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Abstract

In this paper, we analyse the equilibrium of a sequential game-theoretical model of
lobbying, due to Groseclose and Snyder (1996), describing a legislature that vote over
two alternatives, where two opposing lobbies, lobby 0 and lobby 1, compete by bidding
for legislators’ votes. In this model, the lobbyist moving first suffers from a second
mover advantage and will make offers to legislators only if they deter any credible
counter-reaction from his opponent, i.e. if he anticipates to win the battle. Our main
focus is on the calculation of the smallest budget that he needs to win the game and
on the distribution of this budget across the legislators. We study the impact of the
key parameters of the game on these two variables and show the connection of this
problem with the combinatorics of sets and notions from cooperative game theory.
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1 Introduction

In this paper, we consider a theoretical model of lobbying describing a legislature! that
vote over two alternatives?, and two opposing lobbies, lobby 0 and lobby 1, compete by
bidding for legislators’ votes®. We examine how the voting outcome and the bribes offered
to the legislators depends on the lobbies’s willingness to pay, legislators’s preferences and
the decision making process within the legislature.

There are many different ways to model the lobbying process. In this paper, we adopt
the sequential model pioneered by Groseclose and Snyder (1996) and followed up by Banks
(2000) and Diermeier and Myerson (1999). In their model, the competition between the two
lobbies is described by a targeted offers game where each lobby gets to move only once, and
in sequence. For most of the paper, lobby 1 is pro-reform and moves first while lobby 0 is
pro-status quo and moves second. Votes are assumed to be observable. A strategy for each
lobby is a profile of offers where the offer made to each legislator is assumed to be based on
his/her vote and to be honored irrespective to the voting outcome. The net payoff of a lobby
is its gross willingness to pay less the total amount of payments made to the legislators who
ultimately vote for the policy advocated by this lobby. The legislators are assumed to care
about how they cast their vote (independent of the income) and monetary offers. Therefore,
voters do not truly act strategically as their voting behavior is simply a best response to the
pair of offers made by the lobbies and is independent of the decisions of other legislators.
We focus on the complete-information environment where the lobbies’s and the legislators’
preferences are known to the lobbies when they bid. We characterize the main features of
the subgame perfect equilibrium of this game as a function of the following key parameters
of the environment.

- The maximal willingness to pay of each lobby for winning! (i.e. to have their favorite

policy selected). These two numbers represent the economic stakes under dispute and deter-

"'We depart from voluminous literature based on the common agency setting in abandoning the assumption
that policies are set by a single individual or by a cohesive, well-disciplined political party. In reality, most
policy decisions, are made not by one person but by a group of elected representatives acting as a legislative
body. Even when the legislature is controlled by a single party (as it is necessarily the case in a two-party
system if the legislature consists of a unique chamber), the delegation members do not always follow the
instructions of their party leaders.

2Hereafter, we will often refer to the two alternatives as being the status quo (alternative 0) versus the
change or reform (alternative 1). While simplistic, many policy issues fit that formulation like for instance :
to ratify or not a free-trade agreement, to forbid or not a free market for guns, to allow or not abortion.

3By legislators we mean here all individuals who have a constitutional role in the process of passing
legislation. This may include individuals from what is usually referred to as being the executive branch like
for instance the president or the vice-president.

4Or, under an alternative interpretation, their respective budgets.



mine the intensity and asymmetry of the competition.

- The voting rule describing the legislative process.

- The heterogeneity across legislator’s preferences.

The binary setting considered in this paper is the simplest setting where we can tackle the
joint influence of these three inputs on the final outputs. The first item consists of a single
number per lobby: how much money this lobby is willing (able) to invest in this competition.
The second item is also very simple. In this simplistic institutional setting, with no room
for agenda setting or other sophisticated legislative action which would arise in the case of
large multiplicity of issues®, we only need to know what are the winning coalitions i.e. the
coalitions of legislators in position to impose the reform if the coalition unanimously supports
this choice. Despite its apparent simplicity, this combinatorial object is extremely rich to
accommodate a wide diversity of legislatures. Banks and Groseclose and Snyder focus on the
standard majority game while Diermeier and Myerson consider the general case as we do.
The third item describes the differences between the legislators others than those already
attached to the preceding item if these legislators are not equally powerful or influent in
the voting process. This "second" heterogeneity dimension refers to the differences between
their intrinsic preferences for the reform versus the status quo. This difference measured
in monetary units can be large or small and negative or positive. Diermeier and Myerson
disregard this dimension by assuming that legislators are indifferent between the two policies
while Banks and Groseclose and Snyder consider the general situation but derive their results
under some specific assumptions. We assume that legislators prefer unanimously the reform
to the status quo but differ with respect to the intensity of their preference.

The first contribution consists in identifying the conditions under which the lobby moving
first will make positive offers to some legislator . In this sequential game, the lobby moving
last has an advantage as it can react optimally to the offers of its opponent without any
further possibility or reaction. If the asymmetry is too weak , lobby 1 will abandon the
prospect of influencing the legislature as it will be rationally anticipating its defeat; in fact,
it will make offers only if it anticipates to win for sure. If it does not make any offer, it is
enough for lobby 0 to compensate a minimal winning coalition of legislators for their intrinsic
preferences towards reform. Lobby 1 will participate if its willingness to pay or budget is
larger than the willingness to pay or budget of lobby 0. This minimal amount of asymmetry,

that we call the victory threshold, defines by how much the stake of lobby 1 must overweight

5Many formal models of the legislative process have been developed by social scientists to deal with more
complicated choice environments. We refer the reader to Grossman and Helpman (2001) for lobbying models
with more than two alternatives.



the stake of lobby 0 to make sure that lobby 1 wins the game. Our first result states that the
calculation of the victory threshold amounts to calculate the supremum of a linear form over
a convex polytope which is closely related to the polytope of balanced families of coalitions
introduced in cooperative game theory to study the core and other solutions. The practical
value of this result relies on the fact that we can take advantage of the voluminous amount
of work which has been done on the description of balanced collections. When heterogeneity
across legislators’ preferences is ignored, the victory threshold only depends upon the simple
game describing the rules of the legislature. It corresponds to what has been called by
Diermeier and Myerson, the hurdle factor of the legislature. Quite surprisingly, this single
parameter acts a summary statistic as long as we want to predict the minimal budget that
lobby 1 needs to invest to win the game.

Our second contribution consists in connecting the problem of the computation of the
hurdle factor to the covering problem, which is one of the most famous, but also difficult,
problem in the combinatorics of sets or hypergraphs. We provide a short overview of the
state of the art of this literature, show the connection with another famous parameter of a
simple game, and illustrate through a variety of simple games, how the hurdle factor looks
like. Once again, once it is noted that the hurdle factor is the fractional covering number
of a specific hypergraph, we can take advantage of the enormous body of knowledge in that
area of combinatorics.

The third contribution consists in showing that the hurdle factor can alternatively be
calculated, surprisingly, as the maximum of specific criteria of equity over the set of impu-
tations of a cooperative game with transferable utility attached to the simple game of the
legislature. The specific equity criterion is the minimum over all coalitions of what the mem-
bers of the coalitions get in the imputation and what they could get on their own, i.e. the
first component in the lexicographic order supporting the nucleolus. We use that result to
show how to calculate the hurdle factor for the important class of weighted majority games.
While there is a link between the weights of the legislators and the hurdle factor when the
game is homogeneous, we show that the relation is more intricate in the general case.

The connection with the theory of cooperative games turns to be even more surprising as
it allows to provide a complete characterization of the second dimension of the optimal offer
strategy of lobby 1. From what precedes, we know that the size of the lobbying budget is the
hurdle factor times the willingness to pay (or budget) of lobby 0. It remains to understand
how this budget is going to be allocated across the legislators. This is of course an important
question as we would like to understand what are the characteristics of a legislator which

determine the willingness of lobby 1 to buy its support and the amount that he will receive



for the selling his vote . As already discussed, legislators differ along two lines: their intensity
of their preference for lobby 1 and their position/power in the legislature. Likely the price
of the vote of a legislator will be a function of both parameters. We show that the set of
equilibrium offers is the least core of the cooperative game used to calculate the hurdle factor.
It may contain multiple solutions but the nucleolus® is always one of them. We illustrate
the calculation of these prices in the case of some important real world simple games and
we revisit the model proposed by Diermeier and Myerson of the optimal determination
of the hurdle factor of a legislative chamber given the other components of the legislative
environment. One important conclusion is that these prices have little to do with the power
of a legislator as calculated through either the Banzhaf’s index (Banzhaf (1962), (1968)) or
the Shapley-Shubik’s index (Shapley and Shubik (1954)). This suggests that the axiomatic
theory of power measurement may not be fully relevant to predict the payoffs of the players
in a game like this one’.

The paper contains two more contributions. Some legislators will not receive any offer
from lobby 1. We may wonder what will be the identity and the number of legislators who
will receive a positive offer. It is difficult to answer this question without being specific on
either the preferences of the legislators or the simple game. We provide a characterization
of this set in the case where the simple game is the standard majority game i.e. we describe
the conditions under which lobby 1 will target a minority, a minimal winning coalition or
a supermajority and whether it will bribe in priority those who are the more or the less
reluctant to support the reform®. The last contribution aims to show that the results of this
paper are preserved, up to some slight modifications, when we assume that legislators pay
attention to the outcome rather than to their individual vote.

Related Literature

The literature on lobbying is very dispersed and voluminous®. The closest papers to ours
are Banks (2000), Dekel, Jackson and Wolinsky (2006a,b), Diermeier and Myerson (1999),
Groseclose and Snyder (1996), Young (1978 a, b, ¢) and Shubik and Young (1978d). Like
us, they all consider the binary setting and assume that legislators care about their vote and
money rather than the outcome. As already mentioned, the two-round sequential vote buying

model that we consider is from the fundamental contribution of Groseclose and Snyder.

6 Another appearance of the nucleolus in a non cooperative setting is Montero (2006) in a bargaining
framework a la Baron-Ferejohn.

"This echoes Snyder, Ting and Ansolabehere (2005).

8Should the lobby seek to solidify support among those legislators who would be inclined to support its
positions anyway, or should it seek to win over those who might otherwise be hostile to its views?

9We refer the reader to Grossman and Helpman (2001) for a description of the state of the art.



Banks as well as Diermeier and Myerson also consider this game. Their specific assumptions
and focus are however quite different from ours. Banks and Groseclose and Snyder are
primarily interested in identifying the number and the identity of the legislators who will
receive an offer in the case of the simple majority game. By considering this important
but specific symmetric game, they eliminate the possibility of evaluating the impact of the
legislative power on the outcome. However, they consider more general profiles of legislators’s
preferences: instead of our unanimity assumption in favor of a reform, Banks assumes that
a majority of legislators has an intrinsic preference for the status quo. This implies that
lobby 1 needs to bribe at least a majority to win; Banks provides conditions on the profile
under which this majority will be minimal or maximal but does not determine the optimal
size in the general case. Diermeier and Myerson assume instead that legislators do not have
any intrinsic preference but consider an arbitrary simple game. Their main focus is on the
architecture of multicameral legislatures and on the optimal behavior of each chamber under
the presumption that it can select its own hurdle factor to maximize the aggregate offer
made to its members. Our paper is very much related to the contributions of Young who
has analyzed a similar game and derived independently proposition 4. He should receive
credit for being the first one to point out the relevance of the least core and the nucleolus to
predict some dimensions of the equilibrium strategies of the lobbyists!".

Dekel, Jackson and Wolinsky examine an open-ended sequential game where lobbies
alternate in increasing their offers to legislators. By allowing lobbies to keep responding to
each other with counter-offers, their game eliminates the asymmetry and the resulting second
mover advantage of the Groseclose and Snyder s game. Several settings are considered
depending upon the type of offers that lobbies can make to legislators ( Up-front payments
versus promises contingent upon the voting outcome) and upon the role played by budget
constraints'!. The difference in the budgets of the lobbies plays a critical role in determining
which lobby is successful when lobbies are budget constrained, and the difference in their
willingness to pay plays an important role when they are not budget constrained. When

lobbies are budget constrained, their main result states that the winning lobby is the one

10While we were working on this project, Ron Holzman pointed out to us the relevance of the notion of
least core for our problem. After completing our paper, we have discovered, while reading Montero (2006),
that Young (1978a,b) did reach the same conclusion a long ago. In fact, he wrote four remarkable papers on
this topic containing many more results and insights. In (1978c), he presents a model of lobbying without
opposition where the legislators have the leadership (they "post" the price to which they are willing to sell
their vote and, then, the lobby select coalition). Young and Shubik (1978) develops another version of the
competitive model, that they call the session lobbying game, where the nucleolus is the equilibrium.

" These considerations which are irrelevant in the case of our two-round sequential game are important in
their game.



whose budget plus half of the sum of the value that each legislator attaches to voting in
favor of this lobby exceeds the corresponding magnitude calculated for the other lobby. In
contrast, when lobbies are not budget constrained, what matter are the lobbies’s valuations
and the intensity of preferences of a particular "near-median" group of legislators. The lobby
with a-priori minority support wins when its valuation exceeds the other lobby’s valuation by
more than a magnitude that depends on the preferences of that near-median group. With our
terminology, we can say that their main results are motivated by the derivation of the victory
threshold(s). Once the value of these threshold(s) are known, the identity of the winner as
well as the lobbying expenditures and the identity of bribed legislators follow. Note however
that they limit their analysis to the simple majority game and are not in position to evaluate
the intrinsic role of the simple game and the legislative power of legislators.

Note finally that the version of our game where the two lobbies make their offers simul-
taneously instead of sequentially has the features of a Colonel Blotto game. These games

are notoriously difficult to solve and very little is known in the case of asymmetric players.

2 The Model and the Game

In this section, we describe formally the main ingredients of the problem as well as the
lobbying game which constitute our model of vote-buying by lobbyists.

The external forces that seek to influence the legislature are represented by two players,
whom we call lobby 0 and lobby 1. Lobby 1 wants the legislature to pass a bill (change,
proposal, reform) that would change some area of law. Lobby 0 is opposed to this bill
and wants to maintain the status quo. Lobby 0 is willing to spend up to W dollars to
prevent passage of the bill while lobby 1 is willing to pay up to W; dollars to pass the bill.
Sometimes, we refer to these two policies in competition as being policies 0 and 1. We assume
that AW = W, — Wy > 0. While this assumption may receive different interpretations'?,
we will assume here that the two lobbies represent faithfully the two opposite sides of the
society on this binary social agenda and therefore that policy 1 is the socially efficient policy.
We could consider that the two lobbies represent more private or local interests and that
Wy and W, ignore the implications of these policies on the rest of the society: in that case
the reference to social optimality should be abandoned. Finally, we could consider instead

the budgets By and By of the two lobbies, and assume that they are budget constrained i.e.

12 As explained forcefully in Dekel, Jackson and Wolinsky (2006), in general, the equilibrium predictions
will be sensitive to the type of offers that can be made by the lobbies and whether they are budget constrained
or not. As explained later, these considerations are not relevant in the case of our lobbying game.



that B; < W; and By < Wy. Under that interpretation, the ratio % should be replaced by
the ratio %.This ratio which is (by assumption) larger than 1 will be a key parameter in
our equilibrium analysis. Depending upon the interpretation, it could measure the intensity
of the superiority of the reform as compared to the status quo or the ex ante advantage of
lobby 1 over lobby 0 in terms of budgets.

The legislature is described by a simple game'® i.e. a pair (N, W), where N = {1,2,....n}
is the set of legislators and VW the set of winning coalitions satisfies: S € W and S C T
implies T € W . The interpretation is the following. A bill is adopted if and only if the
subset of legislators who voted for the bill forms a winning coalition. From that perspective,
the set of winning coalitions describes the rules operating in the legislature to make decisions.
A coalition C' is blocking if N\C' is not winning: some legislators (at least one) from C' are
needed to form a winning coalition. We will denote by B the subset of blocking coalitions'*;
from the definition, the status quo is maintained as soon as the set of legislators who voted
against the bill forms a blocking coalition. The simple game is called proper if S € VW implies
N\S ¢ W . The simple game is called strong if S ¢ W implies N\S € W and constant-sum
if it is both proper and strong i.e. equivalently if B =W'®. The set of minimal (with respect
to inclusion) winning (blocking) coalitions will be denoted W,,, (B,,,). A legislator is a dummy
if he is not part of any minimal winning coalition, while a legislator is a vetoer if he belongs
to all blocking coalitions. A group of legislators forms an oligarchy if a coalition is winning
iff it contains that group i.e. each member of the oligarchy is a vetoer and the oligarchy does
not need any extra support to win i.e. legislators outside the oligarchy are dummies. When
the oligarchy consists of a single legislator, the game is called dictatorial. In some cases
it will be possible to order, partially or totally, the legislators according to desirability as
defined by Maschler and Peleg (1966). Legislator i € N is at least as desirable as legislator
JE€NIiIfSU{j} € W implies SU {i} € W for all S C N\ {4,j}. Legislators ¢ and j are
symmetric or interchangeable if SU {j} € W iff SU {i} € W for all S C N\ {i,j}.

In this paper, all legislators are assumed to be biased towards policy 1 i.e. all of them will
vote for policy 1 against policy 0 if no other event interferes with the voting process. Under
the interpretation privileged in this paper, this assumption simply means that legislators

vote for the policy maximizing the aggregate social welfare. This assumption is of course

13In social sciences it is sometimes called a committee or a voting game. In computer science, it is called a
quorum system (Holzman, Marcus and Peleg (1997)) while in mathematics, it is called a hypergraph (Berge
(1989), Bollobas(1986)). An excellent reference is Taylor and Zwicker (1999).

14Tn game theory, (N, B) is often called the dual game.

15When the simple game is constant-sum, the two competing alternatives are treated equally.



controversial'® and becomes even more so when we abandon the interpretation in terms of
social efficiency. It is introduced here for the sake of simplicity as, otherwise, we would have
to consider an additional parameter of differences among the legislators that we prefer to
ignore for the time being. Indeed, in contrast to Banks (2000) and Groseclose and Snyder
(1996), our assumption on the preferences of legislators rule out the existence of horizontal
heterogeneity. However, legislators also value money and we introduce instead some form of
vertical heterogeneity. Precisely, we assume that legislators differ among themselves accord-
ing to their willingness to depart from social welfare. The type of legislator i, denoted by
«;, is the minimal amount of dollars that he needs to receive in order to sacrify one dollar
of social welfare. Therefore if the policy adopted generates a level of social welfare equal to

W, the payoff of legislator ¢ if he receives a transfer ¢; is:
ti + OéiW

This payoff formulation is compatible with two behavioral assumptions. Either, the
component W appears as soon as the legislator has voted for a policy generating a level of
social welfare W regardless of the fact that this policy has been ultimately selected or not:
we will refer to this model, as behavioral model P, where P stands for procedural. Or, the
component W appears whenever the policy ultimately selected generates a level of social
welfare W regardless of the fact that the legislator has voter for or against this policy: we
will refer to this model, as behavioral model C, where C stands for consequential. In this
paper, we will focus exclusively on the behavioral model P and explain in the last section
how to adjust the results in the case of behavioral model C.

To promote passage of the bill, lobby 1 can promise to pay money to individual legislators
conditional on their supporting the bill. Similarly, lobby 0 can promise to pay money to
individual legislators conditional on their opposing the bill. We denote by t;; > 0 and
tii > 0 the (conditional) offers made to legislator i by lobbies 0 and 1 respectively. The
corresponding n-dimensional vectors will be denoted respectively by ¢y and ;.

The timing of actions and events that we consider to describe the lobbying game is the
following!”.

1. Nature draws the type of each legislator.

2. Lobby 1 make contingent monetary offers to individual legislators.

3. Lobby 0 observes the offers made by lobby 1 and makes contingent monetary offers to

individual legislators

161t is however very common in the recent literature on lobbying (Grossman and Helpman (2001)).
17Specific details and assumptions will be provided in due time.



4. Legislators vote.

5. Payments (if any) are implemented.

This game has n 4 2 players. A strategy for a lobby is a vector in i7}. Each legislator
can chose among two (pure) strategies: to oppose or to support the bill.

The important thing to note is that the two lobbies move in sequence'®. Following Banks
(2000), Diermeier and Myerson (1999) and Groseclose and Snyder (1996), we assume that
lobby 1, the advocate for change, makes the first move and announces its offers first, and
lobby1’s offers are known to lobby 0 when lobby 0 makes its offers to induce legislators to
oppose the bill. This sequential version of the lobbying game should be contrasted with the
version where either the two lobbies move simultaneously or where lobbies make offers in an
open-ended sequential and alternating bidding process. As pointed out by Dekel, Jackson
and Wolinsky (2006), in such case the detailed specification of the type of offers as well as
the budget constraints (if any) may matter. For instance, we can assume that lobbies’ offers
are either up-front payments or campaign promises honored only if the policy supported by
the lobby is ultimately selected. In the case where the moves are simultaneous campaign
promises with budget constraints, the lobbying game belongs to the family of Colonel Blotto
games, a class of discontinuous two-player zero-sum games which are notoriously difficult
to solve; existence and characterization of equilibria in mixed strategies has been proved in
the symmetric case i.e. when W; = W, and for some very specific simple games, like the
simple majority game. In our case, where each lobby moves only once and in sequence, these
differences do not matter. The specificity of the sequential game which is considered here
has been criticized by several authors including Dekel, Jackson and Wolinsky (2006) and
Grossman and Helpman (2001). In particular, in this game, there is a strong second mover
advantage. Note however, that we can see the results of this paper as answering alternatively
the following questions: how much asymmetric must be the budgets or valuations of the two
lobbies to ensure the existence of a pure strategy Nash equilibrium in the simultaneous
version of the game i.e. in this generalized Colonel Blotto game? When it exists, how
the offers made to legislators in such equilibrium look like and depend upon their personal
characteristics.

To complete the description of the game, it remains to specify what are the informations

¥when the two lobbies act simultaneously, that we call compactly (with a slight abuse in the terminology)
Nash equilibria. We show that they are efficient but exist only under very stringent conditions. Then, we
explore the set of subgame perfect Nash equilibria in the case where the two lobbies move in sequence, that
we call Stackelberg equilibria and show the critical role played by the efficiency threshold. These results are
derived without putting too much structure on the simple game. In our final part, we look specifically at
the case of the majority game with three legislators and calculate the Nash equilibrium in mixed strategies.

10



held by the players when they act. In this paper, we have already implicitly assumed
that the votes of the legislators are observable, i.e. open voting, and that the vector a =
(a1, g, ..., o) of legislators’s types is common knowledge and without loss of generality such
that oy < as < ... < ay,.. We refer to this informational environment as political certainty.
It has two implications: first, the lobbies know the types of the legislators when they make
their offers and second, each legislator knows the type of any other legislator when voting.
The environment where the type «; of legislator ¢ is a private information, to which we refer
as political uncertainty, is analyzed in Le Breton and Zaporozhets (2007) in the case where

the two lobbies move simultaneously.

3 The Victory Threshold

In this section, we begin our examination of the subgame perfect Nash equilibria of the
lobbying game. Hereafter, we will refer to them simply as equilibria. Our first objective is to
calculate a key parameter of the game, that we call the victory threshold. Once calculated,
this parameter leads to the following preliminary description of the equilibrium. Either, the

ratio Wt is larger than or equal to the victory threshold and then lobby 1 makes an offer and

Wi
wins thoe game, or % is smaller than the victory threshold and then lobbyl does not make
any offer and lobby 0 wins the game. The victory threshold depends both upon the vector
of types a and the simple game (N, W). Given the second mover advantage, the victory
threshold is larger than or equal to 1. Therefore,while necessary, W; > W is not sufficient
in general to guarantee the victory of lobby 1. The victory threshold provides the smallest
value of the relative differential leading to such victory.

The equilibrium of the lobbying game can be easily described. Let t; = (t11, o1, -..... tn1) €
R} be lobby 1’s offers. Lobby 0 will find profitable to make a counter offer if there exists a

blocking coalition S such that:
Z (til + aiW1) < Z O./iWo + Wo.
ics ics

Indeed, in such case, there exists a vector tg = (t10, tag, ---... ,tno) of offers such that:

tin + oziW1 < tio + OéiW() for all - € S and Ztio < Wq.
icS
The first set of inequalities implies that legislators in S will vote against the bill while

the last one simply says that the operation is beneficial from the perspective of lobby 0.

11



Therefore , if lobby 1 wants to make an offer that cannot be cancelled by lobby 0, it must

satisfy the list of inequalities:

> (ta+a'AW) < W, for all S € B.
ics
The cheapest offers t; meeting these constraints are the solutions of the following linear

program:

A{lm ti1
ieN
subject to the constraints (1)
> (tn+a'AW) > Wy for all S € B
€S
and t;; > 0 forall i € V.

Lobby 1 will find profitable to offer the optimal solution ¢} of problem (1) if the optimal
value to this linear program is less than ;. It is then important to be able to compute
this optimal value. To do so, we first introduce the following definition from combinatorial
theory.

Definition 1. A family of coalitions C is (sub)balanced if there exists a vector § € R#C,
called (sub)balancing coefficients, such that:

> 5(8) < (=1)forallie N
SecC;
and §(S) > Oforall SeC.

The following result summarizes the equilibrium analysis of the sequential game.
Proposition 1. Either (i) W1 > > ¢ 50(S) [Wo — Y,cg @' AW] for all vectors of subbal-
ancing coefficients ¢ attached to B and then lobby 1 offers an optimal solution ¢} to problem
(1) and lobby 0 offers nothing and so the bill is passed. Or (i) W1 < 3¢5 0(S) [Wo — >;cq @' AW]
for at least one vector of subbalancing coefficients § attached to B and then both lobbyists
promise nothing and so the bill is not passed.

Proof: Let v* (B, &) be the optimal value of problem (1). From the duality theorem of

12



linear programming, v* (B, &) is the optimal value of the following linear program:

Mvax Z 3(S) [WO — Z Q' AW

SeB €S

subject to the constraints

Z5(S)§1foraﬂi€]\f
SeB;
and §(S) > 0 for all S € B.

The conclusion follows. [
This result' leads to several conclusions. If Wy — Y ies o' AW < 0 for all S € B, then
0 = 0 is a solution and therefore v* (B, ) = 0. We are in case (i) but lobby 1 promises

nothing. If instead, Wy — >,.¢ @'AW > 0 for at least one S € B, then v* (B, &) > 0. Note

further that for any vector of subbalancing coefficients ¢ attached to B:

> 4(9) [Wo = @AW = Wo ) 4(S) - AW 69D o

SeB €S SeB SeB €S
= Wo) 6(S)— AW o' > 4(S)
SeB 1€EN SeB;
> Wo 25(5) — AWZOzi.
SeB 1EN

We deduce:

> 6(9)

seB 1€S 1€EN

Wo—Y_ ofAW] > Woy'(B) — AW ) o,

and therefore
v (B,a) + AW Y ol > Woy*(B), (2)
ieN
where v*(B) = v*(B,0), called hereafter the hurdle factor?®, is the value of the problem:

Max oS
< é (5)
subject to the constraints
Z5(S)§1foraﬂi€]\f
SeB;
and §(S) > 0 for all S € B.

YNote that we could replace B by B,, in the statement of proposition 1.
20This terminology is due to Diermeier and Myerson (1999).
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After simplifications, we deduce that if we are in case (i), then:

% > Y (B) + ZieN‘a ) (3)
Wo — 1+ ZieN af

Inequality (3) is simply a necessary condition for case (i) to prevail. It is also sufficient
for any problem where it can be shown that all the coordinates of ¢, the solution to problem
(1), are strictly positive. Indeed, in that case, we deduce from the complementary slackness

condition, that:
> 6(S)=1forallie N,
SeB;

and (2) becomes an equality.

The force of proposition 1 is to reduces the derivation of the victory threshold to the
exploration of the geometry of a convex polytope: the polytope of vector of subbalancing
coefficients. To use it efficiently, it may be appropriate to consider an arbitrary family of
balanced coalitions i.e. with edges not necessarily in B. If we define the function ® over

coalitions of IV as follows:
o(9) = {

then the duality argument used in the proof of proposition 1 shows that in the statement

Wo — Zz’es‘ o' AW if S € B,
0 otherwise.

we can trivially replaced "> ¢ 5 6(S) [Wo — ;g @' AW] for all vectors of subbalancing co-
efficients § attached to B" by ") ¢y 0(S)®(S) for all vectors of balancing coefficients ¢".
The first formulation is useful as soon as we are in position to characterize the vector of
subbalancing coefficients attached to the family of coalitions B i.e. to the simple game?!.
This amounts first to explore the combinatorics of simple games. A classification of simple
games was first provided by Morgenstern and von Neumann (1944) and further explored by
Isbell (1956)(1959). The second formulation takes advantage of the tremendous volume of
research accomplished in cooperative game theory. Indeed, is well know since Bondareva
(1963) and Shapley (1967) that a game with transferable utility has a nonempty core iff it
is balanced. As pointed out by Shapley, this amounts to check the balancedness inequalities
for the extreme points of the polytope of balanced collections of coalitions. He demonstrated
that vector 0 is an extreme point of the polytope of balanced collections iff the collection of
coalitions {S}gc y.55)>0 s minimal in terms of inclusion within the set of balanced collec-

tions of coalitions. A minimal balanced collection has at most n sets®>. Peleg (1965) has

2'Holzman, Marcus and Peleg (1997) contains results on the polytope of balancing coefficients for an
arbitrary proper and strong simple game.
22We refer the reader to Owen (2001) for a complete and nice exposition of this material.
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given an algorithm for constructing the minimal balanced sets inductively. We illustrate the
mechanical use of proposition 1 through a sequence of simple examples .

Example 1. Consider the simple majority game with 3 legislators where S € B, iff
#S =21ie S={1,2}, {1,3} and {2,3}. The set of vectors of subbalancing coefficients is
the polytope described by the set of extreme points

11 1 1 11 111
(07070)7(17070)7(07170)7(07071)7 _7_70 ) _707_ ) 07_7_ and a'’a’0 |
2°2 2 2 2°2 2°2°2

From the ordering of the a; and proposition 1, we deduce that

v*(B,a) = Sup (Wo — (a1 + ag) AW, 3Wo — 2 (o J;O‘Q + a3) AW’ 0> 7

3

The first (respectively second) term is the largest whenever (a; + ag) AW < Wy < 2a3AW
(respectively Wy > 2a3AW) and v*(B, ) = 0 whenever (a; + ag) AW > W,

We will examine later how to derive the optimal (offers) of lobby 1 and in particular the
personal characteristics of the legislators who are offered some positive amount. This will
depend obviously on two main features: «; i.e. his/her personal propensity to vote against
social welfare and also its position in the family of coalitions. If legislator 7 is a dummy then,
obviously, t;; = 0. But if he is not a dummy, then in principle all situations are conceivable:
he may receive something in all optimal offers, in some of them or in none of them. It
will be important to know the status of a legislator according to this classification in three
groups. In example 1, no legislator is a dummy. However, if (a3 + ag) AW < Wy < 2a3AW
, then the relevant extreme point is (1,0,0). Since then ) gz 7(S) < 1, we deduce from
complementary slackness that t3; = 0.

Example 2. Consider the simple game with 4 legislators®® where S € B,, iff S = {1,2},
{1,3}, {1,4} or {2,3,4}. According to Shapley (1967), the minimal balanced families of

coalitions are (up to permutations):

{1,2,3},{1,2,4} ,{1,3,4} ,{2,3,4}} , {{1,2} {1, 3} {1,4} {2, 3,4}},
{1,23{1,3}{2,3} {4}}, {{1,2} {1,3,4} {2,3,4}}

with the following respective vectors of balancing coefﬁcients(%, %, %, %) , (%, %, %, %) , (é, %, %, 1)

23 As demonstrated by Von Neumann and Morgenstern ((1944), 52C), this is the unique strong simple
four-person game without dummies.
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and (%, % % %) .We deduce from proposition 1 that:

(B - Wo — (a1 + a) AW, 3Wo— (2a1+2a§+2a3+a4)AW
v ( 705) = up 6Wo—(3a1+4as+4az+4aa) AW 5Wo—3(au+astasz+as) AW 0 ;
4 ) 3 ,
« )

Example 3. Consider the following simple game with 3 legislators and S € B,, iff
S = {1,2}or {1,3}. The set of vectors of subbalancing coefficients is the polytope described
by the set of extreme points (0,0), (1,0), (0,1). We deduce from proposition 1 that:

U*(Bv Oé) = Sup (WO - (al + Oég) AW? 0)7

v (B) = Wo.

Example 4. Consider the simple game with 5 legislators where S € B,, iff S = {1,2},
{1,3}, {1,4,5}, {2,3,4} or {2,3,5}. The geometry of the polytope becomes more intricate.

We will demonstrate later, through a different technique, that when a = 0, the relevant

extreme point is the vector (%, %, %, %, %) i.e.
. 9
7 (B) =< Wo

4 Complements and Extensions

Proposition 1 constitutes an important element of the toolkit to determine the victory thresh-
old. In this second section, we continue this exploration of the problem having in mind to add
more elements in the toolkit. In the first subsection, we show that in the special case where
a = 0, our problem is strongly connected to one of the most famous problem in the combina-
torics of sets. We elaborate on the relationship with this branch of applied mathematics and
show how to take advantage of this body of knowledge to get a better understanding of our
own questions, on top of which is the determination of the hurdle factors attached to a simple
game. In the second subsection, we show, quite surprisingly, that the set of equilibrium offers
to the legislators made by the first mover lobby coincides with the least core (and always
contains the nucleolus) of the simple game. We then explore within the important class of
weighted majority games, how the personal positions of the legislators in the simple game
translate into some personal prices: we show that more desirable legislators get more and
evaluate through real world examples the differences between their respective prices. In the

third subsection, we characterize the size and the composition of the coalitions of legislators
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receiving an offer in the case of the simple majority game and for an arbitrary «. Finally, in
the last subsection, we show how to adjust the current formulation and results when instead

of assuming that legislators are procedural, we assume that they are consequential.

4.1 Fractional Matchings and Coverings

The main purpose of this section is to connect our problem to the covering problem which is
considered to be one of the most famous problems in the combinatorics of sets. As pointed
out by Fiiredi (1988), "the great importance of the covering problem is supported by the
fact that apparently all combinatorial problems can be reformulated as the determination of
the covering number of a certain hypergraph". A hypergraph is an ordered pair H = (N, H)
where N is a finite set of n vertices and H is a collection of subsets of N called edges. The
rank of H is the integer r(H) = Max {#FE : E € H}. If every member of H has r elements,
we call it r—uniform. An r—uniform hypergraph H is called r—partite if there exists a
partition {Ni}<p<g of N such that #(Ny N E) =1 holds for all E € H and all k =1, ... K.
The maximum degree of the hypergraph H, denoted D(H), is the number Max;cnDegy (i)
where Degy (i) = #{E € H:i € E}. A hypergraph is D—regular if Degy(i) = D(H) for
all 7 € N. Given an integer k, a hypergraph is k—wise intersecting if any k edges of it have
a non-empty intersection; intersecting is used in place of 2-intersecting. An (r, \) —design
is a hypergraph (N,H) such that for all i € N, Degy(i) = r and for all {i,j} C N,
#{SeH {i,j} CS} = A Tt is called symmetric if n = #H. Then, n = TQ’TT*’\ A
projective plane of order n, denoted by PG(2,n) is a symmetric (n + 1,1) design. More
generally, a t—dimensional finite projective space of order ¢, denoted by PG(t,q), where ¢
is a primepower, is an (r, \)—design with r = ¢ +¢" '+ ...+ land A =¢" 1 + ...+ ¢+ 1.
A hypergraph is an r—clique (or a maximal intersecting family of rank r) if any two edges
intersect in at least one point and it cannot be extended to another intersecting family by
adding a new r—set.

Given an integer k, a k-cover of H is a vector t € {0,1, ..., k}" such that:

D ti>kforall S€H. (4)

ics
A k—matching of H is a collection {Ey, ....., Es }(repetitions are possible) such that E; €
H for all j =1,...s every i € N is contained in at most k of E;. A 1—cover (1—matching) is
simply called a cover (matching) of H. Note that a cover is simply a set T" intersecting every
edge of H i.e. TN E # @ for all E € 'H while a matching is a collection of pairwise disjoint

members of H . A k—cover t* minimizing ) .. t; subject to the constraints (4) is called
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an optimal k—cover and v;(H) = > ,.y ti is called the k—covering number. A k—matching
0"maximizing ) ¢y 0(S) is called an optimal k—matching and pj(H) = Y g 67(S) is
called the k—matching number. When k& = 1, vi(H) is the minimum cardinality of the
covers and is called the covering number of H while pj(H) is the maximum cardinality of a
matching and is called the matching number of H. A hypergraph H is v—critical if each of
its subfamilies has a smaller covering number i.e. vi((N,H —{E})) < vi(H) for all E € H.

A fractional cover of H is a vector t € R" such that:

Zti > 1forall SeH (5)
icS
andt; > Oforallie N.

A fractional matching of H is a vector § € R#" such that:

> 6(S) < Lforallie N (6)
SeH;
and §(5) > Oforall S e€H.

A fractional cover t* minimizing ) . t; subject to the constraints (5) is called an optimal

.en ti is called the fractional covering number. A fractional

fractional cover and v*(H) = )
matching ¢*maximizing ) ¢ 0(S) subject to the constraint (6) is called an optimal frac-
tional matching and p*(H) = Y gy 07(S) is called the fractional matching number.

It follows immediately from these definitions that the hurdle factor of the simple game
(N, W) is the fractional covering number of H = (N, B). If | in contrast to what has been
assumed in the preceding section, money is available in indivisible units, then the appropriate
parameter becomes 7y, (H) where the integer 1} is the value of policy 0 for lobby 0 (when
C = B i.e. when lobby 0 is the follower) expressed in monetary units. The case where
Wy = 1 is of particular interest as it describes the situation where lobby 0 has a single
unit of money to spend in the process. The problem is now purely combinatorial: whom
should be the legislators on which lobby 1 should spend one unit to prevent lobby 0 from a
targeting a unique pivotal legislator®!. Hereafter, the integer v;(H) will be called the integral
hurdle factor. While we will focus mostly on the divisible case, it is interesting to note the
implications of indivisibilities on the equilibrium outcome of the lobbying game. Note finally
that if we invert the order of moves between the two lobbies, then the relevant simple game

is the dual game (N, B) and the corresponding hurdle factor that we will call the dual hurdle

24To support that interpretation, we need however to assume that a legislator who is indifferent breaks
the tie in direction of lobby 0.
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factor, is the fractional covering number of H = (N, V). The following developments apply
equally to both hurdle factors and we will often use the symbol ‘H without specifying whether
H = B or H=W. For an arbitrary hypergraph H, we have the inequalities:

pi(H) Vi(H)

() < PR < o) = 1) < 28

< 71(H). (7)

We deduce immediately from these inequalities that the value of the hurdle factor in-
creases with the "degree" of indivisibilities; indivisibilities act as additional integer con-
straints in the linear program describing the determination of the optimal fractional match-
ings and coverings. We spend the rest of this section in the calculation of the hurdle and
integral hurdle factors®® for some important hypergraphs and a short exposition of some
results from the theory of hypergraphs providing bounds and estimates of these numbers

The calculation of the covering number of an arbitrary hypergraph is an NP-hard problem
in contrast to the determination of the fractional covering number which amounts to solve
a linear program. The examples presented below arise from the theory of simple games. In
some cases, the hypergraph H describes the family of minimal winning coalitions while in
some others it represents the family of minimal blocking coalitions.

Example 5 (Qualified Majorities/minorities). Consider the case of an arbitrary
symmetric simple game i.e. S € H iff #S = ¢ where ¢ is a fixed integer. In that case, it
is easy to show that v*(H) = §~ For instance, in the case of the winning coalitions of the

n+1 n+

majority game ( ¢ = "3~ is n is odd and ¢ = TQ is n is even), we obtain:

2n . .
7 if nis odd,

2n . .
p— if n is even.

v 0) = {
which tends to 2 when n tends to infinity. In contrast:

£l if 1 is odd
* — 2 ’
71(H) { ”T” if n is even.

When n is odd the family of blocking coalitions of the majority game coincides with

the family of winning coalitions. Instead, when n is even, the family of minimal blocking

n+2
5 -

Example 6 (Symmetric Simple Games). The games considered in example 5 display

coalitions H is the family of subsets of cardinality § and then +*(H) = 2 while 7 (H) =

a total symmetry® in the sense that the group of automorphisms of the simple game is the

all group of permutations. We can consider simple games exhibiting some regularity without

251t has been demonstrated by Chung, Furedi, Garey and Graham (1988) that for any rational number z,
there exists a, hypergraph H = (N, H) such that p*(H) = «.
26This hypergraph is often called the complete g—graph.
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displaying such level of symmetry?”. This is the case of the (r, \) —design and in particular
the projective planes of order n PG(2, n) which have been defined earlier. Simple calculations
show that v* (r, \) = 51 + 1 and therefore v* (PG(2,n)) = n + n+r1

Another example of hypergraph displaying some symmetry due to Erdos and Lovasz
(1975) is the following®®. Consider a set S with 2y — 2 elements where 7 is a given integer.
For each partition 7 = (P, P’) of S where PU P = S and #S = #5 = v — 1, take a
new element i,. Let N = S U, {ir} and let H be the collection of all y—tuples of the form
P U {iz} where m = (P, P’) is a partition. Then, it is easy to verify that v*(H) = 2 and
Yi(H) =.

Example 7 (Compound Simple Games). Another class of hypergraphs describing
an important class of voting procedures is the following. Let (IV,, W,)1<,<r be a family of
R hypergraphs with N, N N; = @ for all r;t = 1,..., R with r # t. Let (N, ) be such that
N =UR N,and S € Wiff SN N, € W, for all r = 1,...., R. This is the definition of a
multicameral legislature as defined by Diermeier and Myerson (1999): a reform is approved
if it is approved in all the different R chambers according to the rules (possibly different) in

use in the chambers. It is easy to show that:

This multicameral system is a special case of a compound simple game as defined first by
Shapley (1962). Let ({17 oy R} ,7:2) be a hypergraph on the set of chambers: H describes
the power of coalitions of chambers (Diermeier and Myerson (1999)’s definition corresponds
to the case where H = {{1,...., R}} i.e. each chamber has a veto power). In general, S € H
iff:

{re{l,..,R}:SNN, e W,} €W.

The computation of 7*(W) is now more intricate. If ({1, oy R}, W) is uniform as well
as (N, W,) for all r = 1, ..., R, then (N,W) is also uniform. Fiiredi (1981)’s inequality
gives an upper bound on v*(W).

Consider the case where R = 2K + 1 and #N, = 2n, + 1 for all »r = 1, ....., R where
K, nq,..ng are integers and assume that ({1, s R},W) and (N, W,) forallr=1,...., R

2"Von Neumann and Morgenstern (1944) offers a nice definition of symmetry based on the group of
automorphisms of the game i.e. the group of permutations leaving invariant the winning coalitions. We may
for instance require this group to be k—transitive for some integer k. With such definition, the symmetry of
the game increases with the value of k.

28 The nucleus coterie constructed by Holzman, Marcus and Peleg (1997) and the symmetric hypergraph
considered by Le Breton (1989) bear similarities with that hypergraph.
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are the simple majority games. Exploiting the symmetry of the game, the determination of
an optimal fractional cover is equivalent to the determination of a vector (ty,...,tg) € %f

minimizing 3.7, (2n, + 1), subject to the constraints:

Z(nr +1)t, > 1forall SC{l,..... R} such that #S5S = K + 1.

res

With the change of variables T, = (n, + 1) t,, the problem is equivalent to the minimiza-

1
tion of 2 Zle(z:f )T, subject to the constraints:

> T.>1forall S C{l,.., R} suchthat #S = K + 1.
resS
This problem is almost identical to the covering problem for the majority game considered
in example 1. The only difference lies in the fact that the weights on the variables do not
need to be the same if the population in the chambers differ in size. When they are identical,

using the calculation in example 1, we deduce that:

(2K +1)(2n+1)
(n+1)(K+1) "’

V(W) =

which tends to 4 when n becomes large.

It is difficult in general to derive the exact value of v*(H) when H is the family of minimal
blocking or winning coalitions describing the decision making process of the legislature.
Then, it becomes valuable to get some estimates of these numbers and the results established
in the theory of hypergraphs can be useful in that respect.

Example 8 (Simple Games with Restrictions). The simple game describes the rules
of the legislature but may also encompass some information about characteristics of the leg-
islators suggesting that some coalitions should be declared as unfeasible. The population of
legislators may be partitioned according to several types like for instance gender, geography,
ethnicity or ideology and some coalitions, corresponding to some particular mixing of the
types, may simply then be considered as irrelevant.

A first important classical example is the case of a one dimensional left-right ideological
axis. In such setting, we may assume that disconnected coalitions are unlikely to form.
So even if to pass a law, say a majority of legislators suffices, some of these hypothetical
majorities can be safely disregarded. When n = 2k + 1 and the legislators are ordered from
left to right, all minimal winning coalitions contain the legislator with index k£ + 1 i.e. the
median legislator. The median legislator is a veto player and the fractional number of this

"truncated" majority game is equal to 1 instead of 2.
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This situation could be generalized by considering that the legislators are the vertices
of a tree and that only connected coalitions with a majority of legislators can form?’; the
preceding example corresponds to the specific case where the tree is a line segment

If however, instead of being ordered on a line or a tree, legislators are ordered on a
circle, then it is easy to see that the hurdle factor of the majority remains unchanged as the
corresponding uniform hypergraph is D—regular.

Finally, legislators may be initially partitioned into K typesi.e. N = UK  N; and in some
legislatures, it is conceivable that to block a proposal, you need at least a legislator of each
type. In this setting, the dual game is not the symmetric game according to which a coalition
is blocking if it contains at least K legislators; instead, it is required that it contains at least
K players of different types. Of course, some of these coalitions may be irrelevant for the
reasons discussed earlier. The resulting set of minimal blocking coalitions define a K —partite
hypergraph. Suppose for instance that K = 2 (legislators are either male or female) that
# N1 = # N, and that a proposal is blocked if the coalition contains at least one female and
one male. If all such coalitions are likely to form, the set of minimal blocking coalitions
consists of all pairs composed with a male and a female. If on the other hand, legislators
are also differentiated according to left and right, then it is reasonable to assume that only
pairs of legislators with the same ideology form. Let pj; and pr to denote respectively the
proportions of left legislators in the male and female populations and assume, for the sake
of simplicity, that py; < % and py+ pr = 1. Using Konig’s theorem on bipartite graphs, it

is easy to show that:
p(H) = p*(H) = 7*(H) = ~1(H) = npy.

This last example is peculiar as the long chain of inequalities (7) degenerates into a
perfect equality: the integral and fractional hurdle factors are equal and coincide themselves
with the integral and fractional matching numbers. Calculating the matching number is
quite easy as it amounts to find a partition of the set of legislators into the largest possible
number of blocking coalitions. Therefore, when the above equalities hold, the calculation of
the hurdle factor becomes very easy. Interestingly enough, the same chain of equalities hold
in the case where the players are ordered on a line or a tree and only connected coalitions
can form. A hypergraph for which this is true is called normal and a nice characterization
has been obtained by Lovasz (1972)°. r—partite hypergraphs are typically not normal when
r > 3.

2 Given a tree, Alon (2001) has proved that if is a collection of subgraphs of the tree, each having at most
d components, then v;(H) < 2d%u(H).
30Gee also Lovasz (1975b).
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Example 9 (Vetoers and Oligarchies). When we consider the blocking hypergraph
attached to a simple game, the fractional and integral covering numbers are likely to be
large numbers when its set of edges contains many small coalitions. This will happen as
soon as in the simple game, a coalition is winning if it contains most of the players. The
extreme case of such situation is unanimity according to which a coalition is winning if it
contains all the legislators. In such case, any singleton is a blocking coalition and then
pi(H) = v*(H) = ~vi(H) = n. The closest situation to unanimity is the case where a
coalition is winning if it contains at least n — 1 legislators. This case has been extensively
studied by several authors including Lucas (1966), Maschler (1963) and Owen (1968). In
such a case the set of blocking coalitions consists of the set of pairs of legislators. In such a
case, we obtain uj(H) = v*(H) = 7{(H) = 5. However, in many circumstances some pairs
can be simply ignored by lobby 1 as they are unlikely to form for multiple reasons like for
instance ideological disagreement. Consider the case where the legislators are located in a
multidimensional Euclidean ideological space and let d;; denote the distance between iand j.
It seems reasonable to assume that two legislators will act together iff their distance does not
exceed some exogenous threshold p. The set of relevant minimal blocking coalitions is then
the set of pairs {7, j} such that d;; < p. Another nice illustration is the case of a bicameral
system where to be winning a coalition must contain all the members or at least one of the
two chambers. In such case, the blocking hypergraph consist of all pairs with one member
in each chamber. Under these conditions, the blocking hypergraph is set a subset of the set
of pair of vertices i.e. what is usually called a graph; in the bicameral illustration, the graph
is simply the complete bipartite graph. In the case of a graph, the largest possible value
of v*(H) is § which is (as we have just seen) realized when the graph is complete. From
the point of view of matchings, it correspond to what is called in graph theory as a perfect
matching. If there is a perfect matching, we deduce from (7) that v*(H) = %. If the graph
is bipartite, Hall’s theorem®' provides necessary and sufficient condition for the existence
such a perfect matching. For an arbitrary graph, Tutte’s beautiful theorem?? also provides
necessary and sufficient condition for the existence such a perfect matching.

When there is no perfect matching, we can still explore the set of maximum matchings
and obtain a lower bound on *(H) through inequality (7). The celebrated Edmonds-Gallai
Structure theorem offers deep insights on the structure of any maximum matching. In order
to make the best possible use of proposition 1 in such case, let us see how the family of
balanced collections looks like here. It has been demonstrated by Balinski (1972) that § is

31'We refer the reader to Furedi (1988) for the theorems cited in the treatment of example 5.
321t also follows from that theorem that pi(H) = 2v*(H) = v5(H).
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an extreme point of the polytope of fractional matchings iff there exists a collection @) of
node-disjoint edges and odd cycles such that:
Lif {i,j} € Q,
6({i,j}) =1 3if {i,j} belongs to an odd cycle of @Q,
0 otherwise.

In the above examples, we have examined the covering numbers of either the family
of winning or the family of blocking coalitions. In the case of the hypergraph of winning
coalitions, i.e. when we want to calculate the dual hurdle factor, it traditionally assumed
that it is intersecting i.e. that the simple game (NN, W) is proper. In such case, it should be
clear from what precedes that the pattern of intersection of winning coalitions plays some
role in the determination of the integral and fractional hurdle factors. A cover is a set which
intersects every edge. When the simple game is proper, the set of minimal winning coalitions
is an intersecting family. Any set in W is therefore a cover. This implies that the integral
covering number is then smaller than Mingcyw#E. The knowledge of the integral hurdle
factor provides a useful information of the smallest size of a group of legislators in position
to control collectively the legislative process. When it is equal to 1, we have the familiar
notion of a vetoer. When the number is equal to k, this means that there is a subset of &
legislators which is represented in any winning coalition and that no subset of smaller size
has this property. When the game is strong, the optimal cover is itself a winning coalition:
a vetoer is then a dictator.

Along these lines, the following proposition relates the integral hurdle factor to another
key parameter of a simple game known as the Nakamura’s number (Nakamura (1978)). The
Nakamura’s number provides the exact largest possible value of the cardinality of the set of
alternatives such that the core of the voting game resulting from the list of winning coalitions
is non-empty for every conceivable profile of preferences. This parameter has attracted a lot
of attention in the theory of voting and committees.

Definition . Let G = (N, W) be a simple game. The Nakamura’s number of G, is the

integer:
U(G) o Minywcw #W' such that: Ngeywr S =,
T 4ooif Ngew S # 2.

Proposition 2. For any simple game

(Min #S:SeH)—1

T (H) <7i(H) <1+ (G) =2 if v(G) # oo

and
7' (H) =7i(H) =1 if v(G) = oc.
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Proof: 1f v(G) < oo, it follows from the definition of the Nakamura number prove that
the collection H of minimal winning coalitions is a (v(G) — 1)-intersecting family. The con-
clusion follows from an inequality established in Lovasz (1979). If v(G) = oo, then any {i}

with ¢ € T' = Ngew S is obviously an optimal cover.[]

There is an obvious trade-off between the number of minimal winning coalitions and the
magnitude of the hurdle factors®®. Suppose that to reflect equity among the legislators, all
minimal winning coalitions are of the same size r i.e. W,, is r—uniform. If we have many
coalitions in W,,, the hurdle factors are more likely to be large numbers. The hurdle factors
are often very sensitive to the addition or the deletion of a coalition from W,,,. These patterns
correspond to what has been defined above as y—critical hypergraphs. For instance, it is
easy to check that the hypergraphs attached to the simple games in example 1, the Erdos-
Lovasz’s simple game in example 2 and the cyclic majority game are y—critical. How small
can be a r—uniform hypergraph if we want the covering number to be at least equal to r?

To answer this question, let s be an integer. A set T is an s—multicover of H is either
#(ENT)>sorT DO FE forall E € H. A 1—multicover of H is simply a cover of H.
The s—multicover number of H is the smallest cardinality of an s—multicover of H. If H
is s—intersecting, then 7T is called a nontrivial s—multicover if 1 < # (T'NE) < #FE for
all E € H. As defined earlier, an r—clique is an intersecting r—uniform hypergraph which
does not have a non-trivial cover of size at most 7. We can also consider the family H, )
of r—uniform hypergraphs H which are intersecting and such that v;(H) = v where v is a
given integer less than or equal to r. If we denote by m(r) the minimum number of edges in
an r—clique and by n(r) the minimum number of edges for a hypergraph in H,,, it can be
shown that:

3r<m(r) <r°forallr>4

and
8 e .
i 3 < n(r) for all  and n(q + 1) < 4¢\/qLog q if ¢ is a primepower.

This means that for all r there exist small r—cliques and small r—uniform hypergraphs
with an integral hurdle factor equal to r but also that some minimal critical number of
edges are necessary for the properties to be fulfilled. Fiiredi (1988) reports many results
describing some of the properties of critical hypergraphs and specific families of hypergraphs.

For instance, he presents an upper bound on the cardinality of s—multicover when the

33See 1dzik, Katona and Vohra (2001) for an exploration of the intersecting balanced families of sets.
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hypergraph is a symmetric (7, \) —design®!, an upper bound on the number of vertices of an
arbitrary y—critical r—uniform hypergraph and an upper bound on the number of edges of
an arbitrary y—critical hypergraph of rank 7.

As already pointed out, the derivation of the integral or fractional hurdle factors is often
intricate. The chain of inequalities provides bounds which are sometimes very rough as
illustrated for instance by example 1. It is of interest to explore if the calculation of the
integral and fractional matching numbers helps in providing decent bounds on the integral
and fractional hurdle factors and if, besides the inequality, the relationships between the
integral and fractional hurdle factors can be sharpened in some cases.

We conclude this section by reporting on a sample of useful results answering these
questions. Lovasz (1974)(1975b) has demonstrated that if H is an r—partite hypergraph,
then vi(H) < §7*(H) and if H is a hypergraph of rank r, then:

v(H) _r vi(H) 1 yi(H) r—1
< < 92— <1
7 (H) 2 (M) S Uk ) S &

Frankl and Fiiredi (1986) have demonstrated that if H is 2—wise s—intersecting hyper-

for all integer k.

graph of rank r different from a symmetric (r, \) —design then:
r—1 1 r—s
- s roor(r—1s
Lovasz (1975a) has derived the following lower bound on the ratio of the hurdle factors:
T(H) o 1
vi(H) = 14 LogD(H)
When we apply this inequality to the simple majority games in example 1, we obtain
G P U
Yi(H) = 1+072 — 1+nLog2’
2

Finally, some results have been established between the covering and matching numbers.
For instance, Aharoni, Erdos and Linial (1985) have demonstrated that for any hypergraph
H:

: (7" (1) (v (H)’
ni(H) = n— n;_q (7*(7_())2 Z n

and

) < Min {n i/u’{(H)nLog\/l%} if #H >e /i (H)n,
#H if #H <e\/pi(H)n,

34Boros, Caro, Fiiredi and Yuster (2001) demonstrate that for non-uniform hypergraphs, the maximum
cardinality of an optimal cover is less than 1.98,/n (1 + O(1)).
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where e ~ 2.718 as usual. To conclude, let us mention that the Ryser’s conjecture claims
that if H is r—partite then:

Yi(H) < (r = 1) i (H).

It holds true for r = 2 and r = 3 (Aharoni (2001)) but the problem is still wide open for
r > 4.

4.2 Weighted majority Games

In this section, we focus on the important class of weighted majority games. A simple game
is a weighted majority game if there exists a vector w = (wy, ....... ,Wn,q) of (n+1) )non
negative numbers such that a coalition S is in W iff Zies w; > q; w; > 0 is the weight
attached to legislator®® i. The vector w = (W1, ....,wp) is called a representation of the simple
game. It is important to note that the same game may admit several representations. A
simple game is homogeneous if there exists a representation w such that >, qw; = >, pw;
for all S, T € W,,. This representation is called the homogeneous representation of the
simple game as Isbell (1956)36 has demonstrated that an homogeneous simple game admits
a unique (up to multiplication by a constant) . The homogeneous representation w for
which ),y wi = 1 is called the homogeneous normalized representation and a homogeneous
representation w for which w; is an integer for all 7 € N is called an integral representation.

Consider an arbitrary cooperative game with transferable utility (N, V') and let = € X, =
{yeR: > yi=V(N)}. Let 6(z) be the 2" dimensional vector®” whose components are
the numbers V(S) — >, ¢ ; arranged according to their magnitude i.e. §(x) > 6(x) for
1 < i < j < 2" The nucleolus of (N,V) is the unique vector z* € X, such that 6(z*) is
the minimum, in the sense of the lexicographic order, of the set {0(y) : y € X,,}. The least
core®® is the subset of X, consisting of the vectors x such that 6;(z) = 61(z*). It will be
denoted LC(V, N); by construction z* € LC(V, N)

To any simple game, we attach the cooperative game with transferable utility (IV,V)

defined as follows:
1if SeWw,

V(S)={ 0if S ¢ W.

35In many applications, it is more relevant (if party discipline is strong) to assume that the players in the
legislature are the different parties to which the legislators belong rather than the legislators themselves ; in
such case, w; denotes the number of legislators affiliated to party 3.

36Gee also the generalization by Ostmann (1987).

37This vector is called the vector of excesses attached to z.

38This notion was first introduced by Maschler, Peleg and Shapley (1979).
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n such case, only minimal winning coalitions matter in "minimizin e vector of ex-
I h , only 1 lit tt " " th t f

cesses. The least core consists in the subset of vectors x such that

T € ArgMame Zyz,

YESn ™ ies

where S, = {y € R% : 37, y; = 1}. Let:

C* = Max Min E Ys.
YESH SEWm 4
€S

The following simple assertion holds true for any simple game.

Proposition 4. Let (N, W) be a simple game. Then, v*(W) = &:.
Proof: By definition of C*, there exists y € R such that:

Zyl—land Sy > C" for all S € Wy

= €S

Therefore the vector z such that z; = é/f* foralli=1, ... ,n verifies:

1
Zzi_g* and ZZZZIforallSGW

i=1 €S

implying that v*(W) < &
Assume that v*(W) < —. This means that there exist a vector z € '} such that:

Zzi =v*(W) and Zzz >1forall S eW,,.

1€S

Therefore the vector y such that y; = foralle=1,...... ,n verifies:

*(W)

Zy, =1and Zyl >

€S

for all S e W,,.

Since ( ;> C*, this contradicts our definition of C*.[]

The proof is also quite instructive by itself as it also demonstrates that the set of optimal
fractional covers of (N, W) is, up to a division by C*, the least core of the game induced by
the simple game. Since the set of optimal fractional covers is, up to the multiplication by
W, the set of offers to legislators made by lobby 1 at equilibrium, the least core provides a

complete characterization of the equilibrium behavior of lobby 1.
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Proposition 4 raises a number of questions. First, is it simple to calculate the quantity
for some particular families of simple games? Second, how the least core looks like i.e. how
are treated the different legislators? We answer these questions when (N, W) is a weighted
majority game

Peleg (1968) has demonstrated® that the normalized homogeneous representation of an
homogeneous strong weighted majority game (N, W) coincides with the nucleolus x of (N, V).
Similarly, the integral representation of the nucleolus (which is well defined) is the minimum
representation of the game i.e. the unique minimal integral representation of the game.
Since the nucleolus is an element of the least core, proposition 4, combined with Peleg’s
result, provides a nice and simple way to calculate p*(W) for strong homogeneous weighted
majority games. The task amounts to discover the weight of each minimal winning coalition
in the normalized homogeneous representation. For instance, the weighted majority game
resulting from a legislature with 4 parties where the number of representatives of each party
is described by the vector w = (49, 17,17, 17) is exactly the apex game considered in example

2. It is easy to see that the normalized homogeneous representation is here (%, %, %, %) It
follows that v*(W) = 2.

The task is however more intricate when the simple game is not homogeneous®. Peleg
has also proved that the minimal integral representation of the nucleolus is a minimal integral
representation of the game if some condition is fulfilled, and has disproved by means of a
counterexample of size 12 that the assertion holds true in general. He asks whether this
assertion holds true when the simple game has a minimum integral representation. This
conjecture has been disproved by Isbell (1969) by means of a counterexample of size 19.
Therefore, within the class of non homogeneous weighted majority games*!, the relationship
between the nucleolus (and then covering) and the set of minimal representations is less
transparent. In such a case, the computation of v*(W) can exploit the general algorithms
which have been developed to calculate the nucleolus.

As already pointed out, Besides the knowledge of v*(WV), it is of interest to know how
the amount of money v*(W)W, is allocated across legislators or parties. This question is of
course very important as we would like to know what are the characteristics of legislator ¢

(parties) besides «; which determine the "price" of that legislator from the perspective of

39Gee also, Peleg and Rosenmiiller (1992).

40Geveral authors including among others (Ostmann (1987), Peleg and Rosenmuller (1992), Rosenmuller
(1987) and Sudhélter (1996)) have investigated the class of homogeneous weighted majority games which are
not necessarily strong. Sudholter has introduced a notion of nucleolus (called the modified nucleolus) which
is a representation of the game when it is homogeneous.

41The question becomes even more complicated when we move outside the world of weighted simple games.
as exemplified by the calculation of the nucleolus of compound simple games ( Meggido (1974)).
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lobby 1 (in fact, on the market for votes where the two lobbies compete). This will have to do
with the position of 7 in the set of minimal winning coalitions*?. In a weighted majority game,
we expect intuitively this price to be positively correlated to the weight of the legislator, if
not even exactly proportional to that weight. We have just seen that this intuition is correct
in the case of homogeneous weighted majority game (for an appropriate vector of weights)
but that the exact relationship between weights and price is less clear otherwise. At least
qualitatively, for any offer x in the least core, the price is a non decreasing function of the
weight. Indeed, assume on the contrary that legislators ¢ and j are such that w; < wj, there
exists at least a minimal coalition S containing 7 but not j** and x; > x;. Observe that for
any minimal coalition S containing ¢ but not j, there exists a minimal winning coalition T
containing j but not i and such that 7'\ {i} is contained in S. Consider R = (S\ {i}) U{j}
Either R is minimal and then set 7'= R . Or R is not minimal. Since S was winning, R is
winning and since S was minimal, any minimal winning coalition contained in R must contain
j. Let S be the family of coalitions S such that zé\é[%}n Y okerTh =D peg The We claim** that
there exist at least one coalition S € S containing 7. Indeed assume on the contrary that
i¢ N= UsesS and let y € S, be the vector such that yx = x+= forall k € N and Yi = T;—€
where ¢ is a small positive number (which is well defined since z; > 0). We deduce from
this construction that M m Zke RYE > M m Zke r Tr contradicting our assumption that x
an element of the least core of the snnple game Consider S € S containing ¢ and T' € W,,
containing j but not ¢ and such that 7\ {i} is contained in S . Since z; > z; we deduce note
Y ker T < D_res Tk contradicting our assumption that S € S.

Proposition 4 establishes an "unexpected" connection between the least core which has
been developed in cooperative game theory and the set of equilibrium monetary offers in
this non cooperative game. The exploration of the least core of the simple game reveals all
what we expect to discover about the payoffs of the legislators in the lobbying game. We

know that the nucleolus is one of those but as we will see the least core may also contain

42The pattern of these positions defines, in some sense, the power of legislator i. There is an extensive
literature on the measurement of the power of players in simple games with a prominent place occupied
by the Banzhaf ’s index (1965)(1968) and the Shapley-Shubik ’s index (1954). The view that any of this
one dimensional measure of power helps in predicting the payoffs of legislators in strategic environments
where their votes can be bought has been disputed by several authors (see for instance Snyder, Ting and
Ansolabehere (2005) in the context of a legislative bargaining model).

431f the game is such that any minimal coalition containing i contains j, then the claim is false. The
two legislators are equally desirable and there are simple games where some imputations of the least core
(obviously not all) treat differently such players. Maschler and Peleg (1966) have shown that if two players
are equally desirable, then there exists a representation where they have the same weight while Lapidot
(1972) has demonstrated that the counting vector determines the game uniquely.

44 An important result due to Kohlberg (1971) provides more precise informations on the family S.
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some other vectors. It is obvious that legislators who are dummies will never receive any
offer from the lobbies. However, as illustrated through some of the following examples, there
are situations where legislators who are not dummies do not receive any offer.

Example 10. The simple game considered in example 3 is a weighted majority game;
w=(2,1,1) is a representation. It is easy to see that the core (and therefore the least core
and the nucleolus) is equal to the vector (1,0,0). The first legislator gets all the money
despite the fact neither legislator 2, nor legislator 3 is a dummy. Legislator 1 needs one
of them to pass or to block (depending upon the interpretation of the hypergraph) the
proposal. Legislators 2 and 3 are however perfect substitutes and in excess supply on this
market. Their internal competition drives down their price to 0. Note otherwise that this
game is not strong and therefore Peleg’s theorem does not apply. In fact the nucleolus is not
a representation of the game while the modified nucleolus (%, i, %) is so.

Example 11 (Vector Weighted Majority Games). In many situations, the type
of a legislator, defined by a vector of traits or attributes, is an important parameter in the
explicit description of winning or blocking coalitions: for instance, the type of a legislator
may consist of the chamber to which he belongs (in a multicameral system), its gender,
its geographic area (east, west, north, south), and so on. Let us assume that there are K
mutually exclusive possible types and denote by n; the number of legislators of type k. A
coalition is a K —tuple of integers m = (mq, ...... ,my) where my < ng forall k =1,...... K.
We consider the setting where there exist J vectors (a{, ..... ,ajfl(, bj) € ﬂ?f“ such that a

coalition m is winning iff:

k=1
This framework generalizes®® the concept of weighted majority game: in the case of
a strong weighted majority game, the set of different weights is the set of types, J = 1,

a=(1,1,....,1) and

h = D 1<k<k EWE +1

5 J“j. The minimal winning coalitions are the lower vertices of the

K

polyhedron described by the above inequalities and the hypercube H{O, I,...ng}t. We

k=1
illustrate the calculation of the hurdle and dual hurdle factors and the least core in the

following specific case which describes the U.S. federal legislative system?’. Let K = 4,

4 Taylor and Zwicker (1999) call vector weighted games such simple games. Among the real world voting
systems which are vector-weighed, we can cite the system to amend the Canadian constitution and the
different decision rules for the council of ministers of the EU like those prescribed by the treaty of Nice.

40| 2| denotes the integer part of z.

4TThis representation of the U.S. federal legislative system appears in Taylor and Zwicker (1999).
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J=2,a'=(0,1,1,3), a® = (1,0,0,72), b = 67, b* = 290, ny = 435, ny = 100, n3 = 1 and
ny = 1 . This simple game represents a bicameral system (the house of representatives and
the senate) with two additional players: the vice president and the president. A coalition is
winning if either it contains more than half the house and more than half the senate (with
the vice president playing the role of tie-breaker in the senate), together with the support
of the president or two-thirds of both the house and the senate to override a veto by the
president). The problem of determination of the least core reduces to the minimization of

435x1 + 100zy +x3 + x4 with respect to (z1, T2, x3,74) € §Ri under the constraints:

1
218x1 +dlwa+ x4 > 1

290z + 6729 > 1.

218x1 4+ 50xs + x3 + x4

v

Note that if x3 + x4 = 0, then the relevant inequality is 218x; + 50x5 > 1. Since

% ~ 1.9954 < % = 2, the minimum is obtained in (2—}8, 0) leading to the value 1.9954. If

instead x3 + x4 > 0, then the inequalities 290z, 4+ 67x5 > 1 and 218x1 4+ 5029 + 23+ 14 > 1
are the relevant inequalities for the two remaining variables, as the slope of the objective is
— 4.35 and the slopes attached to these constraints are respectively — 4.36 and — 4.33 while
the slope of the second one is — 4.27, in the two-dimensional space corresponding to the

variables z; and xo. If 23 = 0, then x4 = 7221 4+ 1729 and the objective to be minimized is

507x1+117x5. The minimum is obtained for x; = 0 and x5 = 6% leading to x4y = 1— 2—2 = %.
1

If x3 > 0, then proceeding as above, we obtain that xy = 0, z2 = & and x5+ 14 = é—;. Since,

the lower bound on z, is 1 — % = %, we obtain that the upper bound on zj is 6—17. For
any such solution, the value of the program is % ~ 1.746 < 1.9954. We have just proved

that the dual hurdle factor of the US federal legislative game is 1.746 and that the least
core is a one dimensional convex set namely the convex hull of the vectors (O, é, 6—17, %) and

(O, é, 0, é—;) Interestingly, the members of the house do not get any offer despite the fact
that there are not dummies and the offer made to the president is around 16 times larger
than the offer made to any single senator or to the vice president (if any).

Let us now look at the U.S. federal legislative game from the point of view of the blocking

coalitions i.e. at the hurdle factor. It is easy to see that the minimal blocking coalitions
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(mq, ma, mg, my) are the following:

mp = 146, mo =mg =0, my =1
mp = 0, me=34, mg=0, my=1
mp = 218, me=mg=myu =20

my = dl, m=m3=my=0

me = 50, mg=1, mi =my=0.

15

In such case, we obtain that the least core consists of the unique vector (
148,

1)

1 1 1
2187 517 51°

ot

(which is the nucleolus) and that the hurdle factor is approximately 4.3
Example 12 (The United Nations Security Council). The voters are the 15 coun-
tries that make up the security council, 5 of which are called permanent members whereas
the other 10 are called nonpermanent members. Passage requires to total of at least 9 votes,
subject to approval from any one of the 5 permanent members. It is easy to show that
this simple game is a weighted majority game: assigning a weight of 7 to each permanent
member, a weight of 1 to any nonpermanent member and a quota equal to 39 provides a
representation. If lobby 1 acts to pass a reform (here a resolution), the problem of determina-
tion of the least core reduces to the minimization of 5z 4 10x9 with respect to (z1,x2) € §Ri
under the constraints:
z1>1and 7xy > 1.
1
7
and that the hurdle factor 5 + 1—70 is approximately equal to 6.43.

We deduce that the least core consists of the unique vector (1 ) (which is the nucleolus)

If instead lobby 0 acts to block a reform, the problem of determination of the least core

reduces to the minimization of 51 + 10xy with respect to (x1, z3) € 3‘& under the constraint:
ox1 + 4xo > 1.

Now we obtain that the least core consists of the unique vector (%,O) (which is the

nucleolus) and that the dual hurdle factor is equal to 1. Here, only the permanent members

48This result should be contrasted with the claims formulated by Diermeier and Myerson (1999) in their
footnote 9. They write "....The veto-override provision is not significant. The % veto override option allows
that lobby 1 can get a bill passed by paying 3Wj in the house and 3Wj in the senate, rather than paying
Wo to the president plus 2Wj in the house and 2Wj to the senate. So the alternative legislative path that
is allowed by the % veto override has a hurdle factor of 6, which is higher than the hurdle factor of 5 that
is available without it. Thus our analysis predicts that lobbyists for change should generally ignore the more
expensive option of overriding a presidential veto, and should lobby just as they would if the congress were
a purely serial bicameral legislature with a presidential veto...". This prediction differs sharply from ours
as for instance they predict that the president will receive 20% of the "cake" while we predict that he will
receive only 7.74% and that the bribe offered to the president will be 50 times larger than the bribe offered
to any single senator while we predict that it will be 17 times larger.
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receive an offer and with a hurdle factor equal to 1, lobbying expenditures by lobby 1 remain
moderate. We could wonder what would be the consequences of limiting somehow the veto
power of the permanent members and/or changing the level of the qualified majority to pass
a reform. For instance, suppose that passage requires to total of at least 9 votes, subject to

approval of at least 3 permanent members. The constraints now becomes:
3x1+6x9 > 1 and b5z + 42 > 1.

In that case, both permanent and nonpermanent members are likely to receive offers as

the least core consists of the convex hull of the vectors (%, O) and (%, %) and the dual hurdle
factor g is approximately equal to 1.66. Consider finally the case where passage requires
to total of at least 10 votes, subject to approval of at least 3 permanent members. The

constraints now becomes:
321 + Txe > and b5zy + bz > 1.

It is straightforward to show that the least core consists of the unique vector (%, 1—10)
(which is the nucleolus) and that the dual hurdle factor is equal to 1.50.

From 1954 to 1965, the simple game (N, W) describing the council had 5 permanent
members, 6 nonpermanent members and the qualified majority was equal to 7. Proceeding
as above, we obtain that the hurdle factor v* (B) was equal to 6.02 while v* (W) = 1. The
1965 system is less vulnerable to lobbying than the 1954’s one. It would be interesting to use
this apparatus to evaluate some of the proposals to reform membership and voting rules of
the United Nations Security Council. Many countries criticize the lack of representativeness
of the current council. Among the proposals, we can find:

- The G4 proposal which ask the addition of 6 new permanent members without veto
power and 4 new nonpermanent members.

- The African proposal which is similar to the G4 proposal except for the fact that it asks
that the new permanent members also had a veto power and 5 new permanent members
instead of 4.

- The "United for Consensus" proposal which simply asks for the addition of 10 new
permanent members.

These proposals propose to increase the current size of 15 members to 25 or 26 members.
In our setting being permanent or nonpermanent are equivalent. No specification of the
required qualified majority is provided but given the historical attachment to a supermajority
requirement of 60 — 63%, we could expect a quota equal to 15. The first, second and third
proposals lead respectively to hurdle factors v (B) equal to 6.82, 12 and 6.82. A way to
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compromise between the first and second proposal could consist in offering to each pair
(or triple) of new permanent members a veto power. To compromise with the third, we
could increase the quota from 15 to 18. In general, a council composed of n; permanent
members with regular veto voter, ny permanent members with veto voter offered to pairs,
ng nonpermanent members and a quota equal to ¢ leads to a hurdle factor equal to:
ny + 2 + 1 .
2 n+ns+ng+1—gq

Example 13 (Diermeier and Myerson’s Multicameral Systems). These are the

simple games considered by Diermeier and Myerson (1999). Their main objective in the
paper is to determine the optimal hurdle factor of one of the chamber (say the house) given
the hurdle factors of the other chambers where optimal means maximizing the expected
aggregate amount of bribes received by the members of the house. The details will depend
of course upon the beliefs concerning the bivariate random variable (W, W7). Instead of
the uncertainty framework considered in our paper, they assume that the two variables are
independent and identically distributed random and they offer detailed calculations in the
case where the marginals are either lognormal or uniform. Let ¢t be the sum of the hurdle
factors of the other chambers and s be the hurdle factor of the house and F'(s,t) be the
corresponding expected income. Their central result asserts that the best response s*(t) of
the house, which can be implemented through the choice of an appropriate simple game
(N, W), increases as the external hurdle factor ¢ increases. At that stage, it is important to
remind that they conduct their analysis under the assumption that there is no uncertainty
about whom will be the lobby moving first. However, we can conceivably defend the view
that in some circumstances, the lobby which wants the status quo to be preserved is acting
first. If that is the case, the relevant simple game is the dual game and the relevant hurdle
factor is the dual hurdle factor. If we assume the two situations to occur with probabilities*’
p and 1 — p, then in the case where there is no other chamber (unicameral legislature), the
expected income is now:
pF(s,0) 4+ (1 —p)F(5,0).

where 5 = v* (W) is the dual hurdle factor. We have seen, through the above examples,
that unless the simple game is constant-sum (in which case § = s), the two factors behave
quite differently. A new trade-off appears as increasing s has now two effects: a direct effect
as before (through a decrease of the probability of the event of active lobbying) and an
indirect effect through a decrease of 5. The following table provides the value of the optimal

hurdle factor for different values of the parameters p and o.

49 Diermeier and Myerson assume p = 1.
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Table 1: Optimal Hurdle Factor in Lognormal Model.

o
p 0.6 0.8 1.0 1.2 1.3 1.5 1.6 1.7 2.0 3.0

1 1.0 1.0 1.2414 1.8516 2.3392 3.9872 5.3765 7.4056 21.9487 3122.3942
0.75 1.0 1.5486 1.6915 1.9293 2.189  3.5283 4.8525 6.8422 21.3253 3121.9111
0.5 20 20 2.0 2.0 2.0 2.0 1.4534 5.4101 20.01 3120.9446

The first line of table 1 is of course similar to the first line of table 3 in Diermeier
and Myerson. An interesting observation is that moving from p = 1 to the more balanced
assumption p = % leads to the optimality of the standard majority game for a large range
of values of o (approximately when o is less than 1.57). Interestingly enough, it is larger
than the Diermeier-Myerson’s optimal hurdle factor for small enough values of ¢ and smaller
then. When o gets larger than 1.57, the optimal®® hurdle factor increases but stays smaller
than Diermeier-Myerson’s one.

In a truly multicameral legislature as defined by Diermeier and Myerson (1999), things get
even more tricky. As defined in example 7, let (N,, W, )1<,<r be a family of R hypergraphs
with N, N N; = & for all r,t = 1, ..., R with r # t. Let (N, W) be such that N = U | N, and
SeWwit SNN, e W, forall r =1,...., R i.e. areform is approved if it is approved in all
the different R chambers according to the rules (possibly different) in use in the chambers.
Given the hurdle factors v* (W, ) of each chamber r = 1, ......, R, let us calculate v* (W). It

is the value of the linear program:

R
Miniesn Z Z Lir

r=1 i€N,
under the constraints
R
Z Zt" > 1 for all R — tuple (ST)ISTSR such that S, € W, forallr =1, ..., R.
r=11€S,

Let # € RY be such that Zle 0, = 1. The value of the above program is less than the

value of the program:

R
Minte?Ri Z Z tip

r=1 iENT

50The function which is maximized displays interesting nonconvexities.
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under the constraints

Zt" > 0, for all R — tuple (Sr)lgrgR such that S, e W, forallr =1, ..., R.
icS,
But this new problem is decomposable into R disjoint minimization programs. We deduce

from that argument that:

) < Z 07" (W,) for all § € RY such that Z 0, = 1.
r=1
Since the above inequality is an inequality for any vector # attached to a solution of the
initial problem, we deduce:
R

R
7W) = Mingegr Z 0,7* (W,) under the constraint Z 0, =1,

r=1 r=1

and therefore:
v (W) = Mini<,<r v* (W;) .

This result has important implications on the determination of the optimal dual hurdle
factor by the house. Indeed, in the case where the first mover lobby is the lobby which wants
to block the passage of the reform, the amount of money received by the house will depend
critically upon how large is its dual hurdle factor compared to the dual hurdle factors of the
other chambers. If it is larger than the smallest one, then the house will not be approached by
the lobby in that case. The game describing the interaction between the chambers displays
discontinuous payoff functions. In the case of two chambers and p = —, we obtain that the

payoff of chamber 1°! is equal to:

POM (B (B2) | POt OV 0¥ 5 o+ (W) < % (

Wo
FOUBIA B | POIOVIT O i 4 () = 4 (W)
FO BN ) i o (W) > 4 (W)

if we assume that ties are broken equally. Of course, in the above expressions, there is
a one to one relationship between the two hurdle factors v* (W) and +* (B). If we limit the
implementation to symmetric quota games ie. S e W iff #S > g, we deduce from example
5 that v* (W) = 2 and s; = 7" (B) =

mmqr1- 1 nis large, we deduce that:

Ly = (1-2)»®.

n

51The payoff of chamber 2 is obtained similarly.
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Interestingly enough, if both chambers were acting under the presumption that the lobby
which will move first is the pro-status quo lobby, then the game becomes a Bertrand game’®”
where behavioral responses converge to the Nash equilibrium (1, 1). It would be interesting
to know what we obtain in the general case. When it is taken for granted that the pro-reform
lobby moves first, Diermeier and Myerson found convergence towards the Nash equilibrium
(2.20,2.20) in the case of a bicameral legislature implemented by a quota of 54.5%; note that
then v* (W) ~ 1.835.

4.3 Buying Supermajorities

In the two preceding subsections, we have ignored the impact of the vector a on the equi-
librium outcomes of the lobbying game by assuming a = 0. This was done in order to focus
exclusively on the implications of the rules governing the decision process within the legis-
lature and the "power" of the legislators resulting from that simple game. Following that
path, we were able to cover a very large class of simple games describing many alternative
institutional legislative settings and to isolate that component of the price of a legislator.

In this subsection and the following one, we reintroduce the vector but we focus our
attention on a very special (while important) simple game: the classical majority game. In
that respect, the analysis of this section is aligned with the framework of Banks (2000) and
Groseclose and Snyder (1996)(2000). Given the symmetry of the simple game the legislators
are all alike in terms of their power in the legislature. This means that if two legislators ¢ and
j receive different offers from the lobby, the rationale for this differential should be based
on differences between a; and «;. We have seen, in the previous subsections, that some
legislators endowed with a limited power within the legislature were, sometimes, totally
ignored by the lobby. Here, a legislator ¢ with a large a; will be cheap for lobby 1 and
expensive for lobby 0. Finally, we have also observed that most of the time the lobby was
bribing a coalition strictly larger than a minimal winning coalition.

These considerations lead to a number of questions:

- What will be the size of the coalition of legislators receiving offers from the lobby?
Since the a; are nonnegative numbers, it can be the case that lobby 1 bribes a submajority
coalition (at the extreme, nobody at all), a minimal majority or a supermajority (at the
extreme everybody) depending upon the profile . Which legislators will be part of that
coalition?: when is it the case that the cheapest strategy of lobby 1 consists in bribing the

whole legislature?

2The game arising from the assumption considered by Diermeier and Myerson (1999) displays the features
of a Cournot game.
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- Which legislators will be part of the bribed coalition? Shall we observe a flooded coali-
tion as in Banks (2000) or a nonflooded coalition as in Groseclose and Snyder (1996)(2000)
where flooded refers to the fact that lobby 1 bribes in priority the legislators more willing to
support the reform.

- What are the differences between the offers received by the legislators who are in the
coalition?

The following proposition answers these three questions in the case where (N, W) is the
classical majority game and n is odd® i.e. n = 2k — 1 for some integer k > 2.

Proposition 5. Let t{ = (t};,13,,......,t5;) be an optimal offer by lobby 1. Then, there
exists an integer m* such that ¢t} > 0 and t}; + o' AW = th + /AW foralli,j =1,....,m*.
Further, either % > o AW and m* is determined as the unique smallest integer m such

that % < AWa™ if any and m* = n otherwise. Or % < o®*AW and m* is the smallest

value of m < k — 1 such that: Wy < AW Zf:mﬂ al + mam“}.
Proof: Assume without loss of generality that o' < o? < ... < a". Let t] =
(t51,th5y, e ,t*,) be an optimal solution to problem (1) and N* = {i € N : ¢}, > 0}.

Claim 1: tj; + o' AW = t}; + o/ AW for all 4, j € N*.
Assume on the contrary that t, + o’'AW < th + ol AW for some i, j € N*. Then:

> (tn + o'AW) > Wy for all S C N such that #S =k and i € S. (8)
les

Indeed if:

Z (tll + O/AW) = W, for some S C N such that #S =k and 7 € S,
1es

then, we would obtain:

Z (tll + OélAW) < Wy
1e(S\{i})uis}

*3% *3%

contradicting our assumption that ¢} is a solution to problem (1). Let t1* = (¢}3, 57, ......
be such that ¢} =t} for all [ # ¢ and ¢} =t} — ¢ for some ¢ > 0. If ¢ is selected small
enough, it follows from inequalities (8) that ¢{* meets the constraints of problem (1). Since
further >, v tit < > ,cn th, we contradict our assumption that ¢} is a solution to problem
(1).

Claim 2: o' < o’ for all i € N* and j ¢ N*.

53 Therefore this game is constant-sum.
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Assume on the contrary that o > o’ for some i € N* and j ¢ N*. Then as in claim 1:

Z (tll + O/AW) > Wy for all S C N such that #S =k and 7 € S.
les

Indeed, if:

Z (tll + O/AW) = Wy for some S C N such that #5 =k and i € S,
€S

then, we would obtain:

> (tn +'AW) + AW < W
1e8\{i}

contradicting our assumption that ¢} is a solution to problem (1). The conclusion proceeds
as in claim 1.

From claims 1 and 2, we deduce than an optimal strategy ¢] is described by an integer
m* = #N* and a real number t* = ¢}, + o! AW for all [ € N* such that t* < o/ AW for all
j=m*+1,...,nand t* —a/AW >0forall j =1,...... ,m*.

Consider first the case where m* > k. The most severe constraint is attached to the
coalition S = {1, ..., k} and it takes the form:

t*k > Wh.
Solving this for equality gives:
o Wo
ok

and a total cost for lobby 1 equal to:
(%) m* — AWZO/.
=1

Since a! < o? < ... < ", there is a unique value m* of m such that t* = % <
AWa™H and t;, =t* — /AW >0 forall [ =1, ....... ,m”.
Consider now the case where m* < k. The most severe constraint is still attached to the

coalition S = {1, ..., k} and it takes now the form:

k
Fm* + AW Z al > W,

l=m*+1
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Solving this for equality leads to:

W AW Y

m*

*

and a total cost for lobby 1 equal to:
k
Wo— AW Y "o,
1=1

This solution is valid iff:
< AWa™ ™+,
ie.
k
Wo <AW > ol + AWm o™,
l=m*+41
Since the function AW Zf:m 1ol + AWma™ ! is increasing in m and takes the value

EAW a* when m + 1 = k, we are left with two cases.

Either % > AWa* and m* is determined as the unique smallest integer m such that

% < AWa™ if any and m* = n otherwise. Or % < AWa*. Then let m be the smallest

value of m < k — 1 such that:

k
Wy < AW [ Z ol +mam+1] .

l=m+1
Since % < a®*AW, m is well defined. On the other hand, since:
" — AW >0forall j=1,.... ,m*
we must have:

Wo— AWy o

m*

> AWa™

and therefore m* = m 0O

Let us examine in turn, how proposition 5 answers the three questions formulated at the

beginning of the subsection. Note first that if:

Wo ) Wy 1
Y0 AWa, de 2t <14
Rl AR v
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then the lobby 1 cheapest offer would consist in bribing all the legislators. The cor-
responding cost is ”TWO— AW S o' and lobby 1 will therefore find profitable to do so
iff:

- 2k—1 . i
lenWO—AWZal 16%2 ( k )+226Na7

i.e. inequality (3) since pu*(B) = 2 — +. For lobby 1 to bribe at least a majority of

legislators, it is necessary and sufficient that:

Wo r. W

— > AWa"ie. — <1+ —.

k e S T kar
It will bribe a minimal majority if:

<W1

14— < =
+ k’(l/k'H - WO

<1l4+-—".
+ kak

The corresponding cost is Wy— AW Zle a'and lobby 1 will therefore always find prof-
itable to do so. At the other extreme, if:

k
Wy < AW Z O./l,
=1

then, lobby 1 does not offer any bribe.

The proposition answers the two other questions. The legislators with the lowest o are
approached first. These are the legislators who are the more expensive from the perspective
of lobby 1 and so, even if any legislator has an intrinsic preference for the reform, there is
a sense in which we can say that lobby 1 bribes a nonflooded coalition. Finally, the offers
which are made to two distinct bribed legislators, say ¢ and j compensate exactly for the
differences in the parameters «; and «;: their gross benefits to vote for the reform instead
of the status quo are ultimately identical. Groseclose and Snyder (1996) and Banks (2000)
refer to such vector of offers as a levelling schedule.

While the assumptions are different, proposition 5 shares some common features with
Banks’s main result™. He assumes that there is a majority of legislators who have an intrin-
sic preference for the status quo: without lobbying, the reform is rejected by the legislature.
We assume instead that the intrinsic preferences of the legislators are unanimously oriented
towards the reform side. Under his assumption, lobby 0 has a double advantage, to be second
mover in the game and to have a majority of partisans, while, in our case, the second advan-

tage is entirely eliminated. Both Banks and ours prove the optimality of levelling schedules

%The comparison with Groseclose and Snyder is more difficult as most of the analysis in their 1996’s
paper assumes a continuum of voters.
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but his coalition is nonflooded while it is in our case. We provide a complete characteriza-
tion of the optimal size m* while Banks provide necessary and sufficient conditions for this

coalition to be minimal winning on one hand and universalistic on the other hand®®.

4.4 Procedural versus Consequential

The results of this paper have been derived under the assumption that the legislators were
procedural i.e. their preferences are defined by how they vote rather than by the alternative
that prevails. It is natural whether the bulk of the analysis is preserved if we assume instead
that the legislators are consequential i.e. only concerned by the outcome of the vote. Under
this new behavioral assumption, it is important for any legislator to predict accurately the
voting behavior of the others in order to determine if his vote is pivotal or not while in the
procedural case, it could decide optimally upon his course of action irrespective of the action
of others. Surprisingly, we will see that the results derived in the consequential framework
are quite closed to those obtained in the procedural framework. We will show how to adjust
proposition 1 to accommodate this new setting for an arbitrary profile o.

Let (N, W) be an arbitrary simple game. A coalition S C N will be called minimal
blocking + if there exists T' € B, and ¢ ¢ T such that S =T U {i}. Let us denote by B,
the family of minimal blocking + coalitions. To prepare for proposition 6, let us examine
intuitively the reaction of the different legislators when the pair of vectors of standing offers
is (to, t1). If to; = 0, then legislator i do not have to form expectations about the behavior of
others as he will vote for the reform. If instead, tp; > 0 then legislator must wonder if he is
pivotal or not. If he feels like being pivotal, he will vote for the reform iff ¢;; + o' AW > ¢,
while if he feels not to be pivotal, he will vote for the reform iff ¢; > ty;. For any such
legislator, the question is therefore to determine whether he will be pivotal or not. He will
be pivotal if he anticipates that the coalition of legislators who have received an offer from
lobby 0 and such that t1; + a'AW < ty; is in B,,. If the coalition who has received an offer
from lobby 0 is a coalition S larger than 1" € B,,, then not everybody in this coalition can
be pivotal. We can however consider a profile of votes within S where a subset T' € B,,, vote
for the status quo while the others in S\T vote for the reform but this would not be a Nash
equilibrium as the best response for those in S\T is also to vote for the status quo. Since
they all vote for the status quo, and S is not minimal, none of these legislators is pivotal and

they all vote for the status quo. From the perspective of lobby 0, the cheapest coalition of

55Under his assumptions, lobby 1 cannot consider a submajority coalition. Further, in his framework, a
full characterization of m* looks difficult.
560f course, if o = 0, the two settings coincide.
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that sort is a coalition in B,,,. This reasoning leads to the following two relevant strategic
options for lobby 0.

- Either, lobby 0 bribes exclusively the members of a minimal blocking coalition S and
offers to any legislator i in .S a bribe to; such that t;; + o' AW < t;.

- Or, lobby 0 bribes exclusively the members of a minimal blocking + coalition S and
offers to any legislator 7 in S a bribe tg; such that t1; < to;.

Any other response to the offer of lobby 1 is dominated. The trade-off is pretty trans-
parent: a minimal blocking coalition contains less legislators than a minimal blocking +
coalition but they cost more individually. With minimal blocking + coalitions, everything
is as if we were in the situation where o = 0.

The subgame-perfect equilibrium of this sequential version of the lobbying game can be
easily described. Let t; = (t11,%a1, ...... ,tn1) € R be lobby 1’s offers. Lobby 0 will find
profitable to make a counter offer if either there exists a minimal blocking coalition S such
that:

D (ta+a' W) <Y o'W+ Wy
icS icS
or a minimal blocking + coalition S such that:
Dt < W
€S
Indeed, in both cases, there exists a vector to = (10, tag, --.--- ,tno) of offers such that:
either t;; + o'Wy < tjo + &'Wy or t;1 < tio for all i € S and Ztio < W.
€S
Therefore , if lobby 1 wants to make an offer that cannot be cancelled by lobby 0, it must

satisfy the list of inequalities:
> (ta + o' AW) < Wy for all S € By,
€S
and
Ztil < Wy for all S € Bm+.

i€S
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The cheapest offer ¢; meeting these constraints is solution of the following linear program:

Min tin
hemy IoN
subject to the constraints
Z (tn + aiAW) > W, for all S € B,
icS
and tZtﬂ > Wy for all S € B,
ics

Lobby 1 will find profitable to offer the optimal solution ¢} of problem (1) if the optimal
value to this linear program is less than ;. It is then important to be able to compute this
optimal value.

The following proposition, which is the consequential counterpart of proposition 1 de-
scribes the equilibrium outcome of the lobbying game®”.

Proposition 6. Either (i) W1 > Y g5 0(5) [Wo — Y,cg AW+ 4 0(S)W, for
all vectors of subbalancing coefficients 0 attached to B,, U B,,, and then lobby 1 offers an
optimal solution ¢} to problem (1) and lobby 0 offers nothing and so the bill is passed. Or (ii)
Wi < Y gep0(S) [Wo — Xicg @' AW for at least one vector of subbalancing coefficients ¢
attached to B,, UB,,; and then both lobbyists promise nothing and so the bill is not passed.

As in the behavioral case, the determination of the equilibrium outcome has been re-
duced to the examination of the value of a linear program which is slightly more intricate
than the program obtained under behavioral model P. Both intuition and the calculations

above suggest that the normalized value v, (o, VW) of this program lies somewhere between
V(B ien wy

4> ey o Wo
of the optimal strategy of lobby 1. Since this new program has more constraints, we deduce

and v*(B). As before, the comparison of 7+ and v}, leads to the determination

that v (a, W) is at least equal to the victory threshold derived in the procedural case. The

exact calculation of this parameter will be the subject of further research.
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