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1 Introduction

Inequality measurement is certainly one of the most popular area in applied welfare economics.

It aims to provide numerical or ordinal inequality measures to evaluate the evolution of inequal-

ity in the distribution of some personal characteristic such as income or wealth. Inequality may

vary across space and time and under the impulse of economic and social policies like for in-

stance income taxation and social expenditures. It is important to determine the contribution

of each factor to the observed changes in the distribution.

Unfortunately, there is not a single universally accepted inequality measure that would

impose itself as the canonical tool to deal with such questions. The axiomatic approach aims

to select a family of measures (sometimes a single one) on the basis of a set of properties that

may be considered appealing, desirable or expected for an inequality measure. The choice

of these axioms is, of course, itself controversial but the merit of this approach is to o¤er a

transparent description of the respective qualities and shortcomings of the measures and to

lay the foundations of a comparative analysis. Further, while compatible with a multiplicity

of inequality measures, some important axioms impose signi�cant limitations on the ways in

which inequality comparisons should be done. Sometimes, the axiom even allows unambiguous

inequality comparisons.

Among these axioms, the most celebrated one is the Pigou-Dalton principle of transfers.

From the theorem of Hardy-Littlewood and Polya (1934), we know that a measure satis�es the

Pigou-Dalton principle of transfers if and only if it is strictly-Schur convex. This theorem also

states that this property is equivalent to monotonicity with respect to the Lorenz criterion. Of

course some other properties like decomposability may also be included in the list but their

inclusion in the list is mostly motivated by practical considerations. Schur-convexity is truly a

property which aims to o¤er a quantitative content to the vague concepts of inequality/equality.

This paper is an investigation of the all class of measures which satisfy this property i.e. the

all class of Schur-convex functions.

Our contribution examines one particular feature of this family of measures. Precisely, we
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investigate whether the technical property of smoothness can be considered (or not) as being

innocuous. Can we, "without loss of generality", limit our attention to smooth Schur-convex

measures and bene�t, therefore from the practical advantages attached to di¤erentiability?

After all, one of the most famous index, the Gini measure, is not di¤erentiable everywhere! The

greatest advantage o¤ered by smoothness is the easy necessary and su¢ cient di¤erential test

of Schur-convexity (the so-called Schur-Ostrowski�s test presented as Theorem 1 hereafter and

called "recti�ance" by Kolm (1968, 1976 a,b)) which can be considered under this property.

Sometimes, it is quite di¢ cult to check Schur-convexity through a direct application of the

de�nition and this alternative route which require to compare two partial derivatives turns to

be very useful.

The answer to the above question(s) will depend obviously upon the exact meaning given

to the expressions "innocuous" or "without loss of generality". Fortunately for us, a somewhat

similar question has been formulated in traditional microeconomics for the family of numerical

and ordinal conventional utility measures, where instead of Schur-convexity, quasi-concavity

and increasingness are the key properties imposed on preferences. This question addressed by

Kannai (1974) and Mas-Colell (1974) is formulated in terms of approximation theorems: Is it

true that any measure in the original set can be approximated (in a well-de�ned topological

sense), as close as desired, by a smooth measure? Their papers answer a¢ rmatively this

question. The main purpose of our paper is to prove that the same conclusion holds true in our

setting of inequality measures. We prove that the answer to this question is: yes, in the sense

that any inequality index can be approximated arbitrarily close by a smooth one (all these

terms will be carefully de�ned later one). The proper formal formulation of this property is

the statement of a density theorem in a suitable topological framework. We prove a numerical

and an ordinal version of this approximation theorem and present some side complements.

The paper is organized as follows. In Section 2, we give the notations and basic de�nitions

that are used in the paper. Then, in Section 3, we state and prove our main approximation

theorem for inequality measures and discusses various versions of the result. Finally, in Section

4 we state and prove the ordinal versions of the result.
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2 Inequality Measurement: Schur-Convexity, Recti�ance and

Smoothness

The main purpose of this paragraph is to introduce some of the main properties encountered in

the area of economic inequality measurement and the celebrated Ostrowski-Schur�s di¤erential

characterization of Schur convexity. In this paper, we limit our attention to income distributions

described by discrete probability distributions, i.e. to probability distribution P of the following

type:1

P =
nX
i=1

pi�xi , where x1 � x2 � ::::::: � xn, pi � 0 8i = 1; ::::n and
nX
i=1

pi = 1;

P describes an income distribution in a society divided into n groups from the poorest denoted

by 1 to the richest denoted by n; xi and pi denotes respectively the mean outcome and the

the population size (in percentage) of group i. Since any discrete probability distribution can

be approximated by a distribution where the probabilities pi are all equal, we limit hereafter

our attention to those distributions whose support is contained in <+ and consists of at most

n points. This set is in a one to one relationship with the cone Kn de�ned as follows.

Kn =
�
x 2 <n+ : x1 � x2 � ::::::: � xn

	
:

This point of view postulates from the very beginning that the identities of the groups

are irrelevant from the perspective of inequality measurement. While we will maintain this

assumption through the all paper, it is useful to consider that the set of income distributions is

<n+ in order to prepare further generalizations. Hereafter, we will denote respectively by �(x)

and �2(x) the mean income and the variance of incomes attached to the distribution x i.e.

�(x) =
1

n

nX
i=1

xi and �2(x) =
1

n

nX
i=1

(xi � �(x))2

A square matrix B = (bij)1�i;j�n of order n is doubly stochastic if
Pn
i=1 bij = 1 for all

j = 1; :::; n and
Pn
j=1 bij = 1 for all i = 1; :::; n. A square matrix P of order n is a permutation

1For all s 2 <, the abstract but useful symbol �s is used to denote the degenerate probability where all the

mass is concentrated on s.
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matrix if it is a doubly stochastic matrix with exactly one positive entry in each row and each

column. We denote respectively by Dn and �n the set of doubly stochastic and permutation

matrices of order n.

A real valued function f de�ned over D � <n+ is Schur-convex2 if:

f(Bx) � f(x) for all x 2 D and B 2 Dn such that Bx 2 D

f is strictly Schur-convex if:

f(Bx) < f(x) for all x 2 D and B 2 Dnn�n such that Bx 2 D

Finally, f is symmetric if:

f(Bx) = f(x) for all x 2 D and P 2 �n such that Px 2 D

Similarly, a set D � <n is Schur-convex if all x 2 D and B 2 Dn : Bx 2 D. D is symmetric

if all x 2 D and P 2 �n : Px 2 D. A set A is Schur-convex (symmetric) if the indicator

function 1A is Schur-convex (symmetric). Alternatively, a function f is Schur-convex if, for all

x 2 D, the lower contour set fy 2 D : f(y) � f(x)g is a Schur-convex set. Typically, inequality

measurement refers to comparison of income distributions x and y such that �(x) = �(y). The

properties of Schur-convexity and symmetry are essential. When D = Sn, the unitary simplex

in <n i.e. Sn =
�
x 2 <n+ :

Pn
i=1 xi = 1

	
, an inequality measure is a real valued function which

is continuous and strictly Schur-convex.3 We will denote by I1 the set of inequality measures

on Sn.

Practitioners are often confronted to the necessity of comparing income distributions x and

y which di¤er according to the mean. For instance, we may have to compare x and y such

that �(x) > �(y) and �2(x) > �2(y). In such situation, the per capita income has increased

when we move from x to y but the dispersion of incomes has also increased. To conclude,

2After the seminal pionnering work of Schur who was the �rst to introduce formally this class of functions.
3We can demonstrate that continuity and strict Schur-convexity implies Schur-convexity and then symmetry.
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we need a welfare measure which combines inequality and "growth" considerations. A real

valued function de�ned over <n+ is a welfare induced inequality measure if it is continuous,

strictly Schur-convex and strictly decreasing. We will denote by I2 the set of welfare induced

inequality measures on D = <n+. Finally, we may decide to focus on inequality and to adopt a

principle to compare income distributions belonging to di¤erent simplices. One such principle

is invariance with respect to a proportional growth of all individual incomes i.e. homogeneity

of degree 0. A real valued function de�ned over <n+n f0g is an invariance induced inequality

measure if it is continuous, strictly Schur-convex and homogeneous of degree 0. We will denote

by I3 the set of invariant4 inequality measures on D = <n+n f0g.

It is interesting to remark that Schur-convexity is truly a monotonicity property with respect

to a partial preorder5. Precisely, if we de�ne the preorder � on D as follows:

x � y i¤ there exists a doubly stochastic matrix B such that y = Bx

then a function f over D is Schur-convex if f is increasing with respect to � i.e. if

x � y ) f(x) � f(y). The celebrated Hardy, Littlewood and Polya�s theorem6 asserts that

this preorder � is equivalent to three other preorders : x � y i¤

y is in the convex hull of the set of vectors fPxgP2�n
nX
i=1

v(xi) �
nX
i=1

v(yi) for every convex function v : < ! <

kX
i=1

y�i �
kX
i=1

x�i for all k = 1; ::::; n� 1

where for any z 2 <n+, z� denotes the vector where the coordinates of z have been rearranged

in increasing order. The importance of this theorem in economics was �rst pointed out by

4Some other principles of invariance could be considered. Kolm (1976b) discusses several alternative axioms

of invariance.
5This observation is also formulated by Marshall and Olkin (1979).
6See Hardy, Littlewood and Polya (1934).
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Kolm (1968).7 Several variants of that theorem8 can be found in applied mathematics under

the heading "theory of majorization" (Marshall and Olkin (1979) and alternative presentations

and extensions of this result are also analyzed in the area of stochastic dominance (Atkinson

(1970), Le Breton (1987)).

From that perspective, checking whether a function f is Schur-convex or not amounts to

verify the behavior of f with respect to the partial preorder �. In some occasions, the task

may be tricky i.e. it may be cumbersome to verify if f is increasing with respect to �. Some

general su¢ cient conditions on f to be Schur-convex are well known. For instance if f is

quasi-convex (in particular if f is convex or log-convex) and symmetric then f is Schur-convex.

Note however that Schur-convexity is much less demanding than quasi-convexity. A function

f is quasi convex if for all x 2 D, the lower contour set fy 2 D : f(y) � f(x)g is a convex

subset. Convexity is not preserved by union while in contrast the union of two Schur-convex

sets is a Schur convex set. The indicator function of the set A[B where A and B are the two

symmetric convex sets depicted on �gure 1 is Schur-convex but is not quasi-convex. The class

of Schur-convex functions is much larger that the class of quasi-convex functions.

7The importance of this theorem has been stressed by many authors (see e.g. Dasgupta, Sen and Starrett

(1973) and Sen (1973)).
8 In particular, to handle the sets of functions I2 and I3.
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Figure 1

When f is di¤erentiable, the task to verify if it is Schur-convex or not is much more easy

as it amounts to check the sign of some derivatives. The following key result which formulates

a two-coordinate characterization of Schur-convexity is due to Schur (1923) and Ostrowski

(1952).9

Theorem 1 Let D be an open and convex subset of <n and f be a di¤erentiable real valued

function de�ned on D . Then:

(i) If for all x 2 D with xi 6= xj, (xi � xj) (xi � xj)
�
@f
@xi
(x)� @f

@xj
(x)
�
> 0, f is strictly

Schur-convex.

(ii) f is Schur-convex i¤ for all x 2 D, (xi � xj)
�
@f
@xi
(x)� @f

@xj
(x)
�
� 0

This theorem needs several comments. Note that the conditions (i) and (ii) constitute

di¤erential versions of the Pigou-Dalton principles of transfers. Kolm (1976) calls respectively

9Berge (1965) reproduces up to some simpli�cations the very elegant proof of Ostrowski. Notice that, due to

symmetry, the recti�ance condition can be limited to the �rst two variables.
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strict and weak recti�ance the properties (i) and (ii). It is important to observe that (i) is

su¢ cient but not necessary for the strict Schur-convexity of f . It can be demonstrated however

that if f is strictly Schur-convex, then the property of strict recti�ance is veri�ed almost

everywhere. Note also that some technical adjustments of the de�nition of di¤erentiability are

required if D is not an open and convex subset of <n as it is the case for instance when D = Sn

and D = <n+.

The importance of Theorem 1 lies in its operational character as it provides a handy way

to test (strict) Schur-convexity. Besides those considered by Ostrowski, functions which are

recti�ant (but not always quasi-convex) appears10 in Elezovic and Pecaric (2000), Guan (2006),

Karlin and Rinott (1981), Li, Zhao and Chen (2006), Sandor (2007), Shi (2007), Stepniak

(2007), Zhang (1998 a,b). Karlin and Rinott uses recti�ance to prove the Schur-convexity of a

class of generalized entropy functions. Sandor uses recti�ance to prove the Schur-convexity of

the Stolarsky and Gini means. Elezovic and Pecaric and Shi uses it to prove the preservation

of Schur-convexity through an averaging operation. Guan and Ostrowski proves the Schur-

convexity of the complete elementary function:

cr(x) �
X

(i1;i2;::::;in)2Nn:
P
1�k�n ik=r

(x1)
i1 (x2)

i2 ::::: (xn)
in

where r is a �xed integer and subsequently the Schur-convexity of the function  r (x) �
cr(x)
cr�1(x)

. Li, Zhao and Chen proves the recti�ance of the function �m de�ned over
�
� 1
m ;+1

�n
as follow:

�m(x) �
nY
i=1

�(mxi + 1)

�m(xi + 1)

where m � 2 is a �xed integer and � denotes the celebrated gamma function de�ned over

<+ as follows:

�(x) =

Z 1

0
tx�1e�tdt

10Of course, this is just a sample. The theory of majorization is in fact mostly a systematic investigation of

the class of Schur-convex functions to derive inequalities on pair of probability distributions. We refer the reader

to chapter 3 in Marshall and Olkin (1979) which is entirely dedicated to this topic.
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In this paper, we assume that inequality measures are de�ned on sets of (deterministic)

income allocations but we could consider instead consider stochastic income allocations where

the income ultimately received by an individual proceeds from a random device. The inequality

measure is then de�ned upon the set of parameters describing this random device and it

is natural to examine whether the measure is Schur-convex with respect to this vector of

parameters. For instance, we could consider the case where the realized income distribution

x = (x1; x2; ::::::; xn) is integer valued and such that
P
1�i�n xi = N where N is an exogenous

integer and assume that it is drawn according to the multinomial distribution X:

P (X = x) =

0B@ N

x1; :; xn

1CA nY
i=1

�xii

where � = (�1; �2; ::::::; �n) 2 Sn. Let � be a Schur-convex function over <n+. It can be

demonstrated (Rinott (1973)) that the function 	(�) de�ned as the expectation

X
fx:P1�i�n xi=Ng

�(x)

0B@ N

x1; :; xn

1CA nY
i=1

�xii

is a Schur-convex function.

This example is an illustration of what Marshall and Olkin de�ne as a family of distrib-

utions functions parametrized to preserve Schur-convexity. In their chapter 11 on stochastic

majorization, they o¤er some general results and show how they apply to particular popular

probability distributions. The di¤erential test is often used to demonstrate Schur-convexity.

Hereafter, we will be interested in the class of strictly recti�ant inequality measures which

are continuously di¤erentiable at any order. An inequality measure f over D will be called

smooth if it f 2 C1 (D;<) and is strictly recti�ant and we will denote by Isl the subset of

smooth inequality measures in Il for l = 1; 2; 3.
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3 Numerical Approximation

The main purpose of this section is to demonstrate that the subset of smooth inequality mea-

sures if dense in the set of inequality measures. This result holds true for three alternative

subsets of inequality measures introduced in the preceding section. We state the result in the

case where D = Sn i.e. the subset I1.

Theorem 2 Let f be an inequality measure in I1. Then there exists a sequence (fk)k�1 of

inequality measures in Is1 converging uniformly to f over Sn:

The proof of Theorem 2 will proceed from the combination of the following sequence of

lemmas.

Lemma 1 There exists a sequence of functions ("k)k�1 from <n into <+ such that for all

k:

(ii) "k 2 C1 (<n;<+)

(i) "k is Schur-concave

(iii) Supp11("k) � B(0; 1k ) \ <
n
�

(iv)
R
<n "k(x)dx = 1

Proof : Let h; 	 : < ! < be the functions de�ned as follows (the graph of 	 is depicted

on �gure 2):

h(x) = �(x)2 � n�2(x)

	(t) =

8><>: e� 1
t if t > 0

0 if t � 0

11Given a real valued function g, Supp(g) denotes its support i.e. the closure of the set fx 2 D : g(x) 6= 0g;

B(x; �) denotes the ball centered on x with radius �.
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0

y

1
y = H(t)

t

Figure 2

It is easy to verify that 	 2 C1 (<;<) and h 2 C1 (<n;<) . Further, h is Schur-concave.

Therefore, 	 � h 2 C1 (<n;<) and is Schur-concave. De�ne e"k : <n ! <+ as follows:

e"k (x) � 	�1
k
+ �(x)

�
	(�n�(x))	 � h(x)

It is easy to check that the sequence of functions ("k)k�1 where:

"k(x) �
e"k (x)R

<n e"k (x) dx
satis�es the four properties of the lemma. The support of is "k depicted on Figure 3 in the

case where n = 2 �
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Lemma 212 Let f 2 C1c (<n;<) and g 2 L1loc (<n;<). Then the convolution product f � g

de�ned as follows

(f � g) (x ) �
Z
<n
f (x � y)g(y)dy

is well de�ned and f � g 2 C1 (<n;<).

The following key step is due to Marshall and Olkin (1974).

Lemma 3 Let f and g be Schur-concave functions on <n. Then f � g (whenever it is

de�ned) is Schur-concave. Moreover, if f is increasing (decreasing) and g is non-negative,

then f � g is increasing (decreasing).

Proof of Theorem 2. Let f be an inequality measure in I1 and let g = �f . We extend g on

<n+ as follows
12The proof of this assertion can be found in Yosida (1965).
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ĝ(x) =

8><>: n� (x) g
�

x
n�(x)

�
if x 6= 0

0 if x = 0

By construction, this extension of g is continuous and Schur-concave on <n+. Finally, we

extend g on <n as follows.

~g(x) =

8>><>>:
min ĝ(y)
y2S(x)

if � (x) � 0

0 if � (x) < 0

where S(x) �
�
y 2 <n+ : � (y) = � (x)

	
. It is easy to check that this extension of g is

Schur-concave and belongs to L1loc (<n;<). We show that when k tends to 1, ~g� "k converges

uniformly to ĝ on any compact subset of <n+. Let K be a compact subset of <n+. From property

(iii) and (iv) in Lemma 1, we deduce that for all x 2 <n+

(~g � "k) (x)� ĝ(x) =

Z
<n
(~g(x� y)� ĝ(x)) "k(y)dy

=

Z
fy2B(0;1)\<n�g

(~g(x� y)� ĝ(x)) "k(y)dy

Since bg is uniformly continuous on K + B(0; 1), for all " > 0, there exists � (") > 0 such

that:

For all x; y 2 K +B(0; 1) :k x� y k� � ("))j bg(x)� bg(y) j� "

2

Therefore, if k � 1
�(") , we obtain

Sup
x2K

j (~g � "k) (x)� ĝ(x) j� "

Z
fy2B(0;1)\<n�g

"k(y)dy =
"

2

From property (i) in Lemma 1 and Lemma 2, eg � "k 2 C1 (<n;<) and from property (ii)

in Lemma 1 and Lemma 3, eg � "k is Schur-concave. Further, from the above construction, we

deduce that:

Sup
x2Sn

j � (eg � "k) (x)� f(x) j� "

2
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Let fk be de�ned on Sn as follows

fk(x) = � (eg � "k) (x) + �2 (x)

k
for all k � 1

It is immediate to verify that fk is a smooth inequality measure in I1 and that:

Sup
x2Sn

j �
2 (x)

k
j� "

2

if k � 2(n�1)(n�2)
"n3

. This completes the proof of Theorem 2 �

An analogous result can be established for the sets I2 and I3. Indeed, any careful reader will

notice that, up some minor adjustments, the same argument works for the space of inequality

measures I2 and I3. For the set I2, we only need to extend g from <n+ to <n and use the second

part of Lemma 3. For the space I3, we only needs to consider the (unique) zero homogeneous

extension to <n+n f0g of the approximating sequence de�ned in the proof of Theorem 2.

One key argument in the proof of Theorem 2 is the preservation of Schur-concavity by

the convolution operator. This property and many of its important extensions have been

analyzed in the mathematical literature (Nevius, Proschan and Sethuraman (1977), Proschan

and Sethuraman (1977)) where Schur-concavity is shown to be preserved under the action of

broader classes of operators.

In contrast, it is not immediate to adjust the proof in order to deal with the subsets of

quasi-convex and log-convex inequality measures. The convolution argument does not work for

quasi-concave functions (Dubuc (1978)) and while it works for log-concave functions (Ibragi-

mov (1956), Davidovic, Korenbljum and Hacet (1969), Prékopa (1973)), log-concavity is not

preserved by some monotonic transformations used in the proof. Under the presumption that

the approximation property holds for these two subsets, a new proof is needed.

In addition to the above three sets of inequality measures, we could consider the subset of

those which are decomposable (satisfying the property of "independence" according to Kolm

(1968). An inequality measure f over D is decomposable if there exists a real valued convex

function v from the projection of D over < such that:
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f(x) = �

 
nX
i=1

v (xi)

!
where � is a strictly increasing numerical function. It is interesting to point out that

the approximation property holds true in restriction to the subset of decomposable inequality

measures. This is an immediate consequence of the fact that any convex real valued function

can be approximated by a smooth concave real valued function.13

Lemma 4 Let v be a convex function on [0; 1]. Then there exists a sequence (vk)k�1 of

convex functions in C1 ([0; 1] ;<) converging uniformly to v on [0; 1].

Proof. Let v be an arbitrary convex function on [0; 1]. For any k in Nn f0g, let vk be the

polynomial de�ned as follows

vk(x) =
kX
j=1

Cjkv

�
j

k

�
xj (1� x)k�j :

It is well know that the sequence (vk)k�1 converges uniformly
14 to v when k tends to 1.

We now show that for all k, vk is convex. Since

v0k(x) =
kX
j=1

Cjkaj

h
jxj�1 (1� x)k�j � (k � j)xj (1� x)k�j�1

i
where aj � v

�
j
k

�
, we obtain:

v0k(x) = k

0@ kX
j=0

(k � 1)!
j! (k � j)!ajx

j�1 (1� x)k�j �
kX
j=0

(k � 1)!
j! (k � j)!ajx

j (1� x)k�j�1
1A

= k

0@ kX
j=0

(k � 1)!
(j � 1)! (k � j)!ajx

j�1 (1� x)k�j �
kX
j=0

(k � 1)!
j! (k � j � 1)!ajx

j (1� x)k�j�1
1A

i.e. after a change of variable

v0k(x) = k

k�1X
j=0

Cjk�1 (aj+1 � aj)x
j (1� x)k�1�j

13This result is probably known in the mathematical literature. For the sake of completeness, we include its

simple proof here. We consider here the case where D = Sn for which the projection of D over < is [0; 1] but

the result holds more generally.
14The function vk is called the Bernstein�s polynomial of order k attached to v on [0; 1].
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Repeating this procedure for v00k(x), we obtain:

v00k(x) = k (k � 1)
k�2X
j=0

Cjk�2 (aj+2 � 2aj+1 + aj)x
j (1� x)k�2�j

Since v is convex, (aj+2 � 2aj+1 + aj) � 0 and therefore v00k(x) � 0. The proof is complete

�

4 Ordinal Approximation

Many practitioners in the area of inequality measurement disregard the numerical content of

inequality measures and only pay attention to the (pre)ordering of income distributions induced

by the measure. Any preorder derived from an inequality measure will be called hereafter an

inequality preorder. Given an inequality measure f on domain D, we will denote by If the

inequality preorder on D induced by f i.e.

For all x; y 2 D : xIfy i¤ f(x) � f(y)

The properties introduced in the previous section have an immediate transposition into this

ordinal setting. For instance, an arbitrary preorder I on D is Schur convex if for all x 2 D,

the upper contour sets fy 2 D : yIxg are Schur-convex sets. It is symmetric if the upper

contour sets are symmetric. It is strictly Schur-convex if the upper contour sets are strictly

Schur convex. An inequality preorder is continuous and Schur-convex. Given a continuous and

strictly-Schur convex preorder I on a domain D , it is easy to deduce from Debreu�s theorem

(1964) that there exists an inequality measure f on D such that I = If ; such a measure f

constitutes a numerical representation of I. Hereafter, we denote respectively by P1; P2 and

P3 the set of inequality preorders induced by the sets I1; I2 and I3 of inequality measures. An

inequality preorder is smooth if it is induced by a smooth inequality measure. We denote by

Ps1 ; Ps2 and Ps3 the sets of smooth inequality preorders induced by the sets Is1 ; Is2 and Is3 of

smooth inequality measures.

In this section, we provide an ordinal version of Theorem 2. Here, an inequality preorder

I is de�ned by its graph GI in Sn � Sn : (x; y) 2 GI i¤ xIy and the distance between two
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inequality preorders I and I 0 is de�ned as the Hausdor¤�s distance �(GI ; GI0) between their

graphs. Given two non empty subsets A and B of D,

�(A;B) � Inf f" > 0 : A � B(B; ") and B � B(A; ")g

where, for any nonempty subset C of D, B(C; ") denotes the "-neighborhood of C i.e.

B(C; ") � fx 2 D :k x� y k� " for some y 2 Dg :

When the set D is compact, the Hausdor¤�s topology coincides with the topology of closed

convergence which is the standard topology employed in economics (Hildenbrand (1974)) to

de�ne proximity between preferences15. When D is non compact, some straightforward ad-

justments are needed. In the case of P2, we can use the standard Kannai�s metric (1970) to

proceed and in the case of P3, there is an immediate reduction to the simplex. Hereafter, we

will concentrate our attention on the set P1.

Theorem 3 Let I be an inequality preorder on Sn. Then there exists a sequence (Ik)k�1

of smooth inequality preorders on Sn such that �(GI ; GIk) tends to 0 when k tends to 1.

The proof of Theorem 3 combines Theorem 1 and the following key lemma which constitutes

a generalization of Lemma 1 in Mas-Colell (1974).

Lemma 5. Let K be a compact subset of <n such that
�
K 6= ? and f : <n ! < be

continuous on K. Suppose that f (Max (f;K))\f (Min (f;K)) = ?. Then for all " > 0, there

exists � (") > 0 such that �
�
GIg \ (K �K) ; GIh \ (K �K)

�
� " for all g and h continuous

on K and such that Sup
x2K

j g(x)� f(x) j� � (") and Sup
x2K

j h(x)� f(x) j� � (").

Proof. Let " > 0 and denote respectively by Max" (f;K) and Min" (f;K) the sets de�ned

respectively as follows

Max" (f;K) � fx 2 K : f(x) � f(y) 8y 2 B(x; ") \Kg

Min" (f;K) � fx 2 K : f(x) � f(y) 8y 2 B(x; ") \Kg
15Approximation (in that sense) of arbitrary economic preferences by smooth economic preferences have been

established by Kannai (1974) and Mas-Colell (1974).
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The sets Max" (f;K) and Min" (f;K) are non-empty closed subsets of K. From our

assumption on f , we deduce that j f(x) � f(y) j> 0 for all x 2 Max" (f;K) and all y 2

Min" (f;K) and consequently Max" (f;K) \Min" (f;K) = ?. Let A(") and B(") be open

neighborhoods ofMax" (f;K) andMin" (f;K) such that A(")\B(") = ? and j f(x)�f(y) j> 0

for all x 2 A(") and y 2 B("). Let:

t" (x) � Supy2B(x;")\K f(y)� f(x)

and

t" (x) � Infy2B(x;")\K f(y)� f(x)

It is straightforward to check that the functions t" and t" are well de�ned and continuous

on K. Since the sets KnA("); KnB("); A(") and B(") are compact, we deduce that:

9
" > 0 such that t" (x) > 
" for all x 2 KnA(")

9

"
< 0 such that t" (x) > 


"
for all x 2 KnB(")

and

9� > 0 such that j f(x)� f(y) j> � for all x 2 A(") for all y 2 B(")

Let � (�) � 1
8Min

�

";�
"; �

�
and consider g and h such that Sup

x2K
j g(x) � f(x) j� � (�)

and Sup
x2K

j h(x) � f(x) j� � (�). Let (x; y) 2 GIg \ (K �K). We prove the existence of

(x0; y0) 2 (B(x; ")�B(y; ")) � (K �K) such that (x0; y0) 2 GIh \ (K �K). Consider three

distinct cases.

Case 1. x 2 A(") and y 2 B(").

In such case, f(x)� f(y) > 0. Indeed, suppose on the contrary that f(x)� f(y) < 0. Then

we deduce then that f(x)�f(y) < �� � �8� (�) and therefore g(x)�g(y) < �6� (�) < 0 which
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contradicts our assumption that (x; y) 2 GIg \ (K �K). Since f(x) � f(y) > 0, we deduce

from the construction of 8� (�) that f(x)� f(y) > 8� (�). Since:

g(x)� g(y) = (g(x)� f(x)) + (f(x)� f(y)) + (f(y)� g(y))

� 6� (�)

we deduce

h(x)� h(y) � 4� (�) � 0

i.e. (x0; y0) = (x; y) 2 GIh \ (K �K).

Case 2 x 2 KnA(")

In such case, consider x0 2 B(x; ") \K such that f(x0)� f(x) � 
" � 8� (�). Since:

g(x0)� g(y) =
�
g(x0)� f(x0)

�
+
�
f(x0)� f(x)

�
+ (f(x)� f(y)) + (f(y)� g(y))

� 6� (�) + (f(x)� f(y))

and since

f(x)� f(y) = (f(x)� g(x)) + (g(x)� g(y)) + (g(y)� f(y))

� �2� (�)

we obtain:

g(x0)� g(y) � 4� (�)

Therefore, since:

h(x0)� h(y) =
�
h(x0)� g(x0)

�
+
�
g(x0)� g(y)

�
+ (g(y)� h(y))

� �2� (�) + 4� (�)� 2� (�) � 0
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we obtain that (x0; y0) = (x0; y) 2 GIh \ (K �K) :

Case 3 y 2 KnB(")

The proof parallels the proof of case 2 by considering (x0; y0) = (x; y0) where y0 2 B(y; ")\K

such that f(y) � f(y0) � �

"
� 8� (�). The conclusion follows by a symmetry argument and

the de�nition of � �

Proof of Theorem 3. Let f be a numerical representation of I. >From theorem 1, there exists

a sequence (fk)k�1 converging uniformly to f on Sn. From strict Schur-convexity, we deduce

that for all " > 0, Max" (f;K) = f(1; 0; ::::; 0) ; (0; 1; ::::; 0) ; ::::; (0; 0; ::::; 1)g andMin" (f;K) =��
1
n ;

1
n ; ::::;

1
n

�	
which implies Max" (f;K) \Min" (f;K) = ?. The conclusion follows from

Lemma 5 �

As already mentioned, an analogous result can be established for the sets P2 and P3.

5 Concluding Remarks

The results of this paper can be completed and/or generalized in several directions. We outline

three of them that seem particularly promising.

First, we could explore whether the approximation results established in this paper for

income distributions with �nite support extend to continuous income distributions. The nice

functional extension of Schur-Ostrowski obtained by Chan, Proschan and Sethuraman (1977)

would be a �rst step in that direction.

Second, we could consider multivariate generalizations i.e. situations where each individual

i is described by a vector xi =
�
xi1; x

i
2; :::; x

i
m

�
in the m�dimensional Euclidean space, instead

of a single real number: each coordinate j = 1; :::;m refers to a speci�c individual attribute

(income, health status,...) A distribution is now a collection of n vectors x1; x2; ::::; xn in

<m which can be arranged into a matrix x =
�
xij

�
1�i�n;1�j�m

. Rinott (1973) extends the

notions of Schur-convexity and symmetry to this multivariate setting. He derives a di¤erential

characterization of Schur-convex functions which extends the Ostrowski-Schur characterization

in the univariate case. It would be worthwhile to investigate whether our approximation results
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hold in this multivariate setting.

Third, we have assumed through the paper that inequality measures were symmetric. In

some cases, we may want to depart from this postulate. These will be the case when some

observable characteristics of the groups suggest that they don�t have the needs due (for in-

stance) to di¤erences in the demographic characteristics of the households. Any extension

in that direction calls for an asymmetric generalization of Schur-convexity. Such extension

has been developed notably by Hwang and Rothblum (1993, 1996). Hwang and Rothblum

(1993) generalizes the classical concept of majorization de�ned earlier as one of the equiva-

lent form of the partial preorder � and de�ne the corresponding notion of Schur-convexity

for which Schur-Ostrowski type characterizations are obtained. Hwang and Rothblum (1996)

use quasi-directional convexity to extend the scope of Schur-convexity to functions which are

not symmetric. An important relaxation of symmetry has also been explored by Eaton and

Perlman (1977). Their approach consists in considering an arbitrary group G of orthonormal

matrices of order n. Given x 2 <n, we denote by C(x) the convex hull of the G�orbit of x i.e;

the set of points fgx : g 2 Gg and de�ne the preorder � on <n as follows:

x � y i¤ y 2 C(x)

They analyze the class of real valued functions over <n which are increasing with respect to

�. They call G�increasing any such function. When G = �n, the partial order is the partial

order of majorization introduced in Section 2 and the class of G�increasing functions is then

the class of Schur-convex functions. They focus mostly on the case where the group G is a

re�ection group and demonstrate (among other things) that the class of G�increasing functions

is preserved under convolution. This generalization of Lemma 2 would constitute an important

step towards a generalization of our approximation technique in an asymmetric setting. They

also obtain di¤erential characterizations a la Schur-Ostrowski of the class of G�monotonicity.

This question has been investigated further16 by many authors among whom Niezgoda (1998a,

b) and Tan (2002).

16Eaton (1982) is also a nice overview of this area of research.
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