
Institut d’Economie Industrielle (IDEI) – Manufacture des Tabacs
Aile Jean-Jacques Laffont – 21, allée de Brienne – 31000 TOULOUSE – FRANCE
Tél. + 33(0)5 61 12 85 89 – Fax + 33(0)5 61 12 86 37 – www.idei.fr – contact@cict.fr

September, 2009

n° 613

“Instrumental Regression in 
Partially Linear Models”

Jean-Pierre FLORENS,                     
Jan JOHANNES and                

Sébastien VAN BELLEGEM



INSTRUMENTAL REGRESSION

IN PARTIALLY LINEAR MODELS∗

Jean-Pierre Florens1 Jan Johannes2 Sébastien Van Bellegem3
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Abstract

We consider the semiparametric regressionXtβ+φ(Z) where β and φ(·) are unknown

slope coefficient vector and function, and where the variables (X,Z) are endogeneous.

We propose necessary and sufficient conditions for the identification of the parameters

in the presence of instrumental variables. We also focus on the estimation of β. An

incorrect parameterization of φ may generally lead to an inconsistent estimator of β,

whereas even consistent nonparametric estimators for φ imply a slow rate of convergence

of the estimator of β. An additional complication is that the solution of the equation

necessitates the inversion of a compact operator that has to be estimated nonparametri-

cally. In general this inversion is not stable, thus the estimation of β is ill-posed. In this

paper, a
√
n-consistent estimator for β is derived under mild assumptions. One of these

assumptions is given by the so-called source condition that is explicitly interprated in

the paper. Finally we show that the estimator achieves the semiparametric efficiency

bound, even if the model is heteroscedastic. Monte Carlo simulations demonstrate the

reasonable performance of the estimation procedure on finite samples.
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1 Introduction

To determine the form of an economic model from a set of explanatory variables, it is often

the case that the economist can specify a parametric form for the effect of only a subset

of these variables, while he has no precise information about the specification of the other

variables. In that context, it is useful to consider a structural model that mixes parametric

together with unrestricted components. One meaningful possibility is to assume a partially

linear model, that is a semiparametric model of the type

Y = Xtβ + φ(Z) + U (1.1)

whereX and Z are multivariate explanatory variables. In this model, the economist imposes

his knowledge of a precise parametric specification for the set of the variables X, with

unknown parameters β. The effect of the other variables (here denoted Z) on the dependent

variable is unknown, or not necessarily linear in Z. The model contains an unrestricted part,

φ(Z), where φ is an unknown nonparametric function.

This compromise between an informative but restrictive parametric model and a non-

parametric regression model is the foundation of a large number of economic studies. A

seminal example was introduced by Engle, Granger, Rice, and Weiss (1986), who analyzed

the electricity demand with respect to the average daily temperature T , the monthly price

of electricity X1, income X2 and a set of eleven monthly dummy variables X3, . . . ,X13. The

model used in this study writes the electricity demand as a linear function of variables Xi,

plus a smooth function of the monthly temperature, φ(T ). The motivation for introducing a

nonparametric part was here the clear nonlinear dependance between the electricity demand

and the temperature, because extreme temperatures cause extreme electricity demand.

In many applications, the apparent asymmetry between the effect of the variables X

and Z in the partially linear model brings the analyst to include all dummy or categorical

variables in the parametric component of the model. Examples include Anglin and Gençay

(1996) who estimate hedonic price functions, or Stock (1989) in nonparametric policy anal-

ysis to name but a few. This way of doing is not systematic, especially when the economic

theory gives a guidance on the effect of some variables. One example is for instance the

study of Schmalensee and Stoker (1999), who analyze the log of household gasoline con-

sumption. The nonparametric part of their semiparametric model include the log income

and the log age, and the parametric part includes other continuous or discrete variables of

interest among which are demographic and geographic variables.

Some economic studies also consider partially linear models as a restricted form of a

fully nonparametric model. In that case, semiparametric models such as model (1.1) are

considered in order to reduce the dimensionality of the problem, see e.g. Heckman, Ichimura,

Smith, and Todd (1998) in the context of training programs evaluation.

The objective of this paper is to study the estimation of the parameter β when the

variablesX and Z are endogeneous. The underlying idea is that the components of the linear
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part of the structural model may have some economic significance, and some test of interest

can be described in terms of the parameter β only. In that situation, the nonparametric

part of the model is of secondary importance for the analysis, but in general influences the

inference on β dramatically. Once an accurate estimator of β is found, it has also been

suggested to plug it in the partial linear model and to provide inference for φ in a second

step using standard nonparametric approaches. The above mentioned study of Schmalensee

and Stoker (1999) uses that strategy, assuming that the estimator of β in the first step has

good statistical properties.

To find an estimator of the parametric part as accurate as possible in spite of the presence

of a nonparametric component φ(Z) in the structural model, and in spite of the possible

endogeneity of all variables is then a challenging but important task for economic studies.

With that respect, Ai and Chen (2003) provided a significant step forward. Starting from a

general model with conditional moment restrictions containing an unknown function, they

derive semiparametric efficient estimation of β using the method of sieve.

Our study below is in the continuity of Ai and Chen’s results. In the specific model

(1.1) we propose new identification results and a new estimation approach under milder

assumptions. One desirable property of our estimator is that it is shown to be consistent

and efficient even if the function φ belongs to an infinite dimensional space such as the

space of square integrable functions. Sometimes, no regularity assumption of φ is needed

in order to recover the consistency and efficiency of the estimation of β, provided that the

instruments are strong enough, a situation that we formaly characterize below.

To treat the endogeneity problem, we assume that instrumental variables W are given.

These variables are such that the error U in the structural model (1.1) fulfills the mean

independence condition E(U |W ) = 0. In that context, the paper addresses the following

most important issues:

(A) In which circumstance the presence of the nonparametric component has no influence

on the estimate of β?

(B) Under which conditions does the estimator of β recover the parametric
√
n rate of

convergence and the asymptotic normality?

(C) How to find an efficient estimator of β?

An answer to these questions would help the analyst in his choice of a semiparametric model

instead of a fully parametric model. Another way of thinking this problem is to determine

the situations or the structural assumptions under which we do not lose too much when we

allow the presence of variables in the regression model in an unrestricted form.

In the situation where all variables X and Z are endogeneous, we show below in this

paper that issue (A) does not necessarily lead to the trivial condition that there is no

nonparametric component in the model (i.e. φ ≡ 0). Among the unobvious situations

where the estimator of β does not depend on Z, we point out the particular situation where

2



the instruments W can be separated into two independent components, W = (W1,W2),

and each component is separately an instrument for the parametric and the nonparametric

part. More precisely, Z (resp. X) is independent from W given W1 (resp. W2) or, in formal

notations,

W = (W1,W2) such that Z ⊥⊥ W |W1,X ⊥⊥ W |W2 and W1 ⊥⊥ W2.

Below we characterize all situations where Z has no influence on the estimate of β.

It is also worth mentioning that the simpler situation of estimating β when φ ≡ 0 is a

nontrivial subcase of our problem under the nonstandard conditional assumption E(U |W ) =

0. Below we solve that case by estimating nonparametrically the conditional expectations

E(Y |W ) and E(X|W ). By doing so, we circumvent the discussion about the optimality of

the instrument W . That case is developed below in this paper.

In order to address the second issue (B), we admit that the presence of the unrestricted

component φ(Z) might have an influence on the definition of the estimate of β, but we want

to find mild, sufficient conditions under which it has no influence on its rate of convergence.

This question has a long history in the purely exogenous context, see e.g. Robinson (1988)

and Andrews (1991). In the result we state below, we give an answer to that question under

a set of minimal assumptions. We actually introduce two main types of assumptions:

(i) Smoothness assumptions on the joint density of the observations (Yi,Xi, Zi,Wi),

(ii) Strength of the instruments W .

It is worth noticing that the assumptions do not refer directly to the smoothness of the

nonparametric function φ itself, in contrast to most of the studies written in the exogenous

or partially exogenous framework. Instead we work under the above type (ii) assumption for

which we introduce a new, objective measure of strength (or weakness) of the instruments.

This measure will be called the source condition, in reference to formally analogous assump-

tions used in the numerical analysis literature. However, this notion as it is defined below

in this paper, is new in economics (see also Carrasco, Florens, and Renault (2007)) and we

give some details and intuitive examples to understand the usefulness of this concept.

The last issue (C) is related to the concept of semiparametric efficiency, see e.g. Stein

(1956) and Newey (1990b). That point accurately measures the loss in efficiency when using

a partially linear model instead of a fully linear model. The efficiency theorem we prove be-

low covers the general situation where the error U is heteroscedastic. One appealing feature

of this result is its formal resemblance with classical theory of optimal GMM estimators in

the fully parametric model, which we cover as a particular case.

We close this Introduction by a short comparison between the results below and the

economic literature.

Estimation of the parametric part of the partially linear model has been the subject of

considerable study in the purely exogenous situation (e.g. Härdle, Liang, and Gao (1990)).
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A
√
n-consistent estimator of the parameter has been derived in Robinson (1988) under

the quite strong conditions that U is independent from X and Z, and φ belongs to some

smoothness class. Andrews (1991) extends this result to the case of heteroscedastic errors

and Linton (1995) carefully studies the second order properties of the estimator. This model

is also the basis of a specification test in Delgado and Stengos (1994). A recent discussion

in that context including other semiparametric models can be found in Ichimura and Todd

(2007).

If only the parametric variables X are endogeneous, treatment of the endogeneity by

instrumental variables is analogous to the idea of GMM estimators, although the presence

of the nonparametric exogenous part φ(Z) leads to substantial technical difficulties. This

case is covered e.g. by Chen, Linton, and Van Keilegom (2003) and Ma and Carroll (2006).

A very different approach is however needed to treat the endogeneity of the nonparametric

variable Z by instrumental variables. As we already mention, Ai and Chen (2003) proposed

a sieve estimator for the case where Z is endogeneous, see also Chen and Pouzo (2008).

As we shall recall in the next section, the problem becomes ill-posed and a stabilization

procedure is necessary. That procedure is analogous to the ridge regression for parametric

models. In a nonparametric context, this problem was first pointed out by Florens (2003)

and further considered in recent economic studies, see e.g. Darolles, Florens, and Renault

(2002), Hall and Horowitz (2005), Blundell, Chen, and Kristensen (2007), Chen and Hu

(2006), Horowitz and Lee (2007), Carrasco, Florens, and Renault (2007) or Carrasco (2008).

The paper is organized as follows. In the next Section 2, we introduce the formal tools we

need to address the above questions about the estimation of parameter β. We also address

the questions of existence and identification of solutions β and φ. Section 3 first focuses on

issue (A) and proposes a first estimator of β. This estimator is actually not optimal since it

is not efficient. We then derive a general efficient estimator and give the conditions to answer

question (B) about the rate of convergence and the asymptotic normality of the estimator.

The “source conditions” are introduced in that section, and explained through meaningful

examples. Section 4 addresses the semiparametric efficiency of the estimator. We find also

interesting to study the small sample properties of the estimator. Section 5 comments on

that aspect of the estimation procedure through a set of Monte Carlo simulations. The

results of the estimation shows the very reasonable performance of the estimators for finite

sample size. The proof of all results are deferred to a technical appendix.

2 Basic assumption and Identification

The setting of this paper can be summarized through the model

Y = φ(Z) +Xtβ + U (2.1a)
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where the random variables Y ∈ R, Z ∈ R
p, X ∈ R

k, and where U is an error term with

finite variance such that

E (U |W ) = 0 (2.1b)

for some instrumental variable W ∈ R
q.

2.1 Well-posed versus Ill-posed problem

The target function φ and parameter β are solution of the functional equation

E (Y |W ) = E (φ(Z)|W ) + E
(
Xtβ|W

)
. (2.2)

Equation (2.2) is an integral equation which can be rewritten as

∫
yfY |W (y)dy =

∫
φ(z)fZ|W (z)dz +

∫
xtβfX|W (x)dx

where fY |W denotes the conditional density of Y given W , and similarly for fZ|W and fX|W .

The estimation of φ and β first requires a (nonparametric) estimator of the conditional

densities involved in the integral equation. However, once these estimators are defined, it

remains a set of intrinsic difficulties in order to solve this equation in (φ, β). As noted, for

instance, by Newey and Powell (2003) or Florens (2003), one of these problems lies in the

noncontinuity of the resulting estimators with respect to joint distribution of the data. This

lack of continuity is usually referred as the ill-posedness of the problem. In particular it

implies that, even if we can find consistent estimators for the conditional densities, it will

not lead to a consistent estimator for φ or β.

One solution to avoid ill-posedness is to assume that φ lies in a compact set of func-

tions, see e.g. Tikhonov, Goncharsky, Stepanov, and Yagola (1995) and, in econometrics,

see Newey and Powell (2003), Ai and Chen (2003) or Chen (2007). This assumption au-

tomatically eliminates the stability issue in solving the integral equation, and leads to a

well-posed problem. Under that assumption, a consistent estimator of β is therefore easier

to derive.

The compactness assumption is however difficult to interpret economically and, more

importantly, it assumes too much constraint on the set of φ.1 It is possible to deal with the

ill-posedness without assuming compactness, and there exists a large literature on techniques

to stabilize the inversion of the integral equations such as equation (2.2). In econometric

contexts, we refer to Carrasco, Florens, and Renault (2007) for an overview of different

methods. The treatment of the fully nonparametric model with this approach can be found

in Darolles, Florens, and Renault (2002), Florens (2003) and Hall and Horowitz (2005).

1To illustrate this limitation, suppose e.g. that φ belongs to a unit ball. The unit ball is compact if

and only if it is finite dimensional [e.g. Kress (1999), Theorem 2.10]. In other words, the function φ can

be expanded as a finite, linear combination of basis functions, which is clearly not a desirable structural

assumption for this nonparametric function.
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Below we also characterize situations where no regularity assumption on ϕ is needed in

order to derive an efficient estimation for the parameter β.

In this paper, we propose estimators of φ and β in the partially linear model (2.1a–2.1b)

in the framework of ill-posed inverse problems.

2.2 Operators

As we have seen, a clarification is necessary about the function space involved in the problem.

In this paper, we consider L2 spaces with respect to some specific measure. If this measure

is the joint probability measure of the data, then we write L2
f (Y ) or L2

f (Z) to denote for

example functions depending on Y or Z only.

Note that equation (2.2) may be reformulated in different ways (namely by multiplication

with functions of W ) and leads to different choices of function spaces. One important result

of the present paper is to relate this choice to the optimality of the estimator.

Let π and τ be two probability densities. We define

TX : R
k → L2

τ (R
q) : β̃ 7→ E{X ′β̃|W = ·}fW (·)

τ(·) (2.3)

TZ : L2
π(Rp) → L2

τ (R
q) : φ̃ 7→ E{φ̃(Z)|W = ·}fW (·)

τ(·) (2.4)

where L2
τ (R

q) and L2
π(Rp) are Hilbert spaces of square integrable functions with respect to

the measure τ or π respectively. We can then write (φ, β) as the solution of

r = TZφ+ TXβ. (2.5)

where r = E(Y |W )fW/τ . As we shall prove in this paper, the choice of τ is related to some

optimality for the estimation of β.

It is also useful to introduce the corresponding adjoint operators:

T ⋆
X : L2

τ (R
q) → R

k : g 7→ E{Xg(W )} (2.6)

T ⋆
Z : L2

τ (R
q) → L2

π(Rp) : g 7→ E{g(W )|Z = ·}fZ(·)
π(·) (2.7)

One interesting point with the introduction of the two functions π and τ is that it allows

us to cover different viewpoints taken in the literature. If π = fZ and τ = fW , then we

adopt the setting of Darolles, Florens, and Renault (2002)2. If π and τ are U [0, 1], then we

fit to the setting of Hall and Horowitz (2005).

There is however one more fundamental reason to introduce these probability measures

in our definition of the operators. The choice of π is related to identification issues, as it is

shown in Section 2 below. In particular, we obviously have that φ can only be identified on

suppπ∩ supp fZ (the intersection between the supports of fZ and π). Moreover, the choice

2Except Appendix C of Darolles, Florens, and Renault (2002), where a similar generalization is provided

in order to model unbounded densities.
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of τ will have no influence on the rate of convergence of the proposed estimators, but is

related to their asymptotic efficiency, as shown in Section 4.

Throughout the paper, we assume that the operators TX , TZ , their dual, and r are

well-defined. This point is formalized by the following assumption.

Assumption 2.1. With the above notations, we assume that r ∈ L2
τ (R

q) and that both

functions

E (ψ(Z)|W = ·) fW (·)
τ(·) and E (Xi|W = ·) fW (·)

τ(·)

belong to L2
τ (R

q) for all ψ ∈ L2
π(Rp) and i = 1, . . . , k.

We illustrate this assumption in the next two examples, where we state sufficient con-

ditions such that all quantities are well-defined.

Example 2.1. Assumption 2.1 holds true if both Cov(X) and Var(Y ) are finite and if there

exists some positive constants C1 and C2 such that fW 6 C1 · τ on the support of τ and

fZ 6 C2 · π on the support of π. If we set to zero functions outside the support of π and τ ,

then these conditions imply respectively L2
π(Rp) ⊆ L2

f (Z) and L2
τ (R

q) ⊆ L2
f (W ). �

Example 2.2. Assumption 2.1 holds true if both Cov(X) and Var(Y ) are finite and the

following Hilbert-Schmidt conditions are fulfilled:

(i)

∫∫ (
fY W (y,w)

fY (y)τ(w)

)2

fY (y)τ(w)dwdy <∞ ,

(ii)

∫∫ (
fXW (x,w)

fX(x)τ(w)

)2

fX(x)τ(w)dwdx <∞ ,

(iii)

∫∫ (
fZW (z,w)

π(z)τ(w)

)2

π(z)τ(w)dwdz <∞ .

In particular, these conditions imply the compactness of the operator T ⋆
ZTZ . The Hilbert-

Schmidt conditions hold true for instance when all variables are Normal. �

2.3 Existence and identification

We now give conditions for the existence of solutions and for the identification of the pa-

rameters from the partial linear model (2.1a–2.1b). Recall that (φ, β) are the solution of the

equation r = TZφ + TXβ, where r = E(Y |W )fW/τ . A necessary and sufficient condition

for the existence of solutions is to assume

r ∈ R(TZ) + R(TX) =
{
ψZ + ψX such that ψZ ∈ R(TZ) and ψX ∈ R(TX)

}

where R(T ) denotes the range of the operator T , i.e. the set of all image elements. 3

3This condition is obviously not always satisfied. When it is possible we can define the parameters of

interest (φ, β) as

(φ, β) = arg min
{
‖r − TZ φ̃ − TX β̃‖L2(W ) such that φ̃ ∈ L

2
π(Rp) and β̃ ∈ R

k
}
.
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The next assumption is a necessary and sufficient condition for the identification of the

parameters.

Assumption 2.2. The two following conditions hold true:

(i) The operators TX and TZ are injective, i.e. TXβ = 0 ⇒ β = 0 and TZφ = 0 ⇒ φ = 0,

(ii) R(TX) ∩R(TZ) = {0}.

Assumption 2.2 gives conditions on operators. It might be useful or intuitive to translate

these conditions on random variables instead. The two following assumptions are together

equivalent to Assumption 2.2(i):

(a) The vector Z is strongly identified by W with respect to π, that is

∀h ∈ L2
π(Rp) such that

fW

τ
E{h(Z)|W} = 0 τ -a.s. =⇒ h(Z) = 0 τ -a.s.

(b) The matrix

Ω := E

{
E(X|W )

fW (W )

τ(W )
E(Xt|W )

}
(2.8)

has full rank.

Condition (a) refers to the concept of strong identification of random variables and corre-

sponds to the notion of complete statistics in the statistical literature (see, e.g., Lehmann

and Scheffe (1950)). This condition is weaker than requiring the strong identification of

X,Z by W . This weak condition comes from the semiparametric structure of the model.

Note also that the matrix Ω of condition (b) is the asymptotic variance of the Generalized

Method of Moment estimator for the heteroscedastic model with Var(U |W )fW = τ (see

Chamberlain (1987)).

Finally observe that, if (Z,X) is jointly strongly identified by W , then the condition (ii)

follows if the random variables X and Z are measurable separable4. A standard reference

on this concept is Chapter 5 of Florens, Mouchart, and Rolin (1990) and a more recent

discussion can be found in San Mart́ın, Mouchart, and Rolin (2005).

Theorem 2.1. Suppose the model is well-defined (Assumption 2.1). Then Assumption 2.2

is necessary and sufficient for the identification of the function φ and the vector β in the

model (2.1a)–(2.1b).

This solution is called minimal norm solution, but it can happen that this solution does not exists. Theorem

2.6 of Engl, Hanke, and Neubauer (1996) gives the following necessary and sufficient condition for the

existence of the minimal norm solution: the solution r must be such that r ∈ {R(TZ)+R(TX)}⊕{R(TZ)+

R(TX)}⊥, where Ω⊥ denotes the orthogonal space to the space Ω. See Chapter 2 of Engl, Hanke, and

Neubauer (1996) for details. Note also that, if it exists, the minimal norm solution is not necessarily unique.

The general problem of non identifiable nonparametric inverse problems is considered in Johannes (2006),

where an estimator of the space of solutions is derived.
4X and Z are measurable separable when any function of Z a.s. equal to Xtβ for a given β is equal to a

constant a.s.
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Remark 2.1 (Identification of β). As the main object of this paper is the accurate esti-

mation of the parameter β, one can ask what are the necessary and sufficient conditions

for the identification of β only. A straightforward adaptation of the above theorem shows

that these conditions are given by a relaxed version of Assumption 2.2, where condition (i)

is replaced by the injectivity of TX only. We do not need the injectivity of TZ , but note

that we still need that the single common element between the range of the two operators

is zero.

Remark 2.2 (Common variables between X and Z). If the model contains common vari-

ables between X and Z, Assumption 2.2 (ii) about the range of the operators TX and TZ is

no longer fulfilled. That situation requires other identification conditions. One solution is

to impose more regularity on φ. A sufficient condition for identification is for instance the

existence of a measurable set A ⊆ R
p of nonzero measure, such that φ(A) ≡ ∂kφ(A) ≡ 0,

where ∂kφ denotes the derivative of φ with respect to component k = 1, . . . , p. This condi-

tion restricts the set of φ, thus modifies the operator TZ to another operator T̃Z such that

the range condition is fulfilled: R(TX)∩R(T̃Z) = {0}. Note that the estimation procedure

in that situation is much more complicated and must be adapted to this restriction.

3 Estimation of β

Suppose we observe iid vectors (Yi, Zi,Xi,Wi), i = 1, . . . , n from the model (2.1a)–(2.1b)

and suppose that the parameters of the model are identified. Recall the definition of the

operators in Section 2.2. The normal equations are

T ⋆
Zr = T ⋆

ZTZφ+ T ⋆
ZTXβ (3.1a)

T ⋆
Xr = T ⋆

XTZφ+ T ⋆
XTXβ. (3.1b)

Note that, analogously to the case of the linear regression model, this system projects the

problem (2.5) onto the parameter spaces R
k and L2

π(Rp) using the adjoint operators.

Before solving this system, we consider the case where the cross terms T ⋆
ZTX and T ⋆

XTZ

vanish. In this situation, the estimate of β does not depend on (an estimate of) φ.

3.1 Separate estimation of β

The condition that T ⋆
ZTX and T ⋆

XTZ vanish is equivalent to the condition that the range of

TX is orthogonal to the range of TZ , i.e. R(TX) ⊥ R(TZ). This orthogonality condition

holds true for instance when we can find two independent sets of instruments for X and Z,

i.e. when W = (W1,W2) such that Z ⊥⊥ W |W1, X ⊥⊥ W |W2 and W1 ⊥⊥ W2. However note

that we are not limited to this particular case.

When R(TX) ⊥ R(TZ) we can study separately the estimation of β and of φ, which are
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given by

φ = (T ⋆
ZTZ)−1T ⋆

Zr (3.2a)

β = (T ⋆
XTX)−1T ⋆

Xr. (3.2b)

From the estimation of T ⋆
XTX and T ⋆

Xr, an estimator of β can be defined.

It appears that this estimator is not optimal, in the sense that it is not asymptoticaly

efficient. Because we will present an efficient estimator in the next section, we defer the

properties of (3.2b) to Appendix A below.

3.2 General estimation approach

In the general case, we consider the system (3.1a–3.1b), where the cross-terms T ⋆
ZTX and

TXT
⋆
Z do not vanish. This linear system is equivalent to

T ⋆
Z (I − PX) r = T ⋆

Z (I − PX)TZφ (3.3a)

T ⋆
X (I − PZ) r = T ⋆

X (I − PZ)TXβ (3.3b)

where PX = TX(T ⋆
XTX)−1T ⋆

X is the orthogonal projection operator onto the range R(TX) of

TX and, similarly, PZ is the projection onto the closure of the range R(TZ). Note that, for

all function in the range R(TZ), this last projection can be written as PZ = TZ(T ⋆
ZTZ)−1T ⋆

Z .

Below we introduce estimators for the operators involved in this system.

From (3.3a), we see that the estimation of φ is again an ill-posed problem since here the

inversion of T ⋆
Z(I − PX)TZ is not stable. We refer to the standard literature on estimation

and regularization in nonparametric instrumental regression models, which offer a complete

solution to this problem.

The interesting and new fact arises from the equation (3.3b), in which the inversion

of (T ⋆
ZTZ) is a source of instability. In consequence, the estimation of β is also ill-posed

and a regularized estimate is necessary in order to get a consistent estimator. Ill-posedness

however may lead to a very slow rate of convergence of the estimator of β. In the following we

give regularity conditions on TZ , TX and φ such that we get a
√
n-consistent, asymptotically

Normal estimate.

In order to define these regularity conditions, we assume that the operator TZ is compact,

which allows to write its singular value decomposition. Namely, there exists a system {ϕj}
of functions of L2

π(Rp) and a system {ψj} in L2
τ (R

q) such that

TZφ =

∞∑

j=1

λj〈φ,ϕj〉ψj for all φ ∈ L2
π(Rp) , (3.4)

where the coefficients λj are the strictly positive singular values of TZ . As the operator TX

is always compact, we also consider a system of eigenvector {ej} in R
k and a system {ψ̃j}

in L2
τ (R

q) such that

TXβ =

k∑

j=1

µj〈β, ej〉ψ̃j for all β ∈ R
k ,
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where the coefficients µj are the strictly positive singular values of TX .

Assuming TZ to be compact allows us to estimate this operator using a kernel smoothing

procedure5. In the singular value decomposition of TZ , the ill-posedness comes from the

behavior of the singular values λj which tend to 0 as j increases. Also, note that the

systems of eigenfunctions {ϕj} and {ψj} are infinite, while the systems {ej} and {ψ̃j}
contain k elements.

The following assumption presents the regularity conditions for TZ , TX and φ.

Assumption 3.1 (Source conditions). There exists η > 0 and ν > 0 such that

max
i=1,...,k

∞∑

j=1

〈ψ̃i, ψj〉2
λ2η

j

<∞ , (3.5)

and
∞∑

j=1

〈φ,ϕj〉2
λ2ν

j

<∞ . (3.6)

This assumption quantifies the strength (or weakness) of the instrument W . Since

this type of assumption is new in econometrics6, we will discuss its relevance and some

interpretations in the next paragraphs.

The condition (3.5) means that the operator TX is “adapted” to the operator TZ , and

this adaptation is controlled by the parameter η. If R(TX) and R(TZ) are orthogonal, then

η = ∞ and this case is discussed in Appendix A below. Then the parameter η may be

interpretated as a degree of collinearity between Z and X through the projection onto the

instruments W : roughly speaking, the bigger the parameter η, the more orthogonal are the

ranges R(TX) and R(TZ).

In addition to this interpretation, the following examples illuminate Assumption 3.1 in

some particular cases.

Example 3.1. Suppose X can be written as X = m(V ) for a given function m and a

p-dimensional random variable V such that the linear operator

TV : L2
fV

(Rp) → L2
τ (R

q) : g 7→ E{g(V )|W = ·}fW (·)
τ(·)

has a singular value decomposition given by TV g =
∑∞

j=1 γj〈g, κj〉ψj for all g ∈ L2
fV

(Rp).

Note that {ψj} is the singular system of TZ and TV . Denote by mi the i-th component of

the vector valued function m and assume that mi ∈ L2
fV

(Rp) for i = 1, . . . , k. In that case,

by orthonormality of the system {ψj}, condition (3.5) is equivalent to

max
i=1,...,k

∞∑

j=1

γ2
j

λ2η
j

〈mi, κj〉2 <∞

5A sufficient condition for the compactness of TZ is given by the Hilbert Schmidt condition, see Example

2.2.
6With one noticeable exception for condition (3.6) that already appears in Darolles, Florens, and Renault

(2002).
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and a sufficient condition is to check whether γj/λ
η
j 6 C for some constant C. �

The relevance of this example comes from the fact that the parameters µi and λi are

estimable from the data, and then this assumption is testable. Moreover, these parameters

are linked to the correlation between the instruments W and the variables X and Z respec-

tively. The two following examples illustrate this point in some particular cases starting

with the Normal model.

Example 3.2 (Normal model). Suppose (X,Z,W1,W2) ∼ N (0,Σ) and

Σ =




1 0 ρX,1 ρX,2

0 1 ρZ,1 0

ρX,1 ρZ,1 1 0

ρX,2 0 0 1




for 0 < |ρX,1|, |ρX,2|, |ρZ,1| 6 1. Here, note that Z ⊥⊥ W2 and the case ρX,1 = 0 corresponds

to the situation where R(TX) ⊥ R(TZ). We also take π ∈ N (0, 1) and τ ∼ N (0, I2) where

I2 denotes the 2 × 2 identity matrix. The singular system of TX reduces to {µ1, e1, ψ̃1}
where e1 ≡ 1 and ψ̃1(w1, w2) = (ρX,1w1 + ρX,2w2)/µ1 with corresponding singular value

µ2
1 = ρ2

X,1 + ρ2
X,2. Moreover, the singular system of TZ is given by the (univariate) Hermite

polynomials Hj in both L2
π(R) and L2

τ (R
2), i.e. ψj(w1, w2) = Hj(w1) for all w1, w2. The

corresponding singular values are λj = ρj
Z,1. Since H1(w1) = 1 and H2(w1) = 2w1, the

orthonormality property of the Hermite polynomials simplifies the regularity condition (3.5)

as

∞∑

j=1

〈ψ̃1, ψj〉2
ρ2jη

Z,1

=
∞∑

j=1

ρ2
X,1

4ρ2jη
Z,1

〈H2, ψj〉2 =
ρ2

X,1

4ρ4η
Z,1

,

which is obviously finite for every η. In conclusion, this example always satisfies the source

condition for all η. �

Example 3.3. The preceding example can be generalized to the case where the k-dimen-

sional random variable X is not normally distributed. Suppose that X = m(V ), where

(V,Z,W1,W2) ∼ N (0,Σ) and

Σ =




1 0 ρV,1 ρV,2

0 1 ρZ,1 0

ρV,1 ρZ,1 1 0

ρV,2 0 0 1




for 0 < |ρV,1|, |ρV,2|, |ρZ,1| 6 1 similarly to Example 3.2. The function m is vector-valued

with components in L2
fV

(R) as in Example 3.1. Combining the above Examples 3.1 and 3.2,

we see that the source condition is satisfied for all η when m takes a polynomial form. For
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a general function m, a sufficient condition for (3.5) is to require that ρV,1/ρ
η
Z,1 is bounded

by some constant C. The source condition is then directly related to the correlation scheme

between the random variables. �

In order to define the estimator, we first recall the definition of the multivariate kernel

(see Scott (1992)).

Definition 3.1. For all w = (w1, . . . , wq) ∈ R
q, K is a multiplicative kernel of order m,

i.e. K(w) = Πq
i=1ℓ(wi) where ℓ is a univariate, continuous, bounded function such that

∫
ℓ(u) du = 1,

∫
uiℓ(u) du = 0

for all i = 1, . . . ,m− 1 and there exists two finite constants sm
K and CK such that

∫
umℓ(u) du = sm

K ,

∫
ℓ(u)2 du = CK .

We now consider nonparametric estimator of the operators and define our estimator of

β:

T̂X β̃ =
1

n

n∑

i=1

Xt
i β̃

KhW
(Wi − ·)
τ(·) for all β̃ ∈ R

k , (3.7)

T̂ ⋆
Xψ =

1

n

n∑

i=1

Xi

∫
KhW

(Wi − w)ψ(w) dw for all ψ ∈ L2
τ (R

q) , (3.8)

T̂Z φ̃ =
1

n

n∑

i=1

KhW
(Wi − ·)
τ(·)

∫
KhZ

(Zi − z)φ̃(z) dz for all φ̃ ∈ L2
π(Rp) , (3.9)

T̂ ⋆
Zψ =

1

n

n∑

i=1

KhZ
(Zi − ·)
π(·)

∫
KhW

(Wi − w)ψ(w) dw for all ψ ∈ L2
τ (R

q) , (3.10)

r̂ =
1

n

n∑

i=1

Yi
KhW

(Wi − ·)
τ(·) , (3.11)

for some bandwidth parameters hW , hZ that depend on n. It is worth mentioning that

these estimators are constructed such that the dual of T̂X (resp. T̂Z) is precisely given by

T̂ ⋆
X (resp. T̂ ⋆

Z). This fact is used in the proof of the next theorems. Moreover, with the

standard choice for the parameter h, these estimators achieve sufficiently good convergence

properties, see Lemma B.3 in the Appendix for details on this convergence. Of course,

one could consider other nonparametric estimators and this choice is directly related to the

smoothness assumptions we allow on the density f .

Together with sufficient regularity assumptions on the kernel K,
√
n-consistency is

achieved if we impose some regularity conditions on the joint density f . The next defi-

nition provides the suitable space of regularity for f in order to prove all the results of this

paper (see also Definition 2 of Robinson (1988)).
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Definition 3.2. For a given function γ and for α > 0, s > 0, the space G
s,α
γ (Rℓ) is the class

of functions g : R
ℓ → R satisfying: g is everywhere (m−1)-times partially differentiable for

m− 1 < s 6 m; for some ρ > 0 and for all x, the inequality

sup
y:|y−x|<ρ

|g(y) − g(x) −Q(y − x)|
|y − x|s 6 ψ(x), (3.12)

holds true where Q = 0 when m = 1 and Q is an (m− 1)th-degree homogeneous polynomial

in y − x with coefficients the partial derivatives of g at x of orders 1 through m − 1 when

m > 1; ψ is uniformly bounded by a constant when α = 0 and the functions g and ψ

have finite αth moments with respect to 1/γ when α > 0, i.e.
∫
gα(x)/γ(x) dx < ∞ and∫

ψα(x)/γ(x) dx <∞. We also write G
s,α(Rl) when γ ≡ 1.

In this definition, (3.12) provides a bound on a Taylor series remainder term.

The parameter β is then estimated by

β̂ = M̂−1
α v̂α (3.13)

where v̂α is an estimator of the left hand side of (3.3b) given by

v̂α := T̂ ⋆
X

(
I − T̂Z(αI + T̂ ⋆

Z T̂Z)−1T̂ ⋆
Z

)
r̂

and M̂α is an estimator of the RHS given by

M̂α := T̂ ⋆
X

(
I − T̂Z(αI + T̂ ⋆

Z T̂Z)−1T̂ ⋆
Z

)
T̂X

for a positive parameter α that depends on n. We refer to α as the regularization parameter.

Note that here we use the Tikhonov regularization method to stabilize the inversion of T ⋆
ZTZ .

It is of course possible to consider another scheme of regularization (see Carrasco, Florens,

and Renault (2007)).

Theorem 3.1. Consider the nonparametric estimators (3.7–3.11) constructed using a mul-

tivariate kernel of order r (Definition 3.1) and for j = 1, . . . , k suppose (i) the functions∫
x2

jf(x, ·)dx and
∫
y2f(y, ·)dx belong to G

1,1
τ (Rq); (ii) the functions

∫
xjf(x,w)dx and∫

yf(y, ·)dx belong to G
s,2
τ (Rq); (iii) the function fZW belongs to G

1,1
π·τ (R

p+q)∩G
s,2
π·τ (R

p+q).

In addition, define ρ := r ∧ s and assume that the bandwidth parameters are such that

hW = O(n−1/(p+q+2ρ)) and hZ = O(n−1/(p+q+2ρ)). Suppose that the source condition (As-

sumption 3.1) is satisfied for some ν > 0 and η > 1. Moreover, if η > 2 and 2ρ > p+ q, we

assume

α · n
p+q+(2−ν∧2)ρ

p+q+2ρ = O(1), α2 · n = O(1)

while, if 1 6 η < 2, we assume

αη−2 · n
p+q−2ρ

p+q+2ρ = O(1), α · n
p+q+(2−ν∧2)ρ

p+q+2ρ = O(1), α2 · n = O(1) .

Then
√
n‖β̂ − β‖ = Op(1).
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To illustrate this result, we first give some sufficient conditions on the parameter α to

get
√
n-consistency. Consider the situation where the source conditions (Assumption 3.1)

are fulfilled with η > 2 and 2ρ > p + q. Then α = O(n−1) is a sufficient rate to get the
√
n-consistency. It is interesting to note that α can tend to zero arbitrarily fast (at least

faster than n−1+(ν∧2)ρ/(p+q+2ρ) and no lower bound is necessary for this convergence. This

phenomenon is due to the regularity condition imposed on the problem in terms of source

condition (η > 2). In this situation, a regularization parameter is mandatory in order to

have
√
n-consistency, but this parameter can be arbitrarily small. Moreover, note that ν = 0

is also possible. This means that
√
n-consistency is achieved when no regularity condition

on φ is assumed.

The situation differs if 1 6 η < 2, that is if the problem is less regular. In that case the

constraint

αη−2 · n
p+q−2ρ

p+q+2ρ = O(1)

imposes that α cannot converge arbitrarily fast to zero. This implies that, in contrast to

the previous case, the rate O(n−1) is then no longer valid for all choice of p, q, ρ. Still,

the regularity parameter should converge faster than n−1+(ν∧2)ρ/(p+q+2ρ). In conclusion of

this case,
√
n-consistency resulting from the above theorem requires that ν > 0 in some

situations. In other words the source condition on φ is a sufficient assumption in that

situation.

A few more constraints on (α, hW , hZ) give the following Central Limit Theorem for

β̂. In particular, we will need some assumptions on the singular value decomposition of

the compact operator T ⋆
X(I − PZ). We denote by {µj , gj ∈ L2

τ (R
q), ej ∈ R

k, j = 1, . . . , k}
of T ⋆

X(I − PZ) this singular value decomposition (similarly to the decomposition (3.5) for

instance).

Theorem 3.2. Consider the nonparametric estimators (3.7–3.11) constructed using a mul-

tivariate kernel of order r (Definition 3.1). Suppose assumptions (i) - (iii) of Theorem 3.1

are satisfied. In addition, define v2(·) = Var(U |W = ·) and assume that (iv) the func-

tions v2fW and fW belong to ∈ G
1,1
τ (Rq); (v) the eigenfunctions gj of T ⋆

X(I − PZ) belong

to G
1,0
τ (Rq) and (vi) gj

√
v2 · fW/τ belong to L2

τ (R
q) for all j = 1, . . . , k. Moreover, define

ρ := r ∧ s and suppose that the bandwidth parameters are such that hW = O(n−1/(p+q+2ρ))

and hZ = O(n−1/(p+q+2ρ)). Suppose in addition that the source conditions (Assumption

3.1) are satisfied for some ν > 0 and η > 1. If η > 2 and 2ρ ≥ p+ q, assume

α · n
p+q+(2−ν∧2)ρ

p+q+2ρ = o(1), α2 · n = o(1)

while, if 1 6 η < 2, assume

αη−2 · n
p+q−2ρ
p+q+2ρ = o(1), α · n

p+q+(2−ν∧2)ρ
p+q+2ρ = o(1), α2 · n = o(1) .

15



Then we have

√
n(β̂ − β)

d−→ N
(

0,M−1T ⋆
X(I − PZ)

[
v2 · fW

τ
(I − PZ)TX

]
M−1

)
,

where M = T ⋆
X(I − PZ)TX .

As illustration of the last theorem consider the situation where the source condition

(Assumption 3.1) are satisfied with η > 2 and 2ρ > p + q. Then the rate α = o(n−1)

is sufficient to get the central limit theorem. Again no lower bound is needed for α and

the only constraint is that the regularization parameter should be faster than the rate

n−1+(ν∧2)ρ/(p+q+2ρ). Moreover, as in the consistency theorem if η > 2 and 2ρ > p + q

there is no regularity condition on φ necessary to obtain the asymptotic normality. The

situation differs when 1 6 η < 2. In this less regular problem, α cannot converge arbitrarily

fast to zero due to the constraint αη−2 · n
p+q−2ρ

p+q+2ρ = o(1), but has to converge faster than

n−1+(ν∧2)ρ/(p+q+2ρ).

Theorem 3.2 shows explicitly the influence of the function τ on the asymptotic variance

of the estimator. If we take for instance τ such that Var(U |W )fW (W ) = σ2τ(W ), then

the asymptotic distribution reduces to N (0, σ2M−1). In the next section we show that this

choice for τ gives an estimator that reaches the semiparametric efficiency bound.

4 Semiparametric efficiency of the general estimate

In the following we address the question of the efficiency of our estimator β̂. Semiparametric

efficiency bounds have now a long history and we refer to Newey (1990b) or Bickel, Klaassen,

Ritov, and Wellner (1993) for standard references on this concept.

Suppose φ = gγ is a known function of Z depending on a l-dimensional unknown param-

eter vector γ and partially differentiable in γ. If (γ̂GMM , β̂GMM ) denotes in this parame-

terized model the optimal GMM estimator of (γ, β) derived from the optimal unconditional

moment condition, then it is well known that under regularity conditions the optimal co-

variance matrix in the limiting normal distribution of
√
n[(γ̂GMM , β̂GMM ) − (γ, β)] is

(
E
{
∂γgγ(Z)v−2(W )E(∂γgγ(Z)|W )t

}
E
{
∂γgγ(Z)v−2(W )E(X|W )t

}

E
{
Xv−2(W )E(∂γgγ(Z)|W )t

}
E
{
Xv−2(W )E(X|W )t

}
)−1

,

see, e.g., Chamberlain (1987). If we assume Cov(∂γgγ(Z)) <∞, then the operator

Tgγ(Z) : R
l → L2

τ (R
q) : θ 7→ fW (W )

τ(W )
E(∂γgγ(Z)|W )t θ

is well-defined and its adjoint operator is given by

T ⋆
gγ(Z) : L2

τ (R
q) → R

l : ψ 7→ E{∂γgγ(Z)ψ(W )} .
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With these notations, the optimal covariance matrix can be written


 T ⋆

gγ(Z)

[
τ

v2·fW
Tgγ(Z)

]
T ⋆

gγ(Z)

[
τ

v2·fW
TX

]

T ⋆
X

[
τ

v2·fW
Tgγ(Z)

]
T ⋆

X

[
τ

v2·fW
TX

]



−1

.

By standard matrix calculation we obtain the optimal covariance matrix Mgγ(Z) in the

limiting normal distribution of
√
n(β̂GMM − β) which is given by

M−1
gγ(Z) = T ⋆

X

[
τ

v2 · fW
TX

]
−

T ⋆
X

[
τ

v2 · fW
Tgγ(Z)

]
·
(
T ⋆

gγ(Z)

[
τ

v2 · fW
Tgγ(Z)

])−1
· T ⋆

gγ(Z)

[
τ

v2 · fW
TX

]
.

Note that in the heteroscedastic case with τ chosen such that v2(·)fW (·) = σ2τ(·) the

optimal covariance matrix is given by

σ2M−1
gγ(Z) = T ⋆

XTX − T ⋆
XTgγ(Z) ·

(
T ⋆

gγ(Z)Tgγ(Z)

)−1
· T ⋆

gγ(Z)TX

and in the particular homoscedastic case, i.e., v2(·) = σ2, we recover

σ2M−1
gγ(Z) = E

{
E(X|W )E(X|W )t

}
− E

{
E(X|W )E(∂γgγ(Z)|W )t

}
·

·
(

E
{
E(∂γgγ(Z)|W )E(∂γgγ(Z)|W )t

})−1
· E
{
E(∂γgγ(Z)|W )E(X|W )t

}
.

We can now state the efficiency result.

Theorem 4.1. Consider the nonparametric estimators (3.7–3.11) constructed using a mul-

tivariate kernel of order r (Definition 3.1). Suppose assumptions (i) - (vii) of Theorem

3.2 are satisfied and the parameters α, hZ and hW are chosen according to Theorem 3.2.

If the density τ satisfies Var(U |W )fW (W ) = σ2τ(W ), then the estimator β̂ achieves the

semiparametric efficiency bound, i.e., there exists a parametric model gγ for φ such that

Mgγ(Z) = σ2[T ⋆
X(I − PZ)TX ]−1.

Remark 4.1 (Partially endogeneous model). It is interesting to compare this efficiency

result with a more general result given in Ai and Chen (2003) that covers a partially

endogeneous model. In our setting, assuming only partial endogeneity implies that TXβ =

Xtβ and, after some algebra, one can check that the variance of our semiparametric efficient

collapses with the one given in Section 6 of Ai and Chen (2003).

5 Finite sample properties

In order to study the finite sample properties of the estimator, we describe below the results

of a Monte Carlo simulation. The model considered in the simulation is Y = Xtβ+φ(Z)+U

with function φ(z) = 0.25z2, parameter β = 1 and U ∼ N(0, 1). Variables X and Z are
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here univariate, and are generated as follows: Generate the trivariate Gaussian vector

W = (W1,W2,W3)
′ ∼ N((0, 0, 0)′, Id) and consider

{
Z = W1 + 2W2 +W3 + ηZ ,

X = −2W1 +W2 −W3 + ηX .

The random variables ηZ and ηX are generated such that variables X and Z are endogenous:

{
ηZ = U + εZ , εZ ∼ N(0, 1) ,

ηX = −2U + εX , εX ∼ N(0, 1)

where εZ and εX are independent.

In our Monte Carlo study, data Yi,Xi, Zi,Wi are generated from this model and the

general estimator (3.13) of β is computed. The choice of the measures π and τ that are

used in the estimator is data driven: From each generated sample, we compute the sample

mean (µ̂Z and µ̂W ) and the sample variance/covariance matrix (σ̂2
Z and Σ̂W ) from the

observations Zi and Wi. The measure π considered in the estimation is the density function

of a Normal random variable with mean µ̂Z and variance σ̂2
Z . The measure τ is the density

of the multivariate Normal random variable with mean µ̂W and covariance matrix 1.2 · Σ̂W .

The kernel used in the nonparametric estimation of all quantities (3.7—3.11) is the

Gaussian kernel. In this simulation, the regularization parameter α and the four bandwidths

hZ , hW1 , hW2 and hW3 are fixed. They were determined by the user from a set of preliminary

samples generated from the above model. We found that the choice α = 3 · 10−3 and

hZ = hW1 = hW2 = hW3 = 1.95 gives reasonable results. It is still an open question how to

find adaptive data-driven procedures to select these parameters.

Sample size

n = 100 n = 250 n = 500

OLS 0.8190 0.8165 0.8172

(0.025) (0.017) (0.008)

IV 0.9808 0.9939 1.0005

(0.108) (0.030) (0.024)

Table 1: Average and standard error (in parenthesis) of the estimator of β from

M = 1000 generations of the model explained in text. The true β is 1. OLS is

computed from the pseudo-observations (Yi − φ(Zi), Xi) (see text) and IV is the

semiparametric instrumental variable estimator.

Table 1 shows the results of the simulation for different sample sizes. From M = 1000

samples, the table gives the mean and standard error of the estimators. In order to have

a point of comparison, we also compute the OLS estimator of β, ignoring endogeneity,

using the pseudo-observations (Yi −φ(Zi),Xi), i = 1, . . . , n, i.e. we subtract the theoretical

18



nonlinear function φ from the dependent variable Yi. The table compares the performance

of our estimator with the results of the OLS estimator. The table shows that our procedure

offers an appropriate correction for the endogeneity and is reasonably close to the real value

of the parameter, even for very small sample sizes (n = 100).

It is worth mentioning that, in contrast to the OLS estimator, our semiparametric

estimation procedure is computed from the true observations (Yi,Xi, Zi,Wi). In other

words, it does not consider that the nonparametric function φ is known.

Moreover, even if the goal of this study is to investigate the finite sample accuracy for

the estimator of the parameter β, we note in passing that an estimator of the nonparametric

function φ(z) is easily obtained. From the normal equation (3.3a), the estimator is given

by

φ̂ =
(
αI + T̂ ⋆

Z(I − P̂X)T̂Z

)−1
T̂ ⋆

Z(I − P̂X)r̂ (5.1)

where P̂X = T̂X(T̂ ⋆
X T̂X)−1T̂ ⋆

X . Figure 1 shows this estimator (dashed line) from one single

sample size. The true function φ is the solid line in the figure, and the gray line is the

nonparametric kernel estimator of the regression function without controlling for endogene-

ity. That figure shows that the fit of the regression function is remarkable, and that the

procedure corrects appropriately for the endogeneity of Z.

APPENDIX

A Separate estimation of β

When R(TX) ⊥ R(TZ) we can study separately the estimation of β and of φ, which are given by

(3.2a–3.2b). Even the estimation of β is not a standard problem given our assumption E (U |W ) = 0

(see (2.1b)). We first need a nonparametric estimator of T ⋆XTX and T ⋆Xr. In the following we consider

the estimator of T ⋆XTX given by

M̂ =
1

n(n− 1)

∑

i6=j

XiX
t
j

Kh (Wi −Wj)

τ(Wi)

where Kh(·) = h−qK(·/h) for a given bandwidth h = h(n) > 0 and a multiplicative kernel K (see

Definition 3.1 below). Similarly, an estimator of T ⋆Xr is given by

v̂ =
1

n(n− 1)

∑

i6=j

YiXj
Kh (Wi −Wj)

τ(Wi)

Finally, our estimator of β is

β̂ = M̂−1v̂ (A.1)

where K is a multivariate kernel (Definition 3.1). In the next results we use a kernel of order 2 to

derive the
√
n-consistency of β̂ and a central limit theorem for β̂.

Theorem A.1. Suppose T ⋆ZTX = T ⋆XTZ = 0 in the system of equations (3.1a–3.1b). If the function

g1 = E(φ(Z)|W )fW (W ) belongs to G
2,2
τ (Rq) and each component of the function g2 = E(X |W )

belongs to G
2,2(Rq), then the estimator (A.1) constructed with kernels of order 2 and with a bandwidth

h = O(n−1/2) is such that
√
n‖β̂ − β‖ = Op(1).
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(a) n = 100 (b) n = 250

(c) n = 500

Figure 1: The solid line is the true function φ(z) = 0.25z2. Points represent the

data Zi. The gray line is the nonparametric estimator of φ without controlling for

endogeneity. The dashed line is the nonparametric instrumental estimator (5.1).

Each figure is for one single simulation, with different sample sizes n.

The assumption of the theorem involves the second derivative of fW as it is usual in the context

of kernel density estimation. This type of assumption comes to simplify a second-order expansion

in the proof of the result and can be relaxed to milder assumption at the price of a more sophisti-

cated estimation procedures with more technical proofs. This condition then does not appear as a

structural restriction on the model.

Theorem A.2. Under the assumptions of Theorem A.1,

√
n(β̂ − β)

d−→ N
(
0, (T ⋆XTX)−1Λ(T ⋆XTX)−1

)

where Λ := Var(XE(φ(Z)|W ) + (U + φ(Z))E(X |W )) and we recall that T ⋆XTX is a matrix with

entries E(XsE(Xt|W )), 1 6 s, t 6 k.

The asymptotic variance of the theorem is not optimal, in the sense that it does not achieve the

semiparametric efficiency bound. It is the consequence of the nuisance term φ(Z) which cannot be

avoided even in the orthogonal situation R(TX) ⊥ R(TZ).

The asymptotic variance of the central limit theorem simplifies when the nuisance term disap-

pears, that is when φ = 0. The following result considers this particular situation.
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Corollary A.1. Under the assumptions of Theorem A.1, if φ ≡ 0, then

√
n(β̂ − β)

d−→ N
(

0, (T ⋆XTX)−1T ⋆X

[
v2fW
τ

TX

]
(T ⋆XTX)−1

)

where v2(·) := Var(U |W = ·).
From this result, we see that if τ is such that v2(·)fW (·) = σ2τ(·) for some σ2 > 0, then the

asymptotic covariance simplifies and the central limit theorem becomes

√
n(β̂ − β)

d−→ N
(
0, σ2Ω−1

)
,

where Ω is the matrix T ⋆XTX , see (2.8). In this particular case, the estimator β̂ is optimal because

it is identical to the GMM estimator constructed with optimal instruments in the homoscedastic

setting. Indeed, the moment conditions in the homoscedastic model are E(Y −X ′β|W ) = 0. This

condition on the conditional moments can be replaced by the following condition on the marginal

moments: E{ψ(W )(Y −X ′β)} = 0 for all functions ψ. The optimal GMM estimator corresponds to

ψ(·) = E(X |W = ·), in which case the estimator is the solution of

E {E(X |W )(Y −X ′β)} = 0

which is equivalent to T ⋆XTXβ = T ⋆Xr. This shows that our estimator β̂ corresponds to the optimal

GMM estimator in the homoscedastic model. More details can be found in Newey (1990a).

B Proofs

Proof of Theorem 2.1. Define the operator T : L2
π(R

p) ⊗ Rk → L2
τ (R

q) : (ψ, γ) 7→ TZψ + TXγ.

Note that an equivalent condition for the identification of the parameters (φ, β) in the model (2.1a–

2.1b) is to assume that T is an injective operator.

First prove the necessary condition and consider a pair (φ, β) such that T (φ, β) = 0 or equiva-

lently TZφ = −TXβ. The condition (ii) of Assumption 2.2 implies TZφ = TXβ = 0 and thus, from

condition (i), φ = 0 and β = 0. Then T is injective.

We now prove the sufficient condition and suppose that T is an injective operator. If TX or TZ
was not injective, then T would not be injective, this condition (i) of Assumption 2.2 is fulfilled. It

reminds to show condition (ii). Suppose this condition does not hold, i.e. there exists a non-null

function ψ in R(TZ)∩R(TX). This would imply the existence of φψ ∈ L2
π(R

p)\{0} and βψ ∈ Rk\{0}
such that φ = TZφψ = TXβψ. Then T (ψφ, βψ) = 0 and, since T is injective, ψφ = 0 and βψ = 0,

thus we get a contradiction. �

Lemma B.1. Under the assumptions of Theorem A.1, and if h→ 0 as n→ ∞,

Ev̂ = T ⋆Xr +O
(
h2
)
, (B.1)

E‖v̂‖2 = ‖T ⋆Xr‖2 +O
(
h2
)

+O
(
n−1

)
, (B.2)

EM̂ = T ⋆XTX +O
(
h2
)
, (B.3)

E‖M̂‖2 = ‖T ⋆XTX‖2 +O
(
h2
)

+O
(
n−1

)
. (B.4)

Proof. The proof is an application of standard techniques that can be found in the large literature

on nonparametric kernel smoothing, see for instance Pagan and Ullah (1999). We only give whole

details for the proof of (B.1). Using iterative conditional expectations, we can write

Ev̂ =
1

n(n− 1)

∑

i6=j

E

[
YiXjE

{
Kh (Wi −Wj)

τ(Wi)

∣∣∣YiXj

}]
.
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With g1(w) :=
∫
dy yfWY (w, y) and g2(w) :=

∫
dx xfWX(w, x) (in vector notations),

Ev̂ =

∫∫
g1(w1)g2(w2)

dw1dw2

τ(w1)
Kh (w1 − w2) .

We now change variables and define u such that w2 = w1 + uh. We then write g2(w + uh) as g2(w)

plus a reminder term. Since g2 ∈ G
2,2
τ and using that the kernel K integrates to 1, this leads to

Ev̂ = T ⋆Xr +R, with7

R .

∫∫
g1(w1)

{
Q(uh) + ψ(uh)(uh)2

}
K(u)

dw1 du

τ(w1)

=

∫∫
g1(w1)ψ(uh)(uh)2K(u)

dw1 du

τ(w1)

where the last equality comes from the fact thatQ(uh) is a homogeneous polynomial of order one and

that
∫
uK(u)du = 0. By definition of the multivariate kernel, and because g is uniformly bounded,

R has rate O(h2). The proof of the other results is very similar but longer and we skip the details.

�

Lemma B.2. Under the assumptions of Theorem A.1, if h→ 0 as n→ ∞, then

√
n(v̂ − M̂β)

d−→ N (0,Λ)

where Λ = Var(XTZφ+ (U + φ(Z))TX).

Proof. A straightforward expansion leads to

v̂ − M̂β =
1

n(n− 1)

∑

i6=j

Xi (Uj + φ(Zj))
Kh(Wi −Wj)

τ(Wi)
. (B.5)

This U -statistic can be written e := 2n−1(n− 1)−1
∑
i<j H(Si, Sj) where Si = (Wi, Xi, Ui, Zi) and

H(Si, Sj) =
1

2

{
Xi

τ(Wi)
(Uj + φ(Zj)) +

Xj

τ(Wj)
(Ui + φ(Zi))

}
Kh (Wi −Wj) .

By the asymptotic distribution theory of U -statistics (see Section 5.5 of Serfling (1980)),
√
n(e −

Ee)
d−→ N (0, 4ζ) where ζ = Varf Ef {H(S1, S2)|S1} . It remains to compute ζ. With s1 =

(w1, x1, u1, z1), we define H(s1) := Ef{H(s1, S2)}. If g1(w̃) :=
∫∫

du dz (u + φ(z))fWUZ(w̃, u, z)

and g2(w̃) :=
∫
dx xfXW (x, w̃)/τ(w̃), we can write

H(s1) =
x1

2τ(w1)

∫
Kh(w1 − w)g1(w) dw +

u1 + φ(z1)

2

∫
Kh(w1 − w)g2(w) dw

As in the proof of Lemma B.1, we define v such that w = w1 + vh and use that g1 ∈ G
2,2
τ and

g2 ∈ G
2,2 to write

H(s1) =
x1

2τ(w1)
g1(w1) +

u1 + φ(z1)

2
g2(w1) +R(s1)

with |R(s1)| . h2x1ψ1(w1)/τ(w1) + (u1 + φ(z1))h
2ψ2(w2) for some functions ψ1 and ψ2 given in

Definition 3.2. Using E(U |W ) = 0 we can also write

H(S) =
1

2

fW (W )

τ(W )
XE(φ(Z)|W ) +

1

2

fW (W )

τ(W )
(U + φ(Z))E(X |W ) +R(S)

7We write A . B if there exists a positive constant c such that A 6 cB.
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The leading term of H(S) is XTZφ + (U + φ(Z))TX and leads to the result since VarR(S) = o(1)

as h tends to zero. �

Proof of Theorem A.1. Follows from the proof of Theorem A.2. �

Proof of Theorem A.2. Denote M := T ⋆XTX and v := T ⋆Xr and consider the decomposition

β̂ − β = M̂−1v̂ − M̂−1M̂β

= M−1(v̂ − M̂β) + M̂−1(M − M̂)M−1(v̂ − M̂β)

Using Lemma B.2, the first term of this decomposition leads to the result if we show that the

second term is op(n
−1/2). Lemma B.1 with h = n−1/2 implies the mean square convergence of

‖M̂ − M‖. In particular, it holds ‖M̂ − M‖ = Op(n
−1/2). Moreover Lemma B.2 implies that

‖v̂− M̂β‖ = Op(n
−1/2). Thus the second term is op(n

−1/2), as ‖M̂−1‖ is bounded in probability. �

Proof of Corollary A.1. Conditioning on W , the matrix Λ becomes

Λ = E

[
Var

{
fW (W )

τ(W )
UE(X |W )

∣∣∣W
}]

+ Var

[
E

{
fW (W )

τ(W )
UE(X |W )

∣∣∣W
}]

where the second term cancels out using again E(U |W ) = 0. An expansion of the first term leads to

4ζ = E

{(
fW (W )

τ(W )

)2

E(X |W ) Var(U |W )E(X |W )t

}

which gives the announced result. �

Lemma B.3. (i) If
∫
x2
jf(x,w)dx ∈ G

1,1
τ (Rq) and

∫
xjf(x,w)dx ∈ G

s,2
τ (Rq) for each component

xj of x, then

E‖T̂X − TX‖2
L2

τ(Rq) = O
(
(nhqW )−1 + h2ρ

W

)
, (B.6)

E‖T̂ ⋆X − T ⋆X‖2
Rk = O

(
(nhqW )−1 + h2ρ

W

)
; (B.7)

(ii) If fZW ∈ G
1,1
π·τ (R

p+q) and fZW ∈ G
s,2
π·τ (R

p+q), then

E‖T̂Z − TZ‖2
L2

τ(Rq) = O
(
(nhqWh

p
Z)−1 + (hZ ∨ hW )2ρ

)
, (B.8)

E‖T̂ ⋆Z − T ⋆Z‖2
L2

π(Rp) = O
(
(nhqWh

p
Z)−1 + (hZ ∨ hW )2ρ

)
(B.9)

where a ∨ b = max(a, b);

(iii) If
∫
y2f(y, w)dx ∈ G

1,1
τ (Rq) and

∫
yf(x,w)dx ∈ G

s,2
τ (Rq), then

E‖r̂ − r‖2
L2

τ (Rq) = O
(
(nhqW )−1/2 + hρW

)
. (B.10)

Proof. We only give the details for the proof of (B.8). Denote f̂ZW = n−1
∑

iKhW
(Wi −

w)KhZ
(Zi − z). Using the Cauchy Schwarz inequality,

E‖T̂Z − TZ‖2
L2

τ(Rq) 6

∫∫ [
Var{f̂ZW (z, w)} + {Ef̂ZW (z, w) − fZW (z, w)}2

] dz

π(z)

dw

τ(w)
.

Then using fZW ∈ G
1,1
π·τ (R

p+q) the first term is of order O((nhqWh
p
Z)−1) and with fZW ∈ G

s,2
π·τ (R

p+q)

the second term is bounded by O((hW ∨ hq)2ρ). The proof of the other results is very similar and

we skip the details. �
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Lemma B.4. Under Assumption 3.1 and as α tends to zero with n→ ∞,

‖T ⋆X(I − PαZ )‖ = O
(
α(η∧2)/2

)
, (B.11)

‖T ⋆X(I − PαZ )PZTX‖ = O
(
αη∧1

)
, (B.12)

‖(I − PαZ )TZφ‖ = O
(
α1∧(ν+1)/2

)
. (B.13)

Proof. The proof uses the properties
∥∥(TZT ⋆Z)−η/2TX

∥∥ < ∞ and
∥∥(T ⋆ZTZ)−ν/2φ

∥∥ < ∞ which are

direct consequences of Assumption 3.1. To show (B.11), we use the decomposition

‖T ⋆X(I − PαZ )‖ 6
∥∥∥(I − PαZ )(TZT

⋆
Z)η/2

∥∥∥ ·
∥∥∥(TZT ⋆Z)−η/2TX

∥∥∥

where the first factor is O(α(η∧2)/2) by Theorem 4.3 of Engl, Hanke, and Neubauer (1996) and the

second factor is finite. The proof of the other results is similar and we skip the details. �

Proof of Theorem 3.1. Define the operators P̂αZ := T̂Z(αI + T̂ ⋆Z T̂Z)−1T̂ ⋆Z and PαZ := TZ(αI +

T ⋆ZTZ)−1T ⋆Z . The proof is based on the decomposition

β̂ − β = M̂−1
α

{
T̂ ⋆X

(
I − P̂αZ

)(
r̂ − T̂Xβ − T̂Zφ

)
+ T̂ ⋆X

(
I − P̂αZ

)
T̂Zφ

}
. (B.14)

Denote M = T ⋆X(I − PZ)TX . Below we show the three following asymptotic convergences:

‖M̂−1
α −M−1‖ = Op

({
1 + α

η∧2

2

}
·
{

(nhqW )−1/2 + hρW

}

+ α
η∧2

2
−1 ·

{
(nhqWnh

p
Z)−1/2 + (hW ∨ hZ)ρ

}
+ αη∧1

)
, (B.15)

‖T̂ ⋆X
(
I − P̂αZ

)(
r̂ − T̂Xβ − T̂Zφ

)
‖ = Op

(
α

η∧2

2
−1 ·

(
(nhqWh

p
Z)−1/2 + (hW ∨ hZ)ρ

)2

+ α
η∧2

2 ·
(
(nhqWh

p
Z)−1/2 + (hW ∨ hZ)ρ

))
(B.16)

and

‖T̂ ⋆X
(
I − P̂αZ

)
T̂Zφ‖ = Op

(
α1/2 ·

(
(nhqWh

p
Z)−1/2 + (hW ∨ hZ)ρ

) ν∧2
2

+ α1∧ 1+ν
2

)
(B.17)

under the assumptions of the theorem. The conditions of the theorem on α, hW and hZ ensure that

(B.15) has the rate op(1) while (B.16) and (B.17) have the rate Op(n
−1/2).

Proof of (B.15). First note the inequality

‖M̂−1
α −M−1‖ 6 ‖M−1‖ · ‖M̂−1

α ‖ · ‖M̂α −M‖ .

As ‖M−1‖ is bounded and ‖M̂−1
α ‖ is bounded in probability we focus on the control of ‖M̂α −M‖:

‖M̂α −M‖ 6 ‖T̂ ⋆X − T ⋆X‖ ·
∥∥∥(I − P̂αZ )T̂X

∥∥∥+
∥∥∥T ⋆X{(I − P̂αZ ) − (I − PαZ )}T̂X

∥∥∥

+ ‖T ⋆X(I − PαZ )‖ ·
∥∥∥T̂X − TX

∥∥∥+ ‖T ⋆X{(I − PαZ ) − (I − PZ)}TX‖ .

Since (I − P̂αZ )T̂X is bounded in probability, the first term is controlled by a direct application of

Lemma B.3. To bound the second term, we make use of the following relations:

(I − P̂αZ ) − (I − PαZ ) =
1

α
(I − PαZ )

{
T̂Z T̂

⋆
Z − TZT

⋆
Z

}(
I − P̂αZ

)
(B.18)
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which allows to bound the second term by

1

α
‖T ⋆X(I − PαZ )‖·

∥∥∥T̂Z T̂ ⋆Z − TZT
⋆
Z

∥∥∥·
∥∥∥(I − P̂αZ )T̂X

∥∥∥ = O
(
α(η∧2)/2−1 ·

(
(nhqWh

p
Z)−1/2 + (hW ∨ hZ)ρ

))

where the rate comes from Lemma B.3, equation (B.11) of Lemma B.4 above and the relation

‖T̂ZT̂ ⋆Z−TZT ⋆Z‖ = O(max{‖T̂Z−TZ‖, ‖T̂ ⋆Z−T ⋆Z‖}). By similar arguments, the third term is of order

O
(
α(η∧2)/2 · ((nhqW )−1/2 + hρW ))

)
. To bound the fourth term we use the identity (I−PαZ )−(I−PZ) =

(I − PαZ )PZ and, using equation (B.12) of Lemma B.4, find the rate Op(α
η∧1).

Proof of (B.16). Set ê = r̂− T̂Xβ − T̂Zφ. We have ‖ê‖ 6 ‖r̂− r‖+ ‖T̂X − TX‖+ ‖T̂Z − TZ‖ and

hence Lemma B.3 implies that ‖ê‖ is of order Op((nh
q
Wh

p
Z)−1/2 + (hW ∨ hZ)ρ). Consider now the

decomposition

T̂ ⋆X

(
I − P̂αZ

)
ê =

{
T̂ ⋆X

(
I − P̂αZ

)
− T ⋆X (I − PαZ )

}
ê+ T ⋆X (I − PαZ ) ê . (B.19)

The norm of first term is bounded by

∥∥∥T̂ ⋆X − T ⋆X

∥∥∥ ·
∥∥∥I − P̂αZ

∥∥∥ · ‖ê‖ +
∥∥∥T ⋆X

(
(I − P̂αZ ) − (I − PαZ )

)∥∥∥ · ‖ê‖

= Op

(
α

η∧2

2
−1 ·

(
(nhqWh

p
Z)−1/2 + (hW ∨ hZ)ρ

)2
)

where the rate is derived similarly to the rate of (B.15) and we use, that the first term is negligible

wrt. to the second. Analogously the second term of (B.19) is of order Op(α
(η∧2)/2 · ((nhqWhpZ)−1/2 +

(hW ∨ hZ)ρ)).

Proof of (B.17). From Assumption 3.1, in particular (3.6), there exists g ∈ L2
π(R

p) such that

φ = (T ⋆ZTZ)ν/2g for some ν > 0. Then we can write

∥∥∥T̂ ⋆X
(
I − P̂αZ

)
T̂Zφ

∥∥∥ =
∥∥∥T̂ ⋆X

∥∥∥ ·
∥∥∥
(
I − P̂αZ

)
T̂Z

∥∥∥ ·
∥∥∥(T ⋆ZTZ)ν/2 − (T̂ ⋆Z T̂Z)ν/2

∥∥∥ · ‖g‖

+
∥∥∥T̂ ⋆X

∥∥∥ ·
∥∥∥
(
I − P̂αZ

)
T̂Z(T̂ ⋆Z T̂Z)ν/2

∥∥∥ · ‖g‖.

Theorem 4.3 in Engl, Hanke, and Neubauer (1996) leads to ‖(I − P̂αZ )T̂Z‖ = O(α1/2). Moreover,

from Section 5.2 of this last reference we get ‖(T ⋆ZTZ)ν/2 − (T̂ ⋆Z T̂Z)ν/2‖ 6 ‖T ⋆ZTZ − T̂ ⋆Z T̂Z‖(ν∧2)/2,

thus the first term is of order α1/2((nhqWh
p
Z)−1/2 + (hW ∨ hZ)ρ)(ν∧2)/2 from Lemma B.3. Similarly

Theorem 4.3 in Engl, Hanke, and Neubauer (1996) gives the rate α1∧(1+ν)/2 for the second term. �

Lemma B.5. Denote v2(·) = Var(U2|W = ·), ê := r̂ − T̂Xβ − T̂Zφ and

êU :=
1

n

∑

i

Ui
τ(·)KhW

(Wi − ·) .

(i) If v2fW ∈ G
1,1
τ (Rq), then E‖êU‖2

L2
τ(Rq) = O((nhqW )−1).

(ii) Let {µj , gj ∈ L2
τ (R

q), ej ∈ Rk, j = 1, . . . , k} be the singular value decomposition of the com-

pact operator T ⋆X(I − PZ) (see the decomposition (3.4) for instance). If gj ∈ G
1,0
τ (Rq) and

gj
√
v2 · fW /τ ∈ L2

τ (R
q) for all j = 1, . . . , k, then

√
n (T ⋆X(I − PZ)eU )

d−→ N
(

0, T ⋆X(I − PZ)

[
v2 · fW
τ

(I − PZ)TX

])
. (B.20)

Proof. We prove the two results separately.
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Proof of (i). Using iterative conditional expectation and by definition of v2 we can write

E‖êU‖2
L2

τ (Rq) =
1

n

∫
E

(
v2(W )K2

hW
(W − w)

) dw

τ(w)
.

With the standard change of variables, if we denote g(u) := v2(u)fW (u),

E‖êU‖2
L2

τ (Rq) =
1

nhqW

∫∫
K2(w̃)g(w + hW w̃) dw̃

dw

τ(w)

=
1

nhqW

{∫
g(w)

∫
K2(w̃) dw̃

dw

τ(w)
+R

}

where R is such that |R| ≤
∫∫

K2(w̃)|g(w+hW w̃)−g(w)| dw̃ dw
τ(w) . Using that g belongs to G

1,1
τ (Rq)

the first term and |R| are bounded, which proves (i).

Proof of (ii). Using the singular value decomposition of T ⋆X(I − PZ) we can write

T ⋆X(I − PZ)êU =
1

n

∑

i

Ui

k∑

j=1

µjej

∫
gj(w)Kh(Wi − w) dw

=
1

n

∑

i

Ui

k∑

j=1

µjejgj(Wi) +R , (B.21)

where the reminder R = 1
n

∑
i Ui

∑k
j=1 µjej

∫
dw {gj(w)−gj(Wi)}Kh(Wi−w) has expectation zero

and variance

1

n

k∑

i,j=1

µiµjeie
t
jE

[{∫
dw (gj(w) − gj(W1))Kh(W1 − w)

}2

v2(U1|W1)

]
.

Using gj ∈ G
1,0
τ (Rq), the reminder R has VarR = O(h2

Wn
−1 Var(U1) · ∑k

i=1 µ
2
i ) and hence is

negligible. We derive the asymptotic law by applying a standard central limit theorem on the

first term in (B.21) where each summand has a vanishing expectation and a finite variance by

assumption gj
√
v2 · fW /τ ∈ L2

τ (R
q). It remains to calculate the asymptotic covariance matrix.

Using the singular value decomposition of T ⋆X(I − PZ) we obtain

Cov


U1

k∑

j=1

µjejgj(W1)


 =

k∑

i,j=1

µiei

〈
gi,

v2 · fW
τ

gj

〉

L2
τ

µje
t
j

= T ⋆X(I − PZ)

[
v2 · fW
τ

(I − PZ)TX

]
,

which proves (ii). �

Proof of Theorem 3.2. Part of this proof is similar to the proof of Theorem 3.1. Here again,

we consider the decomposition (B.14). The assumptions of Theorem 3.2 give the rate op(1) for

(B.15) and the rate op(n
−1/2) for (B.17). The treatment of (B.16) however requires a different

decomposition which is considered now.

Denote ê = r̂ − T̂Xβ − T̂Zφ. We consider the following decomposition of (B.17):

T̂ ⋆X

(
I − P̂αZ

)
ê =

{
T̂ ⋆X

(
I − P̂αZ

)
− T ⋆X (I − PαZ )

}
ê+ T ⋆X (I − PαZ ) {ê− êU}

+ T ⋆X {(I − PαZ ) − (I − PZ)} êU + T ⋆X (I − PZ) êU ,

where êU is defined in Lemma B.5. The norm of the first term is controlled as in the proof of

Theorem 3.1 and has the rate op(n
−1/2) under the assumptions of the theorem. Using Lemma B.4
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and Lemma B.5 above the second term is of order Op(α
(η∧2)/2 · ((nhqWh

p
Z)−1/2 + (hW ∨ hZ)ρ)) . To

control the third term we use (I −PαZ )− (I −PZ) = (I − PαZ )PZ and thus by Lemmas B.4 and B.5,

this term is negligible with respect to the second term. With our assumptions on α, hZ and hW ,

the first two terms together are op(n
−1/2). The last term of the decomposition leads to the central

limit result by Lemma B.5. �

Proof of Theorem 4.1. In this proof we construct the function gγ explicitly. If the system

{ψ̃i ∈ L2
τ (R

q)}i=1,...,k are the eigenfunctions from the spectral decomposition of TX , then the source

condition with η > 1 (Assumption 3.1) implies PZψ̃i ∈ R(TZ) for i = 1, . . . , k. In other words, there

exists for each i = 1, . . . , k a function φ̃i ∈ L2
π(R

p) such that PZ ψ̃i = TZ φ̃i. For each γ ∈ Rk we

define gγ(Z) := γ1φ̃1 + · · · + γkφ̃k. Note that gγ is differentiable w.r.t. γ and is such that

Tgγ(Z)v =

k∑

i=1

viTZ φ̃i

for all v ∈ Rk. The range of the operator Tgγ(Z), R(Tgγ (Z)), given by the k-dimensional linear

subspace lin{TZ φ̃i, i = 1, . . . , k} is by definition a subset of R(TZ). Hence the projection Pgγ (Z)

onto R(Tgγ (Z)) is the restriction of PZ onto R(Tgγ (Z)) and since PZ ψ̃i ∈ R(Tgγ (Z)), we also have

PZ ψ̃i = Pgγ (Z)ψ̃i. This implies PZTX = Pgγ(Z)TX or, equivalently, M = Mgγ(Z), and the result is

proved. �
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