint investment trigger in any tacit-collusion equilibrium episode must be higher

than both triggers in the preemption MPE episode characterized in Proposition 4. Moreover, a firm becomes

more vulnerable to a deviation by its competitor once the trigger value for the first investment in the preemption

equilibrium has been crossed: once y > y
p

11
and until y reaches the threshold for the second investment, a

deviation yields the defector a higher rent L (·) than the rent F∗ (·) obtained by its competitor who would then

invest optimally at y∗
12
. Therefore, the rents S∗ (·) under tacit collusion must be attractive enough (Proposition

5(b)) to beat such defection at any level of y preceding y∗
12
.

Proposition 5 provides a necessary and sufficient condition for MPE with tacit collusion at (k, k) to exist.

This condition implies restrictions on the components of L (1,1, y) and S∗ (1,1, y): first, the four profit values πij

determined by the non-stochastic component of demand D (·) under Cournot competition; second, the parameters

underlying real option values, that is, the value of β as determined by the discount rate r as well as the drift α

and the volatility σ of the stochastic demand growth process.

20



Let ˜Λ (β, I) ≡ {(π11, π12, π22, π21) | S
∗ (1, 1, y)− L (1,1, y) ≥ 0 ∀y < y∗

12
} be the set of πij quadruples for which

tacit-collusion MPE episodes exist given β and I . The following proposition states that this set is non-empty,

independent of I (that is, ˜Λ (β, I) = Λ(β)), and larger in industries with higher volatility, faster growth and lower

cost of capital (that is, Λ (β′) ⊂ Λ (β) iff β < β′).

Proposition 6 (Tacit-collusion MPE episodes: existence) Under Assumptions 1 and 3,

1. There exists a set of market parameters guaranteeing the existence of MPE characterized by tacit collusion

at (k, k).

2. This set is independent of the investment cost I of a capacity unit.

3. It is larger, the higher demand volatility, the faster market growth, and/or the smaller the discount rate.

As we know from the real option literature, increased volatility raises the option value of an irreversible

investment under no preemption threat: the firm increases its investment threshold to reduce the probability that

the stochastic process reverts to undesirable levels after the firm has invested. The flexibility to do so increases

the value of the firm and the more so, the higher the volatility. Such an effect is also present here.

There is another effect of volatility: an increase in volatility raises firm value more under tacit collusion than

under preemption, thus favoring the emergence of the former. The reason comes from both timing and discounting.

Tacit collusion involves higher investment thresholds (hence longer delays), while an increase in volatility amounts

to a lower discount rate (recall that β decreases with volatility σ) because it raises the probability that a given

threshold value of y will be reached in a given time span. Although instantaneous profits are always independent

of β, the discounted value of the profit flows corresponding to each equilibrium does depend on β: the (state

space) discount factors used in (12) and (11) are respectively
(

y

y
s

11

)β
and

(
y
y∗
12

)β
and, since ys

11
> y∗

12
, the former

increases more than the latter when β decreases, that is, when volatility increases.

To put it differently, the benefits of restraining output through delaying investments occur in the distant future,

that is, in a higher state of market development, while the benefits from deviating occur in the immediate future.

Other things equal, higher volatility gives relatively more weight to the distant future, contrary to conventional

wisdom whereby increased volatility, because it warrants a risk premium, amounts to an increase in the discount

rate.
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The intuition for such effects of the (time) discount rate and the market growth rate is similar: a lower discount

rate favors future payoffs and a larger expected growth rate raises future prospects relative to immediate ones.

Hence, both favor the existence of tacit collusion through a lower β.

3.3 Case 3: Different capacities

While we have shown that existing capacity is a necessary condition for tacit collusion between identical firms,

capacity is also often said to play a role as a barrier to entry and thus can be used as a way to acquire and

maintain a dominant position or a first-mover advantage.6

We consider now situations where firms differ in size. Referring to Figure 1, we now investigate investment

subgames starting at nodes (k, k′) , k �= k′, and contrast them with those starting at node (k, k) analyzed in the

previous section. We showed that, with symmetric strictly positive capacities, there are two possible types of

investment episodes: preemption and tacit collusion. The former always exists, is highly competitive and involves

rent equalization. The latter exists under some conditions, provides higher rents to both firms, and also involves

rent equalization. We will show that some of these characteristics are modified under asymmetric capacities:

initial capacity asymmetry prevents rent equalization and makes collusion more difficult in the sense that the

maximization of joint profits is no more compatible with a MPE.

Without loss of generality, we let one firm hold k ≥ 1 capacity units and the other k′ = k +1 units.

Assumption 4 0 < xc − k ≤ 2.

Again, this assumption indicates that we are close to the end of the investment game. Let k = 1 to simplify

the presentation. The unconstrained Cournot output is then either 1 < xc ≤ 2 or 2 < xc ≤ 3, with π31 > π21,

π2ν > π1ν , ∀ν.

Consider first the case where 1 < xc ≤ 2. The larger firm holding two units may be capacity constrained

when the smaller firm holds only one unit, but it will become unconstrained if the smaller firm invests in a second

capacity unit. Thus, by Proposition 1, the investment game cannot be over at node (1, 2) . If the smaller firm

invests, both firms then hold enough capacity to produce xc and the game is over by Proposition 1. Moreover,

the smaller firm benefits more from acquiring one new unit than the bigger firm does and the net benefit from

6See for instance Spence (1979), Dixit (1980), Fudenberg and Tirole (1983).
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investing is positive at high enough levels of Yt. Therefore, the smaller firm is the sole investor in equilibrium and

the game ends when both firms hold two units of capacity.

Consider now the case where 2 < xc ≤ 3. Both firms hold a lower capacity than the unconstrained short-

run Cournot output so that both are initially constrained and each firm remains constrained if its opponent

invests. By Proposition 1 this may be the end of the game, although not necessarily so; this possibility will be

considered further below. Two alternative candidate preemption equilibrium episodes may be considered: one,

where the bigger firm invests first and the smaller firm acts accordingly; another, where the roles are reversed.

The corresponding values of the bigger and the smaller firm, acting as first or second investor are respectively

L (2, 1, y) and F ∗ (2,1, y) for the bigger firm, and L (1,2, y) and F∗ (1, 2, y) for the smaller firm.7

When the smaller firm invests first, node (2, 2) is reached and both firms remain capacity constrained, which

is the situation we analyze in subsection 3.2: both firms then hold two units of capacity and assumption 3 holds

with k = 2, so that Propositions 4, 5, and 6 apply. The continuation of the game is then known so that L (1, 2, y)

and F∗ (2, 1, y) can be computed. If the bigger firm invests first, then it is a dominant strategy for the smaller firm

to invest at some finite future level of Yt, since π13 < π23 < π33 as the larger firm must accommodate (Cournot

equilibrium). It is then straightforward to obtain L (2, 1, y) and F ∗ (1,2, y).

We will show that, unlike the case of symmetric initial capacities, the next investment is undertaken by the

smaller firm in any preemption equilibrium episode. In order to prove that result, we need the following lemma.

Lemma 2 If L(2,1, y) > F∗(2, 1, y) for some y < y∗
13
, then there is exactly one value y

p

12
∈ (0, y∗

13
) such that

L(2, 1, yp
12
) = F∗(2, 1, yp

12
) and L(2, 1, y) < F ∗(2,1, y) for y < y

p

12
.

The lemma indicates that, by investing at y = y
p

12
, the smaller firm leaves the bigger firm indifferent between

investing immediately or waiting. Furthermore, we show in the proof of the next proposition that, at y = y
p

12
,

the smaller firm strictly prefers to invest. Also, at any other relevant level of y, the gain for the bigger firm from

investing first is smaller than the gain for the smaller firm to do so. These results imply that the sole preemption

equilibrium is one where the smaller firm catches up. Trivially, if the bigger firm finds it unprofitable to invest,

then the smaller firm can invest at its stand-alone date y∗
12

without worrying about preemption.

7Explicit expressions are given in the proof of Lemma 2. As in previous cases, it is tedious but conceptually easy to check whether

the first mover acquires one or more new capacity units before its rival invests. To simplify the analysis, we treat the case where the

first mover acquires only one extra unit.
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Proposition 7 (MPE with preemption episode at (k, k′)) Under Assumptions 1 and 4,

1. There exists a MPE with a preemption episode at (k, k′); in this episode, the smaller firm invests first, when

Yt first reaches min {y
p

12
, y∗

12
}.

2. In this preemption equilibrium episode, the smaller firm enjoys a strictly positive rent from investing first

as L (1, 2, yp
12
)− F ∗ (1,2, yp

12
) > 0, while the bigger firm is either indifferent between investing immediately

and waiting, or prefers waiting as L(2, 1, yp
12
)−F ∗(2,1, yp

12
) ≤ 0.

3. Once node (2,2) is reached, Proposition 4 applies, mutatis mutandis.

Unlike the situation with equal capacities, there is not ambiguity as to which firm invests first. The reason is not

because the laggard (smaller firm) is in a better position to avoid immediate cannibalism: the drop in price is

the same, whichever firm invests. Thus, the source of the first-mover advantage must be found in future decisions

rather than current effects. If the bigger firm were investing first, the other firm could plan its own investment

at its stand-alone date. Having less to lose from the cannibalism effect, it would invest earlier in the future than

a bigger firm would. This reduces, for its bigger opponent, the advantage of taking the lead.

While the same drop in price occurs whichever firm invests first, the laggard (smaller firm) experiences a lower

drop in revenues from its existing capacity, simply because it holds fewer units. This, combined with the higher

advantage from taking the lead, explains why the smaller firm enjoys a larger gain in value in that preemption

episode.

TheMPE described in Proposition 7 always exists and it is unique in the class of equilibria involving investment

by both firms at different dates or investment by one firm only when capacities differ. As with equal capacities,

there may exist another class of equilibrium episodes, tacit-collusion equilibrium ones, involving simultaneous

investment or inaction by both firms. The next proposition shows that, as with equal capacities, higher volatility,

faster growth and lower discount rate make tacit-collusion MPE episodes more likely.

Proposition 8 (Tacit collusion MPE episodes at (k, k′))) Under Assumptions 1 and 4,

1. If π32 − π22 = 0: no tacit-collusion equilibrium episode exists.
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2. If π32 − π22 > 0: the set of market parameters ensuring the existence of tacit-collusion MPE episodes is

larger, the larger demand volatility, the faster market growth, and/or the smaller the discount rate.

3. Joint-profits maximization is not compatible with equilibrium (tacit-collusion MPE episode).

As discussed in the case of equal capacities, tacit collusion involves postponing capacity investments in order

to restrain output. Benefits from tacit collusion arise in a more distant future than benefits from taking the lead.

Consequently, the existence of a tacit-collusion equilibrium rests on conditions under which the future weighs

relatively more, either because of significant market growth, or because of high volatility, or because of a low

discount rate, as previously. However, tacit collusion is less attractive when firms hold different capacities since

joint-profit maximization is not compatible with equilibrium: being different, firms prefer different thresholds for

simultaneous investment. The threshold ys∗
12
that maximizes the payoff S (1, 2, y) of the smaller firm in case of

simultaneous investment is lower than the threshold ys∗
21
for the bigger firm. The joint-profit maximizing threshold

is somewhere in between. Since the payoff of the smaller firm decreases in y beyond its maximum, the smaller

firm would deviate (invest earlier) from a strategy of joint investment at the joint-profit maximizing threshold.

3.4 Generalization

We have considered explicitly three cases in this section: zero capacity (0,0), equal capacities (k, k), and different

capacities (k, k′), each under the assumption that market size was “low”, so that any further investments occurred

at thresholds higher than y. In each case, a further assumption on market size has limited the number of possible

remaining investments (in the sense of Proposition 1): 0 < xc ≤ 1 for the (0,0) case; 0 < xc ≤ 2 for the (k, k)

case (taking k = 1); and 0 < xc ≤ 3 for the (k, k + 1) case (taking k = 1). The three cases cannot be viewed as

arising in the same game because these assumptions differ from one another. Let us now replace Assumptions 2,

3, and 4 with 2 < xc ≤ 3. We now have a single game; it can be solved using the above results, directly or after

some adjustment.

This is illustrated in Figure 3 giving all possible capacity combinations if demand is such that 2 < xc ≤ 3 and

km ≤ 4. Since the game is symmetric, we represent only combinations where Firm 1 is at least as big as Firm 2.

While a MPE is independent of the initial stage of the game, we are interested in industry development, that is,

in the characterization of investments occurring in MPE equilibrium sequences when initial capacities are (0,0)

and y is low. We rule out capacities in excess of the monopoly capacity as the characterization of the MPE for
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such states is trivial.8 Nodes that are necessarily endgame nodes, according to Proposition 1(A), at which no

firm holds more than the monopoly capacity, are represented with square brackets in the figure: [4, 3] and [3,3].

Other possible endgame nodes, in the sense of Proposition 1(B), are denoted with curly brackets: {2,1}, {1,1}

and {2, 2}; they correspond to tacit-collusion situations, in the sense of Propositions 5, 6, and 8. Equilibrium

steps are indicated by single arrows in the cases of single moves (preemption or stand-alone) or double arrows in

the cases of simultaneous moves (collusion). A question mark next to an equilibrium step indicates that a MPE

involving that step may or may not exist in the sense of Propositions 6 and 8. We call the game illustrated in

Figure 3 the complete game.

(4,0)

↘

(3, 0) (4, 1)

↘ ↘

(2,0) (3,1) (4, 2)

↘ ↘ ↘

(1, 0) {(2, 1)} ⇒? (3, 2) [(4, 3)]

↗ ↘ ↗ ↘ ↗ ↘

(0,0) {(1,1)} ⇒? {(2,2)} ⇒? [(3, 3)]

{(., .)}: potential endgame; ⇒?: potential tacit-collusion MPE branch;

[(., .)]: endgame (if reached); ↗: stand-alone or preemption MPE branch.

Figure 3: Complete industry development game when x
c = 3

A subset of Figure 3 consisting of any capacity pair (i, j) and all pairs (i′, j ′) such that i′ ≥ i and j ′ ≥ j may

be viewed as a particular stochastic game. With a slight abuse of language, we will call such game the subgame

starting at (i, j). Although the particular combination (i, j) is not necessarily reached in a MPE of the complete

game when the initial capacity pair is (0,0), the solution of the subgame starting at (i, j) describes the solution

of the complete game for some possible states of that game. For example, although the capacity pair (4,0) is not

reached in any MPE of the complete game when the initial capacity level is (0, 0), the subgame starting at (4,0)

has an obvious solution where the bigger firm never invests since it already holds the monopoly capacity, and

the smaller firm invests at its stand-alone thresholds until it holds the Cournot capacity xc = 3. This solution

describes the investment sequence that applies at capacities (4, 0), (4,1), and (4,2) in any MPE of the complete

8
For a linear inverse demand curve P =

(
1−

X1+X2

8

)
Yt, x

c = k
c = 3 and the maximum monopoly capacity is km = 4.
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game.

The subgame starting at node (2,2) satisfies Assumption 3 for k = 2. It admits a preemption MPE episode

described in Proposition 4 leading to an end at [3, 3]. As described in Propositions 5 and 6 and denoted by the

double arrow with a question mark, the subgame starting at (2, 2) may also have a tacit-collusion MPE episode.

In that case, the end is either at (2, 2) or at (3,3) and the corresponding firm values are equalized at (2, 2), but

higher than in the MPE with preemption at (2, 2).

Trivially, subgames starting at (3, 0), (3,1), or (3,2) end up at [3, 3] as the bigger firm is then either passive,

in which instance the smaller firm invests at its stand-alone thresholds, or is preempted by the smaller firm in

MPE.9

The subgame starting at node (2,1) is studied in Propositions 7 and 8. From (2,1) the preemption equilibrium

path leads to (2,2) for a possible end of game at (2,2) or continuation to (3, 3), whether directly in a tacit collusion

episode or via (3, 2) in a preemption episode. There may also exist a tacit collusion episode from (2, 1) to (3,2).

The subgame starting at (1, 1) has not been studied for xc ≤ 3 but only for xc ≤ 2. However, now that its two

possible continuations, via (2, 1) or via (2,2), are known, Propositions 4, 5, and 6 may be adapted accordingly.

More precisely, suppose that the equilibrium investment sequence is (1,1) → (2,1). When applying Lemma 1

to evaluate L (1, 1, y), one must substitute for the continuation value c (2,1, y). If the next equilibrium segment

is the preemption segment (2,1) → (2, 2), this is F∗ (2, 1, y) as given in the proof of Lemma 2; similarly, the

expression for F ∗ (1, ν, y) , ν = 1, given by (9) for xc ≤ 2 must be replaced by the expression applying when

xc ≤ 3, as provided in the proof of Lemma 2. Alternatively, if the next equilibrium segment is the tacit collusion

segment (2, 1) → (3, 2), then c (2, 1, y) is equal to S (2, 1, y) given in the proof of Proposition 8. The qualitative

results are unchanged: the subgame starting at (1,1) always admits a preemption MPE episode via (2, 1) and

(2,2); a collusion MPE episode with simultaneous investments leading directly to (2, 2) may exist depending on

conditions described in Proposition 6. In both cases, the continuation payoffs are known and the game ends at

(2,2) or (3, 3). If a collusion MPE episode exists for the subgame starting at (2, 1), Proposition 8 indicates that

it does not exhibit rent equalization. Then, by the standard preemption argument used repeatedly in this paper,

9For example, consider the possible alternatives from (3,0): either the bigger firm invests first, leading to (4,0) and a continuation
with the small firm investing at its stand-alone thresholds until [4, 3] is reached; or the small firm invests first, leading to (3, 1), (3, 2),
and (3, 3), or to (3, 1), (4, 1), (4, 2) and (4, 3). Two conditions are necessary for the first alternative to be an MPE: first, the monopoly
tenure of the big firm on its fourth unit must be sufficiently long to earn back the investment cost I on the unit; second, the small
firm must not invest before the bigger one. Adapting the proof of Proposition 7 where it is shown that the smaller firm invests first
in preemption MPE, it can be shown that the first condition is violated if the second one is satisfied.
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the corresponding preemption MPE episode at node (1,1) takes this asymmetry into account: the first investor

invests at such a threshold that firm values at node (1, 1) are equalized: L (1,1, y) = F ∗ (1, 1, y).

Comparing the subgames starting at (1,1) and at (2,2), we note that a preemption equilibrium episode always

exists and collusion equilibrium episodes may exist. However, the subgame starting at (1,1) may also involve a

tacit collusion episode from (2, 1) to (3, 2), unlike the subgame starting at (2, 2) where collusion at (3, 2) is not

possible.

This raises the issue of multiple equilibria. We have shown, however, that firm values are higher under tacit

collusion than under preemption in the subgame starting at (2, 2). Although we do not provide a formal proof,

this is also likely to be the case in the subgame starting at node (1, 1) and equilibrium episodes can probably be

Pareto ranked. In any case, if tacit collusion from node (2,1) is a possible MPE episode, it leads to (3,2). By

Proposition 1, this cannot be the end of the game as it is a dominant strategy for the smaller firm to acquire one

further unit and for the bigger one to abstain so node (3,3) is reached. By Proposition 1, this is the end of the

subgame, with both firms holding equal capacities.

Turning to the subgames starting at (1, 0) and (2,0), it can be shown by adapting the proof of Lemma 2

that the small firm invests first from (1, 0) or from (2, 0). Finally, considering the initial node (0, 0), it is now

trivial to adapt Proposition 2 replacing the continuation values corresponding to the initial Assumption 2 with

the equilibrium values for the subgame starting at (1,1) under the new assumption xc ≤ 3. A unique preemption

MPE prescribing investment from (0,0) to (1, 1) via (1, 0) exists for each possible continuation payoff at (1, 1).

As discussed above, several continuation payoff may exist from that node on, all leading to equal size firms at the

end of the game, as indicated in Figure 3 and further discussed in the conclusion below.

Thus, under assumption xc ≤ 3, the complete game can be solved entirely following the procedure just

described. Further generalization to higher-maximum industry sizes would not affect the qualitative properties

of the model, which we summarize in the next section.

4. Conclusion

We characterized the development of a stochastically growing market under duopoly where firms build capacity

through multiple irreversible lumpy investments in production units without any exogenously given order of moves
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or any commitment regarding future investments. Firms make optimal strategic use of their flexibility to adapt

to the stochastic evolution of the market. The model shares important features of some “real life” investment

games and generates stylized characteristics of developing industries, including the occurrence of joint investments

(waves) and the eventual reach of maturity.

We found that the early phase of development is characterized by intense competition despite the fact that

only one firm may be active at that stage. Competition intensity may cause the first industry investment to occur

earlier than would be socially optimal. Indeed equilibrium requires equal payoffs or values for both firms despite

the fact that they invest at different market development stages. This leads one firm to enter earlier than would

be desirable in order to “destroy” any monopoly advantage it would enjoy over its competitor by being alone

in the first phase of the game. This is the sole equilibrium pattern at the beginning of the investment game.

The empirical implication of this result is that the first entrant faces riskier returns and a higher probability of

bankruptcy than would be the case under perfect competition. Furthermore, uncertainty tends to exacerbate

that effect in the sense that higher uncertainty may cause the first industry investment to occur earlier. This was

pointed out by Mason and Weeds (2005) when firms are limited to one investment each; we have generalized this

result to multiple investments.

The smaller firm eventually catches up and the larger firm cannot indefinitely keep its opponent at bay, even

if it holds enough capacity to serve the whole market. Indeed, being bigger makes the threat of early subsequent

investment less credible. Consequently, in the initial preemption MPE episode of a game starting with firms of

different sizes, it is the smaller firm that moves and invests first.

Tacit-collusion episodes may occur in MPE only at states of the game where both firms hold positive capacity;

they take the form of postponed simultaneous investments by both firms. Such equilibria are more likely to exist in

highly volatile, low cost of capital, and/or faster growing markets. Suppose that the volatility level is such that no

tacit collusion equilibrium episode exists at some stage (k, k′, y). Then it is known that a rise in volatility delays

investment. However, that effect may be compounded if the rise in volatility further allows a tacit collusion

equilibrium episode to come to existence. The firms may then tacitly coordinate and select the higher payoff

equilibrium by further delaying their next investments till a common trigger is reached. This effect of volatility

appeared in Boyer et al. (2001); an anonymous referee pointed out to us that a current version of Mason and

Weeds (2005) discusses that issue.
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The analysis of multiple investment opportunities has confirmed results that existed with a single opportunity.

It has also brought a new perspective on competition at different stages of the development of an industry. Early

stages are characterized by intense competition; tacit collusion is only possible at subsequent stages, when firms

hold positive capacity; tacit collusion is more likely to exist in industry characterized by high growth, high

volatility and/or low cost of capital industry; market power can also be exercised at later stages, whether as tacit

collusion implemented by not investing, or as final equilibrium episodes where the smaller firm catches up while

investing as a monopoly.

At any industry development stage, however, if tacit collusion is possible in MPE, it is more profitable between

firms of equal size than between unequal firms. When firms are of equal size, tacit collusion is compatible with

joint-profit maximization, but when firms differ in size, the simultaneous investment threshold that maximizes

joint profits is beyond the level that maximizes the expected value of the smaller firm. In that sense, tacit collusion

is unable to generate the totality of potential gains from collusion when firms are of unequal sizes. If they can

select an equilibrium investment sequence that maintains size equality, it is in the interest of the firms to do

so. As extension of the analysis, this also suggests that explicit coordination, such as alliances, acquisitions and

mergers, may be more attractive, relative to tacit collusion, the more unequal the firm sizes are.

Our results imply that traditional measures of competition intensity may be deceiving: competition is more

intense when one single firm is investing, as preemption is then the sole equilibrium action, while tacit collusion

is more likely when both firms are active, are of equal size, and the market develops quickly, with much volatility,

under a low cost of capital. Indeed faster and more volatile market growth puts remote occurrences within closer

reach. As we have shown tacit collusion precisely relies on, and benefits from, exposition to such remote future

benefits.

30



5. Appendix: Proofs

Proof of Lemma 1. Let Yt = y. The value of a firm at date t is the expected present value of its profits over

the periods between investments by either firm, minus the present value cost of the investments made by the firm.

In the case of a firm of capacity i that invests immediately, at t, while its opponent holds j units and does not

make any investment at t,

L (i, j, y) = Ey

{∫ τkj

t

e−rsπkjYsds+ e−rτkj
[
c
(
k, j, Yτkj

)]}
− I

= Ey

{∫
∞

t

e−rsπkjYsds−

∫
∞

τkj

e−rsπkjYsds+ e−rτkj
[
c
(
k, j, Yτkj

)]}
− I,

where τkj is the random time, possibly infinite, at which some further investment occurs. The profit flow πkjYs

replaces πijYs at t. If it is altered by some new investment by either firm later on, at τkj, the continuation

function c
(
k, j, Yτkj

)
accounts for the new state.

The time homogeneity of (Yt)t≥0 and the strong Markov property for diffusions imply that, for all y ≥ 0,

L (i, j, y) =
πkj

r −α
y − I +Ey

{
e−rτkj

[
c
(
k, j, Yτkj

)
−

πkj

r −α
Yτkj

]}
.

We are interested in stopping regions of the form [ykj ,∞). For any ykj > 0, let τ (ykj) = inf {t > 0 | Yt ≥ ykj},

so that Yτ (ykj) = ykj P − a.s.; then L (i, j, y) may be rewritten as:

L (i, j, y) =
πkj

r −α
y − I +Ey

{
e−rτ (ykj )

}[
c (k, j, ykj)−

πkj

r −α
ykj

]
. (14)

Following Harrison (1985, chapter 3), the Laplace transform Ey
{
e−rτ (ykj)

}
is
(

y
ykj

)β
for any y ∈ [0, ykj). Sub-

stituting into (14) yields the formula for L (i, j, y) given in the Proposition. The other expressions are obtained

in a similar way.

Proof of Proposition 1. A strictly positive capacity is necessary. Suppose one firm has zero capacity. Then

its profit is zero. If it buys one unit, the lowest instantaneous profit it can make at any time after making that

investment is Ytπ1k, where k is the capacity at which its opponent is unconstrained in the short run in response to

an output of one: this corresponds to the worst-case scenario where its opponent holds the capacity which leaves

the firm the lowest instantaneous profit and the firm does not acquire any further units even if it is profitable for

it to do so. The maximized expected discounted present value from buying one capacity unit at some future time

τ is, in that worst-case scenario, V (0, k, y) = supτ E
y
{∫
∞

τ
e−rtYtπ1kdt− e−rτ I

}
. Using the approach of Lemma

1 to evaluate V leads to V (0, k, y) = supy0k

(
y
y0k

)β (
π1k
r−α

y0k − I

)
. The value of y0k that solves the maximization

is y∗0k =
I(r−α)
π1k

β
β−1

so that V (0, k, y) > 0. Thus, the strategy of never buying in the future is strictly dominated

for the firm whose capacity is zero. In consequence, both firms will eventually hold strictly positive capacity.

Either A or B is necessary. Assume that neither A nor B holds, that is: let l and k be the respective capacities;

let l be such that the corresponding firm is capacity constrained and let k be such that the firm that holds k

units is not constrained if the other firm has a capacity of l + 1 or more units. If the first firm increases its

capacity to l + 1 = n, its current instantaneous profit increases to Ytπnk > Ytπlk and stays at that level forever

since the opponent, not being capacity constrained, has no alternative but to accommodate by reducing output.
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The maximized gain in expected discounted present value from bringing capacity to n at some future time τ

is V (l, k, y) = supylk

(
y
ylk

)β (
πnk−πlk
r−α

ylk − I

)
. This is positive, implying that a strategy of never investing in a

situation where one firm is constrained, while the other is unconstrained or would become unconstrained after a

unit investment by its opponent, is strictly dominated.

Condition A is sufficient. If neither capacity constraint is binding, no firm can increase profit by further investing

so that the game is necessarily over.

Proof of Proposition 2. As shown in the main text, if a firm invests the first time Yt reaches y from below while

the other firm waits, its payoff is L (0,0, y) as given by (5) and the payoff of its opponent is F∗(0,0, y) given by (3) .

If both firms invest simultaneously at Yt = y, taking ys00 = y in Lemma 1, their payoff is, S̃ (0,0, y) = π11
r−α

y − I.

Let:10

s
f
1 (0,0, y) = s

−f
1 (0,0, y) =




0, if y ∈ [0, yp00)

L(0,0,y)−F∗(0,0,y)

L(0,0,y)−˜S(0,0,y)
, if y ∈ [yp00, y

∗

01)

1, if y ∈ [y∗01,∞)

.

s
f
1 (0, ν, y) = s

−f
1 (0, ν, y) =




0, if y ∈ [0, y∗
01
), ν ≥ 1

1, if y ∈ [y∗
01
,∞), ν ≥ 1

s
f
1
(ν, ν′, y) = s

−f
1

(ν, ν′, y) = 0 ∀y; ν, ν′ ≥ 1,

where sf
1
(i, j, y) is a probability distribution satisfying the detailed definition given in Boyer et al. (2004, Appendix

A). It can be interpreted as the intensity with which firm f invests in one unit of capacity in state (i, j, y) , i .e.

when it holds i capacity units, its opponent holds j units, and Yt = y. We have shown already that, on [0, yp
00
), it

is a dominant strategy not to invest, and on (y∗
01
,∞), it is dominant for a firm with zero capacity to invest if the

other holds one unit. The above strategy combination implies that an investment is sure to occur the instant Yt
reaches y∗

01
because then s

f
1
(0,0, y) and s

−f
1

(0,0, y) start increasing, while no simultaneous investment can occur

at y
p
00

because s
f
1
(0, 0, yp

00
) and s

−f
1

(0,0, yp
00
) are still zero. Once one firm has invested, the other one abstains

from investing
(
s
−f
1

(0, ν, y) = 0
)
until Yt reaches y∗

01
.

We now show that the above strategy profile is an MPE strategy profile in any subgame starting at y ∈ [yp
00
, y∗

01
).

For y ∈ [yp
00
, y∗

01
), if firm f deviates by choosing s′ (0, 0, y) = 0, the other firm invests at y so that firm f ’s

dominant strategy in the continuation is to invest at y∗
01

for a continuation payoff of F ∗ (0,0, y). If it chooses to

deviate with intensity s′ (0, 0, y) = λ ∈ (0, 1], its continuation payoff is:

λ
[
1− s

−f
1

(0,0, y)
]
L(0, 0, y) + (1− λ) s−f

1
(0, 0, y)F∗(0, 0, y) + λs

−f
1

(0,0, y) ˜S (0,0, y)

λ− λs
−f
1

(0,0, y) + s
−f
1

(0,0, y)
.

Substituting for s−f
1

(0, 0, y), this is equal to F∗ (0,0, y). Thus, for any subgame starting at y ∈ (yp
00
, y∗

01
),

both firms are indifferent between all possible choices. At y = y
p
00
, the continuation payoff from the candidate

MPE strategies is F ∗ (0, 0, yp
00
) = L (0, 0, yp

00
) as for all possible alternatives. Last, the right partial derivative

10If the first investor can increase its rent by investing in a second unit, that is if ∆L (1,0, y) = π20−π10

r−α
y − I −

(
y

y∗
01

)β
π20−π10
r−α

y

is positive on some interval

[
y10, y10

]
, then the MPE strategy profile must also specify s

f
1
(1, 0, y) =

{
1, y10 ≤ y < y10

0, otherwise
, where

y10 ≤ y10 < y∗
01
. It is tedious, but not difficult, to also work out the corresponding value of yp

00
, which is lower since the rent of the

first investor would otherwise exceed that of its opponent. We leave it to interested readers to adapt the foregoing proof to such cases
where it might be profitable for the first investor to invest more than once before its opponent does.
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∂+y s
f
1 (0,0, y

′′) is strictly positive as required by regularity condition (R2) in Boyer et al. For the proof that there

is no other equilibrium outcome, we refer the reader to Fudenberg and Tirole (1985, Appendix 1).

Proof of Proposition 3. See the main text.

Proof of Proposition 4. For each y ∈ (0, y∗12], F
∗ (1,1, y) , L (1, 1, y), and ˜S (1,1, y) = π22

r−α
y−I are respectively

the expected payoffs of becoming the first investor, the second investor, and of investing immediately, simulta-

neously with the other firm. As in the proof of Proposition 1, it can be shown that the strategy profile defined

below is an MPE strategy profile:

s
f
1 (1,1, y) = s

−f
1 (1, 1, y) =




0, y ∈ [0, yp11)

L(1,1,y)−F ∗(1,1,y)

L(1,1,y)−˜S(1,1,y)
, y ∈ [yp11, y

∗

12)

1, y ∈ [y∗12,∞)

.

s
f
1 (1,2, y) = s

−f
1 (1, 2, y) =





0, y ∈ [0, y∗12)

1, y ∈ [y∗12,∞)

s
f
1 (2,2, y) = s

−f
1 (2, 2, y) = 0 ∀y

Proof of Proposition 5. 1. Necessity is proven in the main text. To show sufficiency, let L (1,1, y) ≤

S∗ (1,1, y) ∀y ∈ (0, y∗
12
]. By the definition of S∗ (1,1, y) , one also has L (1, 1, y) ≤ S∗ (1, 1, y) ∀y ∈ (0, ys∗

11
]

with ys∗
11
> y∗

12
by (13) . We will show that the following (tacit collusion) strategies, whose equilibrium payoff is

S∗ (1,1, y) for both firms, yield an MPE:

s
f
1
(1,1, y) = s

−f
1
(1,1, y) =




0, y ∈ [0, ys∗
11
)

1, y ∈ [ys∗
11
,∞)

,

s
f
1
(1,2, y) = s

−f
1

(1,2, y) =




0, y ∈ [0, y∗
12
)

1, y ∈ [y∗
12
,∞)

.

For either firm, say f , a deviation from s
f
1
(1,1, y) either results in an investment after ys∗

11
is reached, or in an

investment before ys∗
11

is reached. In the former instance, since −f has already invested when f invests, the

payoff is F (1,2, y) < F∗ (1, 2, y) ≤ S∗ (1,1, y), where the last inequality follows from the fact that ys
11

= y∗
12

is

admissible in the maximization that defines S∗ (1,1, y). If the deviation results in an investment by f before ys∗
11

is

reached, then −f applies s−f
1

(1,2, y). The payoff to f is L (1,1, y) if the deviation occurs before y∗
12

is reached and

S (1,1, y) if it occurs at or after y∗
12

(since in that case −f invests immediately). Since S (1, 1, y) ≤ S∗ (1, 1, y), the

above strategies yield an MPE with joint investment at ys∗
11
. This completes the proof that condition L (1,1, y) ≤

S∗ (1,1, y) ∀y < y∗
12

is necessary for existence.

With respect to the existence of a continuum of tacit-collusion MPE, suppose now that S (1, 1, y) > L(2, 1, y) for

each y < y∗
12
, and define ys to be smallest value of ys

11
∈ [y∗

12
, ys∗

11
) such that:

π11

r − α
y +

(
y

ys
11

)β{
π22 − π11

r −α
ys
11
− I

}
≥ L(2, 1, y)

for all y ∈ [0, y∗
12
]. Then, for any ys

11
∈ [ys, ys∗

11
], one can, as above, construct an MPE such that firms invest

jointly at τ s
11

= inf{t ≥ 0 |Yt ≥ ys
11
}. By definition of ys∗

11
, the expected payoff from jointly investing at τ s

11
is an
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increasing function of the investment trigger ys
11

over the range [ys, ys∗
11
]. It follows that these MPE are Pareto

ranked, and that the Pareto optimal MPE corresponds to joint investment at τ s∗
11
.

2. Rents are equal and exceed F (1,2, y) by the definition of S. Since the firms act simultaneously, joint profits

equal 2S∗ (1,1, y) under joint investment at ys∗
11
.

3. As explained in the text, when π22 < π11, ys∗11 → ∞; thus, firms never invest. Otherwise, the above strategy

profile implies joint investment at ys∗
11
.

Proof of Proposition 6. 3. Assume that π22 −π11 > 0. By Proposition 5.1, a tacit-collusion equilibrium exists

if and only if S∗ (1,1, y) −L (1, 1, y) is positive for all y < y∗
12
. Thus, we study the sign of:

E (y; I, β) ≡ S∗ (1,1, y)− L (1,1, y) = −
π21 − π11

r −α
y + I +K (β) yβ

for y ∈ [0, y∗
12
] where, after substitution of the expressions for y∗

12
and ys∗

11
,

K (β) =

(
β − 1

βI

)β−1
(
β−1

(
π22 − π11

(r − α)

)β
+

(
π12 − π22

r −α

)β (
π22 − π21

π22 − π12

))
.

The function E is strictly convex, strictly decreasing in a right neighborhood of zero, and limy→∞E (y; I, β) =∞.

It follows that E attains its minimum at a unique point yE > 0 that is characterized by the first-order condition:

βK(β)yβ−1

E =
π21 − π11

r −α
. (15)

Substituting in the expression for E(yE), it follows that the minimized value of E is:

E∗(β) ≡ min
y≥0

E (y; I, β) = (1− β)K(β)yβE + I = I −
β − 1

β

π21 − π11

r −α
yE . (16)

Changes in σ affect the function E only through β; β is a function that is strictly decreasing in σ and α (increasing

in r) and that goes to 1 as σ → ∞ and as α ↑ r (as r ↓ α), with σ ≥ 0 and r > α. By the envelope theorem,

E∗′(β) < 0. It follows that if β < β
′

and E∗(β′) = 0, then E∗(β) > 0, so that E (y; I, β) > 0 ∀y. Consequently,

Λ (β′) ⊂ Λ(β) . This proves 3.

2. Using (15) and (16) , the condition for E∗ (β) ≥ 0 can be written as:

π21 − π11

π22 − π11
≤

[
1 + (β − 1)

π22 − π11

π21 − π11

π21 − π22

π22 − π12

(
π22 − π12

π22 − π11

)β
] 1

β−1

.

This is independent of I.

1. We show existence by constructing an example. Let β = 2; the condition E∗ (2) ≥ 0 can be written, after

some manipulations, as:

Q (x) = −x2 + bx+ c ≥ 0, (17)

where b = π22 − π11, c = (π21 − π22) (π22 − π12), and x = π21 − π11. This quadratic expression is subject to
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features implied by the output competition model, first, under Assumption 1 on demand; and second, under

Assumption 3 for the equal-capacity Case 2 under scrutiny. These features are: π21 > π22 > π11 > π12 > 0 and

π21 − π11 > π22 − π12, where the last inequality means that the rise in profit from increasing capacity from one

to two units is higher when the opponent holds one unit than when it holds two units. Taking π21 − π22 = 1 as

normalization, the conditions of the Cournot model are equivalent to:

x > 1 ; x > c ; c > b ; b > 0. (18)

For values of x, b, and c satisfying conditions (18), Q (x) ≥ 0 if and only if x is smaller than or equal to the

positive root of Q (x) , which is equal to 1

2

(
b+

√
b2 + 4c

)
. This is possible if and only if the positive root is greater

than both c and 1, or:

b ≥ max {1− c, c − 1} .

Existence of the tacit-collusion MPE when β = 2 is therefore ensured when, in addition to the regular features

arising from the Cournot model and under the normalization π21 − π22 = 1,

π22 − π11 ≥ max{1− (π22 − π12) , (π22 − π12)− 1} .

For example, if π21 = 1, π22 = 5

6
, π12 = 3

6
, π11 = 3.5

6
, then π21 − π22 = 1

6
; normalizing requires multiplying all

those values by 6; then π22 − π11 =
9

6
> π22 − π12 − 1 = 1.

Proof of Lemma 2. We need to show that, if the gain G (2, 1, y) from investing immediately for the bigger firm

is positive at some value of y < y∗
13
, then there exists a value of y, yp

12
such that G (2,1, y) < 0 ∀ y < y

p

12
. The

gain from investing immediately for the bigger firm is

G (2, 1, y) ≡ L (2, 1, y)− F∗ (2, 1, y) , (19)

with

F∗ (2, 1, y) =




S∗ (2,2, y) if a collusion episode occurs at (2, 2, y) ,

π22

r−α
y +

(
y

y
p

22

)β (
L (2, 2, yp

22
) − π22

r−α
y
p
22

)
in case of preemption at (2, 2, y) ,

(20)

where S∗ (2, 2, y) and L (2,2, y) correspond to the tacit-collusion and the preemption equilibria analyzed in sub-

section 3.2 (for k′ = 2), respectively given by (12) taken at the joint-profit maximizing trigger (13) and by

(11).

In order to compute L (2,1, y) , first note that, as an implication of Assumption 4, if the bigger firm invests first,

it will then have to accommodate whenever the smaller firm introduces a new unit. Consequently, the smaller

firm’s dominant policy in that case is to acquire two units successively at its stand-alone trigger values:

F ∗ (1,2, y) = sup
y13, y23

[
π13

r − α
y +

(
y

y13

)β (
π23 − π13

r − α
y13 − I

)
+

(
y

y23

)β (
π33 − π23

r − α
y23 − I

)]
, (21)

where y∗
13

= 1

π23−π13
(r − α) I β

β−1
, and y∗

23
= 1

π33−π23
(r − α) I β

β−1
are the corresponding investment triggers.

Given the dominant policy of the smaller firm when the bigger firm invests first, the value of the latter, if it
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purchases its third unit at Yt = y when the small firm holds one unit, is:

L (2,1, y) =
π31

r −α
y − I +

(
y

y∗
13

)β
π32 − π31

r − α
y∗
13

+

(
y

y∗
23

)β
π33 − π32

r −α
y∗
23
. (22)

Use (22) and (20) to compute G (2, 1, y) from (19) and use (12) and (13) to express S∗ (2, 2, y) in the resulting

expression. Whatever the expression applying in (20), it can be verified that G (2, 1, y) is concave and that it is

increasing in a right-neighborhood of 0; also, G (2, 1,0) = −I. Consequently, if G (2, 1, 0) reaches a strictly positive

value for some y < y∗
13
, then there exists at least one value of y in the interval [0, y∗

13
], such that G (2,1, y) = 0.

We define yp
12

as the smallest root and note that G (2,1, yp
22
) is increasing, which proves the last statement in the

Lemma.

Proof of Proposition 7. The case 0 < xc − k′ ≤ 1 (k′ = 1) is discussed in the main text; we focus on

1 < xc − k′ ≤ 2 (k′ = 1) in this proof.

1 and 2. The proof relies on comparing the gain G (1,2, y) for the smaller firm to invest immediately with the

gain G (2, 1, y) for the bigger firm to do so. G (2,1, y) is given by (19) as described in the proof of Lemma 2;

G (1, 2, y) will be established further below.

Preliminaries.

Trivially, if G (2,1, y) ≤ 0 ∀ y ≤ y∗
13
, investing when its opponent holds one unit is a dominated strategy for the

bigger firm. Then the result holds, with the smaller firm investing at its stand-alone date, i .e. when y reaches

y∗
12

for the first time. We assume that G (2, 1, y) > 0 for some values of y ≤ y∗
13

in the rest of the proof.

The gain from investing immediately for the smaller firm is

G (1,2, y) ≡ L (1,2, y)− F∗ (1, 2, y) (23)

where F∗ (1, 2, y) is given by (21). L (1,2, y) corresponds to the smaller firm investing first and is given by:

L (1,2, y) =




S∗ (2, 2, y)− I if a collusion episode occurs at (2,2, y) ,

π22
r−α

y +
(

y
y
p

22

)β
L (2,2, yp

22
)− I in case of preemption at (2, 2, y) ,

(24)

where S∗ (2, 2, y) and L (2,2, y) apply in case of tacit-collusion and preemption at capacities (2, 2) respectively, as

analyzed in subsection 3.2 (for k′ = 2). They are respectively given by (12) taken at the joint-profit maximizing

trigger (13) and by (11).

Since tacit collusion yields a higher payoff than preemption at (2,2) by Proposition 5, it follows that the gain for

the smaller firm to invest immediately, if the alternative is the bigger firm taking the lead, is at least equal to the

gain in case the preemption episode occurs:

G (1,2, y) ≥ −I +
π22

r − α
y +

(
y

y
p
22

)β (
L (2,2, yp

22
)−

π22

r −α
y
p
22

)

− sup
y13, y23

[
π13

r −α
y +

(
y

y13

)β (
π23 − π13

r −α
y13 − I

)
+

(
y

y23

)β (
π33 − π23

r −α
y23 − I

)]
(25)
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Comparing the gains from investing immediately rather than waiting for the smaller versus the bigger firm. An

inequality similar to (25) , but in the opposite direction, can be obtained in the case of G (2,1, y) by choosing the

lower alternative in (20). Substracting it from (25), we have, for y ≤ y∗
13
,

G (1,2, y) −G (2,1, y) ≥ −I

+

{
π22

r − α
y +

(
y

y
p
22

)β (
L (2,2, yp

22
)−

π22

r −α
y
p
22

)}

−
π13

r −α
y −

(
y

y∗
13

)β (
π23 − π13

r −α
y∗
13
− I

)
−

(
y

y∗
23

)β (
π33 − π23

r −α
y∗
23
− I

)

−
π31

r −α
y + I −

(
y

y∗
13

)β (
π32 − π31

r −α
y∗
13

)
−

(
y

y∗
23

)β
π33 − π32

r − α
y∗
23

+

{
π22

r − α
y +

(
y

y
p
22

)β (
L (2,2, yp

22
)−

π22

r −α
y
p
22

)}
.

Substituting for L (2, 2, yp
22
) = π32

r−α
y
p

22
− I +

(
y

y
∗

23

)β
π33−π32
r−α

y∗
23

and simplifying gives

G (1,2, y) −G (2,1, y) ≥ 2

(
y

y
p
22

)β
π32 − π22

r −α
y
p
22

−

(
y

y∗
13

)β (
π23 − π13 − π32 + π31

r −α
y∗
13
− I

)
−

(
y

y∗
23

)β (
π32 − π23

r −α
y∗
23
− I

)
.

Evaluating the πij as price times quantity where this helps sign an expression, with pl defined as the industry

price when there are l = i + j capacity units in the industry, this can be written as:

G (1,2, y) −G (2,1, y) ≥(
y

y
p
22

)β
[
6p5 − 4p4
r − α

y
p
22
− 2I −

(
y
p
22

y∗
13

)β (
5p5 − 4p4
r −α

y∗
13
− I

)
−

(
y
p
22

y∗
23

)β (
p5

r −α
y∗
23
− I

)]

This shows that the difference in gains is higher than the product of the positive function
(

y

y
p

22

)β
by a function

δ of three variables evaluated respectively at the trigger values yp
22
, y∗

13
, and y∗

23
:

δ (y22, y13, y23)

=
6p5 − 4p4
r − α

y22 − 2I −

(
y22

y13

)β (
5p5 − 4p4
r − α

y13 − I

)
−

(
y22

y23

)β (
p5

r − α
y23 − I

)

We are going to show that δ (yp
22
, y∗

13
, y∗

23
) is positive. Given y13 = y∗

13
, let us treat y22 and y23 as vari-

ables and let us note that δ (y22, y13, y23) is zero if y∗
13

= y23 = y22. First we show that y∗
13

< y
p
22

< y∗
23
.

Because y
p
22

is a preemption trigger, it is by definition lower than the corresponding stand-alone trigger y∗
22

= argmaxy22

{
π22
r−α

y +
(

y
y22

)β (
π32−π22
r−α

y22 − I
)
+
(

y
y32

)β
π33−π32
r−α

y32

}
= 1

π32−π22
(r − α) I β

β−1
. The inequality

y
p
22

< y∗
23

follows from the observation that y∗
22

< y∗
23
. The inequality y∗

13
< y

p
22

stems from the following argu-

ment. Suppose the investor at yp
22

ignored the cannibalism effect, the impact of introducing a new capacity unit

37



on the revenue from its existing unit, effectively treating its existing unit as an independent existing firm. This

is feasible and the corresponding payoff is thus reachable. In fact it corresponds to the problem that defines y∗
13
.

Consequently y∗
13
≤ y

p
22
; equality would occur if the preemption episode at yp

22
did not leave any rent to the first

investor. However, by Proposition 2, rents are equalized but strictly positive; this requires y∗
13

< y
p
22
.

Second we note that ∂δ
∂y22

> 0 and we show ∂δ
∂y23

> 0 for y23 ∈ [y∗
13
, y∗

23
], which implies, given that δ (y∗

13
, y∗

13
, y∗

13
) =

0 and given y∗
13

< y
p
22

< y∗
23
, that δ (yp

22
, y∗

13
, y∗

23
) > 0. Standard computations show that

∂δ(yp22, y∗
13
,y∗
23)

∂y23
=

(y22)
β
[
(β − 1) p5

r−α
(y∗23)

−β
− β (y∗23)

−(β+1)
]
. Substituting y∗23, with π23 = 2p5 and π33 = 3p6, it follows that

∂δ(yp22, y∗
13

,y∗
23)

∂y23
is proportional to

(
p5

3p6−2p5
− 1

)
which is positive since p5 > p6. Thus

∂δ
∂y23

> 0 for y23 = y∗
23

and

for any lower value of y23. This completes the proof that G (1, 2, y)−G (2, 1, y) > 0 ∀y < y∗
13
.

Preemption in MPE. At levels of y such that G (2,1, y) < 0, investing is a dominated strategy for the bigger

firm, and the best response for the smaller firm is to wait until G (1, 2, y) reaches a maximum if that maximum

is reached when G (2,1, y) < 0. For any y such that G (2,1, y) ≥ 0, G (1,2, y) > 0, so the best response for the

small firm to a strategy by the bigger firm of investing at such level of Yt is to preempt at y − ε. Precisely, by

Lemma 2, G (2, 1, yp
12
) = 0. Since G (1, 2, y) −G (2, 1, y) > 0, it follows that G (1,2, yp

12
) > 0. Then, the smaller

firm should invest at yp
12

which is achieved in equilibrium for the following strategies:

s1 (1, 2, y) =



0, if y ∈ [0, yp12)

1, if y ∈ [yp12,∞)
; s1 (2, 1, y) =





0, if y ∈ [0, yp12)

L(2,1,y)−F ∗(2,1,y)
L(2,1,y)−S(2,1,y) , if y ∈ [y

p
12, y

∗

12)

1, if y ∈ [y∗12,∞)

.

By Lemma 2, G (2,1, yp12) = 0. Since G (1, 2, y)−G (2,1, y) > 0, it follows that G (1, 2, yp12) > 0. Then, the smaller

firm should invest at yp12 which is achieved in equilibrium for the following strategies:

s1 (1, 2, y) =



0, if y ∈ [0, yp12)

1, if y ∈ [yp12,∞)
; s1 (2, 1, y) =




0, if y ∈ [0, yp12)

L(2,1,y)−F ∗(2,1,y)
L(2,1,y)−S(2,1,y) , if y ∈ [y

p
12, y

∗

12)

1, if y ∈ [y∗12,∞)

.

Note that the smaller firm invests first with probability one. Consequently, a preemption episode at (k, k′) with

the bigger firm as first investor cannot exist in MPE.

3 can be readily verified.

Proof of Proposition 8. Under Assumption 4 with k′ = 1:

1. If π32 − π22 = 0, there exists no value of Yt at which it is profitable for the bigger firm to invest if the smaller

does so; thus, there exists no tacit-collusion MPE with simultaneous investment. Since π22 > π12, abstaining

from investing is a dominated strategy for the smaller firm; thus, there exists no tacit-collusionMPE by inaction.

2. π32−π22 > 0. The sole alternative to the tacit-collusionMPE, if it exists, is the preemptionMPE. The proof

is similar to that of Proposition 5 so we only introduce the main elements. By Proposition 7, for the bigger firm,

the alternative to tacit collusion is to be passive in the preemption MPE; for the smaller firm, the alternative to
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tacit collusion is to be first investor in the preemption MPE. Consequently, adapting Proposition 5, collusion is

an MPE if and only if S (2,1, y)−F∗ (2, 1, y) ≥ 0 and S (1, 2, y)−L (1, 2, y) ≥ 0 for all y ≤ ys
21
, where ys

21
is the

threshold at which both firms invest simultaneously. We compute these gains from tacit collusion.

First, we evaluate S (2,1, y) and S (1, 2, y). Since π32 − π22 > 0, 2 < xc ≤ 3, so that a capacity of three units is

necessary to produce the unconstrained Cournot output. In case of simultaneous investment, both firms acquire

one unit at some common trigger ys
21

to be defined. Then the bigger firm holds three units and must accommodate

any increase in production up to xc by the smaller firm. Thus, it is a dominant strategy for the latter to acquire

a third unit at its stand-alone threshold y∗
23
, if ys

21
≤ y∗

23
, or at y23 = ys

21
if ys

21
> y∗

23
. Once both firms hold

three units each, the game is over by Proposition 1(A). Thus, the tacit-collusion equilibrium, if it exists, involves

simultaneous investment at ys
21
, followed, possibly immediately, by an investment by the smaller firm. The

corresponding values for the bigger and the smaller firms are respectively:

S (2,1, y) =
π21

r −α
y +

(
y

ys
21

)β (
π32 − π21

r −α
ys
21
− I

)
+

(
y

y23

)β
π33 − π32

r −α
y23

S (1,2, y) =
π12

r −α
y +

(
y

ys
21

)β (
π23 − π12

r −α
ys
21
− I

)
+

(
y

y23

)β (
π33 − π23

r − α
y23 − I

)
,

where either y23 = y∗
23
> ys

21
or ys

21
= y23 ≥ y∗

23
.11 We now evaluate the gain from colluding for the bigger firm,

over its alternative of letting the smaller firm invest first, using (20) for F∗ (2, 1, y) :

GS (2,1, y) = S (2, 1, y)− F∗ (2,1, y)

=
π21

r −α
y +

(
y

ys
21

)β (
π32 − π21

r − α
ys
21
− I

)
+

(
y

y23

)β
π33 − π32

r −α
y23

−max

{
S∗ (2, 2, y) ,

π22

r − α
y +

(
y

y
p
22

)β (
L (2, 2, yp

22
)−

π22

r −α
y
p
22

)}
.

Similarly, we evaluate the gain from colluding for the smaller firm, over its alternative of investing first, using

(24) for L (1, 2, y):

GS (1,2, y) = S (1, 2, y)− L (1,2, y)

=
π12

r −α
y +

(
y

ys
21

)β (
π23 − π12

r −α
ys
21
− I

)
+

(
y

y23

)β (
π33 − π23

r −α
y23 − I

)

+I −max

{
S∗ (2,2, y) ,

π22

r −α
y +

(
y

y
p
22

)β (
L (2, 2, yp

22
) −

π22

r − α
y
p
22

)}
.

Let ys∗
12

and ys∗
21

be the values of y that maximize S (1,2, y) and S (2,1, y) respectively with respect to ys
21
. That

is, ys∗
12

= 1

π23−π12
(r −α) I β

β−1
; ys∗

21
= 1

π32−π21
(r −α) I β

β−1
. Note that ys∗

12
< ys∗

21
. Consider ys∗

12
and ys∗

21
as

possible triggers in a tacit-collusion equilibrium; since S (1, 2, y) is decreasing in y beyond its maximum, it is

a dominant strategy for the smaller firm to invest when y ≥ ys∗
12
. Thus, in MPE, ys

12
≤ ys∗

12
and simultaneous

investment at ys∗
12
yields a higher payoff to both firms than at ys

12
< ys∗

12
. This equilibrium exists if and only if

both S (1,2, y) − L (1, 2, y) and S (2, 1, y) − F∗ (2, 1, y) are nonnegative for any y ≤ ys∗
12
= y23. The rest of the

proof of 2, about parameter conditions, is otherwise similar to that of Proposition 6.

11We take the case y23 = ys
21

corresponding to situations where y∗
23
< ys

21
: the second investment of the smaller firm occurs later

under the tacit-collusion trigger than under the stand-alone trigger y∗
23

because the smaller firm delays its first investment beyond

y∗
23

in order to collude. The approach is identical for the alternative case and leads to the same implications.
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3. Let us show that the value that maximizes S (1,2, y) + S (2, 1, y) is higher than min (ys∗12 , y
s∗
21). Since ys∗12

maximizes S (1, 2, y) ,
∂S(1,2,ys∗

12
)

∂y
= 0 while, since ys12 < ys∗12, S (2,1, y) is rising in y at y = ys∗12. It follows that

S (1,2, ys∗12) + S (2,1, ys∗12) is rising in y, so that its maximum at some value ys∗∗12 strictly above ys∗12 . However, at

any y > ys∗12 , it is a dominant strategy for the smaller firm to invest, so that joint investment at ys∗∗12 cannot occur

in MPE.
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