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Summary

This paper proposes a new method to estimate the number of distinct values
of genotypes in a population using a unique sample or several increasing
samples. The method rests on a Polya urn scheme which is assumed to be the
generator of the genotypes. This model depends on a parameter estimated
by the maximum likelihood method or by moments methods. The main
conclusion of our analysis is to estimated the number of genotypes in the
French population (three locus, low resolution typing) to be around 500 000.

Keywords: Bayesian non parametric models, forecasts of the number of
genotypes, Polya urn scheme, random generation of genotypes.

1 Introduction

This statistical study is part of a larger research project (see MADO, PO-
SEIDON, Fève , 2006) 1 that aims at analysing the e�ciency of the registries
of voluntary donors of hematopoietic stem cells. Voluntary donors are reg-
istered with their HLA genotype recorded at a given precision which may
vary between registries. The e�ciency of a registry may be measured by the
probability for potential receivers to �nd a compatible donor (see Oudshoorn
et al., 1997 and 2007 where many references on bone marrow transplantation
may be found). Di�erent probability models have been elaborated (see Fève,
Florens, 2009; 2 Fève et al., 2007) which highlight the key role played by the

1MADO, European contract 2001-2005 QLG7-CT-2001-00065; POSEIDON, European
contract, Optimisation, Safety, Experience sharing and quality Implementation for Dona-
tion Organisation and Networking in Unrelated Haematopoietic Stem Cell Transplantation
in Europe, 2007-2010.

2Fève F., Florens J.P. (2009). "Matching Models and Optimal Registry for Volun-
tary Organ Donation Registries", http://www.idei.fr/doc/by/�eve/matchingmodels.pdf,
University of Toulouse
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number of HLA genotypes3 in the relevant population (see also Single et alii,
2002; Speiser et alii, 1994). This paper presents a method to estimate this
number and applies this approach to the French population.
Before the presentation of our approach, let us �rst give some results com-
ing from previous methods. Our observation consists into a sample of n =

107 925 individuals where the number of observed di�erent types Jn is
equal to 66 1644. The size of the French population is approximated by
N = 63 000 000. We have applied several methods as they are recalled in
Haas et alii (1995)(see this paper for detailed formulae and references). The
results are:

J63M(Chao) = 225 213. (see Chao, 1984)
J63M(Jacknife) = 117 513. (see Burnham and Overton, 1978 and 1979)
J63M(ChaoLee) = 1 866 500 (see Chao and Lee, 1992)
J63M(Schlosser) = 378 610. (see Schlosser, 1981)
J63M(Moment) solution of (66 164 = J(1− exp−

107 925
J )) = 100 510.

Another method is coming from the paper of Charikar et al., 2000 and gives
the result: J63M(Chalikar) = 1 255 400. On an other way, Gourraud,
2006 has estimated an upper bound of the number of types in the French
population by constructing all possible combinations of previously observed
haplotypes. This upper bound is evaluated at 3.4 millions. Up to our knowl-
edge no statistic study of the evolution of the number of HLA genotypes has
been previously done. The message coming from this wide range of results
is clearly very ambiguous and is a motivation to propose a new approach for
this problem.
More precisely, we consider a population of N individuals where each indi-
vidual has an unknown "type" (namely the HLA genotype (A, B, DR low
precision)). We only observe a sample of n individuals, among which Jn

di�erent types are observed. The question is how to deduce from this in-
3The genotype are here characterized by the observation of three locus (A, B, DR) at

a low resolution ("two digits") where only the ordered pairs for the two chromosomes are
observed.

4France Gre�e de Moelle (2004). The authors are grateful to Dr Colette Ra�oux and
Marie�Lorraine Appert for helpful comments.
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formation an estimation of JN . This paper develops a statistical model of
type's generation which leads to a prediction of JN . If several observations
are available the model introduces overidenti�cation constraints which may
be tested.
Two approaches may be adopted to analyse this problem. The �rst one is
a �nite population approach. It assumes a large population where individu-
als have types and consider the observed population as a subsample obtained
through a random survey. In this case the only stochastic element of the data
generating process is the survey mechanism (see references in the survey by
Haas et al., 1995, more recently in Chalikar et al., 2000 and the applications
of most of the methods are given above). The statistical problem is then to
infer a characteristic of the total population (namely the number of di�erent
types) from the observed sample. The second one is adopted in this note
and consists of the speci�cation of a model for the generation of types which
allows ties. The sample is then used to estimate (and to test the model) and
this model is used for forecasting the number of types in the whole popula-
tion. Our model has many interests. First, it is based on a process generating
a type (new or previously realized) for each new individual. Second, it is a
parsimonious (in terms of number of parameters) speci�cation and the esti-
mation is undertaken by maximum likelihood (which is the most commonly
accepted method in statistics). Third the model can be evaluated by di�er-
ent ways described in section 4. We can simulate subsamples and analyse
the �t of the model for the total number of types and �t the prediction of
increments.
The paper is organized as follows. Section 2 presents the probabilistic foun-
dations of the Polya urn model and section 3 details the statistical procedures
for estimation and forecasting. Several results concerning the French popu-
lation are given in section 4. More possible extensions are joint in the last
section.
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2 Methodology: A statistical model for type's
generation

Our approach is based on the following methodology: we assume a simple one
parameter model explaining types'generation and we estimate this parameter
using our dataset. The model is then used to forecast the number of types
for the whole population. Estimation and forecast are given with con�dence
intervals. The model describing types' generation is a Polya urn scheme:

1- The �rst individual has a type generated randomly

2- Assume that i individuals (i ≥ 1) have been generated and denoted by
Pi the empirical distribution of the �rst i types (Pi (type l) is equal to
the frequency of type l in the �rst i individuals).

Then the (i+1)th individual receive a new type with a probability n0

n0+i

or drawn a type in the distribution Pi with a probability i
n0+i

The unknown parameter is n0.
This Polya urn scheme has been studied in the literature in many con-

texts. In particular in the Bayesian non parametric model using a Dirichlet
prior distribution (see Ferguson , 1973, 1974; or Antoniak, 1974), the sample
is marginally distributed according to this Polya urn model . Despite the
sequential description of this scheme the distribution of the types among the
individuals is exchangeable: the distribution is invariant by the permutation
of the individuals (individuals are anonymous). It has been proved (see Hill
et al., 1987) that our model is the unique exchangeable Polya process.

In order to estimate the parameter n0 we need to recall some properties of
the probability to observe Jn di�erent types in a sample of size n generated
by our model.

We may �rst remark that:

P (Jn = k) =
n0

n0 + n− 1
P (Jn−1 = k − 1) +

n− 1

n0 + n− 1
P (Jn−1 = k)

4



k = 1, ..., n

from which some characteristics of the distribution may be derived.
Moreover following Antoniak (1974), it may be reminded that the prob-

ability to observe a sample of size n containing Jn di�erent types is propor-
tional to:

nJn
0

Γ(n0)

Γ(n0 + n)

The multiplicative factor does not depend on n0 and is function of the
con�guration of ties.

Following Rolin, 1993 we may reconstruct Jn by the following way. Let
ui be a random element in {0, 1} which takes the value 1 if the individual i

has a new type and 0 else.
Then:

Jn =
n∑

i=1

ui. (2.1)

The ui are independent and

P (ui = 1) =
n0

n0 + i− 1
. (2.2)

Then

E(Jn) =
n∑

i=1

n0

n0 + i− 1
= n0 {ψ(n0 + n)− ψ(n0)} , (2.3)

where ψ(t) is the digamma function ψ(t) = d
dt

lnΓ(t) which satis�es ψ(n) =
∑n−1

i=1
1
i
− γ (where γ is the Euler-Mascheroni constant).

Thank to the approximation ψ(t)
ln t)

→ 1 if t is large, we have :

E(Jn) ' n0[ln (n0 + n)− ln n0] (2.4)

Note that this approximation is extremely accurate.
The variance of Jn is obtained by :
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V (Jn) =
n∑

i=1

V (ui) =
n∑

i=1

n0 (i− 1)

(n0 + i− 1)2
.

= n0(ψ(n0 + n)− ψ(n0)) + n2
0(ψ

′(n0 + n)− ψ′(n0)) (2.5)

where ψ′ is the derivative of ψ (also called the trigamma function) which
satis�es

ψ′(n) = constant−
n−1∑
j=1

1

j2
. (2.6)

The description of the exact distribution of the random variable Jn is complex
but asymptotic distributions of Jn and of JN − Jn given Jn (the incremental
number of di�erent types when the sample increases from n to N) are easily
obtained from (3.5).
Actually, an application of Lindeberg Feller theorem shows that:

Proposition 1: (Rolin 1993)

i) Asymptotically
Jn ∼ N (E(Jn), V (Jn)) (2.7)

ii) JN − Jn is independent in distribution to Jn and, asymptotically

JN |Jn ∼ N (Jn +n0(ψ(n0 +N)−ψ(n0 +n)), n0(ψ(n0 +N)−ψ(n0 +n))

+n2
0(ψ

′(n0 + N)− ψ′(n0 + n))). (2.8)

3 Methodology: Estimation and prediction

Let us consider �rst the case where a single sample of size n is available. We
observe in the sample Jn distinct types. The log likelihood derived from (2.1)
is then equal to :

ln` = Jn ln n0 + lnΓ(n0)− lnΓ(n0 + n) + constant (3.1)
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and the �rst order conditions of the likelihood maximization reduces to :

n0 =
Jn

ψ(n0 + n)− ψ(n0)
, (3.2)

which has no solution in a closer form. Let us denote n̂0 the numerical
solution of this �rst order condition.
This estimator n̂0 may also be viewed as the solution of the moment condition

E(Jn) = n0[ψ (n0 + n)− ψ (n0)] , (3.3)

where the expectation is replaced by the observed value. The function
n0 [ψ(n0 + n) − ψ(n0)] is strictly increasing. This implies that the solu-
tion of the moment condition is unique.

Proposition 2: The estimator n̂0 is almost surely convergent and its asymp-
totic distribution is:

n̂0 ≈ N(n0,
n̂0

(ψ(n̂0 + n)− ψ(n̂0)) + n̂0(ψ′(n̂0 + n)− ψ′(n̂0))
).

The proof is given in Appendix I.
The prediction of JN is constructed by the following way:

ĴN = Jn + n̂0 [ψ(n̂0 + N)− ψ(n̂0 + n)] (3.4)

This prediction is equal to the conditional mean of JN given Jn where the
unknown n0 is replaced by its estimator. Then this prediction has two sources
of errors: �rstly JN is not equal to its mean and secondly n0 is only estimated
and the estimation error has an impact on the forecast error. However we
may compute the estimated variance of the forecast error:

V ar(ĴN−JN | Jn) = [n̂0(ψ(n̂0+N)−ψ(n̂0+n))+n̂0
2(ψ′(n̂0+N)−ψ′(n̂0+n))]

[1 +
ψ(n̂0 + N)− ψ(n̂0 + n) + n̂0(ψ

′(n̂0 + N)− ψ′(n̂0 + n))

ψ(n̂0 + n)− ψ(n̂0) + n̂0(ψ′(n̂0 + n)− ψ′(n̂0))
] (3.5)

The proof is given in Appendix II.
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We now assume that we observe increasing samples of individuals at di�erent
dates t1, ..., tp. At ti the �le contain ni individual and Jni

di�erent types.
Using previous properties we have the asymptotic approximation:

Jnj
− Jnj−1

∼ N [n0(ψ(n0 + nj)− ψ(n0 + nj−1)),

n0(ψ(n0 + nj)− ψ(n0 + nj−1)) + n2
0 (ψ′(n0 + nj)− ψ′(n0 + nj−1))]

and all these distributions are independent. We then propose a weighted
mean square estimation of n0 based on the increments of Jn

5,

n̂0 = arg min

p∑
j=2

[
(Jnj

− Jnj−1
)− n0(ψ (n0 + nj)− ψ (n0 + nj−1))

]2

n0(ψ (n0 + nj)− ψ (n0 + nj−1)) + n2
0(ψ

′ (n0 + nj)− ψ′ (n0 + nj−1))

(3.6)

An elementary extension of the proof given in Appendix I shows that this
estimator veri�es asymptotically:

n̂0 ≈ N [0,
n̂0∑p

j=2ψ(n̂0 + nj)− ψ(n̂0 + nj−1) + n̂0(ψ′(n̂0 + nj)− ψ′(n̂0 + nj−1))
]

(3.7)

4 Results

We use to apply our approach the France Gre�e de Moelle �le of volunteer
donors observed in 2003 where 107 925 individuals are registered and gen-
erates 66 164 di�erent genotypes as there was de�ned in the introduction.
Solving equation (2.10) with n = 107 925 and Jn = 66 164, the estimator
n̂0 is then equal to n̂0 = 72 702 with a standard deviation equal to 482. A
con�dence interval at 95 % is then [71 757, 73 647].

5An estimation based on the increments is more robust than an estimation which
incorporates the initial conditions. This argument is standard in stochastic processes.
Moreover the model will be used to predict the increment JN − Jn only.
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The forecast of the number of types for a population of 63 000 000 indi-
viduals is :

Ĵn = 66 164+72 702[ψ [63 000 000+72 702]−ψ [107 925+72 702]] = 491 880

with a standard deviation equal to 2 705.
Finally the probability that a new donor added to the actual registry does
not have a previously observed type is equal to 0.40

Let us consider the FGM �le of 107 925 individuals. We have not the history
of the �le but in order to test our model we propose the following strategy:
from the original �le we may draw (uniformly without replacement) increas-
ing sub�les. Note that this approach is not feasible if n and Jn only are
observable but in our case we observe the complete list of the types of the
whole sample. For example we have done the simulations reported in Table
4.1.
Di�erent values of n represent the size of the sample and Jn the observed
number of types.

Table 4.1:

n Jn Ĵn(72 702) Ĵn(78 225)

107 925 66 164 66 164 66 112
86 427 55 617 56 951 56 512
64 789 44 139 46 325 45 491
43 170 31 529 33 888 32 670
21 551 17 328 18 874 17 328

Using numbers in table 1, an application of procedure (3.6) gives a new
estimation equal to 78 225 (with a standard deviation equal to 549). In
order to compare the predictions in the sample of two values of n0 we have
computed the predicted values of Jn obtained by:

Ĵnj
= Ĵnj−1

+ n̂0(ψ(n̂0 + nj)− ψ(n̂0 + nj−1)) (4.1)
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with Ĵ21551 equal to the value 17 328. These values are given in the last two
columns of Table 4.1. We see that the new estimator of n0 improves the in
the sample predictions.

Outside the sample the new value of n̂0 predicts that a new donor has 0.42

probability to have a new type (if the �le has 107 925 individuals) and that
the number of types in the French population is about 523 520. If the size
of the registry increases to 130 000 donors the model predicts around 76 500

di�erent HLA genotypes (the model predicts 112 180 di�erent types for a
registry of 250 000 voluntary donors).

5 Discussion

This paper develops a statistical model for HLA genotypes generation in a
population. This model is used for the prediction of the number of types for
large registries or for the whole population. A possible direction to extend
our model is to consider heterogenous populations. Even if this is eventually
a topic for future researches, let us consider the following example. Let us
assume that the population of size N is separated into two subpopulations of
sizes N1 and N2 and the preceding Polya urn scheme applied to each popula-
tion with two di�erent parameters n01 and n02. We assume moreover that the
two populations are independently generated. Finally the two populations
has no common types.
Then the expected number of types will be:

E(JN) = E(JN1) + E(JN2) (5.1)

where
E(JN1) = n01 (ψ(N1 + n01)− ψ (n01)) (5.2)

and
E(JN2) = n02 (ψ(N2 + n02)− ψ (n02)) (5.3)

using repeated observations (or resampling in a �le) the three parameters of
the model (n01, n02 and α, the proportion of the two subpopulations) may be
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estimated using at least three observations.
An other possible extension of our approach will be to relax the speci�c
parametrized form of the probability that individual i has a new type n0

n0+i−1

and to consider more general speci�cations. The estimation of this sequence
of probabilities will also be made using more information on the structure of
ties in the sample. This will also be the topic of a future paper.
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APPENDIX I: Asymptotic properties of n̂0

Even if n0 is derived from maximum likelihood estimation, the general con-
sistency result does not apply because the variables ui are not identically
generated.

i) The a.s. convergence of Jn

ln n
to n0 has been prooved by Rolin (1993)

among others. Then using ψ(x)
ln x

→ 1 we �rst have Jn

ψ(n)
→ n0 a.s.

ii) We consider now the true value n0 and an ε ≥ 0. Let us de�ne the
function:

An(x) =
x[ψ(x + n)− ψ(x)]− Jn

ψ(n)
.

Using the previous convergence theorem, we get:

∃ n1 such that n > n1 An(n0 − ε) < 0 a.s.

∃ n2 such that n > n2 An(n0 + ε) > 0 a.s.

and then

∀ ε n > sup(n1, n2) ∃ n̂0 ∈]n0 − ε, n0 + ε[ An(n̂0) = 0

and the result is prooved.

The asymptotic normality is deduced from Ser�ing (1980, chapter 3). The
asymptotic variance may be obtained using a Taylor expansion of

Jn = n̂0[ψ (n̂0 + n)− ψ (n̂0)].

Then:

V (n̂0) ' [
∂

∂n0

E(Jn)n0=n̂0 ]
−2 V (Jn).

= [ψ (n̂0 + n)− ψ (̂n0) + n̂0[ψ
′ (n̂0 + n)− ψ′ (̂n0))]

−2 V (Jn)

=
n̂2

0

V (Jn)
.

Note that this result is coherent with the usual maximum likelihood variance.
Indeed, the score of the model is:

∂ ln l

∂n0

=
Jn

n0

+ ψ(n0)− ψ(n0 + n),
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and the Fisher information is equal to

V (
∂ ln l

∂n0

) = E(
∂ ln l

∂n0

)2 = E(−∂2 ln l

∂2n0

) =
V (Jn)

n2
0

.

The estimated variance of the estimator n̂o is then the estimated inverse of
the variance of the score.
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APPENDIX II: Variance of the forecast error

V ar(ĴN − JN | Jn) = [V ar(JN − Jn)− n̂0(ψ(n̂0 + N)− ψ(n̂0 + n) | Jn]

= V ar[(JN − Jn) | Jn] + [V ar[n̂0(ψ(n̂0 + N)− ψ(n̂0 + n) | Jn]

Indeed the two terms are independent. The second term depends on n̂0 which
is function of the sample and the �rst term depends only on out of sample
types. We have �rst:

V ar[JN − Jn | Jn] = n0[ψ(n0 + N)− ψ(n0 + n)] + n̂0
2[ψ′(n0 + N)− ψ′(n0)].

using a Taylor expansion, we have:

n̂0(ψ(n̂0 + N)− ψ(n̂0 + n) ' n0(ψ((n0 + N)− ψ(n0 + n)))

+[ψ(n0 + N)− ψ(n0 + n) + n0(ψ
′(n0 + N)− ψ′(n0 + n))](n̂0 − n0)

Then
V ar n̂0(ψ(n̂0 + N)− ψ(n̂0 + n))

is approximated by:

[ψ(n0 + N)− ψ(n0 + n) + n0(ψ
′(n0 + N)− ψ′(n0 + n))]2

× n2
0

n0[ψ(n0 + N)− ψ(n0 + n) + n2
0(ψ

′(n0 + N)− ψ′(n0 + n))

The result obtained by replacing n0 by its estimated value.
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