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Abstract

In production theory and efficiency analysis, we are interested in estimating the
production frontier which is the locus of the maximal attainable level of an output
(the production), given a set of inputs (the production factors). In other setups,
we are rather willing to estimate an input (or cost) frontier that is defined as the
minimal level of the input (cost) attainable for a given set of outputs (goods or services
produced). In both cases the problem can be viewed as estimating a surface under shape
constraints (monotonicity, ...). In this paper we derive the theory of an estimator of
the frontier having an asymptotic normal distribution. The basic tool is the order-m
partial frontier where we let the order m to converge to infinity when n — oo but at a
slow rate. The final estimator is then corrected for its inherent bias. We thus can view
our estimator as a regularized frontier estimator which, in addition, is more robust
to extreme values and outliers than the usual nonparametric frontier estimators, like
FDH. The performances of our estimators are evaluated in finite samples through some
Monte-Carlo experiments. We illustrate also how to provide, in an easy way, confidence
intervals for the frontier function both with a simulated data set and a real data set.

Key words : Production function, Free Disposal Hull, Nonparametric frontier, Robust
estimation, Extreme values, Tail index.
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1 Introduction and Basic Concepts

In production theory and efficiency analysis, we are interested in estimating the production
frontier which is the locus of the maximal attainable level of an output (the production),
given a set of inputs (the production factors). In other setups, we are rather willing to
estimate an input (or cost) frontier that is defined as the minimal attainable level of the
input (cost) for a given set of outputs (goods or services produced). In both cases the
problem can be viewed as estimating a surface under shape constraints (monotonicity,. . . ).
The efficiency score of a given unit is then determined by an appropriate distance (in the
output direction, or in the input direction) of this unit to the optimal frontier.

Formally (we will in this paper focus the presentation in the input orientation case, where
we want to estimate the minimal cost frontier!), let x € R, denote the input (or the cost
of production) and y € R% be the vector of goods or services produced. The attainable set

(feasible combinations of input and outputs) is defined as
U = {(z,y) € Ry x R% | y can be produced by x}. (1.1)

A minimal assumption often accepted for W is the free disposability of the inputs and of
the outputs, namely, if (z,y) € U, then (2/,y') € ¥ for any pairs (z/,y') such that 2’ > z
and ¢y’ < y. This implies a monotonicity property of the frontier surface. Sometimes (not
in this paper), the hypothesis of the convexity of W is also assumed (see Shephard, 1970
for a comprehensive overview of the underlying economic models used in prodution theory).
The efficient boundary of W, in the input oriented case, is represented by the minimal input

frontier function

p(y) = inf{x | (v,y) € ¥}, (1.2)

and the Farrell-Debreu efficiency score of a unit operating at the level (z¢,yo) is given by
the ratio ¢(yo)/xo, which gives a number between zero and one. An efficiency equal to
one corresponds to an input-efficient unit (being on the minimal input frontier) and more
generally ¢(yo)/xzo < 1 gives the reduction of input (cost) the firm should reach to be
considered as input-efficient.

A popular nonparametric estimator of the attainable set is the Free Disposal Hull (FDH)
estimator proposed by Deprins, Simar and Tulkens (1984). The FDH is the smallest mono-
tone set enveloping the data points, it relies only on the free disposability assumption and

its asymptotic properties have been established (Park, Simar and Weiner, 2000 and Daouia,

IThe presentation for the output oriented case, where we want to estimate the maximal production
frontier, is a straightforward adaptation of what is done here. In the appendix, we give a summary of the
notations and main results for that case.



Florens, Simar, 2008). More details will be given below. Another nonparametric estima-
tor, the Data Envelopment Analysis (DEA), initiated by Farrell (1957) and popularized by
Charnes, Cooper and Rhodes (1978), can be justified when the convexity of ¥ is moreover
assumed. Its asymptotic properties have been established in Kneip et al. (2008). A recent
survey of the available statistical tools for making inference in these nonparametric models
can be found in Simar and Wilson (2008).

The FDH estimator: basic properties

The attainable set W can be seen as the support of the random vector (X, Y’) defined on an
appropriate probability space. It will be useful to describe the joint distribution of (X,Y)

by its joint survivor function:

where S(z|y) = Prob(X > z|Y > y) and Sy (y) = Prob(Y > y). Notice that the conditional
survivor function S(z|y) is non-standard, since the condition is Y > y.
Cazals, Florens and Simar (2002) have shown that under the free disposability assump-

tion, the minimal input function ¢(y) can equivalently be defined as

p(y) = inf{z | S(z|y) < 1}. (1.4)

Since the attainable set is unknown, it has to be estimated from a sample of i.i.d. units
X, ={(X;,Y;)|i=1,...,n}. The free disposal hull of X, is the FDH estimator

U={(z,y)|y<Yiz>X,i=1,..n} (1.5)
providing the FDH estimator of the frontier ¢ (y)

Ply) =inf{z|Sly) <1} = min X, (1.6)
where §(x|y) = §Xy($,y)/§y(y) with §Xy(x,y) = (1/n)Y", I(X; > z,Y; > y) and
Sy(y) = (1/n) Yo I(Y; > y). Park et al. (2000) have obtained the limiting distribution
of FDH estimators in a full multivariate set-up under some regularity conditions. The most
general asymptotic result in our setup here is given by Daouia et al. (2008) and can be
summarized as follows.

Under the regularity condition (Corollary 2.2 in Daouia et al., 2008)

Sy (y)(1 = S(zly)) = L,(z — o)™ +o((x — ¢(y))™), as = | (y), (1.7)



with ¢, > 0, p, > ¢ and ¢(y) being differentiable in y with strictly positive first partial

derivatives, we have? as n — oo

(n,)7 (2(y) — ply)) = Weibull(1, p,). (1.8)

In addition, the joint density of (X,Y’) near the frontier function can be expressed as

flay) = cylz— o) +o((z — e(y)™), as z | (y), (1.9)

where ¢, > 0 and 3, = p, — (¢ + 1). Since [, > —1, the asymptotic result covers the cases
—1 < B, < 0, where the density tends to infinity at the frontier, at a speed of the power
py — (g + 1), the case 8, = 0 where the density has a jump at the frontier (p, = ¢ + 1) and
the cases (§, > 0 where the joint density decays to zero at a speed of the power p, — (¢ +1).

Remark 1.1. The regularity condition (1.7) is a particular case of the more general extreme

value regularity condition (see Daouia et al., 2008 for details)

1

v = el = L, (-

) =t

where Ly, is a slowly varying function and p, > 0 is the tail index. For instance, if (X,Y)
is uniformly distributed over ¥ = {(z,9)|0 <y < x < 1}, we have L,(-) = ¢, =L =1 and
py =p =2 and (1.7) is satisfied.

If X = Y2 exp(U) where Y is uniform over [0,1] and U, independent of Y, is Exponen-
tial with parameter X = 3, we have p, = p =2 and L, <m> =0, + o((z — p(y))) when
x| p(y), with €, =0 =3 and (1.7) is satisfied.

Order-m frontier and robust estimator of the frontier

By construction, since it envelops all the data points, the FDH estimator (and its convexified
version, the DEA estimator) is very sensitive to outliers and extreme data points. Cazals
et al. (2002) suggested to define a benchmark frontier that is less extreme than the full
frontier function @(y). Indeed, the latter can be defined as the minimal achievable input
level for firms producing at least the level y, see (1.4). A less extreme benchmark, based on
the concept of order-m frontier, is defined as the expected minimal input value among m
peers drawn at random in the population of units producing at least the level y, where m is

a natural number (m > 1). Formally,

Om(y) = E[min(Xq, ..., XY >y, (1.10)

2The Weibull distribution is related to the Exponential distribution: W ~ Weibull(1, ¢) & W€ ~ Exp(1).



provided the expectation exists. We have the following equivalences

om(y) = / " 5™ uly) du = ly) + / : 5™ (uly) du. (1.11)

It can be seen that ¢,,(y) — ¢(y) as m — oc.
A nonparametric estimator of ¢,,(y) is given by pluging the empirical version of S(u|y)
in (1.11) to obtain

enl) = | 5 uly) du. (1.12)

0

For fixed m, it has been shown that /(G (-) — @m(-)) £, G(0,Q) where G is a gaussian

process with covariance function €2 given in Cazals et al. (2002). In particular, for any given

y and a fixed value of m, we have as n — oo,

NG

gy (Pnly) = ) == N0, ), (1.13)
where
o*(m,y) =E {%@iy) /000 (Sm’l(u\y)I(X > u) — Sm(u\y)> du] . (1.14)

It is clear that if m — oo, ¢, (y) will converge to the FDH estimator ¢(y). Cazals et al.
show that if m = m,, — oo fast enough when n — oo, the resulting estimator has the same

asymptotic properties than the FDH estimator

(n€,)/2 (G () — (y)) = Weibull(1, p,).

Of course, for finite n, the resulting estimator ¢, (y) does not envelop all the data points
and so provides a robust version of the FDH estimator.

In this paper we address the problem of the regularization of the FDH estimator. The
central question is the following: is it possible to find a sequence of m,, converging to infinity
as n — oo, but slowly enough to keep an asymptotic normal distribution. We will find
this sequence and so obtain a regularized nonparametric estimator of the frontier having an
asymptotic normal distribution and being robust to outliers and extreme data points. This
motivates the development of the theory for order-m frontiers, when m tends to infinity.

Related work is Daouia et al. (2008) where the links between frontier estimation and
extreme values theory are established. By doing so, they revisit and extend former results
on the asymptotic behavior of the FDH estimator. Extreme value theory allows also to

extend the properties of another partial frontier, the order-a quantile frontier (see Aragon,



Daouia and Thomas-Agnan, 2005) providing an alternative robust estimator of the frontier
function. The duality between order-m and order-a frontier has been investigated by Daouia
and Gijbels (2009). They show in particular, that even if the order-a quantile frontiers have
global better robustness properties (higher breakdown value), it appears that once they
breakdown, they become less resistant to outliers than the order-m frontiers.

Section 2 gives the main theoretical result of this paper: the estimation of the order-m
frontier when m tends to infinity (subsection 2.1) and how to implement an estimator of the
frontier p(y) in practice (subsection 2.2). Section 3 addresses the problem of estimating the
unknown parameters of the asymptotic distribution. Section 4 illustrates how the procedure

works in practice with simulated data and with a real data set. Section 5 concludes.

2 The Main Result

2.1 Estimation of the order-m frontier when m — oo

We start with a preliminary lemma which controls, as m — oo, the variance of the order-m

estimator ¢,,(y) given in (1.14).

Lemma 2.1. Under the reqularity condition (1.7), we have for any y such that Sy (y) > 0,

as m — 00
Fiym!' 00 < 0P (m,y) < kgm0, (2.1)
where ki, and ks, are some positive constants.

Proof: We first obtain after some elementary algebraic manipulations that the variance can

be expressed as

o*(m,y) =

2m2 00 o . o ) ) ) o
Sy (y) /«;(y)/@(y)s (uly)S™ (wly)(1 = S(oly)) Mu 2 v) du dv. (2.2)

(i) Searching a minorant of o®(m,y) when m — oco. We first notice that

) = s [ 5ol | [ 7ol i

where F'(v]y) =1 — S(v|y). So that for all 6 > 0, we have

22 e(y)+o v+68
) = o [T sl | [ s
SY(?J) e(y) v

om2s  [eW+e )
Sy (y) / L S OIS +8) do
Py

v



Since S™ ! (v|y) > S™ (v + d|y) > S™(v + Jly), we have

o2m2s  [PW+o
(myy) > 2 / S2 (v 4+ Sly) F(uly) do,
2

Sy (Y) Jow)
226 e(y)+6
> S (p(y) + 25\3/)/ F(v]y) dv.
Sy () ©(y)
Now, if § | 0, by the regularity condition (1.7) we have that
e(y)+o ¢ grvtl
| ez S (2.3)
(y) pyt1 2
where ¢, = b . When 6 | 0, it is also easy to see from (1.7) that
Sy (y)

S(e(y) +20ly) > 1 —2¢,(20)” = exp [log (1- 20y(25)p?’)].

log (1 — 2¢,(20)"¥
Therefore S*™(¢(y)+268|y) > exp [Qm log (1—2@(25)”@/)]. Since lim —2 ( €(20)) _ 1

sl —2¢,(28)0

log (1 — 2¢,(28)%v)
—2¢,(26)Pv
S2m(o(y) + 20]y) > e ¥mew(2)™ - Pluging these results in the latter inequality for o?(m,y)

< 2. So, when 6 | 0 we have

for sufficiently small 6 > 0 we have

we have as 0 | 0

2 +1
o*(m,y) > 2m0 o—8mey (2007 _Cy 0P
Sy (y) py+1 2
Choosing § = (1/m)"/*v, we have as m — oo
a*(m,y) > ky,m' =2/, (2.4)

(ii) Searching a majorant of o®(m,y) when m — oo. From (2.2) we have

2 2m* (%[ g m—1 —S(v udv
Pmy) < g /@(y) / S )™ wly) (1 = S(oly) du
< 52;?3/) [(em(y) — (1) (em-1(y) — (1)) — (em(y) — ©())?]
2m? e [eme1(y) —ely)
< SrW) o) lsom@)—go(y) 1}

Now, by the regularity condition (1.7), the equation (2.5) in Daouia et al. (2008) and from

the definition (1.10) of ¢,,, we have as m — oo

onti) = o) =1 (14 ) (= )/ ) (25)

Py m,
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Therefore, as m — oo,

2

9 2m
7y = 5

where ks, is a positive constant. This completes the proof of the lemma. [

[P2(1 + 1/py)(m€y)_2/py + O(m_Q/py)} < k2,ym2_2/pya

The following theorem gives the basic results of our paper, it specifies under which condi-

tion on the sequence m,,, the asymptotic distribution of ¢,,, (y) is still a Normal distribution.

Theorem 2.1. Under the reqularity condition (1.7), and if m, = cn*/*¢ (loglogn)~2/3 for
some constants ¢ > 0 and € € (0,1/3), we have for any y such that Sy(y) >0, as n — oo

v c
G (Y) = P, (y)) — N(0,1). 2.6
S (B ) = 2 (0) < N (0.1 (26)
Proof: In the proof, to simplify the notation, we will denote m,, by m, keeping in mind that
m = m, — oo when n — oo at the rate given by m,. Let us define

[e.e]

RY = (¢n(y) — on(y) —m [ S (uly)[Stuly) — S(uly)] du.

©(y)

So the object of interest for the theorem can be written as

(i O G uly) [S(uly) — S(u U
VI oy
* o(m,y) B - (2.7)

a.s.

(i) We first prove that == Ry, 220 asn — oo. Since ¢(y) > ¢(y), we have

a(m,y)

RY = b §mu — S™(u du —m OOSm_lu §u — S(u du.
v /m)( (uly) — S™(uly) /M (uly) [SCuly) — SCuly)]

Now, consider the following Taylor expansion

[ @) - ) du = [ 5l [S(l) = Staly)] i

1 -~ 2 2
—-m(m —1 S(uly) — S(u b *(u) du,
# gl =) [ [Staly) S}

where, S(uly) A S(uly) < by(u) < S(uly) vV S(uly). So, we obtain:

o0

RY . = %m(m — 1)/ [§(U|y) — S(u|y)}2b;”_2(u) du.

©(y)



~ a.s. log 1 1/2
By the Law of Iterated Logarithms, we know that sup }S(u\y) _ S(u\y)’ 2 C< og log n)
u n

for some constant C', so we have

gy |

m(m —1) C*loglogn [* .
i . 2.
p by (u) du (2.8)

1 —1
2 U(ma y) \/ﬁ e(y)

Let us now analyze the behavior of f:fy) by (u) du when m — oo. We can write

/;,) by’ (u) du = /:, (S(uly) + ry(u)™ du,

(y )
for some r,(u) such that S(uly) A S(uly) — S(uly) < ry(u) < S(uly) Vv S(uly) — S(uly). Note
log1 1/2 m_gm m—
that |r,(u)] < C( P8 O8 YT Since (S(”w)”y::()i) =Sl = (S(uly) + gy(u)) ' for
some g, (u) such that |g,(u)| < |r,(u)|, we obtain

/OO (S(uly) +ry(u)" du < /oo S™(uly) du

() e(y)
loglogn\1/2 [ m—1
+ mC < ) / (S(uly) + gy(w)™ " du.
n #(y)

Applying the same argument for the exponent m — 1, one can find

/Oo (S(uly) + gy(w)™ " du < /Oo S uly) du

(v) e(y)
loglogn\1t/2 [ m—2
+ (m— 1)0( . ) /( | (S(uly) + hy(w)™ " du.
oy

for some hy(u) such that |h,(u)| < |g,(u)| < |ry(w)]. It is clear that

[e.9]

/ " (S(uly) + hy(w)" 2 du < | (St v Stuly)"™* du

(v) »(y)

g/:o (§m_2(u|y)\/5m_2(u|y))du§/

(v) w(y)

o0

572 (uly) du—i—/ S™ 2 (uly) du.

e(y)
So, when m — oo, f:?y) (S(uly) + hy(u))m_2 du = 0o(1). So finally we obtain when m — oo,
o @ log logn\ 1/2
[ e S (outy) — o) +m0 (PEED)  nna() — otw)
ey

long‘yM) o(1). (2.9)

+m(m — 1)C? (

Plugging in (2.8) the results (2.9) and (2.5) and using Lemma 2.1, we obtain for m — oo,

v y = C*m? loglogn .
< I'e+1 14 /Py +o(1
a(m,y) ‘ mn} T 23k ,m /2 ey vn [ ( /py) ( )]

log1 log1
X <m_1/l7y + mO(M)l/Qm_l/mJ) + mQCQM 0(1)}7
n n



so that

n a.s. log logn log log n)3/2
2
L /e (08 1og )" o(1), (2.10)

n3/2

where K is some positive constant. Since under the condition of the theorem m = m,, =
cn'/37¢ (loglogn)~?/% all the terms in the r.h.s. of the last inequality converges to 0 when

n — 0o, we obtain

LREHH&O as n — oo. (2.11)
o(m,y) ™

(ii)) We now will prove the leading term of (2.7) converges to a standard normal. We can

rewrite this leading term as

n

oy [ S 0 Sty — Staly)] du = 2SS

a(m, y) (y) ( 7y

where W,,; = (m/Sy(y)) f:?y) ST uly) [1(X; > u,Y; > y) — S(uly) 1(Y; > y)] du. 1t is easy
to see that E(W,,;) = 0 and V(W,;) = 0%(m,y). By the Lindberg-Feller theorem (Serfling,
1980, p. 29) we have

n

1 Wi

NG (m N(0,1), as n — oo, (2.12)
i1 ' Y)
under the Liapounoff condition, i.e. if
E(|[W,.3

L’Qﬂ — 0, as n — oo. (2.13)

The Liapounoff condition is easy to check under the assumptions of the theorem. Indeed,
E(|Wal?) = E(W2,[W,,|) and since |4(X; > u,Y; > y) — S(uly) X(Y; > y)| < 1, we have

Sy (y) /@(y) 5™ (uly)du = Sy () (Pm-1(y) — ¢(v)).

E(IWoil*) < (m/Sy () (¢m-1(y) — ¢(y))o?(m,y) and we obtain

nE(Wuil®) _ m onai(y) — o)
[NV (W, )]3/2 ~ VnSy(y) o(m,y)




Under the regularity condition (1.7), Lemma 2.1 and (2.5), we have, as m — oo, 0%(m,y) >

1 1/
ki ,m' =2/ and ©,,_1(y) — o(y) ~T(1+1 — )™ so that
Ly Pm-1(y) — (y) ~ T /py)(ey(m—n)
TLE(|WTM|3) m1/2

S K2—a
[nV(W,.0)] > Vn
where K is some poistive constant. The r.h.s. of the latter inequality tends to zero if n — oo
and m — oo such that m/n — 0 which is the case for the sequence m = m,, given in the
assumption of the theorem. Finally, since (Sy(y)/gy(y)) 2% 1, as n — 0o, we obtain the
desired result. [

Rate of convergence

It is interesting to analyze the resulting rate of convergence of the estimator as a function
of n. We have as n — 00, 7u(@m(y) = pm(y)) == N(0,1) with 7, = /o (m,y) and

m = m, = cn'/37¢ (loglogn)~?/%. We know by Lemme 2.1 that as n — oo,

ky ycl—2/py,ﬂL(1/3—6)(1—2/py)—1(10g log n)—(2/3)(1—2/py) <72

< ky yc272/pyn(1/3*5)(2*2/Py)*1 (log log n>7(2/3)(272/py).

We remember that p, = 3, + ¢+ 1, where ¢ > 1 and 3, > —1 (see the discussion after (1.9)

above). In the particular case where the extreme value index p, > 2 we get as n — oo

This case is of particular interest when the joint density of (X,Y’) has a jump at the frontier
(i.e. B, =0, an often used assumption in the econometric literature). We have clearly in

this case as ¢ | 1,
1 (n log log n)1/3 <7< cgnl/z,

and as ¢ T oo,

2/3 1/3

cint/%(loglogn)?? < 7, < c;nt’?(loglogn)

So, even if the data dimension explodes, the convergence rate does not deteriorate too much
avoiding thus, in a sense and partly, the “curse of dimensionality” that is typical of many

nonparametric estimators.

10



2.2 Estimation of the frontier ¢(y)

Since ¢, (y) — ¢(y) as m — oo, the result of the preceding section can be used to define

—2/3

an estimator of the “full” frontier itself. From Theorem 2.1, if m,, < n'/3(loglogn)=2/3, we

have

N

) (P ) = 0(v) = B (v) £, N(0,1), (2.14)

where from (2.5),

B, ) = pm0) ~ o) =T (14 ) (. )/ ) (2.15)

Py mp gy

We see that the value of the bias introduced by using the order-m,, estimator to estimate
the full frontier is bounded below (y/n/o(mn,y)) B, (y) > Ksn'/3(loglogn)'/? for some
constant K3, and this does not vanish when n — oo.

So, in practice for large values of n (and so of m), we will rather use the following

asymptotic approximation:

6) — o) ~ N(B(y). 1)) (210

where for doing practical inference B,,(y) and o(m,y) have to be consistently estimated. A
consitent estimator of o(m, y) is provided by a plugging version of (2.2), whereas, a consistent
estimator of B,,(y) can be obtained through the leading part of (2.15) once p, and ¢, are
known or consistently estimated. The next section suggest a way for estimating these two

parameters, using the properties of order-m frontiers.

3 Consistent estimators of p, and /¢,

We will use here an approach inspired by the classical Pickand’s tail index estimator, analyzed
and developed in our frontier setup in Daouia et al. (2008). The Pickand’s estimator is
based on comparing different quantile-type estimators of the frontier. As well known from
the literature, and illustrated in Daouia et al., the estimator is rather unstable and provide
disappointing results unless the sample size is larger than, say 1000. Daouia et al. (2008)
also analyze a moment estimator providing slightly better behavior in moderated sample
sizes (say larger than 500).

In this paper, we adapt the approach by using the order-m estimator of the frontier

instead of the order-a quantile estimator of the frontier. Indeed, when considering the

11



asymptotic expression for o, (y) — ¢(y) given by (2.5) for the values m, am and a?m, where

a is some fixed integer with a > 2, we see that

lim em(Y) = am(y) — gl/ry
m—0oo (pam(y) - ¢a2m(y)
This suggests the following estimator

o= s (=2

It is also easy to see that

. 1
lim —
m—oo M,

T+ 1/py)(1—a V) ]™ ,
Pm(Y) = Cam(y) v

that can lead to the estimator of ¢,

T(141/p,)(1 - a_l/ﬁy)]ﬁy

/ 1
Pm (y) — Pam (y>

Yoom

The consistency of these estimators is provided by the following theorems.
Theorem 3.1. Under the reqularity conditions of Theorem 2.1,
ﬁpry cmd@nyy asn — oo,

for any y such that Sy (y) > 0,

(3.1)

(3.3)

Proof: By Theorem 2.1, we have ¢,,(y) — ¢m(y) = Op(c(m,y)/v/n). Now, by (2.5), and

by Lemma 2.1, we obtain

Pm(y) — ely) = Gy (%) " +o(m™/r) + OP(%)

1/py
where C, =T’ (1 + é) (é) " Similarly we have for all a > 2

1 1/py . ml—l/l)y

s ~1/py m

Pam(y) = #(y) = C, (am) Hom) + 0, NG )
1

1/py 1-1/p,
baml) = 90) = Cy () +olmm) +0,("—="),

a*m

Now by doing the differences we have

1 () = fam () = Cyl(1 = 1/a/77) +0(1) + 0, ()

(am) " (Bam(y) = Pazm(y)) = Cy (1 = 1/a"/?r) + o(1) + 0,,(%
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leading to

Gm(y) — Pam () _ i Cy(l — 1/a1/0y) +o(1) + Op<%>
Gam (YY) — Pazm () C’y(l _ 1/a1/py) +o(1) + Op<%) .

As m/y/n — 0 as n — oo, the ratio on the right hand side converges in probability to 1, so
that

A@m(y) B ?am(y) L al/py’
Pam(y) = Pazm(y)

which gives p, £, py- On the other hand, since

P () = Ban(9) = DA+ 1/p) (1= 1/a)(6) 7+ (1) + 0y (7).

we have by using m/y/n — 0 and p, L, Py aS N — 00,

1 [TA+1/p,) (1 —a )" 5 ,
L Ny
m ‘Pm(y) - Spam(y) Y

which gives éy L, l,. O

Practical choice of ¢ and m

The choice of an optimal a and m is an open theoretical issue, but in practice, in the examples
and simulations below, we have chosen for m, m, = N,’®, where N, =" 1Y, > y) is
the number of observations with Y; > y. This choice guarantees by Theorem 2.1 the regular
behavior of the estimator ¢, (y) as n — oo and as seen above, it guarantees also the
consistency of the estimators p, and fy. The choice of a > 2 is much less important: the
results are rather stable relative to this choice. Higher values of a will give more weights to
extreme data points. It turns out that in all the Monte-Carlo experiments below, the choice
a = 10 provided quite reasonable estimates with nice behavior of the estimators. When
working with particular samples, and for the estimation of p,, we have to tune the choice of
a and m more carefully to obtain sensible results (see below), but even in these cases, for
estimating the frontier function, in a second step, the choice a = 10 and m = Nyl/ K provided
always nice results.

For the final evaluation of the confidence intervals for ¢(y), we use the normal approxi-

mation centered at ¢(y), the bias-corrected order-m estimate:

&(y) = ém(y) — Bu(y), (3.4)



where Em (y) is the plug-in version of B,,(y), replacing p, and ¢, by their consistent estimators
derived above. Of course by doing so, we will increase the variance of the estimator ¢,,(y),

so we estimate this variance by a bootstrap algorithm. This is illustrated in the next section.

4 Illustrative Examples

4.1 Some Monte-Carlo experiments

To facilitate the comparison with the results obtained in Daouia et al. (2008), we have chosen

in the illustrations the output orientation®. Here, the bias corrected regularized estimator is

given by ¢(x) = ¢p(x) + §m(x)
Uniform distribution

We first simulate, as in Daouia et al., random samples (X;,Y;), @ = 1,...,n uniformly
distributed on the triangle limited by the frontier ¢(z) = x with 0 < 2 < 1. Table 1 displays
the results. The estimation is performed for x = 1, so that the sample sizes n coincide with
the “effective” sample size N, the number of observation at the left of x = 1. We computed
also the estimators with the known true value of p, which in this example is py = 2.

We observe a nice behavior of our estimators, with an increasing accuracy, as expected,
when the effective sample size N, increases. The estimation of p and /¢ is not an easy task,
but still we have a reasonable behavior, with the simple rule we have chosen for m and a:
m = No/* and a = 10. The estimator ¢ has a very nice behavior for all values of N,. It is a
regularized estimator with an approximate normal distribution but in addition, it has much
better properties than the usual FDH estimator (both in term of bias and mean squared
error). It should be noticed, that the estimation of the frontier is stable to the choice of
the order-m base estimator because the correction for the bias performs quite well for most
of the chosen values of m. This is not true for the estimation of p and ¢, even if we have
nice results: here the choice of an optimal m and a remains an open issue, and mainly for
the estimation of the tail index p. The cost of estimating p (which in most econometric
applications is supposed to be equal to p 4+ 1, i.e. there is a jump of the joint density of
(X,Y) at the frontier) appears clearly when comparing the results for the estimation of the
frontier when the true value of p = 2 is known: they are much better.

Finally, by looking to Tables 1 and 3 in Daouia et al. (2008) using also Pickand’s estimator
of p, but with quantile-type frontiers, we see that we obtain much more accurate estimators

of both p and ¢. To summarize this comparison, we have here, in the same scenario, with

3We can find in the appendix the change of the notations.
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comparable sample sizes, a gain of the MSE when estimating p by a factor of the order 1000,
8, 6 and 1.3 for the samples sizes 100, 500, 1000 and 5000, respectively. In addition, for
this comparison, we selected in the Tables from Daouia et al., the best order of the quantile
whereas here, we selected the order m and a given by our simple rule.

For the estimation of the frontier point, the gain of the MSE has a factor of the order
450, 70, 150 and 60 (respectively). We observe also some qualitative gain when estimating
the frontier when p is known, but here the gain is of a factor ranging from 2.5 to 5 when N,
goes from 500 to 5000. Again in this comparison, we selected, in the results from the Tables
in Daouia et al., the best value of the quantile order.

Also, as a general comparison bewtween the two approaches (using the order-m here and
using the order-a quantile as in Daouia et al., 2008), we can say that with the approach
here, we gain a lot in terms of the stability of the estimators with respect to the choice of
the order of the base estimator. Tables 1 and 3 in Daouia et al. indicate indeed a huge
sensitivity to the choice of the quantile order when defining the base estimator (the MSE
can change by a factor of several thousands if the wrong order is selected) and this was not
the case here where we observe a great stability in the estimation of the frontier (we do not

reproduce the results to save place).

Table 1: Bias (Bias) and Mean Squared Error (MSE) of the estimates over 1000 Monte-
Carlo simulations: Uniform case, true values are oo =1, pg =2 and {y =1

Nz = 100 N, =500 N, = 1000 N, = 5000
| || Bias | MSE || Bias | MSE || Bias | MSE || Bias | MSE |
D -0.423441 | 0.405546 || -0.086590 | 0.167862 || -0.030069 | 0.103272 0.006700 | 0.032857
l 0.129996 | 0.143781 0.134017 | 0.140254 0.123555 | 0.109258 0.090057 | 0.052087
£(po) 0.436484 | 0.357537 0.183585 | 0.063740 0.129845 | 0.031946 0.071624 | 0.009915
@ -0.070644 | 0.008321 -0.017592 | 0.001231 -0.008925 | 0.000501 -0.002371 | 0.000087
#(po) -0.035497 | 0.003719 || -0.011318 | 0.000603 || -0.006952 | 0.000255 || -0.002778 | 0.000053
PFDH -0.090498 | 0.010401 -0.040257 | 0.002071 -0.028140 | 0.000993 || -0.012811 | 0.000206

Beta densities for the efficiency term

Now, we analyze the results with different behaviors of the density of the efficiencies at the
frontier points (density tending to infinity, having a jump or converging to zero at the frontier
points). We select the following model Y = X V where X ~ Unif(0,1) and V ~ Beta(s, 3)
with values of # = 0.5,1 and 3. Note that in all the cases, E(V) = 0.5. Again we focus
the results for the value x = 1, so that N, = n. The results are shown in Tables 2 to 4.
In the first case the density tends to infinity at the frontier, and the FDH estimator should
be performant. It is indeed the case but our regularized estimator do even slightly better
for N, = 100 but much better for larger N, reaching both less Bias and MSE. Again, the
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estimation of p and ¢ is more difficult but our rule of thumb (m = N and a = 10) shows
nice behavior of the estimators. When [ increases (jump at the frontier for # = 1 and going
smoothly to zero when 5 = 3), the results for the estimators of the frontier deteriorate a
little, as expected but our regularized estimator is always better than the FDH estimator
both for bias and MSE. In this latter case, we illustrate the estimation of the frontier for the

full range of X in the next section.

Table 2: Bias (Bias) and Mean Squared Error (MSE) of the estimates over 1000 Monte-
Carlo simulations: case of the Beta(0.5,0.5), true values are o = 1, po = 1.5 and {y =
0.4244.

N, = 100 Nz =500 N, = 1000 N, = 5000
| || Bias | MSE || Bias | MSE || Bias | MSE || Bias | MSE |
-0.063176 | 0.168646 0.146422 | 0.111090 0.123820 | 0.061474 0.096074 | 0.021250

0.310572 | 0.124454 0.237085 | 0.075298 0.201660 | 0.052083 0.141359 | 0.024371
f(po) 0.341740 | 0.138351 0.188876 | 0.039628 0.153513 | 0.025683 0.092683 | 0.009117
@ -0.053538 | 0.005929 || -0.007142 | 0.000553 || -0.004477 | 0.000217 || -0.000053 | 0.000022

&(po) -0.048796 | 0.005060 || -0.020620 | 0.000787 || -0.014593 | 0.000391 || -0.005882 | 0.000062
¢rpm || -0.072121 | 0.007519 || -0.024156 | 0.000848 || -0.016576 | 0.000391 || -0.005347 | 0.000042

>

Table 3: Bias (Bias) and Mean Squared Error (MSE) of the estimates over 1000 Monte-
Carlo simulations: case of the Beta(1,1), true values are pg =1, pg = 2 and £y = 0.5.

N, = 100 Nz =500 N, = 1000 N, = 5000
| || Bias | MSE || Bias | MSE || Bias | MSE || Bias | MSE |
-0.331901 | 0.444470 0.086348 | 0.248021 0.109707 | 0.135392 0.138556 | 0.065002

0.359753 | 0.193566 0.280033 | 0.109485 0.253591 | 0.087861 0.201901 | 0.053630
é(po) 0.506769 | 0.342331 0.273330 | 0.088737 0.222238 | 0.055914 0.141044 | 0.021551
@ -0.091613 | 0.015110 || -0.018562 | 0.002537 || -0.009895 | 0.001006 0.000817 | 0.000188

&(po) -0.059530 | 0.007942 || -0.027354 | 0.001641 || -0.019782 | 0.000782 || -0.009198 | 0.000161
¢rpm || -0.120797 | 0.018561 || -0.055114 | 0.003931 || -0.039773 | 0.001989 || -0.017015 | 0.000375

>

Table 4: Bias (Bias) and Mean Squared Error (MSE) of the estimates over 1000 Monte-
Carlo simulations: case of the Beta(3,3), true values are pg =1, pg = 4 and ly = 2.5.

N, = 100 Nz =500 N, = 1000 N, = 5000
| || Bias | MSE || Bias | MSE || Bias | MSE || Bias | MSE |
p -2.053562 | 4.921744 || -0.825120 | 4.708721 -0.630922 | 2.096024 || -0.419817 | 0.647445
¢ -1.068665 | 1.595360 || -1.057668 | 1.413049 || -1.042189 | 1.310455 || -0.967238 | 1.047182
£(po) 0.348089 | 5.674396 || -0.585639 | 0.849339 || -0.670422 | 0.725935 || -0.742065 | 0.634133
@ -0.199484 | 0.051431 -0.063119 | 0.030965 || -0.041521 | 0.013676 || -0.018208 | 0.003018
&(po) -0.019372 | 0.008809 0.005711 | 0.002002 0.008604 | 0.001276 0.011473 | 0.000432
PFDH -0.237955 | 0.061255 || -0.155909 | 0.026241 -0.131248 | 0.018605 || -0.086933 | 0.008159
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4.2 Estimation of the frontier function

One simulated sample

We first illustrate the behavior of the frontier estimate in the case of a beta density for the
efficiencies, with the model described in the preceding subsection. We show the case where
the density is converging smoothly to zero at the frontier (3 = 3). For estimating the frontier
function over the full range of X, it seems reasonable to assume that the function p, = p
is constant over the range of X (which is true in the simulated scenario). We estimate this
value by a trimmed mean of the local values p, computed over a fixed grid of 100 values
of x from 0.25 till 1 (the trimming is used to eliminate local numerical instability when
computing (3.1)). In this step of estimating p,, we got better results by taking m = N3
but a = 5. We obtained the value 3.5126 where the true value is 4. Then we compute
the values ¢, and &(z) on the same grid of values for . Here we have chosen, as in the
Monte-Carlo experiments, the value of m = N2* and a = 10. The 95% confidence intervals
for each value of & were obtained by using the normal approximation, centered on ¢(x) and
variance estimated by a bootstrap algorithm.

The results are quite sensible and we see in Figure 1 that our estimate is better than
the FDH estimate (closer to the true frontier). On the left panel we see clearly that the
pointwise confidence intervals cover the true frontier. In particular it appears in this sample
that the FDH estimator is even outside the 95% confidence intervals for all . We can also
appreciate the robustness of the frontier estimate (relative to the FDH estimator) looking
to the right panel, when we add one outlier in the data set (keeping our original estimate
of p). Of course, in practice, we could easily detect this outlier (even for dimension p > 1,
because it is far outside the confidence interval at this point). Once this is observed, and as
always when detecting potentail outliers, this point could be removed from the sample only

after a careful analysis.
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Figure 1: Linear frontier: Y = XV with V' ~ Beta(3,3) and n = 1000. Right panel, with
one outlier at X, 1 = 0.5,Y,.1 = 0.8. The base (biased) estimator ‘phi-m’ is o () and our
reqularized estimator ‘phi-tilde’ is ¢(x).

One real data example

We use the same real data example as in Cazals et al. (2002) and Daouia et al. (2008) on
the frontier analysis of 9521 French post offices observed in 1994, with X as the quantity
of labor and Y as the volume of delivered mail. In this illustration, we only consider the
n = 4000 observed post offices with the smallest levels x;.

We first start by assuming, as in most econometric frontier studies, that the joint density
of (X,Y) has a jump on the frontier, so p, = p+1 = 2. The cloud of points and the resulting
estimates are provided in Figure 2. The FDH estimator is clearly determined by only a few
very extreme points. If we delete 4 extreme points from the sample (represented by circles in
the figures), we obtain the pictures of the right panel: the FDH estimator changes drastically,
whereas the regularized estimator is very robust to the presence of these 4 extreme points.

Again the confidence intervals were obtained by a bootstrap algorithm.
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Figure 2: Resulting estimator ¢(x) for the French post offices with p = 2. In the left panel,
the 4 extreme data points (circles) are used in the estimation of the two frontier functions.

If we prefer to estimate p,, we proceed as above by assuming that p, = p is an unknown
constant and we average the values of p, obtained over a grid of values of x (again with
a trimmed mean). In our case here, larger values of m were needed for computing p,, to
avoid numerical instabilities in (3.1): we choose m = 10N,/ keeping a = 10. In this first
step estimation of p, we only used the sample without the 4 outliers detected above. This
provided the estimator of p = 3.3465, indicating that the density of the efficiencies is tending
to zero at the frontier, but not its first derivative; a reasonable result when looking to the
cloud of data points in Figure 2.

Then we proceed as usual for estimating the frontier with the full sample, as if the true
value of the tail index would be 3.3465, keeping the basic rule of thumb m = Né/ % and
a = 10, as in the Monte-Carlo exercices above. The results are displayed on the left panel
of Figure 3, we see that this higher value of p (compared to p = 2 in Figure 2) push our
estimator to the North, as expected, because the correction for the bias is larger.

The right panel of the figure, where the 4 extreme data points are excluded from the
sample, indicates how the frontier estimate is robust to the outliers (as compared to FDH).
We observe again that after the first outlier, most of the FDH frontier is outside the 95%

confidence intervals.
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Figure 3: Resulting estimator ¢(x) for the French post offices with p = 3.3465. In the
left panel, the 4 extreme data points (circles) are used in the estimation of the two frontier
functions.

5 Conclusions

We have derived in this paper the theory of an estimator of a frontier function having an
asymptotic normal distribution. The basic tools is the order-m partial frontier where we let
the order m to converge to infinity when n — oo but at a slow rate. Indeed if the rate is too
fast, the order-m frontier will converge to quickly to the full frontier and the corresponding
estimator will converge to the FDH estimator, having a Weibull limiting distribution. The
final estimator is then corrected for its inherent bias. We thus can view our estimator as
a regularized frontier estimator which, in addition, is more robust to extreme values and
outliers than the usual nonparametric frontier estimators.

In addition, if the tail index p, and the behavior of the conditional distribution of X
given that Y > y near the frontier points is not known (¢,), we provide an easy way to
estimate them consistently.

The performances of our estimators are evaluated in finite samples trough some Monte-
Carlo experiments, showing very nice regular behavior of the estimators in particular for
the estimator of the frontier. We illustrate also how to provide, in an easy way, confidence
intervals for the frontier function in a simulated data set where the FDH estimator gives
very poor results. We also illustrate our procedure with a real data set from the French Post
Offices.

Important research issues are still open and deserve for future work. This includes a way

for selecting an optimal m, which is particularly important for deriving the estimator of the
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tail index p,. But this is known as a difficult problem in extreme values. Once p, is well
estimated (or assumed to be known) the estimate of the frontier itself is much more robust
to the choice of the order m. An other trail of research would be to define estimators of p,

and ¢, when they are considered as smoothed function of y.

Appendix: The Output Oriented Case

In this section we only give the useful notations and formulas for the output oriented case.
Here the attainable production set is defined as ¥ = {(z,y) € RY x Ry | = can produce y}
and the production frontier is represented by the graph of the production function ¢(x) =
sup{y | (z,y) € U}.. The distribution function of (X, Y’) can be denoted F'(z,y) and F(-|z) =
F(z,-)/Fx(x) will be used to denote the conditional distribution function of Y given X < z,
with Fx(z) = F(z,00) > 0. It has been proven in Cazals et al. (2002) that under the free

disposability assumption, the production function can equivalently be defined by

p(x) = sup{y = 0[F(y|lz) < 1} (A1)

The order-m partial frontier is now defined as

om(z) = E[max(Vy,...,Y,)|X < ], (A.2)
where (Y7,...,Y,,) are m ii.d. random variables generated by the conditional distribution
of Y given X < x. It is shown in Cazals et al. that ¢, (z) = [° (1 — [F(ulz)]™) du =

o(x) — Ow(z) [F'(u]z)]™ du, so that ¢,,(x) — ¢(z) as m — oo.
Nonparametric estimators of these frontiers are obtained by plugging the empirical ver-
sion of the unknown distribution F(:|z) in the definition above. So we obtain

@(z) =sup{y > 0|F(y|lz) < 1} = max Y; (A.3)

{i:X; <z}
o(x)
fm(z) = $(z) - / (B ()™ du, (A4)

where F(y|lz) = F(x,y)/Fx(z) with F(z,y) = 1/n> " I(X; < 2,Y; <y)and Fx(z) =
T

1/n>""  I(X; < z). For any given x and a fixed value of m, we have as n — oo,

YR (6 (2) — o)) 0 N0, 1), (A5)

o(m,x)

where the variance can be written, as in (2.2), as

2m?
Fx(x)

oy) rey)
L[ PP w0 - Pl ity < wdydn. (a6)

o?(m,r) =
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The regularity condition can be written here as

Fx(z)(1 = F(ylz)) = la(p(x) = y) + olp(x) —y)™, asy T o(z), (A7)

where ¢, > 0, p, > p and p(z) is differentiable in x with strictly positive first partial
derivatives. Then, from the equation (2.5) in Daouia et al. (2008), we obtain the useful

relation, as m — oo,

o(z) — om(z) =T (1 + i) ( ! )W 4 o(mYee), (A8)

Pz mi,

Then, the asymptotic theory given in Sections 2 and 3 can easily be adapted.
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