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Abstract
We analyze the identification and estimation of parameters β satisfying the incomplete

linear moment restrictions E(zT (xβ − y)) = E(zT u(x)) where z is a set of instruments
and u(z) an unknown bounded scalar function. We first provide several empirically relevant
examples of such a set-up. Second, we show that these conditions set identify β where the
identified set is bounded and convex. We provide a sharp characterization of the identified
set not only when the number of moment conditions is equal to the number of parameters
of interest but also in the case in which the number of conditions is strictly larger than
the number of parameters. We derive a necessary and sufficient condition of the validity
of supernumerary restrictions, which generalizes the familiar Sargan condition. We also
construct a test of the null hypothesis, β0 ∈ B, whose level is asymptotically exact and
which relies on the minimization of the support function of the set B − {β0} . Inverting
this test makes it possible to construct confidence regions with uniformly exact coverage
probabilities. Some Monte Carlo and empirical illustrations are presented.
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1 Introduction1

Point identification is often achieved by using strong and difficult to motivate restrictions on the

parameters of interest. This paper contributes to the growing literature that uses weaker assump-

tions, under which parameters of interest are set identified only. A parameter is set identified

when the identifying restrictions impose that it lies in a set that is smaller than its potential do-

main of variation, but larger than a single point. We exhibit a class of semi-parametric models

where set identification and estimation can be achieved at low cost and using inference tools

close to what is standard in applied work.

In our set-up, parameters of interest are defined by a set of restrictions that do not point-

identify them and that we call incomplete linear moment restrictions. Specifically, we consider

y, a dependent variable, x, a vector of p variables and assume that parameter β satisfies:

E(xT (xβ − y)) = E(xT u(x)), (1)

where u(x) is any single-dimensional measurable function that takes its values in a given bounded

interval I(x) that contains zero. One leading example is the familiar linear regression model

y = xβ + ε, where ε is uncorrelated with x, but where the continuous dependent variable, y, is

censored by intervals. The issue addressed in this paper is to identify and estimate the set, B,

lying in Rp of all values of β which satisfy Equation (1) for at least one u(.). It is not difficult

to show that set, B, is necessarily non-empty, convex and bounded. Convexity and boundedness

are the key features that we exploit to further characterize B.

A general approach to inference when a set only is identified was recently proposed by Cher-

nozukov, Hong et Tamer (2007). They define the identified set as the set of zeroes of a functional,

called the criterion, and there is no constraint on its shape. In particular, their very general pro-

cedure remains valid even when the identified set is not convex nor bounded. In this paper, we

propose a novel and more direct approach to the issue of set identification when the identified set

is bounded and convex. Our first contribution is a sharp characterization of the identified set us-

ing the concept of support functions which is naturally associated with convex sets (Rockafellar,

1970). In each direction of interest, which spans the unit sphere in Rp, we show that the support

1This paper was developed for the invited session that one of us gave at ESEM’06 in Vienna. We thank Richard
Blundell, Andrew Chesher, Guy Laroque and Adam Rosen for helpful discussions. We thank the participants at
seminars at PUC in Rio, IFS London, Paris Malinvaud seminar, Mannheim as well as in workshops and conferences
(ESRC Bristol ’07, Montréal Conference on GMM ’07) for comments. The usual disclaimer applies.

2



function of the identified set B is the expectation of an explicit and simple random function.

Second, we show that a similar characterization of the identified set also holds true when the

incomplete linear moment conditions are written as a function of m instruments z:

E(zT (xβ − y)) = E(zT u(x)), (2)

In this endogenous set-up, the identified set remains convex and bounded as in the exogeneous

case. Also, when there are as many instruments as explanatory variables, the identified set,

B, remains necessarily non-empty. This is not the case anymore when there are supernumer-

ary instruments. We explicit a necessary and sufficient condition, a generalization of the usual

over-identifying condition à la Sargan, under which the identified set is not empty. We sharply

characterize the identified set and exhibit conditions under which the existence of supernumerary

instruments restores point identification.

The next contribution of the paper is to provide a simple estimator of the support function

of the identified set. This estimator is the empirical analogue of the expectation of the random

function to which the support function is equal. In their closely related contribution, Beresteanu

and Molinari (2006) provide an estimation procedure for a class of convex identified sets using

the theory of random sets. We find it more fruitful to directly use the theory of stochastic process

from which the theory of random sets is derived because the results can be obtained under simpler

conditions and are easier to generalize to the endogenous case. Under standard conditions, we

first show that our estimate of the support function converges almost surely to the true function,

uniformly over the unit sphere of Rp. Second, we show that the
√

n inflated difference between

the estimate and the true function converges in distribution to a Gaussian process whose covari-

ance matrix is derived. Interestingly enough, our approach reveals that the asymptotic results of

Beresteanu and Molinari (2006) actually simplify to a quite standard linear model format for

the covariance matrix. Also, our procedure provides new asymptotic results for the cases where

the identified set is not strictly convex and the regressors not absolutely continuous. Given the

prevalence of discrete regressors, these generalizations are worthy of attention.

Furthermore and more importantly, we develop a new asymptotically exact test procedure for

null hypotheses such as H0:β0 ∈ B. We argue that this class of hypotheses is more attractive to

economists than hypotheses about sets (such as, say, H0:B0 ⊂ B). For example, the generalized

Sargan condition developed above can be written this way. The convexity of support functions

associated to convex sets is the key feature that simplifies our test procedure. The test statistic
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is constructed as the minimum value of a convex function over the compact unit sphere in a

finite-dimensional space. We exploit this characteristic to derive the asymptotic distribution of

the test statistic even in non-differentiable cases, that is even when the convex set B has kinks

or is not strictly convex (faces). Finally, the same key feature of convexity, allows us to derive

similar asymptotic properties of the estimates in the case where there are supernumerary moment

restrictions. Estimates are uniformly almost surely consistent and the inflated difference between

the estimated and true functions converges to a Gaussian process.

This paper belongs to the growing literature on set identification. From the very start of

structural modeling, identification meant point identification. Dispersed in the literature though,

there are examples of the weaker concept of set identification. Set identification can come from

two broad sets of causes : information might be missing or structural models might not generate

enough moment restrictions or inequality restrictions only. The oldest examples of the first case

corresponds to measurement errors. They were introduced by Gini (1921), Frish (1934) and fur-

ther analyzed, decades later, by Klepper and Leamer (1984), Leamer (1987) or Bollinger (1996).

There are many other examples of missing information generating incomplete identification (see

Manski, 2003 for a survey). Seminal analysis of the incomplete information case include Fréchet

(1951), Hoeffding (1940) and Manski (1989) whereas recent applications include Alvarez, Me-

lenberg and van Soest (2001), Blundell, Gosling, Ichimura and Meghir (2007) or Honoré and

Lleras-Muney (2006). Horowitz and Manski (1995) consider the case where the data are cor-

rupted or contaminated while Moffitt and Ridder (2003) provide a survey of the results relative

to two sample combination. Structural models delivering moment inequality restrictions (instead

of equalities) are the second type of models leading to set identification (Andrews, Berry and Jia,

2002, Pakes, Porter, Ho and Ishii, 2005, Haile and Tamer, 2003, Ciliberto and Tamer, 2005,

Galichon and Henry, 2006, among others). Set identification can also be generated by discrete

exogeneous variation such as in Chesher (2003). In both cases, Chernozhukov, Hong and Tamer

(2007) use a criterion approach for the definition of the identified set and subsampling techniques

for estimation and inference (see also Romano and Shaikh, 2006). Rosen (2007) develops simple

testing procedures. Andrews and Guggenberger (2007) studies cases that do not fall under the

assumptions of Imbens and Manski (2004) or Stoye (2007).

The class of models considered in this paper belongs to both branches of the literature. In-

complete linear conditions can be interpreted as a specific set of inequality restrictions generated
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by some missing information. The leading examples that we propose are derived from partial

observation when covariates are censored by intervals as in Manski & Tamer (2002), when the

continuous regressor is observed by intervals or is discrete (Magnac & Maurin, 2008), when out-

comes are censored by intervals (Beresteanu & Molinari, 2006) or when regressors are observed

in two distinct samples.

Incomplete linear moment conditions define identified sets which are convex and bounded.

The approach developed in this paper relies directly on these two properties and we expect that

the same procedure can be adapted to other contexts where the identified set is convex and

bounded. In contrast, we believe that estimation is difficult to implement in set-ups such as those

proposed by Klepper and Leamer (1984) or Erikson (1993) because the corresponding identified

sets are not bounded and convex. Estimation and inference are definitely more difficult to analyze

in such cases although our results could also help. Finally, while our results are given in a global

linear set-up, their adaptation to a local linear set-up seems to be achievable at low cost.

Section 2 develops three examples that are of interest for applied econometricians and gen-

erate incomplete linear moment conditions. Section 3 sharply characterizes the identified set

using these moment restrictions. We analyze the case where the number of parameters is equal

to the number of restrictions as well as the case where the number of restrictions is larger than

the number of parameters and we provide the extension of the Sargan condition. For the sake of

simplicity, Section 4 specializes to the case of outcomes measured by intervals. Under general

conditions, we derive asymptotic properties of estimates in the case of no moment restrictions in

surplus. We develop exact test procedures, construct exact confidence regions by inversion of the

tests and derive asymptotic properties of the estimates using supernumerary restrictions. Section

5 is devoted to Monte Carlo experiments about the testing procedures and Section 6 presents the

results of an empirical illustration using censored income data. Section 7 proposes an extension

to the case of ecological inference. Section 8 concludes.

2 Set Identification in Linear Models: Examples and a Gen-
eral Framework

Let us consider the familiar linear regression model y = xβ + ε, where y is a continuous depen-

dent variable, x a vector of independent variables of dimension K (where E(xT x) full rank) and

ε is a random variable uncorrelated with x. When y and x are perfectly observed, the set B of
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parameters observationally equivalent to the true parameter boils down to a singleton defined by

the usual moment condition,

E(xT (xβ − y)) = 0.

The regression coefficient β = E(xT x)−1E(xT y) is the only parameter such that there is a

random shock, ε, uncorrelated with x satisfying xβ + ε ≡ y. In the remainder of this section,

we show that there is a wide variety of contexts such that the identification set B of the linear

regression model is not defined by the previous moment condition anymore, but by the following

generalisation,

E(xT (xβ − y)) = E(xT u(x)),

where u(x) is a measurable function that takes its values in a given uniformly bounded interval

I(x) that contains zero. In such a case, it is shown in Section 3 that B remains a non-empty

convex and bounded set, but it is not necessarily a singleton anymore. The familiar moment

condition above defines only one specific admissible value of the parameter (i.e., the one which

corresponds to u(x) = 0). We first exhibit examples that lead to such a framework.

2.1 Example 1 : Linear Regressions with Interval Data on the Dependent
Variable

The first interesting set of examples corresponds to the case where the dependent variable y is

observed by interval only (see e.g. Manski and Tamer, 2002). Household income, individual

wages, hours worked or time spent at school represent continuous outcomes that are often re-

ported by interval only in survey or administrative data.2 For example, the long standing (and

still growing) literature on the long run variations in the distribution of income relies on tax data

reporting the number of tax payers for a finite number of income brackets only (see e.g., Piketty,

2005). Researchers typically use parametric extrapolation techniques to estimate the fractiles

of the latent income distributions and to analyse variations across periods and countries. The

robustness of these analyses to alternative extrapolation assumptions remains unclear, however.

In these examples, the data are given by the distribution of a random variable w = (y, x)

where y is the result of censoring a latent variable y∗ by intervals, y∗ ∈ [y0, yK) being a bounded

2Also, for anonymity reasons, it is more and more often the case that only interval information is made available
to researchers even though the information collected was actually continuous.
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outcome3, x a vector of L covariates. If y0 < y1 < ... < yK−1 < yK denote the bounds of the K

intervals, y can be re-defined as the center of the observed intervals,4 i.e.

y =
K−1∑

k=0

(
yk + yk+1

2
)1(y∗ ∈ [yk, yk+1)). (3)

Variable y is discrete and only realizations of (y, x) are observed. We denote gk(x) the probabil-

ity of observing y = yk+yk+1

2
conditional on x and Gk(x) =

∑
0≤l<k

gl(x) the observed cumulative

distribution of y i.e., Pr(y < yk | x).

Within this framework, we consider linear latent models :

y∗ = xβ + ε, (4)

where ε is a random variable uncorrelated with x, E(xT ε) = 0. The distribution of ε conditional

on x is denoted Fε(. | x). The issue is to characterize B1 the set of parameters β such that the

latent model (β, Fε(. | x)) generates the distribution Gk(x) (k = 0, ...K − 1) using equation

(3). By definition, β is in B1 if and only if there is a random variable, ε, uncorrelated with x

satisfying,

Fε(yk − xβ | x) = Gk(x), for any k = 0, ...K − 1. (5)

In other words, the identified set B1 is defined as,

B1 =
{
β ∈ RK s.t. there exists Fε(. | x) satisfying Eq. (5) and such that E(xT ε) = 0

}

For reasons related to consistency arguments in the estimation section, we shall, from now on,

use the closure of such a set denoted as cl(B1). We will also assume that all variables that we

consider are in L2 so that all cross-moments exist.

The following proposition shows that B1 is not a singleton, but defined by a moment condi-

tion similar to moment condition (1).

Proposition 1 The two following statements are equivalent,

(i) β ∈ cl(B1),

(ii) there exists a measurable function u(x) fromRK toRwhich takes its values in the interval

I(x) = [−∆(x), ∆(x)], where
3Without bounds on y∗, parameter β is not identified in the strong sense, i.e. any value of β rationalizes the data.

It stems from the well known argument that there is no robust estimator for the mean (see Magnac and Maurin,
2007, for an example).

4The choice of the mid-point is just a normalization as proved in Appendix A.2 after the proof of Proposition 1
below. Any choice of y which preserves the ordering of y∗ does not affect the developments that we now analyze.
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∆(x) = 1
2

∑K−1
k=0 [(yk+1 − yk)(Gk+1(x)−Gk(x))]

and such that, E(xT (xβ − y)) = E(xT u(x)).

Proof: See Appendix A.1.

2.2 Example 2: Categorical Data on Subjective Outcomes

Another interesting set of examples corresponds to categorical data on dependent variables re-

lated to individual opinions or attitudes. Public opinion polls typically contain dozens of such

outcomes. For example, a poll conducted before presidential elections generally contains a large

set of questions measuring binary subjective data, such as ”Which of the two candidates - George

W. Bush or Al Gore - do you think would do a better job on the gun control issue?” (Louis Harris,

may 2000). Survey on attitudes to public policy issues provides information on similar variables.

For example, the International Survey Program conducted in 1992 asks individuals whether they

agree with the following statement, ”It is the responsibility of the government to reduce the

differences in income between people with high income and those with low income” (see e.g.,

Corneo and Grüner, 2000). Also survey on job satisfaction or on happiness typically contain

categorical data on subjective outcomes, such as ”Taking all things together, how would you say

things are these days - would you say you are very happy, fairly happy or not too happy these

days?” (see e.g. Di Tella and MacCulloch, 2006).

To analyse such outcomes, researchers typically assume that they are related to a continuous

intensity measure y∗ = xβ +ε and provide estimates of β under specific parametric assumptions

on the distribution of ε (ordered probit or logit). Whether or not these models are non parametri-

cally identified is an open question, however. To begin with, consider the very simple case where

the categorical outcome under consideration is binary d ∈ {0, 1} (fairly happy vs not too happy).

Suppose that this outcome is given as a function of a latent intensity y∗ = xβ + ε, by:

d = 1 iff y∗ ≥ y1

where y1 is an unknown threshold in (0, 1). In addition, we assume that y∗ varies between 0 and

1 and that ε is uncorrelated with x.

The intercept of the model (say β0) and the threshold y1 cannot be jointly identified and we

can always set y1 = 1
2

as a normalisation. In the same spirit as in the previous section, a discrete

variable, y, can be defined (as y = 1
4
1(y∗ < 1

2
) + 3

4
1(y∗ ≥ 1

2
) so that,
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E(xT (xβ − y)) = E(xT (y∗ − y)) = E(xT E((y∗ − y) | x)) = E(xT u(x)).

Function u(x) satisfies,

−1

4
< u(x) = −1

4
+ E(y∗ − 1

2
1(y∗ ≥ 1

2
)) | x) ≤ 1

4
.

Denoting B2 the identification set, we have just shown that β ∈ cl(B2) implies that there is

a u(x) taking its value in
[−1

4
, 1

4

]
such that E(xT (xβ − y)) = E(xT u(x)). Using exactly the

same argument as for Proposition 1, we can show that the reciprocal holds true too and that the

identified set is actually defined by a moment condition similar to condition (1).

Proposition 2 The two following statements are equivalent,

(i) β ∈ cl(B2),

(ii) there is a measurable function u(x) from RK to R which takes its values in the interval

I(x) =
[−1

4
, 1

4

]
, such that, E(xT (xβ − y)) = E(xT u(x)).

When the categorical outcome under consideration has K > 2 categories, it is not difficult

to adapt the above argument. Specifically, let us now assume that d takes its value in {0, ..., K}
and suppose that it is related to y∗ = xβ + ε by :

d = k iff yk ≤ y∗ < yk+1

where y1 = 0 ≤ ...yk... < yK+1 = 1 is a set a threshold in [0, 1]. If these thresholds are known,

we are formally back to Example 1 and the identification set has exactly the same structure as

in Propositions 1 or 2. When the thresholds are not known, β belongs to the identified set if

and only if there is a set of thresholds y1 = 0 < · · · < yk < · · · < yK+1 and a function

u(x) ∈ [−∆(x), ∆(x)] such that E(xT (xβ−y)) = E(xT u(x)), where y is re-defined as before as
K−1∑

k=0

(
yk + yk+1

2
)1(y∗ ∈ [yk, yk+1)) and where ∆(x) =

1

2

K−1∑

k=0

[(yk+1 − yk)(Gk+1(x)−Gk(x))].

In such a case, the identified set is the union of sets defined by moment conditions similar to

condition (1).

2.3 Example 3: Binary Models with Discrete or Interval-valued Regres-
sors

A last set of examples corresponds to contingent valuation studies where participants are asked

whether their willingness-to-pay (y∗) for a good or resource exceeds a bid −v chosen by experi-
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mental design (see e.g., McFadden, 1994). The outcome under consideration y equals one if the

respondent willingness-to-pay exceeds the experimental bid (i.e., y∗+ v > 0) and the problem is

to infer the relationships between y∗ and a set of covariates x from available observations on y, x

and v. Related examples correspond to dosage response models where y is one if, for example,

a lethal dose y∗ exceeds a treatment dose, −v, chosen by experimental design.

In all these cases, a natural approach is to assume that y∗ = xβ + ε and to estimate the

semiparametric binary model y = 1(xβ + v + ε > 0) under the assumption that ε is uncorrelated

with regressors x and independent of regressor v conditional on x (i.e., Fε(. | x, v) = Fε(. | x) if

only because of the experimental design). Also, it is often plausible to suppose that the support

of y∗ is small relative to the support of v (i.e. , Supp(xβ + ε) ⊂ Supp(−v)). Assuming that

(xβ + ε) represents the latent propensity to buy an object and, −v, is the price of this object, it

simply amounts to assume that for sufficiently high (respectively low) price no one (respectively

everyone) buys the object under consideration.

When v is continuously observed and its support is an interval, we are in the case studied by

Lewbel (2000) or Magnac and Maurin (2007), and β is point identified. In contrast, when v is

not observed continuously5, the set B3 of observationally equivalent parameters is not a singleton

anymore.

To be more specific, assume that the data are characterized by (y, v, v∗, x) but that only

(y, v∗, x) is observed where v∗ is the result of censoring v by interval. The support of v∗ is

denoted {1, ..., K − 1} and the support of v conditional on v∗ = k is denoted [vk, vk+1).

In such a case, parameter β belongs to B3 if and only if there is (1) a latent distribution func-

tion of v conditional on (v∗,x) and (2) a latent random variable ε uncorrelated with x, indepen-

dent of v conditional on x and satisfying Supp−(xβ + ε) ⊂ Supp(v), such that the latent model

(β, Fε(. | x)) generates the observed conditional probability of success Prob(y = 1 | x, v∗).

Specifically, denoting ȳ =
vv∗+1−vv∗

pv∗ (x)
y − vK we have,

Proposition 3 (Magnac and Maurin, 2008) Consider β a vector of parameter and Pr(y = 1 |
v∗, x, z) (denoted Gv∗(x, z)) a conditional distribution function which is non decreasing in v∗.

The two following statements are equivalent,

(i) β ∈ cl(B3)

5As noted by Lewbel, Linton and McFadden (2006), virtually all existing contingent valuation datasets draw
bids from a discrete distribution. In other datasets, it is often the case that variables are censored by intervals.
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(ii) there exists a function u(x) taking its values in I∗(x) = [∆∗(x), ∆
∗
(x)] where (by con-

vention, G0(x) = 0, GK(x) = 1),

∆
∗
(x) =

∑

k=1,...K−1

(Gk+1(x)−Gk(x))(vk+1 − vk),

∆∗(x) = −
∑

k=1,...K−1

(Gk(x)−Gk−1(x))(vk+1 − vk),

and such that,

E(xT (xβ − ȳ)) = E(xT u∗(x)). (6)

Note that in this case, the definition interval of u(x) is asymmetric, contrary to the previous

examples and contrary to what happens if the distribution of v is discrete (Magnac and Maurin,

2008).

Generally speaking, it is also very easy to see that the moment condition E(xT ε) = 0 can be

easily replaced by the generalized moment condition E(zT ε) = 0 where z are some instruments.

It comes at no cost by replacing x by z in the moment condition (for instance, equation (6)).

2.4 The Set-up of Incomplete Linear Models

In this paper, we shall analyze the identification and estimation of parameters satisfying what we

call an incomplete linear model (denoted ILM) given by incomplete linear moment conditions:

E(zT (xβ − y)) = E(zT u(z)), (7)

where u(z) is any measurable function which takes values in an admissible set I(z) = [∆(z), ∆(z)]

where ∆(z) < 0 < ∆(z). We also assume that there exist two observable variables, y and y such

that:

E(y − y | z) = ∆(z), E(y − y | z) = ∆(z). (8)

These variables are easy to construct in examples 1, 2 and 3 that were developed above (See

Appendix A.3). Moreover, in the case of Manski and Tamer (2002), where y is observed by

interval only, the lower and upper bounds y and y are part of the dataset and so explicitly given.

Where they are not easy to construct, the methods that we will propose are more computationally

challenging.

We also assume the following regularity conditions:

Assumption R(egularity):
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R.i. (Dependent variables) y, y and y are scalar random variables.

R.ii. (Covariates & Instruments) The support of the distribution, Fx,z of (x, z) is Sx,z ⊂
Rp×Rm. The dimension of the set Sx,z is r ≤ p+m where p+m− r are the potential overlaps

and functional dependencies.6. Furthermore, the conditions of full rank, rank(E(zT x)) = p,

and rank(E(zT z)) = m hold.

R.iii. The random vector (y, y, y, x, z) belongs to the space L2 of square integrable variables.

Along with equation (7), assumptions R.i − ii defines the linear model where there are p

explanatory variables and m instrumental variables (assumption R.ii). Assumption R.ii, allows

for having the standard exogenous case x = z as a particular case. Assumption R.iii implies

in particular that all cross-moments and regression parameters are well defined. In particular, it

implies that, because of equation (3), we have:

∆M = E(max(∆(z)2, ∆(z)2)) < +∞,

which will be shown in the next section to imply that the set of identified parameters is bounded.

3 The Identified Set of Structural Parameters

This section provides a detailed description of B, the set of observationally equivalent parame-

ters, β, satisfying the incomplete linear model above (ILM). We first focus on the case where the

number of instruments z is equal to the number of variables x (the exogenous case z = x being

the leading example). Second we show how the results can be extended to the case where the

number of instruments z is larger that the number of explanatory variables, x.

3.1 No Moment Conditions in Surplus

When the number of instruments is equal to the number of variables, the assumption (R.ii) that

E(zT x) is full rank implies that equation (7) has one and only one solution in β for any function

u(z). The set of identified parameters, B, is the collection of such parameters when function

u(z) varies in the admissible set:

B = {β : β = (E(zT x))−1E(zT (y + u(z))), u(z) ∈ [∆(z), ∆(z)]}. (9)
6With no loss of generality, the p explanatory variables x can partially overlap with the q ≥ p instrumental

variables z. Variables (x, z) may also be functionally dependent (for instance x, x2, log(x),...). A collection
(x1, ., xK) of real random variables is functionally independent if its support is of dimension K (i.e. there is no set
of dimension strictly lower than K whose probability measure is equal to 1).
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We first look at general properties of existence, convexity and boundedness. We continue by

sharply characterizing the identified set.

3.1.1 Geometric and Topological Properties of the Identified Set

They are summarized in:

Proposition 4 The identified set B is non empty, closed, convex and bounded in Rp. It contains

the focal value β∗ defined as:

β∗ = E(zT x)−1E(zT y)

and any β ∈ B satisfies,

(β − β∗)T W (β − β∗) ≤ ∆M = E(max(∆(z)2, ∆(z)2)) < ∞,

where W = E(xT z)(E(zT z))−1E(zT x).

Proof. See Appendix B.1.

Proposition 4 shows that B lies within an ellipsoı̈d whose size is bounded by ∆M in the

metric W . The maximum-length index, ∆M , can be taken as a measure of distance to point

identification. Indeed, we can show that:

lim
∆M→0

B = {β∗}, (10)

and point identification is restored.

The key result in Proposition 4 is that B is convex because, as such, B can be unambiguously

characterized by its support function. For any vector q ∈ Rp, the support function of a set B is

defined as:

δ∗(q | B) = sup{qT β | β ∈ B}.

Given that support functions are linear homogenous of degree 1, it is sufficient to define them

for any vector q belonging to the unit sphere of Rp i.e. S = {q ∈ Rp; ‖q‖ = 1}. In our specific

case, the support function defined over S is bounded because B is bounded.

Conversely, convex sets are completely characterized by their support function (for instance,

Proposition 13.1 of Rockafellar (1970)).7 Convex set B is sharply characterized by:

β ∈ B ⇔ ∀q, ‖q‖ = 1, qT β ≤ δ∗(q | B).

7Beresteanu and Molinari (2006) also use this property in order to apply the theory of random set variables.
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Therefore, the issue of identification of B becomes equivalent to the issue of identifying the

support function, δ∗(q | B).

3.1.2 The Support Function

We now show that the support function of B can be written as a function of simple moments of

the data.

Let q a element of the unit sphere S ⊂ Rp i.e. ‖q‖ = 1. Consider Q an orthogonal matrix

of dimension [p, p] whose last column is vector q. It can be written Q = (Q0, q) where Q0 is a

matrix of dimension [p, (p−1)].8 By definition, it satisfies QQT = QT Q = I and we can always

write:

xβ = xQ.QT β = sβQ

where s = xQ and βQ = QT β. The p-th component of βQ is the scalar, qT .β, which is the coef-

ficient of the p-th explanatory variable, x.q. By definition, the support function in the direction

of q, is the supremum of qT .β when β ∈ B.

Most interestingly, qT .β can now be interpreted as the coefficient of the single-dimensional

variable x.q in the regression of y + u(z) on s, using characterization (9). The natural tool for

identifying a single coefficient in a regression is the Frisch-Waugh theorem (Davidson and McK-

innon, 2004, for instance). The value of the support function at q is obtained by taking the supre-

mum of the set of all these single-dimensional coefficients when u(z) varies in [∆(z), ∆(z)],

which leads to,

Proposition 5 Define

zq = z.E(xT z)−1.q, wq = 1{zq > 0}y + 1{zq < 0}y.

The support function of B is equal to:

δ∗(q | B) = E(zqwq).

The interior of B is not empty and:

βq = E(zT x)−1E(zT wq)

is a frontier point of B such that δ∗(q | B) = qT βq.

8There are several ways to define Q0 albeit it has no consequence in the following. One way to make it unique
is to define Q as the unique rotation in Rp which maps the last basis vector (0, ..., 0, 1) into q.
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Proof. See Appendix B.2

This proposition sharply characterizes B. The support function is defined everywhere be-

cause of assumption (R.iii) that all cross-moments are well defined.

Many interesting properties that we derive in the following, depend on the following Lemma.

This result is a consequence of the fact that set B is bounded and convex so that its support

function δ∗(q | B) is bounded and convex.

Lemma 6 The support function δ∗(q | B) is differentiable on S and its derivative is:

∂δ∗(q | B)

∂qT
= E(zT x)−1E(zT wq) = βq,

This derivative is continuous except at a countable number of points. These points are defined

as:

Df = {q ∈ S; Pr(zq = 0) > 0}.

Proof. See Appendix B.

Note that the expression of the derivative results from an envelope theorem since the support

function is obtained as the supremum of a linear expression over a convex set.

3.1.3 Implementing the Construction of B

To construct B in practice, we would choose L vectors ql for which we can derive L frontier

points βql
using proposition 5 and we would construct:

BL = ∩ql:‖ql‖=1{β : qT
l β ≤ qT

l βql
}.

By construction B ⊂ BL and it is straightforward to show that the Hausdorf distance between

these sets

d(B, BL) = sup
q;‖q‖=1

∣∣δ∗(q | B)− δ∗(q | BL)
∣∣

converges to 0 when L tends to infinity provided that {ql}l=1,.,L are appropriately chosen so that:

sup
q;‖q‖=1

min
l
‖q − ql‖ → 0.

Alternatively, the convex hull, BL, of the L frontier points, βql
, is included in the convex

set B and the Hausdorf distance between these sets d(B, BL) converges to 0 when L tends to

infinity provided that {ql}l=1,.,L are appropriately chosen.

These two approximations provide a sandwich-type procedure for constructing B:

BL ⊂ B ⊂ BL.
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3.1.4 Geometric Properties of the Frontier of the Identified Set

The identified set B is a non empty convex set. Its frontier can thus have two peculiar character-

istics, flat faces and kinks whose existence we now investigate:

Proposition 7 i). The frontier of set B has a flat face, orthogonal to vector q, if:

Pr(zq = 0) > 0.

The converse is generically true (under a condition on the support of z).

ii). The frontier of set B has kinks if and only if there exist q and r 6= q such that:

Pr(zq > 0, zr < 0) = Pr(zq < 0, zr > 0) = 0

Proof. See Appendix B

One leading example of kinks and faces corresponds to the regression of an outcome observed

by intervals on a constant and a dummy explanatory variable. One such example is analyzed in

Section 5.3.

3.2 Supernumerary Moment Conditions

Suppose now that z is a random vector of dimension m > p, the dimension of covariates x. For

reasons that will become clearer later, we rewrite the incomplete linear moment conditions (7)

as:

E(zT x)β = E(zT (y + u(z))). (11)

Regarding the general properties, it is straightforward to show that B, the set of observation-

ally equivalent parameters β, is still closed, convex and bounded. The first two properties can be

shown as in Proposition 4 using the fact that the moment conditions are linear and the admissible

set I(z) is closed and convex. To show that B is bounded, select p instruments out of the possible

m ones and construct the corresponding identified region as in the previous section. The true

identified set is included in this identification region which is bounded by Proposition 4. These

results are summarized by:

Lemma 8 B is closed, convex and bounded.

Obviously the additional difficulty with respect to the case in which (m = p) is that set B

could be empty. In the next sub-section, we derive a necessary and sufficient condition which

generalizes the usual over-identifying condition à la Sargan.
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3.2.1 The Validity of Supernumerary Moment Conditions

As some moment conditions are in surplus, we decompose equation (11) into two subsets:

Lemma 9 We can write m× 1 random vector z as a linear combination of two sets of variables

zF and zH of respective dimensions, p and m− p, such that equation (11) is equivalent to:

E(zT
F x)β = E(zT

F (y + u(z))) (12)

0 = E(zT
H(y + u(z))) (13)

Additionally:

E(zT
F zF ) = Ip, E(zT

HzH) = Im−p, E(zT
F zH) = 0p,m−p.

Proof. See Appendix B

Interestingly enough, the second equation does not depend on β anymore and the first equa-

tion identifies a set. It follows that B is non empty if and only if there is u(z) in I(z) such

that

E(zT
H(y + u(z))) = 0 (14)

where the normalized random vector zH may be interpreted as the vector of supernumerary

instruments.

Denote BSargan the identified set of parameters of the incomplete regression of y on these

supernumerary instruments zH ,i.e.:

BSargan = {γ : γ = E(zT
H(y + u(z))), u(z) ∈ [∆(z), ∆(z)]} ⊂ Rm−p. (15)

The adapted Sargan condition means simply that BSargan contains the point γ = 0, that is

Om−p, the origin point of Rm−p.

Proposition 10 The two following conditions are equivalent:

i. B is not empty,

ii. BSargan 3 Om−p.

Proof. Using the previous developments.

This condition is a simple extension of the usual overidentification restriction. When moment

conditions are complete, the set of admissible u(z) is reduced to 0 and the set BSargan is reduced to
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the point E(zT
H .y). The Sargan or J-test then consists in testing Om−p ∈ BSargan = {E(zT

H .y)} or

equivalently that E(zT
Hy) = 0. In the next section of the paper, we construct a general test for the

assumption H0 : β0 ∈ B, when B is the identified region of an incomplete moment regression.

It will provide us with a direct way for testing the Sargan condition given in Proposition 10.

3.2.2 Geometric and Analytic Characterization of the Identified Set

Assuming that the moment conditions are valid, the next issue is to provide a characterization of

B and of its support function. The identified set B is defined by the general moment conditions:

E(zT (xβ − y)) = E(zT u(z)),

subject to u(z) ∈ [∆(z), ∆(z)].

This program can be rewritten by introducing auxiliary parameters, γ, as:
{

E(zT (xβ + zHγ − y)) = E(zT u(z))
γ = 0

under the same constraint for u(z). Let BU (U for unconstrained) be the set of (β, γ) satisfying

the relaxed program,

E(zT (xβ + zHγ − y)) = E(zT u(z)),

subject to u(z) ∈ [∆(z), ∆(z)].

An interesting feature of this definition of BU is that the number of explanatory variables is equal

to the number of moment conditions, and no more moments are in surplus. The support function

of BU can then be characterized using Proposition 5. Also, we can build on BU to provide a very

simple geometric characterization of B:

Lemma 11 The identified set B is the intersection of BU and the hyperplane defined by γ = 0

(see Figure 4).

Proof. Straightforward.

This intersection is not empty under the condition of Proposition 10, i.e., BSargan 3 Om−p,

that we shall assume from now on.

We can use general solutions for finding the support function of the intersection of convex

sets. The geometric intuition is quite easy to grasp. The intersection of BU and γ = 0 is always
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included in the projection of BU onto the hyperplane γ = 0 using any projection direction. As

the identified set is an intersection, its support function can be expressed as the minimum of

support functions of the unconstrained set BU . The analytic characterization of the identified set

is indeed given by:

Proposition 12 Let q a vector of Rp and (q, λ) a vector of Rm. We have:

δ∗(q | B) = inf
λ

δ∗((q, λ) | BU)). (16)

and the infimum is attained at a set of values, λm(q).

Proof. Rockafellar (1970) and Appendix B

The meaning of λm(q) is the following. For any point βf ∈ ∂B, the frontier of B, there

always exists one projection direction such that the projection of BU onto γ = 0 into this direc-

tion, admits βf as a frontier point. This projection direction, described by λm(q), is simply the

tangent space (not necessarily unique) of BU at βf .

Note also that, the specific orthogonal projection of BU onto γ = 0 is:

{
β ∈ Rp, ∃ u(z) ∈ [∆(z), ∆(z)], β = E(zT

F (y + u(z)))
}

,

the set of unconstrained solutions to equation (12). It contains set B because the function u(z)

should also satisfied equation (13). Supernumerary restrictions reduce the size of the identified

set.

3.2.3 The Example of a Single Supernumerary Instrument

When there is only one supernumerary instrument, zH is a real random variable and:

E(zH(y + u(z))) = 0

where u(z) ∈ [∆(z), ∆(z)]. The necessary and sufficient condition, O ∈ BSargan, is equivalent

to:

E(zHy) ∈ [U,U ],

U = E(|zH | (1{zH > 0}∆(z)− 1{zH < 0}∆(z)))

U = E(|zH | (1{zH > 0}∆(z)− 1{zH < 0}∆(z))).

19



Testing overidentification boils down to testing that (E(zHy)−U)(E(zHy)−U) is negative.

When O is on the frontier of BSargan (say ∂BSargan), we have either E(zHy) = U or E(zHy) =

U. For instance, assume that E(zHy) = U . Assuming that the instrument zH is absolutely contin-

uous, there is a unique uq(z) satisfying the supernumerary condition (Equation 14). It is defined

as

uH(z) = 1{zH > 0}∆(z)− 1{zH < 0}∆(z).

In that specific case, exact identification is restored since the parameter of interest is defined

uniquely by:

E(zT
F (xβ − y)) = E(zT

F uH(z)).

The next subsection extends this result to the general case.

3.2.4 Supernumerary Moment Conditions as a Way to Restore Point Identification

We shall consider the implication of the condition that O ∈ BSargan on functions u(z) and conse-

quently on the construction of the identified set B. First, when Om−p ∈ int(BSargan), functions

that satisfy the Sargan condition (14) cannot be unique. We continue to have set identification

where B has a non empty (possibly relative) interior.

More interesting cases arise when Om−p belongs to the frontier of BSargan i.e. Om−p ∈
∂BSargan. Recall also that, by definition (15), BSargan is constructed as the set of solutions to

the incomplete linear moment conditions:

E(zT
H(zHγ − y)) = E(zT

Hu(z)),

where u(z) ∈ [∆(z), ∆(z)]. We can therefore apply Proposition 7 to BSargan to characterize the

geometric properties of its frontier.

Consider first that Om−p belongs to a face of BSargan and let qO the vector of Sm−p, orthogonal

to this face. By Proposition 7 Pr {zHqO
= 0} > 0 and the generating function uSargan

qO
(z) is not

unique. The identified set B is generically not reduced to a singleton. In contrast, if Om−p is

not on a face of BSargan, uSargan
qO

(z) is unique when qO is the vector, orthogonal to the supporting

hyperplane of BSargan at Om−p. By Proposition 7 (ii), it is true whether qO is unique or not (i.e.

BSargan has a kink at Om−p). In consequence, the set B is reduced to a singleton generated by

such a function:

β = (E(zT
F x))−1(E(zT

F (y + uSargan
qO

(z)))).
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We summarize this result in:

Proposition 13 If O belongs to the frontier ∂BSargan albeit not to a face of BSargan, point identi-

fication of β is restored.

4 Estimation and Inference

This section provides a description of how we estimate the support function of B, how we test

hypotheses of interest and how we construct confidence intervals. We provide asymptotic prop-

erties of our estimators and tests. We start with analyzing estimation in the case of no supernu-

merary moment conditions, continue with inference and finish with the case of supernumerary

moment conditions.

4.1 Consistent and Asymptotically Normal Estimation: No Supernumer-
ary Moment Conditions

We will deal only with samples i = 1, ., n, where (yi, yi
, yi, xi, zi) is independently and iden-

tically distributed although proofs could be adapted to non identical distributions and some de-

pendent cases. In this section, we provide an estimate of the support function of set B using the

central result of Proposition 5 :

δ∗(q | B) = E(zqwq). (17)

where:

zq = z.E(xT z)−1q = qT .E(zT x)−1zT .

The second equality comes by transposition and using that zq is a random scalar.

To apply the analogy principle and construct an estimate, we define Σ̂n as a cross-moment

empirical analogue to E(xT z)−1.9 Define also for any i = 1, ., n:

zn,qi = zi.Σ̂n.q

wn,qi = 1{zn,qi > 0}yi + 1{zn,qi < 0}y
i
.

to construct the estimate:

δ̂∗n(q | B) =
1

n

∑
zn,qi.wn,qi = qT .Σ̂T

n

(
1

n

∑
zT

i .wn,qi

)
.

9See Appendix C for the exact definition where the usual empirical estimate is trimmed to make it bounded.
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the empirical analog of equation (17).

Let CD(S) be the set of continuously differentiable functions except at a countable number

of points, defined on S associated with the supremum distance (or Hausdorff if these functions

are support functions):

d(φ1, φ2) = sup
‖q‖=1,q∈Rp

|φ1(q)− φ2(q)|.

Then (CD(S), d) is a complete and separable metric space which simplifies the measurability

issues that we shall simply ignore in the following (van der Vaart and Wellner, 1996).

We first state the results about consistency under very usual conditions (White, 1999, p35).

Assumption C:

E(|xT z|1+γ) < M < ∞, E(|zT y|1+γ) < M < ∞, E(|zT y|1+γ) < M < ∞, for some

γ > 0.

Proposition 14 Let Assumption C. Then, the estimator of the support function is, uniformly over

S, strongly consistent:

δ̂∗n(q|B)
a.s.u.→ δ∗(q|B).

Proof. See Appendix C.

A sketch of the proof is the following. We first start from the case where Σ, the moment

matrix, is known. We then show that any function, zqwq, appearing within the expectation,

belongs to a parametric class as a function of Σ and q. Under condition C and the boundedness

assumption, this class is a Glivenko-Cantelli class and the uniform consistency result applies.

Second, we replace parameter Σ by a consistent estimate and show consistency using results for

parametric classes (van der Vaart, 1998).

For inference, we use the uniform version of a central limit theorem. Consider the stochastic

process defined on S :

τn(q) =
√

n

(
1

n

∑
zn,qi.wn,qi − E(zqwq)

)

=
√

n
(
δ̂∗n(q|B)− δ∗(q|B)

)
.

and assume the usual conditions (White, 1999, p118):

Assumption AN: E(|zT y|2+η) < M < ∞, E(|zT y|2+η) < M < ∞ for some η > 0.
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Proposition 15 Under Assumptions C and AN, τn(q) tends uniformly in distribution when n

tends to ∞ to a Gaussian stochastic process, τ(q), or Gaussian random system such that:

E(τ(q)) = 0

Cov(τ(q)τ(r)) = E(xqεqxrεr)− E(xqεq)E(xrεr)

where r is another direction in Rp, ‖r‖ = 1 and where:

εq = wq − xβq.

Proof. See Appendix C.

A sketch of the proof is the following. As for consistency, we start from the case where Σ, the

moment matrix, is known and from the fact that zqwq form a parametric class as a function of Σ

and q. Under condition AN and the boundedness assumption, it thus forms a Donsker class and

the asymptotic result applies. Second, we replace parameter Σ by a consistent estimate and show

convergence in distribution using standard results for parametric classes (van der Vaart, 1998).

The same argument as for point identification is used and this explains why the distribution of the

estimate of Σ does not play any rôle in the asymptotic distribution of the estimates (see Appendix

C.1.3).

This section provides estimates of the support function of interest, as limit of Gaussian sto-

chastic processes defined on the unit sphere. An alternative approach would require to rewrite

B as the (Aumann) expectation of a set valued random variable and to use the recent contri-

bution of Beresteanu and Molinari (2006) to construct a sample analog B̂n of B, such that the

Haussman distance
√

nH( B̂n,B) converges to a Gaussian system. In fact, the two settings are

equivalent, even though the formalism and the proofs are different. By Hörmander’s embedding

proposition, the set of convex and compact set-valued random variables defined in Rp is actu-

ally homeomorphic to the set of Gaussian stochastic processes with continuous sample paths

(Beresteanu and Molinari, 2006, Molchanov, 2003). We think, however, that working directly

on stochastic processes defined on the unit sphere, as we do, is more adapted to our specific

set-up, if only because the support function of interest can be defined by very simple moment

conditions10. More importantly, we will see that our approach is easily extended to the more

difficult case where there are supernumerary instruments.
10In Appendix C.1.4, we explain why our approach provides us with an expression of the covariance function

Cov(τ(q)τ(r)) which is a simplification of what is provided by Beresteanu and Molinari (2006).
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4.2 Tests

We propose here a test of the null hypothesis H0 : β0 ∈ B, which is not conservative. Its

level is asymptotically equal to a given value α. It is worth noting that the test proposed here

is asymptotically pivotal. We could therefore increase the finite sample properties of the test by

bootstrapping it. We first rewrite the null hypothesis in terms of support functions and consider

its empirical analogue. We then derive its asymptotic distribution under the null and different

alternatives.

As B is a convex set, an alternative characterization of the null hypothesis is (see above and

Rockafellar, 1970):

∀q, ‖q‖ = 1, T∞(q; β0) = δ∗(q|B)− qT β0 ≥ 0.

The least favorable case under H0, is given by β0 ∈ ∂B, the frontier of B. In such a case there

exists q0 such that T∞(q0; β0) = 0, the minimum value of T∞(q; β0) over S. Let Q0 the set of all

such minimizers:

Q0 = arg min
q∈S

T∞(q0; β0).

For any other direction q ∈ S which does not belong to Q0:

T∞(q; β0) > 0 (18)

Let:

Tn(q; β0) = δ̂∗n(q|B)− qT β0

For any q0 ∈ Q0, proposition 15 tells us that,

√
nTn(q0; β0) =

√
n(δ̂∗n(q0|B)− qT

0 β0)

is asymptotically normally distributed with variance Vq0 = qT
0 ΣT V (zT εq0)Σq0. Yet, as q0 in Q0

are unknown, we have to replace it by an estimate defined by analogy as:

qn ∈ arg min
q∈S

Tn(q; β0).

The test that we propose, is based on the statistic Tn(qn; β0) and uses the following result:

Proposition 16 If β0 ∈ ∂B,

√
nTn(qn; β0) −→

n→∞
N (0, Vq0).

Moreover, Vq0 is consistently estimated by V̂n = qT
n Σ̂T

n V̂ (zT εqn)Σ̂nqn.
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Proof. See appendix C.2

The sketch of the proof is the following. First,
√

nTn(qn; β0) is the sum of two terms that can

be handled separately:

√
nTn(qn; β0) =

√
n (Tn(qn; β0)− Tn(q0; β0)) +

√
nTn(q0; β0). (19)

By proposition 15, the second term is asymptotically normally distributed with variance Vq0 .

The first term is related to the uncertainty associated to the estimation of the direction q0 by qn.

This term is always negative because qn is a minimizer of it and its asymptotic distribution is

non standard. As q0 and qn are minimizers, qn is a superconsistent estimate of q0 and replacing

q0 by qn has no influence on the asymptotic distribution to the first order. Moreover, one can

estimate the variance by the empirical estimator taken at the estimated parameter. Note that the

proposition is valid regardless of whether the directions q which minimize Tn(.; β0) or T∞(.; β0)

are unique or not (i.e., regardless of whether β0 is at a kink of B or not). What matters is not the

uniqueness of the solution to the minimization problems but the uniqueness of the value of the

criterion function.

Let us now examine alternative cases in which β0 ∈ Int(B) or β0 /∈ B. When β0 ∈
Int(B), ∀q ∈ S, T∞(q; β0) > 0, and when β0 /∈ B, there exists at least one direction q such that

T∞(q; β0) < 0. Thus, for β0 ∈ Int(B) (using the compacity of the unit sphere)

inf
q∈S

T∞(q; β0) > 0,

and, for β0 /∈ B:

inf
q∈S

T∞(q; β0) < 0.

In consequence, when β0 is not on the frontier of B, Tn(qn; β0) is either strictly positive or

strictly negative, for n large enough. Combining this result with Proposition 15 yields:

Proposition 17 Let β0 ∈ Rd and

ξn(β0) =
√

n
Tn(qn; β0)√

V̂n

where Tn(.; β0) is the empirical estimator of T∞(.; β0), qn minimizes Tn(.; β0) on the unit sphere

and V̂n = qT
n Σ̂T

n V̂ (zT εqn)Σ̂nqn is a consistent estimator of Vq0 .

Then, if β0 ∈ ∂B,

ξn(β0)
d−→

n→∞
N (0, 1),
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if β0 ∈ int(B),

ξn(β0)
a.s.−→

n→∞
+∞

and if β0 does not belong to B,

ξn(β0)
a.s−→

n→∞
−∞.

Proof. See Appendix C.3.

We can construct a critical region with asymptotical level α for three different tests (Nα

denotes the α-quantile of the standard normal distribution):

• Test 1: H0 : β0 ∈ B against Ha : β0 /∈ B. The critical region W 1
n(α) is defined by:

W 1
n(α) = {β0 ∈ Rd, ξn(β0) < Nα}

• Test 2: H0 : β0 /∈ B against Ha : β0 ∈ B. The critical region W 2
n(α) is:

W 2
n(α) = {β0 ∈ Rd, ξn(β0) > N1−α}

• Test 3: H0 : β0 ∈ ∂B against Ha : β0 /∈ ∂B. The critical region W 3
n(α) is:

W 3
n(α) = {β0 ∈ Rd, |ξn(β0)| > N1−α

2
}

We are specifically interested by the first test. The third one is also of practical interest

for testing whether supernumerary instruments help in recovering point identification (i.e., for

testing O ∈ ∂BSargan).

4.3 Confidence Regions

By inverting the first test developed previously with a level of significance equal to α, we can

construct confidence regions of nominal size asymptotically equal to 100 − 100α %. Lehmann

(1986, Chapter 3) defines the confidence region CIn
α as the collection of parameters β ∈ Rd

for which the null hypothesis is rejected i.e. which does not belong to W 1
n(α). The following

proposition expresses this statement and Appendix C.4 provides a simple way of constructing

the confidence region.

Proposition 18 Let α be a significance level, and let CIn
α be the set of points of Rd such that

ξn(β) > Nα:

CIn
α =

{
β ∈ Rd s.t ξn(β) > Nα

}
.

26



Then,

lim
n→+∞

inf
β∈B

Pr (β ∈ CIn
α) = 1− α.

The limit expressed in the proposition is valid for a fixed data generating process leading to

the identification of a set B which is not a singleton. It is not uniformly valid for all data gener-

ating processes even if they satisfy the condition, under which we work, that the corresponding

identified set B has a non-empty interior. As a consequence, the confidence interval is not uni-

formly asymptotically of nominal size equal to (1 − α). When the set is arbitrarily close to a

singleton in a sense made precise below, the nominal size tends to 1−2α. In a context of interval

estimation, Imbens and Manski (2004) propose another construction which is uniformly valid.

More recently, Stoye (2007) clarified the conditions under which this result can be obtained.

What we show now is that it can be adapted to our set-up.11.

In our framework, the analogue of the length of the interval ∆ in Imbens and Manski (2004)

and Stoye (2007) is the maximal thickness of set B in any direction, that is, the maximum of

δ(q|B) + δ(−q|B) on the unit sphere.12 Assumption Rii ensures that this parameter is strictly

positive and that the estimated set is almost surely non empty (see also Appendix B.2).

The empirical counterpart ∆̂n of the maximal thickness of set B is:

∆̂n = max
q∈S

(
δ̂∗n(q|B) + δ̂∗n(−q|B)

)
. (20)

Because it is a maximum, ∆̂n is a superefficient estimator of ∆, i.e.

√
n

(
∆̂n −∆

)
P−→

n→∞
0,

using a proof analogue to the one developed in Proposition 16.

The next proposition provides an extension of Lemma 4 of Imbens and Manski (2004) in the

multivariate case for constructing a uniform confidence region:

Proposition 19 Let

σ̂n =

√
V̂qn =

√
qT
n Σ̂nV̂ (zT εqn)Σ̂nqn,

where qn is the argument of the maximum of equation (20).
11Stoye also extends the construction of the confidence region to the case in which the estimated size is not a

superefficient estimator of the true one although it remains asymptotically normal. In a more general case, Andrews
and Guggenberger (2007) focus on the construction of confidence regions using subsampling techniques when the
assumption of asymptotic normality is no longer valid.

12It is indeed a maximum because of the compacity of the unit sphere.
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A confidence region C̃I
n

α of asymptotic level equal to 1−α is defined by the collection of the

points such that ξ(β) ≥ Ñ1−α where Ñ1−α satisfies the equation

Φ

(
Ñ1−α +

√
n

∆̂n

σ̂n

)
− Φ(−Ñ1−α) = α.

lim
n→+∞

inf
β∈B,∆≥0

Pr
(
β ∈ C̃I

n

α

)
= 1− α.

4.4 Consistent and Asymptotically Normal Estimation: Some Supernu-
merary Conditions

We use the characterization given by Proposition 12 and equation (16). If q is a vector of Rp and

(q, λ) a vector of Rm, we have:

δ∗(q|B) = inf
λ

δ∗((q, λ)|BU)).

and the infimum is attained at a set of values, λm(q).

Let δ̂∗n((q, λ)|BU) the estimate of δ∗n((q, λ)|BU) as derived in Section 4.1 and such that, by

Proposition 14:

δ̂∗n((q, λ)|BU)
a.s.u.→ δ∗n((q, λ)|BU),

and, by Proposition 15:

τU
n ((q, λ)) =

√
n(δ̂∗n((q, λ)|BU)− δ∗n((q, λ)|BU))

converges to a Gaussian process when n tends to infinity.

For any q, define:

λ̂n ∈ arg min
λ

δ̂∗n((q, λ)|BU)

as it was developed quite similarly in Section 4.2. Define:

δ̂∗n(q|B) = δ̂∗n((q, λ̂n)|BU) = min
λ

δ̂∗n((q, λ)|BU).

The same kind of proof than in Sections 4.1 and 4.2 then applies. As the estimation of λ̂n is

superconsistent, it does not affect consistency and asymptotic normality of the support function

estimates.
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Proposition 20 Under the respective conditions C and AN we have:

δ̂∗n(q|B)
a.s.u.→ δ∗n(q|B),

and:

τn(q) =
√

n(δ̂∗n(q|B)− δ∗n(q|B))

converges to a Gaussian process when n tends to infinity.

5 Monte-Carlo Simulations of Testing Procedures

In this section, we develop three simple experiments to assess the performance of our inference

and test procedures. In these experiments, the dependent variable is bounded and censored by

intervals, as in the first example of Section 2 and we focus on the case where the identified set

is of dimension 2 for simplicity. In the first two experiments, the identified set is smooth and

strictly convex since the frontier of the identified set has no kinks and no faces. In the first

experiment, the number of instruments is the same as the number of parameters while we use

one supernumerary instrument in the second experiment. We explore the case of an identified set

that has kinks and faces in the third experiment.

5.1 Smooth and Strictly Convex Sets

Consider the model:

y∗ = 0.x1 + 0.x2 + ε,

where xT = (x1, x2)
T is a standard normal vector while ε is independent of x and uniformly

distributed on [0, 1]. As a consequence, the true value of β is (0, 0)T . We assume that y∗ is

observed by intervals, as in Example 1 of Section 2, where there are K such intervals (Ik =

[k/K; (k + 1)/K], k = 0...K − 1).

In Appendix D.1, we show that the support function of the identified set B boils down to a

constant :

δ∗(q | B) =
2∆√
2π

where ∆ = 1
2K

is equal to the half length of the intervals. In other words, the identified set B is a

circle whose radius is 2∆√
2π

(see Figure D.3). When the number of intervals, K, tends to infinity,

∆ tends to 0 and the identified set shrinks to a singleton.
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5.1.1 Set Estimation

We draw 1000 simulations of the model for four different sample sizes : n =100, 500, 1000 and

2500. For simplicity, the number of intervals, K, is hold constant and equal to 2. We investigated,

in practice, that the results are robust for larger values of K. Figure 5 displays the true support

function δ∗(q | B) as well as the mean (dashed line) and quartiles of the distribution of δ̂∗n(q | B),

when q varies over the unit sphere. Even for small sample size, the identified set is well estimated

and unsurprisingly, the interquartile interval decreases when the sample size increases.

By Proposition 15,
√

n
(
δ̂∗n(q | B)− δ∗(q | B)

)
= τn(q) is asymptotically normally dis-

tributed. Table 8 reports a normality test (see Bontemps and Meddahi, 2005) of τn(q0) when

q0 = (1, 0), for the four sample sizes. The normal approximation is not rejected at the 5% level,

except in the smallest sample, n =100.

5.1.2 Testing Procedures

We now study the performance of the three test procedures developed in Section 4.2.

Let β0 = 0 be the center of B and let βr a point on a ray such that the distance between 0

and βr is equal to r times the value of the radius of B. As B is a circle around the true value

β0 = 0, this procedure and definitions are valid for any ray. Moreover, βr belongs to B if and

only if r ≤ 1 and β1 belongs to the frontier. For r varying stepwise from 0 to 3, Table 1 reports

the rejection frequencies at a 5% level of 3 different tests; Whether βr belongs to B against the

alternative that it does not (Test 1); whether it does not belong to B (Test 2); whether it belongs

to the frontier of B against the alternative that it does not (Test 3). The results that correspond to

the frontier point (r = 1) are reported in bold.

The main conclusion of these experiments is first that the size of the three tests is very ac-

curate and remain very close to 5% even for n = 100. Unsurprisingly, the power of the tests

increases with the sample size, yet, it remains very good even for small sample sizes.

5.2 Smooth set with one supernumerary instrument

The simulated model is the same as before although we now assume that the second explanatory

variable x2 is expressed as:

x2 = πe2 +
√

1− π2e3
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where (e2, e3) are i.i.d. standard normal variables. Moreover let w = νe3+
√

1− ν2e4 be another

variable where e4 is i.i.d. standard normal. Parameter π (respectively ν) measures the strength

of the correlation between x2 and e2 (respectively w).

We assume in this part that we use x1, e2 and w for estimating the set B instead of x1 and x2.

We have therefore one supernumerary instrument.

When q = (cos θ, sin θ)T , the support function (see Appendix D.2 for further details) can be

expressed as:

δ∗(q | B) =
2∆√
2π

√
cos2 θ +

sin2 θ

π2 + ν2(1− π2)

Observe that when ν = 1, the set B is the same than in the previous example due to the fact

that the knowledge of e2 and w gives all the information on x2. Moreover when π and ν are

strictly positive but strictly lower than 1, there is some information loss due to the use of e2 and

w instead of x2. Set B is therefore stretched along the second axis. Figure D.3 displays set B

when π = ν = 0.6.

As before, we draw 1000 simulations of the model for four sample sizes : n =100, 500, 1000

and 2500. For each draw, we estimate B and implement the three tests as defined in Section 4.2.

Figure 6 displays set B as well as the mean and quartiles of the estimated sets for the four

sample sizes. Tables 2 displays the percentage of rejections for the three tests for different points

along a radius.

As before, the estimation and test procedures work well and there is no significative distortion

while using supernumerary instruments in the estimation and test procedures.

5.3 A set with kinks and faces

In this experiment, the explanatory variable has mass points (so that the identified set has faces)

and its support is discrete (so that the identified set has kinks). The simulated model is:

y∗ =
1

2
+

x

4
+ ε

where x is equal to−1
2

with probability 1
2

and to 1
2

with probability 1
2

and where ε is independent

of x and is uniformly distributed on [−1
4
, 1

4
]. The true value of β is (1

2
, 1

4
)T . As before, we

assume that, instead of observing the exact value, y∗, we only observe it by intervals (2 intervals:
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I1 = [0, 1
2
] and I2 = [1

2
, 1]). In this setting, the identified set B2 can be shown to be the convex

envelop of the four points (3
4
, 1

4
), (1

2
, 3

4
), (1

4
, 1

4
) and (1

2
,−1

4
) (see Figure 3 and Appendix D.3).

As in the previous example, we simulate 1000 draws for 4 sample sizes: 100, 500, 1000

and 2500. Figure 7 displays set B2 as well as the average and quartiles of the estimated sets for

the four sample sizes. Tables 3 and 4 display the percentage of rejections for the three tests at

different points (shown in bold in Figure 3) as in the previous example. The estimation and test

procedures seems to work as well, even for small sample sizes.

6 Empirical Illustrations

This section provides an illustration of our estimation and test procedures using real survey

data. In the French Labor Force Survey (LFS), respondents can either report their exact labor

income or indicate the interval within which their income lies. We focus on males aged 25 to 55

(N ' 25000) and we distinguish two samples, one of exact responses (N ' 23000) and one of

interval responses (N ' 2000). We consider the familiar earning model:

log Ri = Xiβ + εi

where Ri represents monthly labor income whereas education, age and age squared are the ex-

planatory variables. One question of interest is whether the two populations are similar, at least

with respect to parameter β. Let βe the parameter in the ’exact response’ population and Bi the

identified set in the ’interval response’ sample. The null hypothesis is βe ∈ Bi or more exactly

0 ∈ Bi − {βe}.
There are ten income intervals in the survey and, because the dependent variable is set in

logs, the extreme intervals are open on the left and on the right. In order to conform with the

setting developed in Example 1 and Appendix A, we chose to fix the lower and upper bound of

the income range to the arbitrary values of 200FF (30e) and 70000FF (10500e). These lower

and upper bound corresponds to those actually observed in the ’exact response’ population.

6.1 Results

Table 5 reports the estimated coefficients in three cases. The first column reports OLS coeffi-

cients which are obtained using the sample of exact responses. The second column reports OLS

coefficients using the sample of interval responses and imputing (incorrectly) the mid-value of
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the reported band for the dependent variable. The third column reports the estimated intervals

for each coefficient according to our estimation procedures. The confidence intervals refer to the

parameters of interest, not to the intervals of interest (see Imbens and Manski, 2004). We also

plotted the estimated set of dimension 2 that corresponds to the coefficients of age and education

(see Figure 8).

Several results emerge from this table. As expected in an income equation, the confidence

intervals are very small in the exact response sample. It is also the case when using the interval

response sample and the length of the confidence intervals relative to those in column 1, is

approximately in a ratio of
√

ne/ni as expected. The results of the procedure described in this

text is thus striking. The length of the confidence interval increases by a factor of 10 in case of

the coefficient of age and slightly less for the coefficient of education. As returns to education

are much more precisely estimated, they are still significantly positive in a large range however,

from 4.5% to 12%. Any significance of the age coefficient is utterly lost.

We did not perform formally the test that the two samples are the same with respect to the

income projection on explanatory variables because the result is obvious. It is impossible to

reject such an hypothesis considering the large errors due to interval reporting.

To illustrate the use of supernumerary moment conditions and instruments, we also estimated

the following earnings equation:

log Ri = Xiβ + γ log Hi + εi

where Hi is the number of hours worked. We assume that hours of work are endogenous and we

use as instruments the number of children less than 18 years old in the household and a dummy

variable for the presence of a spouse as well as education and income reported by the spouse (if

any).

Results are given in Table 6. The same picture as previously emerges. In particular, it is

impossible to reject the validity of the supernumerary restrictions in the interval data case, even

if in the complete sample they are rejected very strongly indeed.

6.2 Mean Independence as a Source of Identification

A very simple way of adding instruments to a model is to use an assumption of mean inde-

pendence rather than one of absence of correlation. Specifically, we consider one explanatory
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variable x and one random term ε which are both truncated to lie into [0, 1] and which are both

truncated normally distributed. We assume that,

y∗ = β0 + β1x + ε,

is censored by intervals and that the number of equally spaced intervals is equal to 10 i.e.

y∗ ∈ [(i− 1)/10, i/10).

The number of observations varies between 100, 1000 and 10000. We use the fact that E(ε |
x) = 0 to write that for any function h(x), E(h(x)ε) = 0. Those are the supernumerary moment

conditions.

The functions h(x) that we consider are either polynomials of increasing degree or sinusoids

of equally spaced frequencies. Results are reported in Table 7. We see that the gain in terms of the

length of estimated intervals or confidence intervals, is strong using two additional restrictions

at most in the case of polynomials and a bit more in the case of sinusoids.

7 Extension: Two-sample models

The approach developed in this paper can be easily extended to other settings where the identified

set is non empty and convex. For example, let us assume that a set of L explanatory variables (say

v) are not observed in the database that contains information on y. Specifically, the data are given

by w = (y, x, v) but realizations of w = (y, x) only are observed in one sample and realizations

of w = (v, x) only are observed in the other sample. It is one problem known as ecological

inference (Manski, 2004 and Moffitt & Ridder, 2003). Economists are very often confronted to

the case where there is no single database that contains all relevant variables. Administrative

databases typically contain a very limited set of variables (i.e., only those that are relevant for

the administration). Also it is often the case that survey data do not contain information on the

exact date of birth or the exact income of respondents, for confidentiality reasons.

Within this context, we consider the familiar linear model,

(y = xβ + vα + ε)

where ε is uncorrelated with the set of regressors (x, v) of respective dimensions K and L. The

issue is to characterize B4, the set of observationally equivalent β. The existence of two samples
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is a necessary condition for obtaining bounds. Without information about v, little can be said on

B4.

As we are analyzing linear projections, the only useful information about v comes from linear

predictions. Denote ρ, the matrix of dimension [K, L] of the regression coefficients of v on x

that one can derive from using the second (infinite) sample. Denote Ω the covariance matrix of

the disturbances of these regressions of v on x. We can thus write:

v = xρ + ηΩ1/2

where η is a random vector of row dimension L such that E(ηT x) = 0, E(ηT η) = IL. This

random variable describes what is ignored on v when using the first sample.

Using these notations, the original model can be rewritten as:

y = xβ + xρα + ηΩ1/2α + ε

and a parameter β belongs to the identified set B4 if and only if there is an α and a η such that,

E(xT (y − xβ)) = E(xT (xρα) and E(ηT y) = Ω1/2α. (21)

Denoting yx = y − xE(xT x)E(xT y) the residual of the regression of y on x, we have

E(ηT y) = E(ηT yx) and α∗ = Ω1/2.α

(V yx)1/2 satisfies necessarily ‖α∗‖ ≤ 1. Hence a parameter β

belongs to the identified set B4 if and only if there is an α∗ in the compact ball ‖α∗‖ ≤ 1 such

that,

β = β∗ + (V yx)
1/2 ρΩ−1/2α∗,

where B4 is clearly non empty (β∗ ∈ B4) and convex. It is sharply characterized by its support

function,

δ∗(q|B3) = qT β∗ + (V yx)
1/2 sup

‖α∗‖≤1

(qT ρΩ−1/2α∗)

It is not difficult to show that the RHS supremum is attained when α∗ = Ω−1/2ρT q√
qT ρΩρT q

.

Proposition 21 The identified set B4 is non empty, closed, convex and bounded. It is charac-

terised by the following support function,

δ∗(q|B3) = qT β∗ + (V yx)
1/2

√
qT ρΩρT q.
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The function δ∗(q|B4) is continuously differentiable on the unit sphere and it is possible to

develop an estimation procedure following the same lines as in the previous sections.

8 Conclusion

We develop in this paper a class of models defined by incomplete linear moment conditions and

we provide examples of how this set up can be applied to economic data. In the most prominent

one, the dependent variable in a linear model is censored by intervals. We present simple ways

that lead to a sharp characterization of the identified sets. We generalize previous results about

estimating such sets and we construct asymptotic tests for null hypotheses concerning the true

value of the parameter of interest. These procedures are easy to implement and we can invert

them and derive confidence regions for the parameter of interest. We also generalize the sim-

ple setting of linear prediction using explanatory variables to the case in which supernumerary

moment conditions are available. Specifically, we provide an extension to the usual Sargan test

that can be performed using the asymptotic tests that we develop. Asymptotic properties of these

generalized estimates are derived.

Various extensions are possible but out of the scope of this paper. First, some examples that

we developed require more work in terms of estimation and asymptotic theory. For categorical

data on subjective outcomes, the identified set is the union of elementary identified sets which are

the focus of this paper. In this case, our set-up provides a building block to study the asymptotic

properties of estimates constructed by analogy. For binary data with discrete or interval-valued

regressors, the asymptotic properties of estimation would be the result of marrying the results of

this paper with those of Lewbel (2000). Finally, the two sample-model requires a more specific

approach although it remains in the framework that we developed.

Econometric assumptions can be questioned and extended. For simplicity, we focus on the

case in which instruments and errors are not correlated. In structural settings, we would rather im-

pose a stronger condition of mean independence between instruments and errors or even stronger

of independence between instruments and errors. As is well known, mean independence (respec-

tively independence) generates an infinite number of moment conditions given by the absence of

correlation between any function of instruments and errors (respectively any function of errors).

We presumably could use our framework by using only a finite number of moment conditions
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although the extension to the general case is worth pursuing. It also begs the question of the

optimality of inference in the supernumerary restriction case and how it differs from the usual

point-identified case.

Along a different vein, our setting remains global and semi-parametric. For non parametric

estimation, it would be interesting to adapt our set-up to local approaches such as local linear

regression. Other questions are open and seem worth pursuing. The gain of the direct approach

that we used with respect to the approach followed by Chernozhukov et al. (2007) using a

criterion is an interesting question. It is easy to write a criterion function using support functions

(see Magnac and Maurin, 2008). It might be the case that our results help select the best criterion

in the latter framework but this is left for future work.

Finally and more ambitiously, the deep foundation of our approach is a convexity argument.

It indeed allows to replace the problem of identify a set in a very general space of sets by a

problem which is finite dimensional since it requires to identify and estimate a function using

finitely many parameters, the vectors of the unit sphere of Rp. This approach can presumably be

extended to any set identified problem when the set is convex. The problem of identifying the

frontier of this set might be highly non linear although the real issue is to construct the support

function, or the limits of the projection of the identified set in any direction q. Estimation and

inference would likely follow from our arguments under adapted conditions.
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Fréchet, M., 1951, ”Sur les tableaux de corrélation dont les marges sont données”, Annales
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Appendices

A Proofs in Section 2

A.1 Proof of Proposition 1
(Necessity) Consider β in RK and assume that β ∈ B so that there is a latent random variable ε

which is uncorrelated with x such that (β, Fε(.|x)) generates {Gk(x)}k=1,.,K through model (4).
By definition, the distribution of ε satisfies,

∀k; Gk(x) = Pr(y∗ ∈ [y0, yk)) =

∫ yk−xβ

y0−xβ

fε(ε|z)dε = Fε(yk − xβ|x). (A.1)

Also, if ε ≡ y∗ − xβ is uncorrelated with x, we have necessarily,

E(xT (xβ − y)) = E(xT (y∗ − y)) = E(xT E(y∗ − y|x))

By construction, u(x) = E(y∗ − y|x) is a measurable function which can be rewritten,

u(x) =
K−1∑

k=0

E(y∗ − y|x, y∗ ∈ [yk, yk+1)). Pr(y∗ ∈ [yk, yk+1)).

Using Equation (3), we easily obtain bounds:

yk − yk + yk+1

2
≤ E(y∗ − y|x, y∗ ∈ [yk, yk+1)) < yk+1 − yk + yk+1

2

which yields bounds on u(x),

K−1∑

k=0

(
yk − yk+1

2
)(Gk+1(x)−Gk(x)) ≤ u(x) <

K−1∑

k=0

(Gk+1(x)−Gk(x))(
yk+1 − yk

2
)

By considering the limits of any converging sequence βn ∈ B, we obtain any point of the
closure of B by replacing the upper strict inequality for u(x) by a weak inequality. This equation
implies that u(x) is uniformly bounded so that E(xT u(x)) exists under condition R.iii. Hence,
if β ∈ cl(B), there exists a u(x) ∈ I(x) such that E(xT (xβ − y)) = E(xT u(x)), meaning that
(i) implies (ii).

(Sufficiency) Conversely, let us prove that statement (ii) implies statement (i). We first as-
sume that there exists u(x) in [−∆(x), ∆(x)) ⊂ I(x) such that statement (ii) holds true and
we construct a distribution function Fε(.|x) such that ε is uncorrelated with x and such that the
image of (β, Fε(.|x)) through model (4) is {Gk(x)}k=0,.,K−1.

First, let us consider λ a random variable whose support is [0, 1), whose conditional density
given x is:

E(λ|x) = (u(x) + ∆(x))/(2∆(x)).

Second, let κ a discrete random variable whose support is {0, ., K−1} and whose conditional
distribution given x is :

Pr(κ = k|x) = Gk+1(x)−Gk(x).
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For any k ∈ {0, ., K − 1}, consider K random variables, say ε(λ, k) which are constructed
from λ by:

ε(λ, k) = −xβ + (1− λ)yk + λyk+1

Given that λ ∈ [0, 1), the support of ε(λ, k) is [yk − xβ, yk+1 − xβ). Finally, consider the
random variable:

ε = ε(λ, κ) (A.2)

which support is [y0 − xβ, yK − xβ). Because of Equation (A.1), the image of (β, Fε(.|x))
through model (4) is {Gk(x)}k=0,...,K−1. The last condition to prove is that ε is uncorrelated with
x. Consider, for almost any x,

E(y|x)− E(xβ + ε|x)
K−1

=
∑

k=0

[ (
yk+1 + yk

2
) (Gk+1(x)−Gk(x))

−
∫ yk+1−xβ

yk−xβ

E(xβ + ε | x, κ = k))f(ε|x, κ = k)dε. Pr(κ = k|x)]

=
K−1∑

k=0

(
yk+1 + yk

2
− E((1− λ)yk + λyk+1)|x)(Gk+1(x)−Gk(x))

=
K−1∑

k=0

E(1/2− λ|x).(yk+1 − yk).(Gk+1(x)−Gk(x))

= (−u(x)/(2∆(x)))(2∆(x)) = −u(x).

Therefore, we have E(y − xβ|x) = −u(x) + E(ε|x), which implies:

E(xT y) = E(xT x)β + E(xT ε)− E(xT u(x)).

Given (ii), this equation implies that E(xT ε) = 0.
To finish the proof, it suffices to consider sequences un(x) converging to u(x) ∈ I(x) (in the

L2 norm for instance, see below). Any sequence generates a parameter βn ∈ B satisfying the
moment condition and which converges to β ∈ cl(B) because the mapping from un() to βn is
continuous.

A.2 The mid-interval normalization in the interval outcome case
We start from:

E(xT (y∗ − xβ)) = 0,

and the definition:

y =
K−1∑

k=0

vk.1{y∗ ∈ [yk, yk+1)}.

where, to study the general case, we consider an arbitrary set of values {v0, ., vK−1}. Thus:

y∗ − y =
K−1∑

k=0

(y∗ − vk).1{y∗ ∈ [yk, yk+1)} ∈ [Γ, Γ]
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where

Γ =
K−1∑

k=0

(yk+1 − vk).1{y∗ ∈ [yk, yk+1)},

Γ =
K−1∑

k=0

(yk − vk).1{y∗ ∈ [yk, yk+1)}.

Then:
E(xT (xβ − y)) = E(xT (y∗ − y)) = E(xT E((y∗ − y)|x))

where:
E((y∗ − y)|x) = u(x) ∈ [E(Γ|x), E(Γ|x)]

and where E(Γ|x) = ∆(x) for instance.
Thus:

∆(x) =
K−1∑

k=0

(yk+1 − vk).(Gk+1(x)−Gk(x)),

∆(x) =
K−1∑

k=0

(yk − vk).(Gk+1(x)−Gk(x)),

where:
Gk(x) = Pr(y < k|x).

Remark that the length of the interval, ∆(x)−∆(x), does not depend on {vk}k since it is equal
to:

K−1∑

k=0

(yk+1 − yk).(Gk+1(x)−Gk(x)) = 2∆(x) (say),

so that the choice of the sequence {vk}k is arbitrary. The most convenient choice is vk = yk+yk+1

2

since it implies that −∆(x) = ∆̄(x) = ∆(x).

A.3 The existence of two variables ȳ and y.
Examples 1 and 2: Using the two previous subsections, it is immediate that

ȳ =
K−1∑

k=0

yk+11{y∗ ∈ [yk, yk+1)}, y =
K−1∑

k=0

yk1{y∗ ∈ [yk, yk+1)},

verify the conditions. For instance,

E(ȳ − y|x) =
K−1∑

k=0

(yk+1 − yk + yk+1

2
)E(1{y∗ ∈ [yk, yk+1)}|x) = ∆(x).

Example 3: See Magnac and Maurin (2008). It is very similar to Examples 1 and 2 since it
consists in setting y∗ to its larger or lower possible value in the interval.
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B Proofs in Section 3

B.1 Proof of Proposition 4
First, B contains β∗ because u(z) = 0 belongs to the admissible set I(z). Second, B is closed
and convex because I(z) is closed and convex and equation (7) is linear. Furthermore, as (7) can
be written as:

E(zT x)(β − β∗) = E(zT u(z))

and using the definition of W, we have:

(β − β∗)T W (β − β∗) = E(u
T

(z)z)E(zT z)−1E(z
T

u(z)).

Using the generalized Cauchy-Schwartz inequality,

E(u
T

(z)z)E(zT z)−1E(z
T

u(z)) ≤ E(u(z)2).

By the definition of the admissible set,

E(u(z)2) ≤ E(max(∆(z)2, ∆(z)2)) = ∆M

which is bounded by Assumption R.iii.

B.2 Proof of Proposition 5
For the sake of clarity, we start with the simple case where z = x. Then we study the general
case and finish by the proof of the alternative characterization of the support function.

Simple case: z = x. Let q any vector of dimension p of Euclidean norm ‖q‖ = 1. By
definition, the support function is the supremum of qT .β when β ∈ B. Furthermore, equation (9)
implies that for any β ∈ B, there exists a function u(z) ∈ [∆(z), ∆(z)] such that the regression
of y + u(z) on x yields parameter β.

We shall first write qT .β when β ∈ B as the result of such a regression. Second, we will
analyze the supremum of qT .β over β ∈ B.

First, fix u(z) and β ∈ B. Consider Q an orthogonal matrix of dimension p which is such
that Q = (Q0, q) where Q0 a matrix of dimension [p, (p− 1)]. We have:

xβ = xQQT β = (xQ0, xq)

(
QT

0 β
qT β

)

The p-th component of the parameter of interest, qT .β, is associated to the p-th explanatory
variable, x.q. Using equation (9), parameter, qT .β, is the coefficient of one explanatory variable
only, x.q, in the regression of y + u(z) on x.

The natural tool to derive such a scalar coefficient is the Frisch-Waugh theorem. It states that
in the regression where x0 is a regressor whereas all other regressors are x−0, the coefficient of
x0 can be obtained in the simple linear regression on the residual of the projection of x0 onto x−0

defined as:
x0 − x−0

(
E(xT

−0x−0)
)−1

E(xT
−0x0). (B.3)
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Denote xq the residual of the projection of x0 = x.q onto x−0 = x.Q0 (the other regressors).
Replace in equation (B.3) to obtain the real random variable:

xq = x.q − x.Q0

(
Q

T

0 E(xT x)Q0

)−1

QT
0 E(xT x)q,

= x(q −Q0

(
Q

T

0 E(xT x)Q0

)−1

QT
0 E(xT x)q),

= x.a(q). (B.4)

Note that the definition is independent of Q0 since we can replace Q0 by any matrix Q0M where
M is full rank (p− 1). Applying the Frisch-Waugh theorem, we get:

qT β =
(
E((xq)

2)
)−1

E(xq(y + u(z)) = E(zq(y + u(z)). (B.5)

where zq = xq

E(xq
2)

. We will prove later that the alternative definition of zq provided in the proof
is valid.

Second, the support function in the direction q is obtained by looking for the supremum
of this expression when u(z) varies in [∆(z), ∆(z)]. The supremum of the scalar E(zqu(z))
is obtained by setting u(z) to its maximum (resp. minimum) value when zq is positive (resp.
negative) because 0 ∈ (∆(z), ∆(z)) and by setting u(z) to any value when zq is equal to 0. It
yields a set of ”supremum” functions:

uq(z) = ∆(z)1{zq > 0}+∆(z)1{zq < 0}+ ∆∗(z)1{zq = 0} (B.6)

where ∆∗(z) ∈ [∆(z), ∆(z)]. Note that uq(z) is unique (a.e. Pz) if Pr(zq = 0) = 0. From now
on, the uniqueness of uq(z) should always be understood as ”almost everywhere Pz”.

Recall that by equation (8), E(y − y|z) = ∆(z), E(y − y|z) = ∆(z), so that the support
function or the supremum of (B.5) is equal to:

δ∗(q|B) = E(zqwq),

where:
wq = y1{zq > 0}+y1{zq < 0}.

Note that the term ∆∗(z) in uq(z) disappears because it is multiplied within the second expecta-
tion by zq which is equal to 0 at these values. It implies, as expected, that δ∗(q|B) is unique even
though uq(z) is not.

Furthermore, when ∆∗(z) varies in [∆(z), ∆(z)],the functions uq(z) defined by equation
(B.6) generate all points β ∈ B which belong to the tangent space to B that is orthogonal to q (a
face of B see below): (

E(zT x)
)−1

E(zT (y + uq(z)). (B.7)

If we select the particular value of uq(z) such that ∆∗(z) = 0, we get the particular value of β:

βq =
(
E(zT x)

)−1
E(zT wq),

and, by definition:
δ∗(q|B) = qT βq.

Further developments along these lines will be undertaken in Section B.4.
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IV case This case is a simple adaptation of the previous one. It requires to replace (B.3) by the
generalized transformation using an IV projection:

x0 = z(E(zT z))−1E(zT x0)−
z(E(zT z))−1E(zT x−0)

[
E(xT

−0z)(E(zT z))−1E(zT x−0)
]−1

E(xT
−0z)(E(zT z))−1E(zT x0).

In that case, equation (B.4) is transformed into:

xq = z(E(zT z))−1E(zT x).a(q) (B.8)
= zD.a(q)

where D = (E(zT z))−1E(zT x). Note that when z = x, D = I so that expression (B.4) is a
particular case.

The definition of a(q) is now:

a(q) = q −Q0

(
Q

T

0 E(xT z)E(zT z)−1E(zT x)Q0

)−1

QT
0 E(xT z)E(zT z)−1E(zT x)q

= q −Q0

(
Q

T

0 RQ0

)−1

QT
0 Rq, (B.9)

setting R = E(xT z)E(zT z)−1E(zT x). Note that this is also what we find in equation (B.4)
when z = x. By Assumption R.ii and the equal dimensions of z and x, we have rank(R) =
rank(D) = p. Furthermore, R is a positive definite matrix.

Given this definition of xq, we can adapt without change the proof used in the previous
subsection treating the case z = x.

We now return to the proof that zq can be written zE(xT z)−1q. The following Lemma leads
to the proof.

Lemma 22 The vectorial function a(q) from S to Rp as defined in (B.9), is bounded and con-
tinuously differentiable. Furthermore, a(q) 6= 0, and the range of a(q)

‖a(q)‖ is S. Function a(q) is
invertible from Range(S) to S and:

q =
R.a(q)

a(q)T R.a(q)
.

Proof. The definition of Q0 implies that it is a continuously differentiable mapping of q. As seen
above, R is full rank and the inverse of Q

T

0 RQ0 exists. By the continuous differentiability of
the inverse, the first part of the Lemma is proveḋ. Second, notice that because Q = (Q0, q) is
orthogonal, qT .a(q) = 1, which implies that a(q) 6= 0 for any q ∈ S and that a(q) is bounded.
Third, let s ∈ S and look for q ∈ S such that s = a(q)

‖a(q)‖ . Note that QT
0 .R.a(q) = 0 so that R.a(q)

lies in the null space of Q0 which is composed by all vectors colinear to q which means that:

R.a(q) = λ.q.

The scalar λ can be obtained by premultiplying by a(q)T :

a(q)T R.a(q) = λa(q)T q = λ

because qT .a(q) = 1 and λ is positive since R is positive definite and a(q) 6= 0.
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As xq = zDa(q) by Equation (B.8), we have:

E(x2
q) = a(q)T DT E(zT z)Da(q) = a(q)T Ra(q).

We also have:

zq =
xq

E(x2
q)

=
zDR−1Ra(q)

a(q)T Ra(q)
= zDR−1q = zE(xT z)−1q.

using the previous Lemma and because,

DR−1 = (E(zT z))−1E(zT x)(E(xT z)E(zT z)−1E(zT x))−1 = E(xT z)−1.

Finally, the interior of B is not empty, if we can prove that, for any q ∈ S,

sup
β∈B

qT β > inf
β∈B

qT β

or equivalently that:
δ∗(q|B) > −δ∗(−q|B).

Start from consequences of definitions:

zq = qT ΣT z = −z−q, wq − w−q = (ȳ − y)(1{zq > 0}−1{zq > 0}),

so that:
δ∗(q|B) + δ∗(−q|B) = E(|zq| .(ȳ − y)) > 0,

because E(ȳ − y|z) = ∆(z) − ∆(z) > 0 and |zq| > 0 with positive probability because of the
full rank assumption in R.iii.

B.3 Proof of Lemma 6
We use the expression derived in Proposition 5:

δ∗(q|B) = E(zqwq) = E(zq(1{zq > 0}y + 1{zq < 0}y))

= E(zqy) + E(zq1{zq > 0}(y − y))

The first term on the RHS is linear in q since:

zq = z(E(xT z))−1q.

and thus is continuously differentiable on S.
As (y − y) > 0, the second term can be written as:

ψ(q) = E(z∗.q.1{z∗.q > 0})

where z∗ = z(E(xT z))−1(y − y). Lemma 6 shall be proven if we prove:

Lemma 23 ψ(q) is continuously differentiable in q on the unit sphere S except at a countable
number of points.
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Proof. Consider for any s, t ∈ S:

ψ(t)− ψ(s) = E((z∗.(t− s).1{z∗.s > 0}) + E((z∗.t.(1{z∗.t > 0} − 1{z∗.s > 0}),

so that:

ψ(t)− ψ(s)− E(z∗1{z∗.s > 0})(t− s) = E((z∗.t.(1{z∗.t > 0} − 1{z∗.s > 0}),

This expression is the sum of two terms, A1 and A2 :

A1 = E(z∗.t.1{z∗.t > 0, z∗s ≤ 0}), A2 = −E(z∗.t.1{z∗.s > 0, z∗t ≤ 0})

Consider first A1 and z∗.t > 0 and z∗.s ≤ 0:

0 < z∗.t = z∗.(t− s) + z∗s ≤ z∗.(t− s)

so that:
0 < A1 < E(z∗(t− s)|z∗.t > 0, z∗.s ≤ 0). Pr(z∗.t > 0, z∗.s ≤ 0).

As:
lim
t→s
{z∗ such that z∗.t > 0 and z∗s ≤ 0) = ∅.

we have,
lim
t→s

Pr(z∗.t > 0, z∗.s ≤ 0) = 0.

Furthermore, assumption R.iii implies that E(|z∗|) is bounded (White, 1994, p32-33), so that we
get:

A1 = o(‖s− t‖).
The other case is similar so that A2 = o(‖s− t‖). We thus obtain:

ψ(t)− ψ(s)− E(z∗1{z∗.s > 0})(t− s) = o(‖s− t‖).

In consequence, the differential at s is :

E((z∗.1{z∗.s > 0})

and is continuous except at points such that Pr(z∗.s = 0) > 0. There can be no more than a
countable number of such points. Furthermore:

1{z∗.q = 0} = 1{zq = 0},

which justifies the definition of Df .
Adding the linear term (that we dropped before the previous Lemma) yields:

∂δ∗(q|B)

∂qT
= E(zT x)−1E(zT wq) = βq,

by Proposition 5. It is continuous except at points in Df . As δ∗(q|B) = qT βq, and βq ∈
arg max

β∈B
(qT β), this result is a disguise of the envelope theorem.
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B.4 Proof of Proposition 7
Proof of i) If B has a flat face (say Bf ), define q as the vector orthogonal to Bf . We then have:

∀βf ∈ Bf , δ
∗(q|B) = qT βf .

Using equation (B.7), we have that there exist uf (z), defined by equation (B.6) and such that:

βf =
(
E(zT x)

)−1
E(zT (y + uf (z))

As βf is not unique, uf (z) is not unique. The only possibility is Pr(xq = 0) = Pr(zq = 0) > 0.
Conversely, suppose that Pr(zq = 0) > 0 and use equations (B.6) and (B.7) to write:

βf = βq +
(
E(zT x)

)−1
E(zT∆∗(z)1{zq = 0})

= βq +
(
E(zT x)

)−1
E(zT∆∗(z)|zq = 0) Pr(zq = 0).

As ∆∗(z) is an arbitrary function in [∆(z), ∆(z)] and as zq is a linear function of z, generically
(under some assumption on the support of z) the second term in the RHS is non zero for at least
some βf 6= βq. As βf and βq belong to convex B, the segment [βf , βq] belongs to B so that B

has a flat face.

Proof of ii) A kink at βk ∈ ∂B is obtained when there exist vectors q and r (r 6= q) whose
orthogonal hyperplanes are supporting hyperplanes of B at βk. There exist uq(z) and ur(z) and
thus ∆∗

q(z) and ∆∗
r(z) such that:

βk = βq +
(
E(zT x)

)−1
E(zT∆∗

q(z)1{zq = 0}) = βr +
(
E(zT x)

)−1
E(zT∆∗

r(z)1{zr = 0}).
As B is convex, any hyperplane orthogonal to a (interior) convex combination of q and r is a
supporting hyperplane of B at that point. Therefore, any q′, r′ on the arc ]q, r[ on S are such that
Pr (zq′ = 0) = Pr(zr′ = 0) = 0 (if not there will be a face orthogonal to these vectors) and are
such that:

βq′ = βr′ ,

=⇒ E(zT wq′) = E(zT wr′)

=⇒ E(zT (y + (ȳ − y)1{zq′ > 0})) = E(zT (y + (ȳ − y)1{zr′ > 0}))
using Proposition 5. Write the decomposition:

1{zq′ > 0} = 1{zr′ > 0}+ 1{zq′ > 0, zr′ < 0} − 1{zq′ < 0, zr′ > 0},
to get:

E(zT (ȳ − y) (1{zq′ > 0, zr′ < 0} − 1{zq′ < 0, zr′ > 0})) = 0.

Premultiply by q
′T E(xT z) to get:

E(zq′(ȳ − y) (1{zq′ > 0, zr′ < 0} − 1{zq′ < 0, zr′ > 0})) = 0.

This term is necessarily non negative because ȳ − y > 0. It is equal to zero if and only if:

Pr {zq′ > 0, zr′ < 0} = Pr {zq′ < 0, zr′ > 0} =0.

As it is true for any q′, r′ on the arc ]q, r[ on S, it is also true for q and r.

Conversely, it is straightforward to see that if:

Pr {zq > 0, zr < 0} = Pr {zq < 0, zr > 0} =0

then almost everywhere, wq = wr and thus βq = βr. B has a kink at this point.
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B.5 The construction of zF and zH

Let:
F = {f ∈ Rm; f = E(zT z)−1/2E(zT x)β, β ∈ Rp}

be the subspace generated by E(zT z)−1/2E(zT x) and let F⊥ = H = {h ∈ Rm; hT f = 0, f ∈
F} its orthogonal.

We can write z as a linear combination of two sets of variables zF and zH of respective
dimensions, p and m− p, which are the normalized orthogonal projections of the m× 1 random
vector z onto the subspace F and H . Let:

zT
F =

[
E(xT z)E(zT z)−1E(zT x)

]−1/2
E(xT z)E(zT z)−1zT = MT

F zT

so that E(zT
F zF ) = Ip. Let also zH = z.MH where MH is a matrix of dimension [m,m− p] such

that:
E(zT

F zH) = 0, E(zT
HzH) = Im−p.

The first condition implies that:
E(xT z)MH = 0

so that the columns of MH are the m− p eigenvectors associated to the m− p zero eigenvalues
of E(zT x)E(xT z).

The relationship between z and (zF , zH) is one-to-one since:

Im = E(zF , zH)T (zF , zH) = (MF ,MH)T E(zT z)(MF ,MH)

and E(zT z) is full rank. Thus, (MF ,MH) is full rank and:

z = (zF , zH)(MF ,MH)−1.

Multiplying equation (11) successively by MT
F and MT

H , we obtain that the parameter β lies
in B if and only if there is u(z) in I(z) such that

MT
F E(zT x)β = MT

F E(zT (y + u(z))) ⇔ E(zT
F x)β = E(zT

F (y + u(z)))

MT
HE(zT x)β = MT

HE(zT (y + u(z))) ⇔ 0 = E(zT
H(y + u(z)))

since MT
HE(zT x) = 0.

B.6 Proof of Proposition 12
We assume that the Sargan condition, given by Proposition 10 is satisfied so that the intersection
of the set BU and the hyperplane, γ = 0, is not empty. We first prove the result when the
hyperplane γ = 0 is not tangent to BU .

Corollary 16.4.1 page 146 Rockafellar (1970) states: Let C1 and C2 be non empty convex
sets in Rn and let ri(Ci) have one point in common.13 Then, first:

δ∗(x∗|C1 ∩ C2) = inf
(x∗1,x∗2):x∗1+x∗2=x∗

(δ∗(x∗1|C1) + δ∗(x∗2|C2)) (B.10)

13Let the smallest affine set containing C, be aff(C). Let B(x, ε) be the ball centered at x and of diameter ε/2.
The relative interior of a set C is defined as:

ri(C) = {x ∈ aff(C);∃ε > 0, B(x, ε) ∩ aff(C) ⊂ C}
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where (x∗1, x
∗
2, x

∗) are vectors of Rn. Second, the infimum is attained.
Set C1 = BU where:

BU = {(β, γ); E(zT (xβ + zHγ − y)) = E(zT u(z)), u(z) ∈ [∆(z), ∆(z)]}
where we do not impose the restriction that γ = 0. C1 is a convex set with a non empty interior.

Set C2 = {γ = 0} which is a convex hyperplane. Its support function is as follows if
x∗2 = (q2, λ2):

δ∗(x∗2 | {γ = 0}) = sup
(β,γ)∈C2

βT q2 + γT λ2 = sup
β∈Rm−p

βT q2

=

{
0 if q2 = 0

+∞ if q2 6= 0

Remark that B is the intersection of C1 and C2. Remark also that when the hyperplane γ = 0
is not tangent to set BU , the relative interiors of C1 and C2 have all the points of ri(C1 ∩ C2) in
common. Rockafellar’s corollary can then be applied to set B using x∗ = (q, λ):

δ∗((q, λ) | B) = inf
(x∗1,x∗2):x∗1+x∗2=x∗

δ∗(x∗1|BU) + δ∗(x∗2|{γ = 0})
= inf

(λ1,λ2):λ1+λ2=λ
δ∗((q, λ1)|BU)).

As expected, the RHS is independent of λ2 and λ, and we can write:

δ∗(q|B) = inf
λ

δ∗((q, λ)|BU)). (B.11)

Furthermore, the infimum is attained.
In the case where the hyperplane γ = 0 is tangent to BU , the relative interiors have no point in

common. Corollary 16.4.1 page 146 Rockafellar (1970) states that we should replace Equation
(B.10) by its closure and the infimum is not necessarily attained. In our case though, BU is a
compact and closed set and in consequence, Equation (B.11) applies also to this case and the
infimum is attained.

Specifically, let (q, λ) be the direction used for estimating BU , λ being the components rela-
tive to the zH space. From Proposition 5, we know that:

wq,λ = 1{zq,λ > 0}y + 1{zq,λ < 0}y,

zq,λ = (qT , λT )
[
E(zT x) : E(zT zH)

]−1
zT .

and:
δq,λ = E(zq,λwq,λ).

For any q, minimize this expression wrt λ to get the support function of B.

C Proofs in Section 4

C.1 Proof of Propositions 14 and 15
We use that:

δ∗(q|B) = E(zqwq) = qT E(zT x)−1E(zT wq) = qT ΣT
0 E(zT wq).
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where Σ0 = E(xT z)−1. The estimator that we consider is:

δ̂∗n(q|B) =
1

n

∑
zn,qi.wn,qi,

where:
zn,qi = qT .Σ̂T

nzT
i ,

wn,qi = y
i
+ 1{zn,qi > 0}(yi − y

i
),

where Σ̂n is an estimate of Σ0 that we now define.
Suppose that parameter θ = (q, Σ) ∈ Θ = S × {‖Σ‖ ≤ M} where ‖Σ‖ is (for instance)

equal to the sum of the eigenvalues of Σ and where M is an arbitrary large constant. By the full
rank assumption (R.iii), the true value Σ0 is chosen as ‖Σ0‖ ¿ M.

The estimate Σ̂n belongs to {‖Σ‖ ≤ M} by trimming if it is necessary. First, let:

Σ̂u
n =

(
1

n

∑
xT

i .zi

)−1

. (C.12)

and define the estimate of Σ0 as:
{

Σ̂n = Σ̂u
n if Σ̂u

n ∈ Θ,

Σ̂n = Σ̂u
n( M

‖Σ̂u
n‖) if not. (C.13)

It is then straightforward to show that under the conditions of Proposition 14, Σ̂n is almost
surely consistent to Σ0:

lim
n→∞

Pr(sup
n>N

∥∥∥Σ̂n − Σ0

∥∥∥ ≥ ε) = 0.

and under the conditions of Proposition 15 that Σ̂u
n and Σ̂n are asymptotically equivalent:

√
n

(
Σ̂n − Σ̂u

n

)
P→

n→∞
0, (C.14)

and asymptotically normal:

√
n

(
vec(Σ̂n − Σ0)

)
=⇒ N(0,W ).

We proceed in two steps. As the first step is simple, we proceed in parallel for the two proofs
of propositions 14 and 15.

C.1.1 Consistency and Asymptotic Normality: Σ is known

Suppose that Σ is known and denote:

zqi = zi.Σ.q

wqi = y
i
+ 1{zqi > 0}(yi − y

i
).

Consider function fθ indexed by θ ∈ Θ from the the support of (zi, yi
, yi) to R such that:

fθ(zi, yi
, yi) = zqiwqi = qT ΣT zT

i (y
i
+ 1{zqi > 0}(yi − y

i
)).
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Note that F = {fθ; θ ∈ Θ} is a parametric class and is indexed by a parameter θ lying in a
bounded set Θ. By a slight modification of the proof of Lemma 6 (take derivatives with respect
to qT ΣT instead of qT ), this function is differentiable with respect to qT ΣT everywhere except at
the points where zqi = 0 where the left and right derivatives exist but differ. At other points, the
derivative is equal to either zT

i y
i

or zT
i yi whether zqi is non negative or not. We deduce that, for

any θ1, θ2 ∈ Θ, we have:
∣∣∣fθ1(zi, yi

, yi)− fθ2(zi, yi
, yi)

∣∣∣ ≤ max(zT
i y

i
, zT

i yi)
∥∥qT

1 ΣT
1 − qT

2 ΣT
2

∥∥
= max(zT

i y
i
, zT

i yi).
∥∥(q1 − q2)

T ΣT
1 − qT

2 (Σ1 − Σ2)
T
∥∥

= max(zT
i y

i
, zT

i yi).M ‖θ1 − θ2‖ (C.15)

where the last equality (and the constant M < ∞) is derived from the bounds on Θ.
First, under the conditions of Proposition 14, we have that:

E
∣∣∣max(zT

i y
i
, zT

i yi)
∣∣∣ < ∞

so that F = {fθ; θ ∈ Θ} is a Glivenko-Cantelli class (for instance, van der Vaart, 1998, page
271). By the definition of such a class, it shows that, uniformly over Θ:

1

n

n∑
i=1

fθ(zi, yi
, yi) =

1

n

n∑
i=1

zqiwqi
a.s→

n→∞
E(zqiwqi).

Second, under the conditions of Proposition 15, we have that:

E
(
max(zT

i y
i
, zT

i yi)
)2

< ∞

so that F = {fθ; θ ∈ Θ} is a Donsker class (for instance, van der Vaart, 1998, page 271). By the
definition of such a class, it shows that the empirical process:

√
nτn(q) =

√
n(

1

n

n∑
i=1

zqiwqi − E(zqiwqi)),

converges in distribution to a Gaussian process with zero mean and covariance function:

E(zqiwqizriwri)− E(zqiwqi)E(zriwri).

The second step consists in replacing Σ0 by the almost sure limit Σ̂n defined above. It is more
involved and we thus separate the two proofs.

C.1.2 Proof of Consistency

To prove consistency and asymptotic normality, we rely heavily on Section 19.4 of van der Vaart
(1998) where useful properties to show convergence results are proposed.

We denote generically M as any majorizing constant.
First, the estimate of the support function is:

1

n

n∑
i=1

zn,qiwn,qi =
1

n

n∑
i=1

fθ̂n
(zi, yi

, yi)
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where θ̂n = (q, Σ̂n) by definitions of zn,qi and wn,qi.

First, under the conditions of Proposition 14, the class F = {fθ; θ ∈ Θ} is a Glivenko-
Cantelli class. By construction of the estimate Σ̂n (see above), θ̂n belongs to Θ. It is thus imme-
diate that, for every sequence of functions fθ̂n

∈ F , and uniformly in q ∈ S, we have:
∣∣∣∣∣
1

n

n∑
i=1

fθ̂n
(zi, yi

, yi)− E(fθ̂n
(zi, yi

, yi))

∣∣∣∣∣
a.s→

n→∞
0. (C.16)

Second, as matrix Σ0 is estimated by its almost surely consistent empirical analogue Σ̂n:

lim
n→∞

Pr(sup
n>N

∥∥∥Σ̂n − Σ0

∥∥∥ ≥ ε) = 0,

we have:
lim

n→∞
Pr(sup

n>N
sup
q∈S

∥∥∥θ̂n − θ0

∥∥∥ ≥ ε) = 0.

Use equation (C.15):
∣∣∣fθ̂n

(zi, yi
, yi)− fθ0(zi, yi

, yi)
∣∣∣ = |zn,qiwn,qi − zqiwqi| ≤

∣∣∣max(zT
i y

i
, zT

i yi)
∣∣∣ .M

∥∥∥θ̂n − θ0

∥∥∥ .

to conclude that, uniformly over q ∈ S, we have:
∣∣∣fθ̂n

(zi, yi
, yi)− fθ0(zi, yi

, yi)
∣∣∣ a.s→

n→∞
0. (C.17)

To finish the proof, notice that the sequence fθ̂n
(zi, yi

, yi) is uniformly bounded for q ∈ S,
because, by majorization and triangular inequality, we have:

fθ̂n
(zi, yi

, yi) = |zn,qiwn,qi| ≤
∥∥qT ΣT

n

∥∥ (
∥∥zT

i yi

∥∥ +
∥∥∥zT

i y
i

∥∥∥) = ‖Σn‖ (
∥∥zT

i yi

∥∥ +
∥∥∥zT

i y
i

∥∥∥)

since ‖q‖ = 1. Therefore, as ‖Σn‖ ≤ M :

sup
q∈S

∣∣∣fθ̂n
(zi, yi

, yi)
∣∣∣ ≤ M(

∥∥zT
i yi

∥∥ +
∥∥∥zT

i y
i

∥∥∥)

As zi, y, y
i

are in L2 (Assumption R.iii), it implies that:

E sup
q∈S

∣∣∣fθ̂n
(zi, yi

, yi)
∣∣∣ ≤ M < +∞.

Thus, equation (C.17) implies that, by the dominated convergence theorem, uniformly over q,

E
∣∣∣fθ̂n

(zi, yi
, yi)− fθ0(zi, yi

, yi)
∣∣∣ a.s→

n→∞
0.

¿From the latter equation, equation (C.16) and the triangular inequality, we thus conclude that,
uniformly for q ∈ S :

1

n

n∑
i=1

zn,qiwn,qi
a.s→

n→∞
E(zqiwqi).
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C.1.3 Proof of Asymptotic Normality

Let us first prove that, uniformly in q:

E(fθ̂n
(zi, yi

, yi)− fθ0(zi, yi
, yi))

2 P→
n→∞

0. (C.18)

where θ0 = (q, Σ0). Use equation (C.15):
∣∣∣fθ̂n

(zi, yi
, yi)− fθ0(zi, yi

, yi)
∣∣∣ ≤

∣∣∣max(zT
i y

i
, zT

i yi)
∣∣∣ M

∥∥∥θ̂n − θ0

∥∥∥ .

so that:

E(fθ̂n
(zi, yi

, yi)− fθ0(zi, yi
, yi))

2 ≤ E
(
max(zT

i y
i
, zT

i yi)
)2

M
∥∥∥θ̂n − θ0

∥∥∥
2

Under the conditions stated before equation (C.15), E
(
max(zT

i y
i
, zT

i yi)
)2

< ∞ and is inde-

pendent of q. As
∥∥∥θ̂n − θ0

∥∥∥
2

tends in distribution to 0 uniformly in q ∈ S (equation (C.14)) then
it tends in probability to 0, uniformly in q ∈ S.

We can then apply Lemma 19.24 of van der Vaart (1998), so that:

√
n

(
1

n

n∑
i=1

zn,qiwn,qi − E(zn,qiwn,qi)

)
.

has the same distribution than:

τn(q) =
√

n

(
1

n

n∑
i=1

zqiwqi − E(zqiwqi)

)
.

uniformly in q ∈ S. Thus:

An(q) =
√

n

(
1

n

n∑
i=1

zn,qiwn,qi − E(zqiwqi)

)

is an empirical process asymptotically equivalent to:

τn(q) +
√

n(E(zn,qiwn,qi)− E(zqiwqi)).

To compute the limit of this process, we use the following:

Lemma 24 We have, uniformly in q ∈ S :
i.
√

n(E(zn,qiwn,qi)− E(zqiwqi))−
√

nqT (Σ̂T
n (ΣT

0 )−1 − I)βq
P→

n→∞
0,

ii. τn(q)−√n
(

1
n

∑n
i=1 qT ΣT

0 zT
i εqi

)−√nqT (I − Σ̂T
n (ΣT

0 )−1)βq
P→

n→∞
0,

where βq = ΣT
0 E(zT

i wqi).

Proof. We first prove (i). τ e
n(q) =

√
n(E(zn,qiwn,qi)−E(zqiwqi)) can be written as an empirical

process,
√

n(g(Σnq)− g(Σ0q)) where g is a function from RK to R:

g(Σq) = E(zqiwqi).
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By Lemma 6, this function is differentiable:

∂g

∂(Σq)T
(Σq) = E(zT

i wqi),

and the differential is uniformly bounded over q ∈ S . Thus:

τ e
n(q) =

√
n(qT (Σ̂n − Σ0)

T E(zT
i wqi) + oP (1)=

√
nqT (Σ̂n − Σ0)

T (Σ0
T )−1βq + oP (1).

which proves (i).
To prove (ii), write:

τn(q) =
√

n

(
1

n

n∑
i=1

qT ΣT
0 zT

i wqi − E(qT ΣT
0 zT

i wqi)

)

and define εqi = wqi − xiβq. Note that E(zT
i εqi) = 0 by definition of βq. Thus:

τn(q) =
√

n

(
1

n

n∑
i=1

qT ΣT
0 zT

i εqi

)
+
√

n

(
1

n

n∑
i=1

qT ΣT
0 zT

i xiβq − E(qT ΣT
0 zT

i wqi)

)

The second term on the right hand side is equal to:

√
nqT ΣT

0

(
1

n

n∑
i=1

zT
i xi

)
βq −

√
nqT ΣT

0 E(zT
i xi)βq =

√
nqT (ΣT

0 (Σ̂uT
n )−1 − I)βq

=
√

nqT (ΣT
0 (Σ̂T

n )−1 − I)βq + op(1)

=
√

nqT ΣT
0 (Σ̂T

n )−1(I − Σ̂T
n (ΣT

0 )−1)βq + op(1)

The first line uses definition (C.12) and the definition of Σ0, the second line uses that
√

n(Σ̂u
n −

Σ̂n)
P→

n→∞
0 by equation (C.14) and uniform bounds on q, Σ0 and βq. Moreover, as ΣT

0 (Σ̂T
n )−1 a.s→

n→∞
I, we have that, uniformly in q:

τn(q) =
√

n

(
1

n

n∑
i=1

qT ΣT
0 zT

i εqi

)
+
√

nqT (I − Σ̂nΣ−1
0 )T βq + op(1).

Wrapping up,
√

n

(
1

n

n∑
i=1

zn,qiwn,qi − E(zqiwqi)

)

is distributed as:
√

n

(
1

n

n∑
i=1

qT ΣT
0 zT

i εqi

)

It converges in distribution, uniformly in q, to a Gaussian process centered at zero and of covari-
ance function:

E(zqiεqiεrizri).
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C.1.4 Covariance Matrix

The intuition of the simplification of the expression of the covariance matrix vis à vis Beresteanu
and Molinari (2006) can be understood using the standard OLS example, where the same sim-
plification occurs. Let:

β̂n =

(
1

n

n∑
i=1

x′ixi

)−1 (
1

n

n∑
i=1

x′iyi

)

the OLS estimate of:
β0 = (E(x′ixi))

−1
E(x′iyi).

Set:

Σ̂n =

(
1

n

n∑
i=1

x′ixi

)−1

, Σ = (E(x′ixi))
−1

so that:

√
n(β̂n − β) =

√
n

[
Σ̂n.

(
1

n

n∑
i=1

x′iyi

)
− β0

]
(C.19)

=
√

nΣ̂n.Σ−1

[
Σ

(
1

n

n∑
i=1

x′iyi

)
− Σ.Σ̂−1

n .β0

]

=
√

nΣ̂n.Σ−1

[
Σ

(
1

n

n∑
i=1

x′iyi − E(x′iyi)

)
− (Σ.Σ̂−1

n − I).β0

]
.

As Σ̂n
a.s.→ Σ, this expression has the same distribution than:

√
n

[
Σ

(
1

n

n∑
i=1

x′iyi − E(x′iyi)

)
− (Σ.Σ̂−1

n − I).β0

]
.

Beresteanu and Molinari (2006) can then derive the asymptotic distribution of
√

n(β̂n− β) from
the distribution of

√
n

(
1
n

∑n
i=1 x′iyi − E(x′iyi)

)
and

√
n(Σ.Σ̂−1

n −I).β0 as they do (Proof of their
Theorem 3). Yet this is hardly necessary since by replacing yi by xiβ0 + εi in the first line of the
previous computation we directly get:

√
n(β̂n − β0) =

√
n

[
Σ̂n.

(
1

n

n∑
i=1

x′i(xiβ0 + εi)

)
− β0

]

=
√

n

[
Σ̂n.

(
1

n

n∑
i=1

x′iεi

)]

that has the same distribution that:

√
n

[
Σ.

(
1

n

n∑
i=1

x′iεi

)]

where we only need the distribution of
(

1
n

∑n
i=1 x′iεi

)
. It is quite straightforward to show that the

first method gives exactly the same distribution as the second one. The same remark than OLS
applies to linear set identification as shown by the slightly longer proof above.
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C.2 Proof of Proposition 16
Let q0 ∈ Q0 any vector that minimizes T∞(q; β0). q0 is not necessary unique. Let qn be any
direction which minimizes its empirical counterpart Tn(q; β0).

First, for all q ∈ S, our definitions give:

√
n (Tn(q; β0)− T∞(q; β0)) =

√
n(δ̂∗n(q|B)− δ∗(q|B) = υq + ωq, (C.20)

where υq is the Gaussian process given by Proposition 15 and ωq is a process which tends uni-
formly in q to zero:

lim
n→∞

Pr(sup
n>N

sup
q∈S

|ωq| ≥ ε) = 0.

Second, let us analyze
√

n (Tn(qn; β0)− Tn(q0; β0)) for any (qn, q0). It is bounded from
above by zero since qn minimizes Tn(.; β0). ¿From below, decompose this expression in three
terms:

0 ≥ √
n (Tn(qn; β0)− Tn(q0; β0)) =

√
n (Tn(qn; β0)− T∞(qn; β0))

+
√

n (T∞(qn; β0)− T∞(q0; β0)) +
√

n (T∞(q0; β0)− Tn(q0; β0)) ,

= υqn + ωqn +
√

n (T∞(qn; β0)− T∞(q0; β0))− υq0 − ωq0 ,

using equation (C.20). Thus:

0 ≥ √
n (Tn(qn; β0)− Tn(q0; β0)) ≥ υqn − υq0 + ωqn − ωq0

since q0 minimizes T∞(.; β0). As limn→∞ Pr(supn>N supq0,qn∈S |ωqn − ωq0| ≥ ε) = 0, the dif-
ference υqn−υq0 is asymptotically bounded from above by 0. As υqn−υq0 is normally distributed,
its variance is asymptotically converging to zero and the two random variables υqn and υq0 are
asymptotically perfectly correlated with the same variance. We thus have:

υqn − υq0

P→
n→∞

0 ⇒ √
n (Tn(qn; β0)− Tn(q0; β0))

P→
n→∞

0.

The previous result means two things. We can base our testing procedure on Tn(qn; β0)
(which can be computed in the sample) in replacement of Tn(q0; β0) which we cannot com-
pute. The second important conclusion is that qT

n ΣT V (zT εqn)Σqn consistently estimates Vq0 =
qT
0 ΣT V (zT εq0)Σq. We can of course replace Σ and V (zT εqn) by their empirical counterpart to

provide a feasible consistent estimator.
This result is similar to the standard result of the LR test. In a likelihood framework, we

know that the LR test is chi-squared distributed. If we call Ln the log-likelihood of the sample
we know that 2Ln( θ̂n

θ0
) = 2(Ln(θ̂n)−Ln(θ0)) tends asymptotically to a chi-squared distribution:

2(Ln(θ̂n)− Ln(θ0)) = Z + o(1)

where Z ∼ χ2. However : Ln(θ) =
∑

i fi(θ) = n( 1
n

∑
i fi(θ)). The last expansion could be

rewritten as:
√

n

(
1

n

∑
i

fi(θ̂n)−
∑

i

fi(θ0)

)
=

1

2
√

n
Z + o(

1√
n

)

Our result is similar except that we do not have a M-estimator. First, wq still depends on n in
the expression of δ̂∗n and second, the set of minimizers is not necessary unique when set B has a
kink.
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C.3 Proof of Proposition 17
The first assertion comes from proposition (16) where Vq0 is replaced by a consistent estimator
V̂n. The last two assertions come for the positiveness (resp. the negativeness) of the second term
in the equation (19). Let us prove the last assertion, when β0 /∈ B, the proof of the other assertion
being similar.

Write:

ξn(β0) =
√

n
Tn(qn; β0)√

V̂n

=
√

n
(Tn(qn; β0)− Tn(q0; β0))√

V̂n

+
√

n
(Tn(q0; β0)− T∞(q0; β0))√

V̂n

+
√

n
T∞(q0; β0))√

V̂n

,

where q0 ∈ arg minq T∞(q0; β0). When β0 /∈ B, we have T∞(q0; β0) < 0.
As in the proof of Proposition (16), the first term is asymptotically negligible, the second term

is asymptotically equivalent to a random variable distributed N(0, 1). The last term is negative
and diverges to −∞ because of the

√
n factor.

C.4 Construction of the Confidence Region in Proposition 18
We here provide a simple way to construct CIn

α = {β; ξn(β) > Nα} when α < 1/2. Recall first
the definitions of ξn(β) and Tn(q; β) in Section 4.2:

ξn(β) =

√
n√
V̂qn

(Tn(qn; β)) where Tn(qn; β) = min
q∈S

(δ̂∗n(q|B)− qT β),

where qn is one argument of the minimum. Therefore, the confidence region is also given by

CIn
α = {β; minq∈S(Tn(q; β)) >

√
V̂qn√
n
Nα}

Second, the estimated set B̂n is included in CIn
α as Nα < 0 for any α < 1/2 and as for all β

belonging to the the estimated set, B̂n:

min
q∈S

(δ̂∗n(q|B)− qT β) ≥ 0,

Consider any point βf ∈ ∂B̂n ⊂ CIn
α , the frontier of the estimated set B̂n. There exists at

least one, and possibly a set (which is the intersection of a cone and S) denoted C(βf ), of vectors
qf ∈ S such that:

Tn(qf ; βf ) = δ̂∗n(qf |B)− qT
f βf = 0,

∀q ∈ S, Tn(q; βf ) ≥ Tn(qf ; βf ) = 0

Choose such a qf and consider the points βf (λ), where λ ≥ 0, on the half-line defined by βf and
direction qf :

βf (λ) = βf + λqf .

We have:

Tn(q; βf (λ)) = Tn(q; βf ) + qT (βf − βf (λ))

= Tn(q; βf )− λqT qf
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where −λqT qf ≥ −λqT
f qf = −λ and Tn(q; βf ) ≥ Tn(qf ; βf ) = 0 for any q, as seen above. As a

consequence,

Tn(q; βf (λ)) ≥ −λ = Tn(qf ; βf (λ)).

where vector qf which minimizes Tn(q; βf ) minimizes also Tn(q; βf (λ)).
We can therefore characterize the points of the half-line which belongs to CIn

α . Given that λ

is positive,

βf (λ) ∈ CIn
α if and only if λ ≤ −

√
V̂qf√
n
Nα,

so that segment (βf , βf +

q
V̂qf√
n
N1−αqf ] is included in CIn

α . We thus proved that:

B̂n ∪ {∪βf∈∂Bn ∪qf∈C(βf ) (βf , βf +

√
V̂qf√
n
N1−αqf )} ⊂ CIn

α , (C.21)

where C(βf ) is the cone defined above.
Conversely, let us prove that CIn

α is included in the set on the LHS. Let βc a point in CIn
α .

If βc belongs to B̂n, the inclusion is proved. Assume that βc is outside the estimated set and let
βf the point on the frontier of B̂n which is the projection of βc on B̂n. The projection is unique
because set B̂ is convex.

Write βc − βf = λqf for some direction qf ∈ S and some λ > 0. We have that:

qT
f (βc − βf ) ≤ qT

f (βc − β),

for any β ∈ B̂n because βf is the projection of βc on set B̂n along the direction qf . We thus have
qT
f βf ≥ qT

f β which proves that δ̂∗n(qf |B) = qT
f βf . The pair (βf , qf ) satisfies the condition of the

previous paragraphs.

As βc is a point of CIn
α , λ is necessary less or equal than the value−

q
V̂qf√
n
Nα. Thus it belongs

to the LHS of equation (C.21). As a consequence, equation (C.21) is an equality.

D Computations of Section 5

D.1 Example of Section 5.1
The simulated model is:

y∗ = 0.x1 + 0.x2 + ε

We use z = x as instruments for computing δ∗(q|B). As E(xT x) = I2, we have:
{

zq = x.q = cos θx1 + sin θx2,
wq = y −∆ + 2∆1{zq > 0}.

Using
x1

x2

zq

∼ N






0
0
0


 ,




1 0 cos θ
0 1 sin θ

cos θ sin θ 1





 ,
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we obtain:
Ex11zq>0 =

1√
2π

cos θ and Ex21zq>0 =
1√
2π

sin θ.

As y∗ and x1, x2 are independent and as Ex1 = Ex2 = 0, we get:

δ∗(q|B) = E(zqwq) =
2∆√
2π

.

The corresponding points on the frontier are:

βq = E(xT wq) =
2∆√
2π

[
cos θ
sin θ

]
.

The estimates are obtained using the empirical analogs as developed in Section 4.

D.2 Example of Section 5.2
The simulated model is:

y = 0.x1 + 0.x2 + ε

x2 = πe2 +
√

1− π2e3, w = νe3 +
√

1− ν2e4 where (e2, e3, e4) is a standard normal vector. For
simplicity, define µ = ν

√
1− π2 and a2 = π2 + µ2 = π2 + ν2(1− π2).

To conform with the general notations, let x = (x1, x2) and z = (x1, e2, w). As there ex-
ists one supernumerary restriction, we first evaluate zF and zH as defined in Appendix B. As
E(zT z) = I3, we have:

E(xT z) =

(
1 0 0
0 π µ

)
,

[
E(xT z)E(zT z)−1E(zT x)

]−1/2
=

(
1 0
0 a−1

)
,

and:

zT
F =

[
E(xT z)E(zT z)−1E(zT x)

]−1/2
E(xT z)E(zT z)−1zT =

(
x1

πe2+µw
a

)
,

which is standardized bivariate normally distributed. Moreover to compute zH :

E(zT
F z) =

(
1 0 0
0 π

a
µ
a

)

has an eigenvector associated to the eigenvalue 0, equal to ( 0 µ
a
−π

a
)T which is normalized.

In consequence, zH = µe2−πw
a

.
To construct BU , we use (zF , zH) and we write:

ΣT =


E




x1

a−1(πe2 + µw)
zH


 (

x1 x2 zH

)


−1

=




1 0 0
0 a−1 0
0 0 1


 .

zq,λ = ( qT λ )




x1

a−1(πe2 + µw)
zH




= x1q1 + (a−1(πe2 + µw))q2 + zHλ.
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where q2
1 + q2

2 = 1 (If we use the polar coordinates, q1 = cos θ and q2 = sin θ). Furthermore, as
in the previous example,

wq = y −∆ + 2∆1{zq,λ > 0}.
The correlation of zq,λ with the various unit-normal variables are:

E(zq,λx1) = q1, E(zq,λ(a
−1(πe2 + µw))) = a−1q2, E(zq,λzH) = λ,

so that, using the normality assumption, for instance,

Ex11zq>0 =
1√
2π

q1.

In consequence, a closed-form expression for δ∗(q, λ|BU):

δ∗(q, λ|BU) =
2∆√
2π

(
q2
1 +

q2
2

a2
+ λ2

)
.

It is obviously minimized when λ = 0. BU is an ellipsoid orthogonal to the hyperplane γ = 0 .
Its projection on the hyperplane is also an ellipse:

δ∗(q|B) =
2∆√
2π

√
cos2 θ +

sin2 θ

a2
.

D.3 Example of section 5.3
The simulated model is:

y =
1

2
+

x1

4
+ ε

We use z = x ≡ (1, x1)
T as instruments for estimating δ∗(q|B). Since

Σ = E(zT z)−1 =




1 0
0 4


 ,

we can similarly derive the variables of interest:




zq = zΣq = cos θ + 4x1 sin θ,
wq = y + 1

2
1{zq > 0}

y = 1
2
1{y ≥ 0.5}.

Since E(y) = 1
4

and E(x1y) = 1
16

, we can derive some expression for βq:

βq = ΣE(zT wq)

= ΣE(zT y) +
1

2
ΣE(zT1{zq > 0}

=

[
1
4
1
4

]
+

[
1
2
E(1{zq > 0})

2E(x11{zq > 0})
]

.
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Let θ0 ∈ [0; π/2] such that tan θ0 = 1
2
. For θ being between −θ0 and θ0 zq is always positive

whatever the value of x1:

E1{zq > 0} = 1

Ex11{zq > 0} = 0

and βq =
[

3
4
; 1

4

]T .
For θ being between θ0 and −θ0 + π, zq is negative when x1 = −1

2
, otherwise positive:

E1{zq > 0} =
1

2

Ex11{zq > 0} =
1

4
,

and βq =
[

1
2
; 3

4

]T .
We obtain similarly βq =

[
1
4
; 1

4

]T when θ is between θ0 + π and θ0 + π and βq =
[

1
2
;−1

4

]T

for θ being between θ0 − π and −θ0.
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Figure 1: Set B, y = 0.x1 + 0.x2 + ε, (x1, x2)
T ∼ N(0, I2)
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Figure 2: Set B, y = 0.x1 + 0.x2 + ε, z = (x1, e2, w)
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Figure 4: Geometric Characterization of the Identified Set
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Figure 5: Estimation of B for various sample sizes n.
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Figure 6: Estimation of B for various sample sizes n.
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Figure 7: Estimation of B for various sample sizes n.
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Figure 8: Estimated set for Age and Education
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Table 5: Income Regression: A Comparison between Exact and Partial Information

LogIncome Exact amount: OLS Midbands: OLS Bands: Set OLS

Education
0.0678

(0.0663, 0.0693)
0.0828

(0.0775, 0.0881)
[0.0445, 0.121]
(0.0423, 0.123)

Age
0.0513

(0.0455, 0.0571)
0.0741

(0.0517, 0.0965)
[−0.097, 0.245]
(−0.106, 0.254)

Age2 : 10−3 −0.408
(−0.479,−0.336)

−0.652
(−0.925,−0.378)

[−2.74, 1.44]
(−2.86, 1.56)

Intercept
6.62

(6.50, 6.73)
5.95

(5.49, 6.41)
[2.57, 9.32]
(2.39, 9.51)

R2 30.2% 36.4% –
Observations 22917 2065 2065

Notes:

Table 6: Income Regression: A Comparison between Exact and Partial Information

LogIncome Exact amount: 2SLS Midbands: 2SLS Band information: S2SLS

Education
0.0652

(0.0635, 0.0668)
0.0758

(0.0653, 0.0864)
[0.0379, 0.114]
(0.0355, 0.116)

Age
0.0403

(0.0344, 0.0462)
0.0575

(0.0144, 0.1007)
[−0.107, 0.222]
(−0.116, 0.232)

Age2 : 10−3 −0.275
(−0.349,−0.202)

−0.493
(−1.017, 0.031)

[−2.51, 1.53]
(−2.63, 1.64)

LogHours
0.990

(0.752, 1.23)
3.62

(1.73, 5.52)
[−0.50, 7.75]
(−2.86, 8.18)

Intercept
3.24

(2.42, 4.07)
−6.93

(−13.74,−.12)
[−28.61, 14.75]
(−30.14, 16.29)

Sargan 514.92 (3 d.f.) 3.77 (3 d.f.) P-value = 25.1%
Observations 22486 2015 2015

Notes:
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Table 7: Supernumerary Instruments: Simple Regression

Polynoms
Nobs 100 1000 10000

m− p = 0
[0.181, 0.529]
(0.153, 0.560)

[0.109, 0.468]
(0.107, 0.471)

[0.117, 0.489]
(0.117, 0.490)

m− p = 1
[0.189, 0.521]
(0.161, 0.552)

[0.165, 0.412]
(0.162, 0.415)

[0.168, 0.438]
(0.167, 0.439)

2
[0.165, 0.412]
(0.162, 0.415)

[0.166, 0.411]
(0.163, 0.414)

[0.168, 0.439]
(0.167, 0.439)

3
[0.271, 0.439]
(0.242, 0.468)

[0.166, 0.411]
(0.163, 0.414)

[0.168, 0.439]
(0.167, 0.439)

Sinusoids
Nobs 100 1000 10000

m− p = 0
[0.171, 0.539]
(0.143, 0.569)

[0.109, 0.468]
(0.106, 0.471)

[0.117, 0.489]
(0.117, 0.490)

m− p = 1
[0.217, 0.493]
(0.188, 0.523)

[0.169, 0.408]
(0.166, 0.411)

[0.181, 0.426]
(0.181, 0.426)

2
[0.220, 0.490]
(0.191, 0.520)

[0.170, 0.407]
(0.167, 0.410)

[0.188, 0.418]
(0.188, 0.419)

3
[0.326, 0.384]
(0.296, 0.413)

[0.178, 0.399]
(0.176, 0.402)

[0.188, 0.418]
(0.188, 0.419)

Notes:

Table 8: Normality Test of τn((1, 0)T )

n χ2(2) statistics p-value
100 7.866 (0.020)
500 0.275 (0.871)

1000 0.310 (0.856)
2500 1.367 (0.505)
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