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Abstract

We study the implications of the carbon capture and storage (CCS) technology availability on

the optimal use of polluting exhaustible resources and on optimal climate policies. We develop

an endogenous growth model in which the accumulated stock of greenhouse gas emissions harms

social welfare. Since CCS technology allows reducing the effective pollution for each unit of

resource use, extraction and pollution are partially disconnected. CCS accelerates the optimal

extraction pace, though it may foster CO2 emissions for the early generations. Moreover, it is

detrimental to output growth. Next, we study the implementation of a unit tax on pollution.

Contrary to previous results of the literature, its level here matters, as it provides the right

incentives to CCS effort. The optimal growth rate of this carbon tax is positive, though we

indicate that this climate policy instrument can be interpreted ex-post as a decreasing ad-

valorem tax on the resource.
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1 Introduction

The exploitation of fossil resources raises two concerns: the first one is scarcity, because fossil re-

sources are exhaustible by nature, the second one is related to greenhouse gases (GHG) emission

associated to their combustion.

Numerous models deal with this double issue. Some of them are placed in the context of

partial equilibrium (e.g. Sinclair [17, 18]), Withagen [23], Ulph and Ulph [22], Tahvonen [21])

whereas some others tackle this issue in a general equilibrium growth frameworks (Schou [16,

17], Grimaud and Rouge [5, 6], Groth and Schou [7]). Two main questions are addressed:

the socially optimal outcome on the one hand, and, on the other hand, its implementation

in a decentralized economy along with the impacts of environmental policies. It is generally

shown that postponing the resource extraction, and thus the polluting emissions, is optimal.

In addition, model recommendations in terms of environmental policy are less unanimous. For

instance, Sinclair [18] advocates a decreasing ad valorem tax on resource use, whereas Ulph and

Ulph [22], among others, show that such a tax may not always be optimal, especially when the

pollution stock partially decays. Considering the sole endogenous growth models with polluting

exhaustible resources, with the exception of Schou [16, 17] for whom no environmental policy

is required, results generally exhibit a decreasing optimal carbon tax (see Grimaud and Rouge

[5, 6] or Groth and Schou [7]). Moreover, as in Sinclair [18], a change of the tax level only has

redistributive effects and does not alter the model dynamics, e.g. neither the extraction nor the

pollution emission time-paths.

A common feature of those papers lies in the systematic link between resource extraction and

pollution emission, in the form of a simple functional relation, generally linear. It is therefore

equivalent to tax either the pollution stream or the resource use itself. Nevertheless, the emer-

gence of a technological option such as carbon sequestration, more precisely CO2 capture and
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storage (hereafter CCS), in order to tackle climate change, partially breaks this link1. Indeed,

the possibility to sequester a fraction of the CO2 emission inherent to fossil resource combustion

disconnects the resource use from the effective pollution. This article aims at considering the

availability of such a technology in the context of an endogenous growth model with a polluting

exhaustible resource and at assessing how the main literature results recalled above, namely in

terms of optimal policy, are modified in such a framework2.

We develop an endogenous growth model in which the production of consumption goods

requires the input of an extracted resource, whose stock is available in limited quantities. Fur-

thermore, this resource use generates polluting emission, interpreted as GHG emission, whose

flow in turn damages the environment, whose quality index is here considered as a stock. No-

tice that the environment features partial natural regeneration capacity. Finally, the index of

environmental quality enters the utility function as an argument and thus allows gauging how

the pollution accumulation affects the welfare. But the main novelty of the model lies in the

consideration of the CCS availability, which, via some effort, allows for the partial storage of

CO2 release. Then, we distinguish between the total potential CO2 emission associated to one

unit of fossil resource (referred to as total carbon content per unit of resource in the remainder)

and the effective emission, i.e. the remaining pollution fraction left after CO2 removal. The

implication in terms of climate change policy is then straightforward: the first best outcome can

only be restored by taxing the pollution but not by taxing the resource itself3.

Our main results can be summarized as follows. The availability of CCS speeds up the

1The possibility of capturing and sequestering some fraction of the carbon dioxide arising from fossil fuel
combustion has recently caught a lot of attention, reinforced by its recent demonstrated viability (for an overview
see IPCC special report [11]).

2Numerous studies have addressed the effect of pollution abatement in models with environmental concerns
and growth (e.g. Smulders and Gradus [20]). With respect to this literature, one can consider CCS technology to
be an important abatement possibility. This question has been addressed in several empirical studies on climate
change (e.g. Gerlagh and van der Zwaan [3]) but to our knowledge, it has never been examined in theoretical
models with endogenous growth.

3Here we assume that the regulator is able to fully measure the greenhouse gases emissions. This may not be
systematically the case: While emission data is fairly reliable in industrialized countries, collecting accurate data
on industrial activities from developing regions and deducting the emissions may prove more difficult.
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optimal pace of resource extraction while relaxing the environmental constraint. Additionally, it

modifies the emissions time-path of GHG. In the long term, the pollution level decreases without

ambiguity. But, if the preference for environmental quality is not manifest enough, the pollution

level may increase in the short term; in this case, the following counter-intuitive result emerges:

the introduction of a carbon sequestration technology leads to an increase of CO2 emissions from

the early generations. Lastly, the availability of such a technology reveals detrimental for the

output growth because of acceleration in resource extraction combined with a negative effect on

R&D effort.

In our framework, as mentioned earlier, a tax on pollution is not equivalent to a tax on

resource use anymore; emissions are the ones to be taxed in order to obtain first best results.

Besides, contrary to results obtained in a context without CCS, as in Sinclair [18] or Grimaud

and Rouge [5, 6] for instance, the tax level here matters and especially allows for setting the

optimal CCS effort level. We also show that an increase in this tax leads the economy to

postpone the extraction (which falls back in the standard literature discussed above), and also

modifies the pollution quantity emitted per unit of resource used.

We finally derive the optimal tax trajectory which exhibits a positive optimal growth rate

(that stems from the decreasing marginal utility of consumption). We also show that this tax

can be expressed ex-post as a decreasing ad-valorem tax on the resource.

The remainder of the paper is organized as follows. We give some additional elements on

carbon capture and sequestration in section 2. We present the model as well as the social

optimum in section 3 and we portray the decentralized equilibrium in section 4. In section 5,

we compare both market and optimal outcomes. We then analyze the effects of climate change

policy and the incentives to carry out R&D. Lastly, we characterize the optimal policies. In

section 6, we conduct a numerical illustration to examine the effect of technical change in CCS

technology. Conclusive remarks are given in section 7.
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2 Background - The carbon capture and sequestration techno-

logy

As formulated by Hoffert et al. [9], the decarbonization, i.e. the reduction of the carbon

content of each fossil fuel unit, i.e. the amount of carbon emitted per unit of primary energy, is

intimately linked to sequestration. Carbon capture, sometimes referred to as emissions control

(see Kolstad and Toman [13]), is the way of achieving this decarbonization. This process consists

in separating the carbon dioxide from other flux gases during the process of energy production.

It is particularly adapted to large-scale centralized power stations but may also indirectly apply

to non electric energy supply4. Once captured, the gases are then being disposed into various

reservoirs. The sequestration reservoirs include depleted oil and gas fields, depleted coal mines,

deep saline aquifers, oceans, trees and soils. Those various deposits differ in their respective

capacities, their costs of access or their effectiveness in storing the carbon permanently.

Despite the numerous uncertainties still surrounding the sizable deployment of carbon cap-

ture technologies, especially with regard to the ecological consequences of massive carbon injec-

tion, this technological option has become promising for the fossil energy extractive industry.

The estimated cost of carbon capture ranges from 40 to 90USD per ton of CO2 captured and

stored (IEA [10]). This would translate into an increase of the electricity cost by 25 to 45%, de-

pending on the technologies. According to IEA forecasts, the use of carbon capture and storage

technologies will account for 20 to 28% of the CO2 emission reductions in 2050, i.e. from 6500

to 7500 million tons of CO2 could be avoided, 60% in the sole power sector.Coal use will then

be 13% to 32% higher than today’s level.

In what follows, since the focus of this paper is the impact of the carbon storage option on

optimal and equilibrium paths, as well as the design of climate and R&D policies, we take the

4The hydrogen obtained without carbon emission from fossil fuels and CO2 removal devices, could then supply
the transportation energy needs owing to fuel cells.
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following assumptions. Without loss of generality we do not distinguish the capture phase from

the injection one. We may also neglect the carbon sinks per se, and we implicitly assume that

their capacity is of infinite size5. More importantly, we assume for the sake of simplicity that

carbon capture can be applied to any consumed fossil fuel unit whatever its use, i.e. we do not

distinguish among the various fossil fuel uses as long as the extraction is dedicated to energy

production matters.

3 Model and Optimal Paths

3.1 Disaggregated Model

There is a continuum of consumption goods, indexed on the unit interval. Each good j, j ∈ [0; 1],

is produced by Nj firms. Each firm nj (nj = 1, ..., Nj) simultaneously produces good j, performs

research and stores carbon. For firm nj , production function of good j is

Ynjt = AνtL
α
Y njtR

1−α
njt

, 0 < α < 1 and ν > 0. (1)

At is the stock of existing knowledge at time t, LY njt is the amount of labour devoted to

consumption goods, and Rnjt is the flow of non-renewable resource.

Technology for production of knowledge is

Ȧnjt = δLAnjtAt, δ > 0, (2)

where LAnjt is the amount of labour devoted to research and Anjt is the stock of knowledge

produced by firm nj; we have At =
∫ 1
0 (
∑Nj

nj
Anjt)dj.

5The level of aggregation of our model makes this assumption reasonable: one can consider that deep saline
aquifers and ocean carbon sinks are sufficiently large with regard to the ultimate amount of CO2 needed to be
sequestered.

5



Pollution is generated by the use of the non-renewable natural resource within the production

process. In case of no carbon storage, pollution flow would be a linear function of resource use:

γRnjt, where γ > 0. In this way, γRnjt can be seen as the carbon content of resource extraction

by firm nj or, equivalently, as maximum potential pollution by firm nj. Nevertheless, firm nj

can store part of this carbon so that the actual emitted flow of pollution is

Pnjt = γRnjt −Qnjt, (3)

where Qnjt is stored carbon. We assume that Qnjt is produced from two inputs, the pollution

content γRnjt via the amount of extracted resource Rnjt and dedicated labour LQnit according

to the following Cobb-Douglas CCS technology:

Qnjt = (γRnjt)
ηL1−ηQnit

, 0 < η < 1, if LQnit < γRnjt (4)

and

Qnjt = γRnjt, if LQnit ≥ γRnjt.

For any given γRnjt, the total cost of labour, LQnit = Q
1/(1−η)
njt

(γRnjt)
−η/(1−η), is an in-

creasing and convex function of Qnjt. The marginal and average labour costs, respectively

∂LQnit/∂Qnjt = [1/(1− η)]Q
η/(1−η)
njt

(γRnjt)
−η/(1−η) and LQnit/Qnjt = Q

η/(1−η)
njt

(γRnjt)
−η/(1−η),

are also increasing functions of Qnjt. The Cobb-Douglas form allows simple analytical develop-

ments. Let us briefly discuss this CCS technology. Given any quantity of potentially emitted

carbon γRnjt, it is the effort in terms of labour only that enables carbon capture. Of course,

one could also consider physical capital for instance. However, this would yield further compu-

tational complexity as it would add another state variable. Our CCS technology is such that

the fraction of stored carbon, Qnjt/γRnjt, is comprised between 0 and 1. The pollution flow is
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fully stored as soon as LQnit ≥ γRnjt.

We denote by LY t =
∫ 1
0 (
∑Nj

nj
LY njt)dj, LAt =

∫ 1
0 (
∑Nj

nj
LAnjt)dj and LQt =

∫ 1
0 (
∑Nj

nj
LQnjt)dj

the total amount of labour in production, R&D and carbon storage. Similarly, total extracted

resource is Rt =
∫ 1
0 (
∑Nj

nj
Rnjt)dj, total stored carbon is Qt =

∫ 1
0 (
∑Nj

nj
Qnjt)dj and total flow of

pollution is Pt =
∫ 1
0 (
∑Nj

nj
Pnjt)dj = γRt −Qt.

The non-renewable resource is extracted from an initial finite stock S0. There are no extrac-

tion costs. At each date t, a flow −Ṡt of non renewable resource is extracted,

Ṡt = −Rt. (5)

The flow of pollution (Pt) affects negatively the stock of environment (Et). We assume

Et = E0 −
∫ t
0 Pse

θ(s−t)ds, with E0 > 0, and θ is the (supposed constant) positive rate of

regeneration. This gives the following law of motion

·

Et = θ(E0 −Et)− Pt. (6)

Population is assumed constant, normalized to one, and each individual is endowed with one

unit of labour. Thus we have:

1 = LY t + LAt + LQt. (7)

The household’s instantaneous utility function depends on both consumption cjt, j ∈ [0; 1],

and the stock of environment Et
6. The intertemporal utility function is:

U =

∫ +∞

0

[
ln(

∫ 1

0
cεjtdj)

1/ε + ωEt

]
e−ρtdt, 0 < ε < 1, ρ > 0 and ω ≥ 0, (8)

6 It would be equivalent to assume that utility is a decreasing function of the pollution stock Xt = X0 +
∫ t
0
Pse

θ(s−t)ds. From this expression, one gets the law of motion
·

Xt = θ(X0−Xt)+Pt and we have the following
correspondence: Xt −X0 = E0 − Et.
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where cjt = Yjt =
∑Nj

nj
Ynjt, that is, the whole production of good j is consumed by the

representative household. Note that, contrary to Aghion and Howitt [1] for instance, the instant-

aneous marginal utility of the stock of environment, ω, is constant. In the case of strong damages

to the environment, it may be more realistic to consider that this marginal utility is increasing

(think of catastrophic events). Nevertheless, this assumption allows for simple computations in

a general equilibrium model.

3.2 Welfare

3.2.1 Characterization of optimal paths

Now we characterize the optimum in the symmetric case, in which Nj = N , Ynj = Y/N ,

Rnj = R/N , LY nj = LY /N , LAnj = LA/N , LQnj = LQ/N and Qnj = Q/N . The results

are given in Appendix 1, where we fully characterize the optimal transition time-paths of the

economy. The main results are summarized in the following Proposition 1. We drop time

subscripts for notational convenience (upper-script o stands for optimum and gX is the rate of

growth of any variable X).

Proposition 1 (i) In the case of strictly positive environmental preference (ω > 0), due to the

presence of the environmental stock E, the economy is always in transition and asymptotically

converges towards the case where pollution does not matter (ω = 0).

(ii) The extraction flow, Ro, decreases over time (i.e. goR < 0); moreover, strictly positive

environmental preference slows down the process. As the optimal flows of sequestration (Qo)

and of pollution (P o) are proportional to Ro, they also decrease over time.

(iii) Labor in production, LoY , is constant over time. Labor in sequestration, LoQ, is pro-

protional to the flow of extraction, Ro, and thus follows the same dynamics (i.e. goLY = goR).

Therefore, labor in research, LoA, increases over time and converges to 1 − LoY as time goes to

infinity.
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All optimal levels and growth rates are given in Appendix 1.

Proof. See Appendix 1.

3.2.2 General comments

Let us give some comments on formulas (30)-(38) and let us first consider the case where ω =

0, i.e., the environmental quality does not affect the households’s utility. Here, the econony

immediately jumps to its steady-state. From (30), (31), (32) and (34), we can see that LoQt = 0,

Qo
t = 0 and LoAt = 1 − αρ/δν: no sequestration is undertaken, and the efforts dedicated to

production and R&D are constant. Moreover, B becomes nil and goRt = −ρ from (37). Since

we are in a no-CCS case, P o
t = γRo

t (from (35)): this means that the total carbon content of

each unit of extracted resource is emitted. Hence, the growth rate of pollution is constant, as

the growth rate of extraction.

Finally, one also easily obtains from (38) that the growth rate of output, goY t, is equal to

νδ−ρ, as in more general endogenous growth models with non-polluting non-renewable resources

(see for example Grimaud and Rouge [4]). In addition, it will be shown later that the optimal

outcome of this economy when ω = 0 is identical to the decentralized outcome of an economy

where no climate policy is implemented but where research is optimally funded.

We now turn to the case where ω > 0. Contrary to the preceding case, the economy is now

always in transition. From (33), Ro
t also decreases over time but g

o
Rt is now greater than −ρ. In

other words, when the environmental quality affects the households’s utility, the social planner

postpones the resource extraction (see Withagen [23] for a similar result in a partial equilibrium

context). As LoQt, Q
o
t and P o

t are linear function of R
o
t , they exhibit similar dynamics: they

decrease over time and so do their growth rates. Evidently, this also implies that the fraction

of captured emissions, i.e. Qo
t/P

o
t , remains constant over time.

Note that LoY is also constant over time (see (30)). Hence, the remaining flow of labour is
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split between carbon storage and research. As LoQt decreases over time, L
o
At increases: as the

effort in carbon storage gets lower and lower, R&D investment is rising.

As t tends to infinity, goRt = goLQt = goQt = goPt tends to −ρ. At the same time, L
o
Qt decreases

down to 0, LoAt tends to 1−αρ/δν and goY t tends to νδ−ρ. Those asymptotic values are identical

to the ones from the steady state obtained above where ω = 0. The resource is asymptotically

exhausted and thus the pollution flow tends to zero. That is the reason why, at infinity, the

socially optimal time-path converges to the one of an economy where pollution does not matter

anymore.

For the sake of illustration, we conduct numerical simulations of the model owing to the

following parameters values: E0 = 0, S0 = 250, A0 = 1, α = 0.667, ρ = 0.025, γ = 0.5, η =

0.8, ω = 0.01, δ = 0.02, θ = 0.05, ν = 1.5. The trajectories of resource extraction, pollution,

environmental quality and final good production are depicted in figures 1, 2, 3 and 4 respectively.

3.2.3 Impact of carbon storage on optimal paths

We denote by Xo∅
t the optimal level of any variable Xt when no technology of carbon storage

is available (which is the case in most standard growth models). We give the optimal levels and

growth rates in Appendix 2.

Comparing the social optimum in this case with the optimum presented above leads to the

following proposition.

Proposition 2 Introducing carbon storage alters the optimum results as follows:

(i) Resource extraction is faster (i.e. goRt < go∅Rt ): more resource is extracted in the early

stages, and less in the future.

(ii) The short and long run effects on pollution may differ. In the short run, the increase in

resource extraction (see (i) above) favors pollution augmentation whereas carbon storage activity

leads to the opposite outcome: the overall effect is ambiguous. In the long run, since resource
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extraction diminishes (see (i) above) and part of the emissions is stored, the pollution flow

decreases without ambiguity.

(iii) Economic growth is lower (i.e. goY t < go∅Y t ).

The speed up of resource extraction (goRt < go∅Rt ) is depicted in Figure 1. Standard models

with non-renewable resources show that the optimal extraction is less fast when pollution is taken

into account. Here, we can see that CCS allows to partially relax this environmental constraint.

As formulated in the above proposition, the impact of carbon storage on the optimal pollution

paths is less obvious. Let us first consider the early generations. Two opposite effects drive

the pollution path: an extraction effect and a CCS effect. Since resource extraction increases,

pollution tends to increase as well; however CCS activity diminishes pollution emissions. The

question is then: which effect dominates? In fact, this depends on the parameters of the model

featured in the terms between brackets in formula (35). In particular, one can check that for high

values of ω the CCS effect tends to be the strongest. This means that when households value

environment a lot, carbon storage is intensive, and thus pollution diminishes despite the increase

in resource use. In this case, carbon storage diminishes optimal pollution for the first generations

(as illustrated in Figure 2). If ω is low, i.e., households are less sensitive to environmental quality,

the extraction effect dominates the CCS one: pollution increases since carbon storage activity

is low. We thus have the counter-intuitive case in which carbon storage leads to a simultaneous

increase in resource extraction and pollution for the first generations. In the long-term, carbon

storage unambiguously induces lower pollution for the future generations. Indeed, we have shown

that extraction decreases; thus, whatever the amount of carbon stored, pollution decreases.

Let us now turn to the effect of CCS on optimal growth. First, Lo∅Qt and Qo∅
t are obviously

nil. This implies LoAt < Lo∅At : the amount of labour devoted to R&D is higher in the "no-storage

case" as there is no need to use labour for storage. So there is a first research effect which

is detrimental for growth. In addition, the aforementioned extraction effect also holds growth
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back. In other words, the first two inequalities presented in Proposition 2 immediately yield

the following one: goY t = νδLoAt + (1 − α)goRt < go∅Y t = νδLo∅At + (1 − α)go∅Rt , that is, carbon

storage is detrimental for economic growth. The technology of carbon storage allows to relax

the environmental constraint. Hence, in an economy with carbon storage technology, early

generations extract more resource and consume more at the optimum. In other words, their

"sacrifice" is reduced (see Figure 4).

4 Decentralized Economy

Let us now give some words about the decentralized economy, and, in particular, the way we

model innovation activities.

In contrast with the standard endogenous growth literature, in our model, new pieces of

knowledge are not embodied in intermediate goods. They are directly used by firms and pro-

tected by infinitely-lived patents (that is, directly priced). As knowledge is a public good, there

are two main difficulties for funding it. First, it is difficult to extract the whole willingness

to pay of agents that use knowledge (see for instance Popp [15]); for Jones and Williams [12],

investments in R&D in the US are at least two to four times lower than their optimal level. We

therefore introduce one exogenous parameter ψ which represents the gap between the willingness

to pay and the price perceived by sellers of innovations in the research sector (this parameter

will be interpreted as a subsidy to R&D later in the text). A second difficulty arises from the

non-convexity of technologies of firms using knowledge as a productive factor. In a perfectly

competitive environment, profits for these firms would be negative and a general competitive

equilibrium would not exist. We therefore assume an imperfect competition (à la Cournot) in

markets for consumption goods. By selling these goods at a price which is higher than the

marginal cost, firms get resources that allow them to buy knowledge.

Thus, this model features three basic distortions with respect to the optimum. First, the flow
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of pollution, Pt, which damages the stock of environment; second, the distortion on innovations

markets mentionned above; finally, the Cournot competition in the markets for consumption

goods. This latter distortion will be shown not to prevent equilibrium variables from being

optimal. Hence we introduce two economic tools: a tax on pollution, and a subsidy to research.

Note that our climate policy consists in a tax on pollution, and not on the polluting resource,

as in Grimaud and Rouge [5, 6] or Groth and Schou [7]. Indeed, the basic externality is carbon

emissions and, as technology for carbon storage is available, a tax on these emissions and a

tax on the polluting resource are no more equivalent (contrary to what happens in the papers

mentioned above).

As will be shown below, this tax on carbon emissions has two main effects: it leads to

postponing extraction (as in the models without carbon storage possibility). It also yields

incentives to produce optimal efforts in carbon storage at each time t.

4.1 Agents’ behaviour

Wage is normalized to one: wt = 1, and pjt (j ∈ [0; 1]), pRt, rt and Vt are, respectively, the price

of consumption good j, the price of the non-renewable resource, the interest rate on a perfect

financial market and the unit price of knowledge (in terms of labour). We drop time subscripts

for notational convenience.

Household

The representative household maximizes (8) subject to her budget constraint ḃ = rb + w +

π −
∫ 1
0 pjcjdj + T , where b is her total wealth, π represents total profits in the economy and T

is a lump-sum subsidy (or tax). Recall that we normalized w to 1. One gets the two following

standard results. Total demand for good j is

cj = p
1/(ε−1)
j Ω, (9)
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where Ω = (
∫ 1
0 pkckdk)/(

∫ 1
0 p

ε/(ε−1)
k dk), and Ramsey-Keynes condition is

r = ρ+ (1− ε)gcj + gΓ + gpj , with j ∈ [0; 1], (10)

where Γ =
∫ 1
0 cεjdj.

Non-renewable resource sector

On the competitive natural resource market, the maximization of the profit function
∫ +∞
t pRsRse

−
∫ s
t rududs,

subject to Ṡs = −Rs, Ss ≥ 0, Rs ≥ 0, s ≥ t, yields the standard equilibrium ”Hotelling rule”:

ṗR
pR

= r. (11)

As usual, the transversality condition is limt→+∞ St = 0.

Firms

Recall that firms have three activities. First, each one produces and sells a differentiated good

on an imperfect market. Second, it produces and sells innovations which we assume traded using

bilateral contracts between inventors and users. Thirdly, firm stores part of emitted carbon.

Vt is the price of one innovation at date t in the research sector. Let us denote by π̃njt

the profit of firm nj without payment of knowledge. At each moment, firm nj maximizes

π̃njt = pjtYnjt−LY njt−LQnjt−pRtRnjt−τ tγ
[
Rnjt − γη−1Rη

njt
L1−ηQnjt

]
+VtȦnjt−LAnjt, subject

to (1), (2), and (9), where τ t is a unit tax on pollution (note that it also corresponds to the

price of permits on a competitive market in the case of tradeable permits). After substitutions,

14



one gets the following program:

max π̃nj = Ynj [Ω
1−ε(

Nj∑

nk=1

Ynk)
ε−1]LY nj − LQnj − pRRnj − τγ

[
Rnj − γη−1RηnjL

1−η
Qnj

]

+V δALAnj − LAnj

subject to Ynj = AνLαY njR
1−α
nj ,

The first order conditions with respect to Ynj , Rnj , LY nj , LQnj , and LAnj are respectively

(λ is the Lagrange multiplier):

Ω1−ε(

Nj∑

nk=1

Ynk)
ε−1 + (ε− 1)YnjΩ

1−ε(

Nj∑

nk=1

Ynk)
ε−2−λ = 0. (12)

This equation implicitely yields the best response of firm nj to the choice of production of the

other firms on the market of consumption good j.

−pR + λ
(1− α)Ynj

Rnj
− τγ

[
1− ηγη−1Rη−1

nj L1−ηQnj

]
= 0, (13)

−1 + λ
αYnj
LY nj

= 0, (14)

−1 + τγη(1− η)RηnjL
−η
Qnj

= 0, (15)

V δA− 1 = 0. (16)

The willingnesses to pay for pieces of knowledges A at each date t is

vnj = ∂π̃nj/∂A = V δLAnj + λνYnj/A. (17)
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Each piece of knowledge being simultaneously used by research and production activities,

V δLAnj is the willingness to pay relative to research activity and λνYnj/A is the willingness to

pay relative to production -the public good nature of knowledge inside the firm is here manifest.

4.2 Equilibrium

Here, an equilibrium is a set of profiles of quantities and prices such that: the representative

household maximizes utiliy and firms maximize profits; labour, resource and financial markets

are perfectly competitive; on each consumption good market, there is Cournot competition;

pieces of knowledge are traded using bilateral contracts. We focus on a symmetric equilibrium.

Let us first express both the social value and the market value of one unit of knowledge.

In (17), λ can be replaced by LY nj/αYnj (see formula (14)). Summing on nj and j, one gets

v = V δLA + νLY /αA : this corresponds to the instantaneous social value of one piece of

knowledge.

From now on, we assume that firms are unable to extract the whole willingnesses to pay for

knowledge due to information and excludability problems. In fact, they only extract a fraction v̄.

The extracted value for one unit of knowledge is: v̄ = V δLA+ψνLY /αA, where ψ ∈ [0; 1]. This

is the instantaneous market value of one piece of knowledge. This formulation allows for simple

computations and can be interpreted as follows: innovators are able to fully observe the social

value of innovations in the research activity, but not in the production activity. Furthermore,

in the following, we will interpret an increase in ψ as an economic policy aiming at fostering

research. Finally, unit price paid for knowledge is Vt =
∫ +∞
t v̄se

−
∫ s
t rududs. Differentiating with

respect to time, one gets the standard following formula:

rt =
V̇t
Vt
+

v̄t
Vt
, (18)

which states that the rate of return is the same in both the financial market and the research
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sector.

We now turn to the derivation of the consumption goods price. Since we are in the symmetric

case (in particular we have Ynj = Yj/N = Y/N and pj = p), equations (12) and (14) lead to

p [1 + (ε− 1)/N ] = LY /αY (19)

where LY /αY is the marginal cost. Since ε < 1, this equation means that the price of any

consumption good is higher than its marginal cost. The discrepancy between price and marginal

cost allows firms to buy knowledge despite the non-convexity of technology. Observe that, if

N = 1 (monopolistic case), (19) becomes p = (marginal cost)/ε, which is the standard result.

The main findings concerning the equilibrium are summarized in the following Proposition.

We drop time subscripts for notational convenience (upper-script e stands for equilibrium).

Proposition 3 At the equilibrium in the decentralized economy with a strictly positive carbon

tax (i.e. τ > 0) at each date:

(i) The economy is always in transition.

(ii) The flow of resource extraction, Re, as well as the flows of sequestration, Qe, and of

pollution, P e, decrease over time.

(iii) Labour in final good production, LeY , is constant over time. Labour devoted to storage

activities, LeQ, is proportional to the flow of resource extraction, Re, and thus follows the same

dynamics: geLQt = geRt < 0. Therefore, labour devoted to research, LeA, increases over time and

converges to the constant level 1− LeY as time goes to infinity.

All equilibrum levels and growth rates are given in Appendix 3.

Proof. See Appendix 3.

Let us now consider that there is no climate policy (i.e. τ = 0 at each date). Here, the

economy immediatly jumps to its steady-state, where the amount of labour devoted to carbon
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storage is nil (see formula (51)): LeQ = 0, which means that no carbon is stored (Q
e = 0). This,

in turn, implies that the total potential emission is released in the atmosphere, i.e. P e = γRe.

Moreover, labor used in the production of the final good, LeY , is constant, and thus labor

devoted to the research sector, LeA = 1 − LeY is also constant. The flow of extraction at date

t is Re
t = ρS0e

−ρt, and pR0 = (1 − α)/ψνδS0. This implies g
e
R = −ρ for all t when no tax

on pollution is levied. This latter case corresponds to the optimum without pollution (and no

carbon storage).

We now compare the equilibrium growth rate of resource extraction (geR) in the absence of cli-

mate policy to its optimal level. Combining the previous results with those given in Proposition

1, we obtain the following inequalities:

geR = −ρ < goRt < go∅Rt .

Recall that go∅Rt is the optimal growth rate of extraction in the case of no available technology for

carbon storage (defined in section 3.2.3). First, geR < go∅Rt means that, in an economy in which

no technology for carbon storage is available, resource extraction in the laissez-faire economy is

too fast, compared to the optimal path. For a similar result in a partial equilibrium context,

see Withagen [23]. Nevertheless, introducing carbon storage into the analysis leads to two

complementary results. The inequality geR = −ρ < goRt is an extension of the previous result:

even if carbon storage is possible, it is optimal to postpone extraction, relative to what is done

in the decentralized laissez-faire equilibrium. However, the inequality goRt < go∅Rt states that in

the case of carbon storage, the optimal extraction paths is less restrictive than in the absence of

such technology. In other words, carbon storage partially relaxes the environmental constraint.

As we stated earlier, the sacrifice of earlier generations is reduced.

Figures 1, 2, 3, 4, obtained through numerical simulations (see section 3.2.2), illustrate the

preceding results.
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5 Impact of Economic Policies

5.1 Impact of climate and R&D policies

Let us first study the impacts of climate policy (a carbon tax on carbon emissions P e) on the

equilibrium paths of this economy.

Proposition 4 An increase in the carbon tax τ has the following effects:

(i) Resource extraction and carbon emissions decrease at a lower pace, and so does the effort

in CCS, as well as sequestration activity itself (i.e.: geR, g
e
P , g

e
LQ

and geQ increase).

(ii) The intensity of effort in CCS (LeQt/Q
e
t ), the effort by unit of carbon content (LeQt/γR

e
t ),

as well as the instantaneous rate of carbon storage (Qe
t/γR

e
t ), all increase.

(iii) Effective pollution by unit of carbon content (P e
t /γR

e
t ) decreases.

(iv) The effort in production (LeY ) remains unchanged.

Assume 0 ≤ τ ≤ 1/(1 − η). An increase in tax τ has two basic effects: first, pollution gets

more costly, which leads the economy to postpone extraction (geRt increases). A second effect

is that carbon storage becomes more profitable; hence the amount of labour by unit of carbon

content (LeQt/γR
e
t ) increases. Therefore, Qe

t/γR
e
t , that is, the instantaneous rate of carbon

storage, also increases. Simultaneously, effective pollution by unit of carbon content (P e
t /γR

e
t )

decreases. As carbon sequestration gets more profitable, the intensity of labour in this activity

(LeQt/Q
e
t ) increases.

Let us now give some elements on the-short term effects of this climate policy on output’s

level and growth. First, as geRt increases, early generations extract less resource; since labour

devoted to output is unchanged, output level diminishes for these generations. Second, since

geLQt increases, L
e
Q, the effort in carbon storage, decreases in the short-run

7 (see Figure 5). Then,

as LeY is unchanged, L
e
A and thus g

e
A increase. Finally, output growth (g

e
Y = νgeA + (1− α)geR)

7Using (51) and (53), one can show that ∂LeQt/∂t ≤ 0 if t is low enough.
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is fostered for early generations.

Now we analyse the effects of the R&D policy. The impact of an increase in the subsidy to

R&D, ψ, on the price of an innovation is illustrated in 6.

Proposition 5 An increase in the subsidy to R&D, ψ, has the following effects:

(i) The effort in production (LeY ) diminishes.

(ii) Resource extraction and carbon emissions decrease at a lower pace, as well as the effort

in CCS and sequestration activity itself (i.e.: geR, g
e
P , g

e
LQ

and geQ increase).

(iii) The intensity of effort in CCS (LeQ/Q
e), the effort by unit of carbon content (LeQ/γR

e),

the instantaneous rate of carbon storage (Qe/γRe), and effective pollution by unit of carbon

content (P e/γRe) remain unchanged.

The impact of such a policy on output is similar to what is obtained in standard endogenous

growth models. Since geRt increases, R
e decreases in the short-run. As LeY decreases (less efforts

in output production), early levels of output Y e diminish. Moreover, since geLQt increases, L
e
Q

decreases in the short-run. Thus we have a simultaneous decrease in LeY and L
e
Q, which yields an

increase in LeA (recall that total amount of labour is constant). For that reason, the accumulation

of knowledge is faster in the early generations: geA increases. As we also have an increase in geRt,

output growth is unambiguously fostered in the short run.

5.2 Optimal policy

Comparing values in propositions 1 and 2, we obtain the following result which gives the design

of optimal policy instruments.

Proposition 6 ψo = 1 (optimal financing of research) and τo = ρω
δν(ρ+θ) are the levels of ψ and

τ for which the equilibrium path is optimal.
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First, note that this optimal tax level is expressed in terms of labour. Dividing this level by

price p (given in (19)), in which LY is at its equilibrium level (see (50)), and ψ = 1, we obtain:

τo/pt =
ω [1 + (ε− 1)/N ]

ρ+ θ
Yt. (20)

This corresponds to the optimal tax level in terms of consumption good. This tax grows at the

same rate as output, as depicted in Figure 7 (left panel).

As we commented earlier, the tax level here matters, contrary to standard results of the

literature (see Sinclair [18], Grimaud and Rouge [5, 6], Groth and Schou [7] for instance).

Indeed, when CCS technology is available, the social planner has to give the right signal in

terms of social costs of pollution to firms, so as to induce their optimal effort in sequestration.

We now elaborate on this issue.

First, let us show that the optimal tax level (that we will refer to as the optimal price of

carbon) is equal to the sum of discounted marginal social costs for all (present and future)

generations, expressed in terms of good Y . For each generation, ω is the social cost of one

unit of carbon, given in terms of utility. Thus, at date t,
∫ +∞
t ωe−(ρ+θ)(s−t)ds = ω/(ρ + θ)

is the sum for all generations of this cost’s present values (taking regeneration into account).

Moreover, the marginal utility of any good j is 1/cj (see formula (8)). Taking into account the

mark-up on each consumption good’s market due to Cournot competition, and the fact that

we consider a symmetric equilibrium, we obtain the expression given in (20). Observe that,

when it is expressed in terms of utility, this optimal tax is constant over time. However, it is an

increasing function of time when given in terms of consumption good. Indeed, economic growth

being positive, the marginal utility of consumption decreases over time.

Second, this optimal tax leads to the optimal arbitrage between production and pollution,

given the availability of carbon storage technology. Let us assume a labour transfer from the
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carbon storage sector towards production, resulting in the emission of one additional unit of

pollution. The optimal tax corresponds to the subsequent marginal increase in good Y .

Proof. Taking mark-ups into account as we did above, one gets:

τo/pt = [(∂Yt/∂LY t)/(∂Qt/∂LQt)] [1 + (ε− 1)/N ].

This comes from the fact that ∂Yt/∂LY t = αYt/LY = 1/p [1 + (ε− 1)/N ] (from (1) and

(19)) and ∂Qt/∂LQt = (1− η)Qt/LQt = 1/τ (see formulas (4), (51) and (54)).

Finally, the optimal tax on pollution, which in particular leads to postponing resource ex-

traction, can be interpreted as a decreasing ad valorem tax on the resource (see Figure 7 (right

panel)). This allows to make a link with standard literature in the case of no carbon storage

(see Sinclair [18], Grimaud and Rouge [5, 6] or Groth and Schou [7]). When the optimal tax is

implemented, the "total" (i.e., including the price of the resource and the carbon tax) unit price

paid by users for the resource increases less fast than the unit price perceived by owners of the

resource (whose growth rate is the interest rate). That is why extraction is postponed. Ex-post,

this has the same effect as a decreasing ad valorem tax.

Proof. "Total" price paid by firms is:

pRR+ τoγ(R− γη−1RηL1−ηQ ) = pRR
[
1 + (τo/pR)(1− (LQ/γR)

1−η)
]
.

Using (51) and τo = ρω/δν(ρ+ θ) (see proposition 5), this price is given by

pRR

[

1 +

(

1−

(
ωρ(1− η)

δν(ρ+ θ)

)(1−η)/η) ωγ

(ρ+ θ)pR

]

,

that is, pRR(1 + σ) where σ can be interpreted as an ad valorem tax on the resource, which is

decreasing since pR is an increasing function of time (recall that gpR = r).
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6 The effect of technical progress in CCS: A numerical illustra-

tion

The model solutions have been obtained so far for a CCS technology without technical progress.

However, progressive improvements in this technology are likely to occur due to learning in the

early stages of its development (IPCC [11]). In order to grasp insights on how specific technical

progress to sequestration technology would alter our results, we introduce some exogenous trend

in the productivity of pollution mitigation activities. In this section, we restrict ourselves to the

analysis of the optimal paths that we illustrate owing to a sole numerical simulation. We thus

modify the carbon storage technology given by (4) using the following functional specification

that corresponds to labour-augmenting technical progress:

Qnjt = (γRnjt)
η(κt.LQnit)

1−η, 0 < η < 1, if LQnit < γRnjt

with κt = κ0 − (κ0 − 1) ∗ e
−κ.t

The numerical values for κ0 and κ are chosen to be 20 and 0.02, so that the function is strictly

increasing and concave. Technical progress is quickly enhancing the carbon storage productivity

in the early periods, due to the strong concavity of our specification. Thus the amount of labour

dedicated to carbon removal, as well as the effective amount of carbon sequestered (depicted

in Figure 8, Left panel), is increasing as compared to the no technical progress case developed

in section 3. The cumulative amount of carbon that is ultimately sequestered, corresponding

to the surface below the time-path of Qo
t , is increasing significantly when dedicated technical

progress in introduced. As a result, the environmental quality Eo
t is degrading less rapidly and

is returning to its initial state in shorter time owing to natural regeneration (see Figure 8, Right

panel).
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It is beyond the scope of the current section to test the robustness of our results to the

specification for technical progress. Still, the qualitative effects of technical progress shall be

preserved with alternative specifications: Technical progress makes this climate change mitig-

ation option more effective by reinforcing the capture of CO2 emissions throughout the entire

horizon. It alleviates the burden of pollution emission on environmental quality while hindering

economic growth to a lower extent.

7 Conclusion

We proposed a model of endogenous growth (à la Romer) in which output is produced from

knowledge, labour and a polluting non-renewable resource. The aim of the paper was to study

how previous results of the literature on growth and polluting non-renewable resources are

modified when carbon storage technology is available. Here, part of the carbon flow that is

emitted when the resource is used within the production process can be stored. This implies

that, contrary to standard literature, pollution is dissociated from resource extraction. The

remaining flow of carbon damages the state of the environment, which is harmful for household’s

utility.

We fully characterized the optimal trajectories. We showed how the CCS option speeds up

the optimal resource extraction and thus helps to partially relax the environmental constraint,

which reduces the sacrifice of early generations. Moreover, the path of GHG emissions is mod-

ified. In the long-run, emissions unambiguously decrease, but we proved that pollution may

increase for the early generations if environmental preferences are low. Finally, we showed that

the availability of CCS technology is detrimental for growth.

Then we studied the impact of climate and R&D policies on the main relevant variables

in the decentralized economy. The climate policy consists in a tax on pollution (which is not

equivalent to a tax on resource, which would only yield second best outcome, contrary to models
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without carbon storage). First, we showed that the level of the tax matters, as it provides the

right incentives for an optimal effort in storage activity. In addition, the optimal carbon tax is

proved to be equal to the sum of discounted marginal social costs for all (present and future)

generations (taking regeneration into account). Second, the optimal carbon tax is an increasing

function of time and leads to postponing extraction. Moreover, it can be interpreted (ex-post)

as a decreasing ad valorem tax on the resource: climate policy reduces the growth rate of the

"total" resource price (i.e., the resource price including carbon tax). Finally, we briefly studied

the case of dedicated (exogenous) technical progress in carbon storage through a numerical

simulation.

The decarbonization of the economy and the switch to renewable or non fossil fuel-based

energy remains necessary (Gerlagh [2]). In order to keep the model tractable, the availability of

a clean and renewable energy source has not been introduced. This so-called backstop would not

drastically alter the qualitative properties of our results. Nevertheless, it would be interesting to

study the impact of the CCS option on the adoption timing of these alternative sources of energy.

We can infer that the possibility to store the carbon underground would delay the introduction

of renewable energy. Indeed, the availability and use of carbon sequestration technologies may

notably encourage a shift of electricity generation from natural gas to coal-based power plants

thus favoring a coal renaissance (Newell et al. [14]) over the next decades, while decreasing

reliance on renewable energy sources.
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Appendix

Appendix 1: Welfare

Let us consider the symmetric case in which Nj = N , Ynj = Y/N , Rnj = R/N , LY nj =

LY /N , LAnj = LA/N , LQnj = LQ/N and Qnj = Q/N . Then functions (1), (2), (3) and

(4) become Y = AνLαYR
1−α, Ȧ = δLAA, P = γR − Q and Q = (γR)ηL1−ηQ . Utility is now

U =
∫ +∞
0 (ln ct + ωEt)e−ρtdt. The social planner maximizes U subject to the modified versions

of (1), (2), (3), (4), (5), (6) and (7). The current value Hamiltonian of the program is

H = ν lnA+α ln(1−LA−LQ)+(1−α) lnR+ωE+µδLAA−ϕR+ζ
[
θ(E0 −E)− γ(R− γη−1RηL1−ηQ )

]
,

where µ, ϕ and ζ are the co-state variables. The first order conditions ∂H/∂LA = 0, ∂H/∂R = 0

and ∂H/∂LQ = 0 yield

−α/(1− LA − LQ) + µδA = 0, (21)

(1− α)/R− ϕ− ζγ(1− ηγη−1Rη−1L1−ηQ ) = 0, (22)

and − α/(1− LA − LQ) + ζγη(1− η)RηL−ηQ = 0. (23)

Moreover, ∂H/∂A = ρµ− µ̇, ∂H/∂S = ρϕ− ϕ̇,and ∂H/∂E = ρζ − ζ̇ yield

ρµ− µ̇ = ν/A+ µδLA, (24)

ρϕ− ϕ̇ = 0, (25)

and ρζ − ζ̇ = ω − ζθ. (26)

i) Computation of LY .
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Log-differentiating (21) with respect to time and using (24), one gets the following Ricatti dif-

ferential equation: L̇Y = (δν/α)L
2
Y −ρLY , whose solution is LY = αρ/

[
δν + (αρ/LY 0 − δν)eρt

]
.

Using transversality condition lim
t−→+∞

µAe−ρt = 0, we show that LY immediately jumps to its

steady-state level:

LY = αρ/δν. (27)

Indeed, using (21) it turns out that the transversality condition is only satisfied when LY =

LY 0 = αρ/δν.

ii) Computation of ζ.

The solution for equation (26) is ζ = e(ρ+θ)t
[
(ω/(ρ+ θ)(e−(ρ+θ)t − 1) + ζ0

]
. Moreover, the

transversality condition associated to E writes

lim
t−→+∞

ζEe−ρt = lim
t−→+∞

eθt
[
ω/(ρ+ θ)(e−(ρ+θ)t − 1) + ζ0

] [
E0e

θt −
∫ t
0 Pse

θsds
]
= 0.

Normalizing E0 such that the second term between brackets is not nil, we obtain

ζ = ζ0 = ω/(ρ+ θ). (28)

iii) Computation of LQ.

Replacing the value of LY in (27) in (23), we get

LQ =

[
ρω(1− η)

δν(ρ+ θ)

]1/η
γR. (29)

iv) Computation of R.

Using (22), (28) and (29) we obtain R = 1−α
ϕ0e

ρt+B in which B = ωγ
ρ+θ

[
1− η

(
ρω(1−η)
δν(ρ+θ)

)(1−η)/η]
.

Using the constraint
∫ +∞
0 Rtdt = S0, after some calculations we obtain ϕ0 = B/(e

BρS0
1−α − 1).

v) Computation of Q and P .

Plugging (29) into Q = (γR)ηL1−ηQ , one gets Q =
(
ρω(1−η)
δν(ρ+θ)

)(1−η)/η
γR.
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Then, using P = γR−Q , we have P =

[
1−

(
ρω(1−η)
δν(ρ+θ)

)(1−η)/η]
γR.

vi) Computation of growth rates.

The growth rates directly follow from the log-differenciation of the preceding results.

In summary, one gets:

LoY =
αρ

δν
, (30)

LoQt =

[
ρω(1− η)

δν(ρ+ θ)

](1/η)
γRo

t , (31)

LoAt = 1− LoY − LoQt, (32)

Rot =
1− α

ϕ0e
ρt +B

, (33)

where ϕ0 =
B

e
BρS0
1−α −1

and B = ωγ
ρ+θ

[
1− η

[
ρω(1−η)
δν(ρ+θ)

] 1−η
η

]
,

Qo
t =

(
ρω(1− η)

δν(ρ+ θ)

)(1−η)/η
γRot , (34)

P o
t =

[

1−

(
ρω(1− η)

δν(ρ+ θ)

)(1−η)/η]

γRot , (35)

goAt = δLoAt, (36)

goRt = goLQt = goQt = goPt =
−ρ

1 + (e
BρS0
1−α − 1)e−ρt

, (37)

goY t = νgoAt + (1− α)goRt. (38)

Appendix 2: Welfare in the no-storage case

When no storage technology is available, maximizing welfare leads to the following results (recall

that we denote by Xo∅
t the optimal level of any variable Xt in this case):
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Lo∅Y = αρ/δν, Lo∅A = 1 − (αρ/δν), Ro∅
t = 1−α

ϕ∅0 e
ρt+B∅

, go∅R = −ρ

1+B∅ /ϕ∅0 e
ρt
, go∅A = δLo∅A ,

go∅Y = νδLo∅A + (1− α)go∅R , where ϕ
∅

0 =
B∅

e(B
∅ ρS0/(1−α))−1

and B∅ = ωγ/(ρ+ θ).

Appendix 3: Equilibrium

Here also, we consider the symmetric case, in which we also have pj = p and cj = c = Y for all

j. Then it can be easily verified that Ω = p1/(1−ε)Y and Γ = Y ε. This implies gΓ = εgY .

In this case, formulas (10)-(16) become:

r = ρ+ gY + gp (Ramsey-Keynes), (39)

r = ṗR/pR (Hotelling rule), (40)

p [1 + (ε− 1)/N ] = λ, (41)

−pR + λ(1− α)Y/R− τγ
[
1− η(LQ/γR)

1−η
]
= 0, (42)

λ = LY /αY, (43)

−1 + τ(1− η)(LQ/γR)
−η = 0, (44)

V δA = 1. (45)

Moreover, remember that the instantaneous market value of one unit of knowledge is

v̄ = V δLA + ψνLY /αA, where 0 ≤ ψ ≤ 1, (46)

and that the standard arbitrage equation writes

r = V̇ /V + v̄/V. (47)
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i) Computation of LY .

From (41) and (43), we have p(1 − (ε − 1)/N) = LY /αY . Hence we get gp = gLY − gY .

Plugging this into (39), we obtain r = ρ + gLY , which, together with (47) yield gV + v̄t/Vt =

ρ+ gLY .

Since (45) implies gV = −gA = −δLA and v̄t/Vt = δLA + ψνδLY /α, we have the following

Ricatti differential equation −ρL2Y + ψνδLY /α = L̇Y . Using the transversality condition of the

household program, we can show that LY immediately jumps towards its steady-state level, as

we did in Appendix 1. Thus one gets

LY = αρ/ψνδ. (48)

Note that, since gLY is nil, r = ρ (remember that we normalized wage to 1).

ii) Computation of LQ.

Using (44), we immediately get

LQ = [(1− η)τ ]1/η γR. (49)

iii) Computation of R.

First, note that formula (40) implies pR = pR0e
rt = pR0e

ρt. Then (43) and (42) together

with (48) and (49) yield

Re
t =

(1− α)ρ/ψνδ

pR0eρt +G
, with G = τγ

[
1− η [(1− η)τ ](1−η)/η

]
when τ �= 0.

Using
∫ +∞
0 Rtdt = S0 we obtain pR0 = G/(eψνδS0G/(1−α) − 1).

iv) Computation of Q and P .

Plugging (49) into Q = (γR)ηL1−ηQ , one gets Q = [(1− η)τ ](1−η)/η γR.
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Then, using P = γR−Q , we have P =
[
1− ((1− η)τ)(1−η)/η

]
γR.

v) Computation of growth rates.

The growth rates directly follow from the log-differenciation of the preceding results. In

summary, at the equilibrium, quantities and rates of growth take the following values:

LeY =
αρ

ψνδ
, (50)

LeQt = [(1− η)τ ]1/η γRe
t , (51)

LeAt = 1− LeY t − LeQt, (52)

Re
t =

(1− α)ρ/ψνδ

pR0eρt +G
, (53)

with pR0 =
G

e
ψνδS0G
1−α −1

, and G = τγ
[
1− η [(1− η)τ ](1−η)/η

]
when τ �= 0.

Qe
t = [(1− η)τ ](1−η)/η γRet , (54)

P e
t =

[
1− ((1− η)τ)(1−η)/η

]
γRe

t , (55)

geAt = δLeAt, (56)

geRt = geLQt = geQt = geP t =
−ρ

1 + (e
ψνδS0G
1−α − 1)e−ρt

, (57)

geY t = νgeAt + (1− α)geRt. (58)
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