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Abstract

Worldwide, natural gas markets have changed drastically after the overall deregulation
started in the eighties. In this paper, we introduce an analytical framework to address the
supply and pricing policy of a gas supplier that has to reserve transportation capacity in or-
der to deliver natural gas to �nal users. The main characteristic of our approach lies in the
treatment of the demand uncertainty that the supplier faces. Indeed, when it has to book its
transportation capacity, the supplier does not know the demand with certainty. This paper
de�nes the optimal policy for the natural gas supplier �rstly by the price proposed to �nal users
that are willing to commit themselves in an advanced purchase of gas ; secondly by the price
proposed to �nal users who did not commit themselves in advance and who buy their gas on a
spot basis ; thirdly by the optimal capacity reservation made by the gas supplier to the trans-
portation network. Our model is based on two complementary assumptions : we assume that
the gas supplier has a market power and that the regulator �xes the network access capacity
price on a cost plus basis.
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1 Introduction

Worldwide, the main characteristics of natural gas markets have changed drastically after the overall

deregulation started in the eighties. This evolution begun in the United State where Orders 436

and 636 compelled vertically integrated gas companies use their transport facilities. Third Party

Access (TPA) to natural gas pipelines is considered as one of the necessary conditions to open

natural gas markets to competition. In Europe, the UK has been the �rst country to go into the

gas market opening.

Today, regulated third party access to national pipelines is implemented all over Europe. Every

network company, wether it is linked to a supplier or not, has to o�er transportation tari�s on a

non-discriminatory basis.

Besides, natural gas industry is characterized by uncertainty that, on the demand side comes

from weather conditions or economic variables (growth for instance). This uncertainty has a hudge

impact on the strategies that can be implemented as far as gas transportation on di�erent networks

is concerned. On the other side, natural gas transporters have to take this uncertainty into account

while setting their tari�s. Generally, they propose two kinds of service: �rm or interruptible.

Interruptible capacity is o�erred with a discount rate compared to the �rm one. For most of the

european pipelines, �rm capacity can be booked on an annual basis but also on a monthly or a

daily basis. Considering the uncertainty that exists on natural gas consumptions, network operators

naturally tend to favor long commitment. Thus, the price for monthly capacity is generally set at

a higher level than the twelfth of the annual price and for daily capacity, price is superior to the

thirtieth of the monthly.

Thus, the reservation strategy that a shipper has to de�ne in order to sell gas to end users is

sophisticated because of this demand uncertainty. Precisely, we assume that when it must reach

a decision concerning annual �rm capacity, it does not know the exact demand that will occur

in subsequent periods. To stick with reality, we assume that there is no complete set of markets

�a la Arrow-Debreu where all the risks could be insured through appropriate insurance contracts

or contingent pricing1. We assume instead that the �rm delivering natural gas for some given

period can use two type of simple linear pricing contracts. For any given period of consumption

(say a given calendar month), either the client commits in advance to purchase a given quantity

of gas (advance purchase) or the client decides upon this quantity at the beginning of the period.

The �rm o�ers a menu of two linear prices : one for advance purchases and another one for spot

1The analysis of prices and market behavior in environments with a set of incomplete markets raises subtle and
sometimes unexpected conclusions (see e.g. Green and Polemarchakis (1976), Green and Sheshinski (1975)). At this
stage, we dont o�er any insight on the rationale for any particular market architecture. We take the current market
environment and the constraints that it imposes on transactions as given.
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purchases. The �rm faces di�erent risks. First, when �xing the two prices, it cannot predict for

sure what will be the volumes demanded for each type of transaction and second, when booking

capacity on transportation networks, it cannot assert for sure if the �rm annual capacity will be

fully utilized. The client who purchases some of its gas in advance also faces a risk as the value

(need, utility,..) of gas consumption is not surely known at term. Likely, the second risk faced by

the �rm price will depend also upon the existence and e�ciency of a secondary market for natural

gas transportation2. In Europe, most of the network operators have settled mechanisms (such as

electronic bulletin board) that allow shippers to exchange capacities. Nontheless there have not

been so many transactions on these secondary markets. In addition most of the network operators3

apply the "use-it-or-lose-it" rule in order to prevent forclusion strategy. Indeed, a supplier could

be tempted to book capacity far beyond its real needs in order to prevent access to network to

other potential suppliers. Currently, the most used allocation rule in Europe is the "�rst come, �rst

served", the UK and Hungary are exceptions as they use auctions mechanisms to pipeline capacity

allocation . This fact can be interpreted as an indicator of su�cient capacity in Europe. That is

why, in this paper, we ignore the risk of rationing for capacity reservation.

The structure of the market(s) involving the demand and supply of natural gas is moving rapidly.

It is fair to say that the current situation is conveniently described as a market which is imperfectly

competitive as only few actors4 with non negligible market power operate on these markets (and

sometimes other energy markets) despite the e�orts of the regulator(s). In this paper we will point

our attention towards the capacity reservations and pricing decisions of a �rm enjoying a monopoly

position in the sense that the clients of this �rm are captive. This must be viewed as a preliminary

step to an assessment of the consequences of the regulatory policies on the functioning of the market

and the welfare of the clients. This is part of a sequential game where the regulator moves �rst and

can commit on its decisions. Its move is then followed by moves from the various private actors. The

�nal prediction will depend upon the details of the modelling of the oligopolistic market. Solving

backward the game describing the competition, provides the regulator with an exact evaluation of

the consequences of the alternative policies that it may consider. Then, we see this manuscript as

part of a larger project to understand the main features of the optimal policy of a regulator aiming

2They will certainly play an important role when they will be fully implemented. McAfee, Doane, Nayyar and
Williams (2006) analyse the implication of pipeline residual rights on the competitiveness of the secundary market for
natural gas transportation. They o�er a critique of some aspects of the current practices of the US Federal Energy
regulatory Commission. Raineri and Ku
ik (2003) examine the issue from a dynamic perspective and and apply their
methodology to Chile.

3Among those network operators, one can �nd French, Netherland, Italian, Austrian en Denish ones.
4On April 1, 2006, only 9% of the population of eligible clients i.e. 63900 clients buy their gas to the market price

(there is the possibility to buy gas to a public price totally under the control of the government). Among those, only
18400 lients switch from their historic suppliers to a new entrant. The number of suppliers active on the market has
however increased from 10 on January 1, 2005 to 14 on January 1, 2006 (CRE (2006)).
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to control a market displaying imperfect competition.

We don't explain in this paper the motivation behind the choices of the regulator. Under

the assumption that it is not captured but aiming to maximize some social objective, the access

prices imposed to the pipeline networks operators are intended to re
ect their costs (capacity and

operating). Investment planning in pipeline capacities is a delicate matter as there is no market and

these prices can also be used to send signals to �rms using the network and determine subsequently

possible over or underinvestment5.

A key ingredient of our approach is the stochastic dimension of the demand for natural gas by

either commercial, industrial or residential. We o�er a model of the demand of natural gas for some

period depending upon the two prices proposed by the provider but also on some other elements

which are not modelled explicitely and are uncertain when the client must decide upon its advance

purchases. Besides weather conditions, we may think of many other elements like for instance

levels of activity or prices of alternative energy inputs in the case or industrial clients. This volatil-

ity should be kept distinct from the seasonal "predictable" variations which is well documented

problem. Any client is therefore described by a list of parameters including price elasticities and

volatilities. In practice, volatility is not easy to quanti�ed unless the client consumption is mea-

sured almost in continuous time as done for large clients. On the price elasticities side, we would

have in principle two direct elasticities and one cross elasticity. To the best of our knowledge, no

empirical analysis of this sophisticated consumer or input choice is available. Past and existing

studies concentrate on a single demand for natural gas. While quasi-null in the short run, direct

natural gas price elasticities are far from being negligible. In their celebrated paper, Balestra and

Nerlove (1966) found for the United States over the period 1950-1962 an elasticity ranging from

0.58 to 0.69. This is con�rmed for instance by Beierlein, Dunn and McConnon (1981) for the

northeastern United States over the period 1967-1977 who found for industrial clients an elasticity

equal to 2.86 with respect to the value added6.

5GDF R�eseau-Transport examines the opportunity of an increase of its entry capacities in the northeastern part
of France :Le besoin potentiel d'une augmentation des capacit�es d'acheminement au point d'entr�ee Obergailach est
apparu �a l'occasion de di��erentes demandes non engageantes �emanant d'exp�editeurs de gaz et de gestionnaires du
r�eseau de transport amont, et de la propre analyse de gaz de france R�eseau Transport sur l'�evolution des 
ux de gaz
en Europe. Gaz de france R�eseau Transport souhaite disposer debons indicateurs pour r�ealiser les investissements
correspondants aux souhaits de ses clients, �a des conditions �economiques raisonnables, tant pour les b�en�e�ciaires des
capacit�es nouvelles que pour l'ensemble des clients de Gaz de france r�eseau Transport. A ce titre, des engagements
portant sur des capacit�es et une dur�ee su�sante sont indispensables pour mener �a bien le projet". L'op�erateur de
transport explique que cet investissement est motiv�e par des demandes re�cues par des exp�editeurs. L'investissement
consiste soit en un doublement de la canalisation jusqu'�a Chateau-Salins sur une distance de 37 km avec rajout
d'un compresseur �a la station de Laneveulotte soit jusqu' �a Laneveulotte sur une distance de 54 km avec rajout
de deux compresseurs permettant d'augmenter les capacit�es d'acheminement de 120 �a 220 GWh/j supp�ementaires.
A�n de pr�evoir les meilleurs choix techniques, l'op�erateur demande aux exp�editeurs int�eress�es de bien vouloir se faire
connaitre et exprimer leurs besoins de capacit�es. La dur�ee minimale de demande de r�eservation non engageante est
�x�ee �a 10 ans".

6Thse estimations are based on cross section and time series macro-data. there are also a number of studies based
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The paper consists then of two parts. In the �rst part, we develop a model to derive the

demand behavior of residential and industrial clients for natural gas. This model ignores income

e�ects and aims to point out some of the key forces behind the decision of a client to buy a large

or small quantity of gas and to possibly di�er its purchases until uncertainty is resolved. The

second part integrates the demand behavior into a multiproduct monopoly problem. We o�er a

complete solution to the three dimensional problem of such monopoly : how many pipeline capacity

to reserve in advance, how to price respectively advance and spot purchases ? This raises a number

of questions on top of which : how the two reservation prices imposed by the regulator to the

network operator are going to be translated into the prices of the monopoly ? Likely, given its

market power, price elasticities and volatilities will play a role and prices will unlikely re
ect truly

the marginal costs supported by the �rm. It is then important to evaluate the gap between the

ratio of prices and the ratio of costs. In the process of our analysis, we also derive the optimal

reservation rule. Most of the analysis is conducted in the case where the population of clients is

composed of two homogeneous groups. Even in that case, the analytical derivation becomes rapidly

tricky and we o�er a full analysis of the homogeneous case.

Related Literature

While new, the ideas and topics discussed in this paper intersect di�erent branches of the

literature on public utility pricing, regulation and industrial organization.

Most of the literature on pricing and regulation with stochastic demand considers as a primitive

the aggregate demand. In a pionnering work, Boiteux (1951) has raised the question of optimal

pricing of individual stochastic demand under the assumption that the capacity network must meet

an exogeneous reliability constraint. In the case where each individual demand was Gaussian, he

was able to derive the pair of optimal prices : each client pays according to the mean and the

standard deviation of its consumption. His analysis has been continued by Dr�eze (1964) and Kolm

(1970) who point out the necessity of using personalized prices and the role of correlation accross

demands. It is very interesting to note that while theoretical, the Hopkinson rate which is a very

common method of pricing electricity and gas for industrial use is strongly related to the idea of

pricing the standard deviation of consumption as demonstrated by Veall (1983). The Hopkinson

rate consists of a demand charge based on the maximum usage during any quarter-hour period

during a month. This pricing dimension should be kept distinct from the temporal peak dimension

of consumption and the resulting TOU (time-of-use) pricing methods (Seeto, Woo, et Horowitz

(1997) and Woo, Horii et Horowitz (2002)). Our model does not take as primitives the individual

demands but derives these demands from maximization in a market environment where transactions

on micro-data like for instance Baker, Blundell and Micklewright (1989) and Leth-Petersen.

5



are however constrained. In contrast to Boiteux who assume inelastic demands, we examine the

response of the demands to price changes and point out the role of the derived price elasticities. In

our paper, we consider advance purchase pricing and spot pricing but our model could be extended

to include more sophisticated pricing options.

Our paper is also very related to the literature on equilibria in markets where both individ-

ual and aggregate demand is uncertain and �rms set prices before demand is known (Carlton

(1978)(1979)(1991), Dana (1998)(1999), Eden (1990)). In the competitive case, small �rms sell

in a spot market but must set their spot market prices and quantities before demand is known.

As �rst shown by Prescott (1975) with such a context of uncertain aggregate demand, goods may

be o�ered and sold at di�erent prices in equilibrium. Firms must decide how much to supply at

each price. Since spot prices do not adjust to clear the market, rationing occurs in equilibrium

and capacity may not be fully utilized. Dana (1998) generalizes the basic Prescott model to allow

�rms to make advance-purchase sales. Like in our paper, these contracts are restricted to standard

sales contracts, contingent contracts or contracts that specify probabilistic delivery of the good

(e.g. priority service pricing) 7. Gales and Holmes ((1992),(1993)) examines the rationale of an

advance-purchase discount policy from the perspective of a monopoly facing demand uncertainty.

Finally, our paper is also a contribution to the analysis of multiproduct monopolies. In our

model, there is a single physical product but the timing of purchase leads to two di�erent products

from the perspective of the clients. The optimal pricing policy of a multiproduct monopoly has

been examined in many papers with focus on questions like bundling or cross subsidization8. Our

paper adds demand uncertainty and price rigidities to the standard model of monopoly pricing. By

setting with those features, it has been demonstrated that posting several prices may be optimal

(Dana (2001), Wilson (1988)9). There are very few models of imperfect competition in market

environments like those considered here. A notable exception is Deneckere and Peck (1995) who

consider a game where �rms set prices and capacities and then a random number of consumers

attend the market and select a �rm to visit10.

The rest of the paper is organized as follows. In section 2, we develop our model of residential

and industrial stochastic demand for natural gas. Then in section 3, we derive and interpret the

optimal policy of the monopoly in terms of pipeline capacity reservations and advance-purchase

and spot pricing. We conclude with a description of a number of directions of extension of the

7See, for instance, Spulber (1992a,b) and Wilson (1989) for the examination of alternative policies.
8See Tirole (1988) for an overview.
9In Wilson (1988) there is no aggregate uncertainty but it is assumed that a large number of consumers visit the

�rm in random order.
10There is also a related literature on the implications of future markets on the equilibria of oligopolistic spot

markets (see e.g. Allaz (1992), Allaz and Vila (1993), Mahenc and salani�e (2004) and Murphy and Smeers (2005)).
Note however that advance-pruchase discounts is something di�erent from forward trading.
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current work.

2 The Demand for Natural Gas

We consider a monopolist distributing gas to a "captive" population of heterogeneous consumers.

We are interested in explaining the volumes of trade and the prices paid by these customers at time

t or more precisely during the period [t; t+�]. The �rm holding this monopoly position has two

important technological decisions : it can reserve some transportation capacity one period ahead

i.e. at time t � � for the unitary price of c. It has however the possibility to proceed to some

extra reservation of transportation capacity at time t for the unitary price c. We assume here that

there is no secondary market for unused capacity which implies that the monopoly may well be in

a situation where it has to incur the full cost of a transportation capacity which is under utilized at

time t. We also ignore here the event that the monopoly could be unable to reserve the "missing"

capacity at time t11. The monopoly must precommit to two prices : a unitary price p for any

volume of gas that a client may ordered at time t � � for a delivery/consumption at time t and

a unitary price p for any volume of gas ordered at time t for an immediate delivery/consumption.

The contractual universe consists simply of these two linear prices.

The speci�c feature of our model is the stochastic character of the demand from the perspec-

tive of the �rm. The �rm "investment" (here reservations) decisions cannot be delayed until the

resolution of uncertainty. The analysis is conducted within a reference time period and we will not

pay any attention to the temporal dimension of gas consumption12. If it was possible to design a

complete set of contingent markets a la Arrow-Debreu, we would have a price for each possible con-

tingency and each consumer would have to select a contingent consumption plan. In such market

environment, uncertainty would disappear for the local gas supplier without implying, of course,

that there is no excess capacity in some contingency. We also know that such organization of the

transactions leads to an e�cient allocation of resources and in particular optimal risk sharing. We

assume that this market organization is not possible or, more precisely, we assume that it is not

possible to o�er all the contingent delivery contracts associated to these markets. In this second

best setting, the gas supplier cannot accomodate all contingencies without investing in capacity up

to the point that even the worst case could be handled without risk of default. In this section,

we �rst model the demand behavior of household and �rms when a single price is posted for the

period which is considered. Then, we describe the costs of the �rm. Finally, we describe the market

11This sounds at �rst glance inconsistent with our assumption that the reservation price is regulated and therefore
not 
exible to accomodate an excess demand of transportation capacity at time t.
12The explicit introduction of time does not raise any speci�c conceptual di�culty. However, this aspect, on top

of which peak load pricing, has been widely discussed in the literature and is not the main focus of our manuscript
which deals with other sources of the variability in demand.

7



environment i.e. the type of transactions that are possible.

2.1 The Demand for Natural Gas at Time t from residential Clients

The main purpose of this section is to o�er a simple model13 explaining how a client of the monopoly

reacts to the pair of prices (p; p) i.e. plans its gas consumption for the period. This simple model

aims not only to explain what will be the volume of gas consumed by this client in reaction to the

menu of prices but also how it will share this total consumption between an advance-purchase and

the spot market. This will depends of course upon its need/preference/value for gas consumption

in contrast to other commodities. The key assumption is that the valuation of this client depends

upon informations which are not all disclosed at time t��. Precisely, we assume that the preference
of a generic household for gas consumption at time t � � is described by the quasi-linear utility

function

V (x; !) +M (1)

where x denotes its consumption for the period [t; t+�], ! is a real number and M denotes

the other consumption expenditures. We denote by R the consumption budget of this household.

As explained above, at time t � �, this household is o�ered the possibility of ordering some gas
at a unitary price p. Then at time t, he can always proceeds to some ultimate arrangements (if

needed) once the all relevant information will have been conciled. It is assumed here that the real

parameter ! is random and that its realization will take place at time t. This implies that any

household planning to order some gas at time t�� faces some uncertainty. The expression in (1)

describes in monetary units the value of the consumption plan (x;M) when the realization of the

random variable e! is !. To evaluate ex ante, i.e. at time t � �, the value of this plan, we need
to introduce the von Neuman-Morgenstern utility U of this household which re
ects its attitude

towards risk. The value of the consumption plan (x;M) is then :

U (V (x; !) +M)

In the contractual environment considered here, a consumption plan for the period [t; t+�] is

a vector (x, x(!);M) where x represents its advance purchase at time t �� and x(!) represents

its spot purchase at time t when uncertainty has been resolved : x(!) denotes its purchase when

the realization of the random variable is !. When the range of the random variable e! consists of
13This model is of course simplistic in many respects as it wants to focus on a speci�c feature, namely the volatility

in gas consumption and its consequences on pricing. A complete model of gas consumption should recognize the time
dimension of the problem and the impossibility to separate the investment decision in some durable equipments for
energy consumption and the subsequent decisions on input consumptions. This
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a �nite set 
 and �(!) is the probability of the event fe! = !g, the expected utility derived from
the purchase plan (x, x(!);M) is :

X
!2


�(!)U(V (x+ x(!); !)� px� px(!) +R) (2)

The �rst order conditions are :

X
!2


�(!)U 0(V (x+ x(!); !)� px� px(!) +R)
�
@V

@x
(x+ x(!); !)� p

�
= 0 si x > 0 (3)

and

@V

@x
(x+ x(!); !)� p = 0 si x(!) > 0 (4)

Without any further assumption on the primitives, equations (3) and (4) are not easy to solve

in full generality. For instance, when U is of the CARA type i.e. U(z) = �e��z where � is a
positive parameter, equation (3) simpli�es to :

X
!2


�(!)e��(V (x+x(!);!)�px(!))

�
@V

@x
(x+ x(!); !)� p

�
= 0

Note however that U does not play any role in equations (4) which is fairly natural as they

describe optimal supplementary purchase of gas once uncertainty has totally disappeared.

To handle these equations, we introduce a number of simpli�cations. First, we suppose that

each household is risk neutral. In this case, equation (3) simpli�es to :

X
!2


�(!)

�
@V

@x
(x+ x(!); !)� p

�
= 0 if x > 0 (5)

When we will consider a population of households, each of them will be identi�ed by an index

i = 1; :::::; I1. The parameters and variables will be subsequently indexed with i : Vi; Ui;
i; �i and

Ri. Heterogeneity across households dervies from multidimensional spanning income, preferences

for gas and risk attitudes. Under risk neutrality and quasi linearity, income and risk e�ects are

eliminated. We are left with intrinsic preference heterogeneity with two channels : the impact of x

for a given ! and the impact of ! for a given x.
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2.2 The Binomial Speci�cation

We now specify further the framework by describing the in
uence of uncertainty on the value of

gas consumption. The key feature is the binomial character14 of the stochastic in
uence of the

state of the world !: for each client i either the state of the world is favorable to gas consumption

xi or it is not. Moreover, the states of the world favorable to gas consumption may di�er sharply

accross clients. A state of the world is a vector describing the subpopulation of clients receiving a

favorable signal. Precisely :


 =
I1Y
i=1

f!i; !ig

where for all i = 1; 2; :::; I1 , !i et !i are two real numbers such that : !i < !i. Without

loss of generality, we suppose hereafter that !i = 0; !i refers to circumstances unfavorable to gas

consumption from the perspective of client i. We denote �i the probability of the event f!i(t) = 0g.
Finally, we assume that for all i = 1; :::; I1 :

Vi(xi; !) = vi(xi + !i)

where vi is an increasing and strictly concave continuously di�erentiable function. In this

simpli�ed setting, a consumption purchase plan is a three dimensional vector (xi, xi(!i); xi (!i)) =

(xi, xi(0); xi (!i)). The expected utility of client i for such plan becomes :

�ivi(xi + xi(!i)) + (1� �i)vi(xi + xi(!i) + !i)� pxi � p(�ixi(0) + (1� �i)xi(!i))

Equations (4) simpli�es to :

(
v0i(xi + xi(0)) = p i� v0i(xi) � p

v0i(xi + xi(!i) + !i) = p i� v0i(xi + !i) � p
(6)

If v0i(xi) < p (respectively v0i(xi+!i) < p), then xi(0) = 0 (respectively xi(!i) = 0). Since vi has

been assumed to be strictly concave, we deduce that if v0i(xi) < p then v0i(xi � !i) < p. Therefore,

from (6), if xi(!i) > 0, then xi(0) > 0. On the other hand, equation (5) simpli�es to :

�iv
0
i(xi + xi(0)) + (1� �i) v0i(xi + xi(!i) + !i) = p si xi > 0 (7)

We deduce from equations (6) et (7) that necessarily :

14We could opt for a continuous state space. Our modelling choice is just driven by convenience.

10



xi(!i) = 0

Indeed, if on the contrary xi(!i) > 0; since xi(0) > 0, we deduce from (6) :

�iv
0
i(xi + xi(0)) + (1� �i) v0i(xi + xi(!i) + !i) = p

which contradicts (7) since p > p. The intuition driving this result is fairly simple. Here, a

circumstance which is adverse to gas consumption leads to a decrease of the marginal utility of gas

with respect to a reference consumption. In our binary setting, this happens when !i = !i and in

such case, it is optimal to purchase the contingent optimal quantity of gas at the lowest possible

price i.e. in advance. If in contrast, circumstances turn to be favorable, then the spot market

will be (likely) used to proceed to some additional purchases. An immediate implication of this

observation is that a purchase plan of client i reduces to a two dimensional vector (xi; xi(0)); that

we will denote simply (xi; xi). The �rst order conditions become :

�iv
0
i(xi + xi) + (1� �i) v0i(xi + !i) = p if xi > 0 (8)

and

v0i(xi + xi) = p si xi > 0

Client i �nds optimal to purchase its gas in advance if the unique solution xi of the following

equation :

�iv
0
i(xi) + (1� �i) v0i(xi + !i) = p (9)

satis�es

v0i(xi) � p (10)

Similarly, client i �nds optimal to purchase all its gas on the spot market if :

�iv
0
i(xi) + (1� �i) v0i(!i) � p (11)

where xi is the unique solution of the equation:
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v0i(xi) = p (12)

This happens if and only if the following inequality holds true :

v0i(!i) �
p� �ip
1� �i

For instance when p is smaller than �ip, we conclude that this cannot happen. The inequality

is less likely to hold true when p is small, p is large and v0i(!i) is large. In contrast, the e�ect of �i

is ambiguous.

Finally, client i will not purchase gas (at all) if :

�iv
0
i(0) + (1� �i) v0i(!i) � p et v0i(0) � p

Let xi(p) be the unique solution to equation (8). Inequality (9) becomes :

p �
p� (1� �i) v0i(xi(p) + !i)

�i
� '

�
p
�

From the implicit function theorem, we deduce :

x0i(p) =
1

�iv00i (xi) + (1� �i) v00i (xi + !i)
and then :

'0
�
p
�
=
1� (1��i)v0i"(xi+!i)

�iv00i (xi)+(1��i)v0i"(xi+!i)

�i
=

v00i (xi)

�iv00i (xi) + (1� �i) v00i (xi + !i)

It should be noted that as soon as v0i(x) tends to 0 when x tends to +1, '
�
p
�
tends to 0 when

p tends to 0. Moreover, combining (10) and (11) lead to the inequality :

p �
p� (1� �i) v0i(!i)

�i
�  (p)

The functions ' et  make the identi�cation of the four potential groups of households in the

population easier : those who do consume gas, those who purchase their gas exclusively in advance,

those who purchase their gas exclusively on the spot market and those who mix with the both. We

note �rst that the functions intersect at p = �iv
0
i(0) + (1� �i) v0i(!i) and '

�
p
�
=  

�
p
�
= v0i(0).

The curvature of the function ' depends upon the monotonicity of the coe�cient �v00i (x)
v00i (x)

. For the

sake of illustration, we consider the case where vi(x) = �e��ix where �i is a positive parameter.
In such a case :

'
�
p
�
=

p

�i + (1� �i)e��ix
and  (p) =

p� (1� �i)�ie��ix

�i

At time t ��, the total gas consumption of household i is a Bernouilli random variable with

mean xi

�
p; p

�
+ �ixi

�
p; p

�
and standard deviation

p
�i(1� �i)xi

�
p; p

�
..

12



2.3 The Demand for Natural Gas at Time t from Industrial Clients

Our preceding analysis of the demand has focused exclusively on households. In this subsection, we

sketch a Bernouilli model of demand for natural gas from �rms. Here, gas is an energy input used

by �rms in their production process and it is implicitely assumed that this input is in competition

with others.

Consider the case of a monoproduct �rm described by the cost function C(y; x)+px conditional

upon the purchase of a quantity of gas equal to x at a unitary price of p. Let q denote the unitary

price of the product. When there is no uncertainty on q, the determination of the optimal quantity

of gas to buy is a conventional exercice.

Suppose now that instead, there is a binomial uncertainty on the sale price q : the price q takes

the values q et q with probabilities � and 1��. The desired quantity of gas does not need to be the
same for the two states of the world. Assume that q > q. In such case and under the assumption

that the inputs are normal, then y(q) > y(q). As in the case of households, we distinguish favorable

and unfavorable circumstances for gas consumption. This channel of in
uence privileges the impact

of a change in the activity level of the �rm following a decline in rentability. Other channels of

in
uence could consist for instance in modi�cations of the price of inputs which are complements

or subsitutes to gas.

The analysis of the optimal choices of the �rm is very similar to the analysis conducted for

the household. First, there will be no purchase on the spot market when q = q. Indeed, given

the normality assumption, the demand of all the inputs in the favorable case is larger than in

the unfavorable case. The lowest demand of gas is attached to the sale price q and it is better

to purchase gas in advance at the lower price p. This means that the �rm will buy at least the

quantity x(p; q). We are left with the question : is it pro�table to buy in advance a quantity larger

than x(p; q) ? Let x be the quantity of gas purchased in advance by the �rm. The expected pro�t

is then :

�Max
y;x

h
qy � C(y; x+ x)� px� px

i
+ (1� �)Max

y;x

h
qy � C(y; x+ x)� px� px

i
The important observation is that, at time t, the cost px is sunk. Note also that ouput plan of

the �rm and demand factors will depend upon the ex ante decision x. On the spot market, it faces

the unit price p. When circumstances are unfavorable, the constraint x � 0 will be active. In such
a case, the manager of the �rm optimizes with respect to the short run cost function : everything

is as if, with respect to the prices p et q, his gas input was in excess. Given p, this quantity of gas

would then be optimal for some sale price q > q. We deduce then from the Viner-Wong envelope's

principle that the production y is in between y(p; q) and y(p; q).

13



When the circumstances are favorable, the constraint will be likely inactive and the manager

will buy some additional quantity of gas on the spot market. To examine, the validity of these

claims in full generality, we write down the �rst oder conditions of the �rm. A production plan is

a �ve dimensional vector
�
y(q); y(q); x(q); x (q) ; x

�
. In the interior case, we obtain :

q � @C

@y
(y(q); x (q) + x) = 0

q � @C

@y
(y(q); x

�
q
�
+ x) = 0

�@C
@x
(y(q); x (q) + x) = p

�@C
@x
(y(q); x

�
q
�
+ x) = p

�

�
�@C
@x
(y(q); x (q) + x)� p

�
+ (1� �)

�
�@C
@x
(y(q); x

�
q
�
+ x)� p

�
Assume that @2C

@x@y (y; x) < 0. From the implicit function theorem and the second order condition

@2C
@x2
(y; x) > 0, we deduce that x is an increasing function of y: Further, the supply curve is increasing

in q and therefore y(q) < y(q). We deduce that if x
�
q
�
> 0, then x (q) > 0: Indeed, if instead

x (q) = 0, we would obtain

�@C
@x
(y(q); x) � p

But since @2C
@x@y (y; x) < 0 and y(q) < y(q), we would have :

�@C
@x
(y(q); x) � p

and then, since @2C
@x2
(y; x) > 0 :

�@C
@x
(y(q); x

�
q
�
+ x) < p

But this contradicts the fourth �rst order condition. To conclude, we can now observe that it

is impossible to have x
�
q
�
> 0 because then we would have x (q) > 0 and after substitution in the

�fth equation, we would deduce p = p in contradiction to our assumption.

Like for households, we will consider a population of �rms, each of them will be identi�ed by

an index j = 1; :::::; I2 and the parameters and variables will be subsequently indexed with j : Ci

and �j . Heterogeneity across �rms spans di�erences in technology and risk.
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2.4 Aggregate Demand Uncertainty

To conclude the modeling of the demand side, it remains to agregate the individual demand behav-

iors. To do so, we must describe the structure of the uncertainty. We have assumed that each client

i is described by a Bernouilli model totally summarized by a single number �i representing the mar-

ginal distribution attached to this client. We now introduce the joint distribution accross clients. In

the case of two clients i.e. I = 2, a state of the world is described by a vector ! 2 f0; !1g�f0; !2g.
the joint distribution is de�ned by the following contingency table :

0 !2

0 ��1�2 �1 (1� ��2) �1
!1 �2 (1� ��1) 1� �1 � �2 + ��1�2 1� �1

�2 1� �2

Table 1

The last row and last colum correspond to the marginals. All the information about the

correlation accross states is contained in the coe�cient �. The circumstances infuencing the gas

demand of the two clients are independent when � = 1. In contrats, they are perfectly correlated

when � = 1
�1
= 1

�2
.

An alternative way to model simply the correlation would consist in adding an extra component

in the product space
QI
i=1 f!i; !ig, say 
 =

n
�; �
o
�
QI
i=1 f!i; !ig and assuming the joint distri-

bution as the product of the marginals. In such setting, the uncertainty a�ecting client i would

consist of two terms : a macroeconomic or climatic term � together with an idiosyncratic term !i.

The analysis of the demand of gas by households and �rms could be conducted as before, under

the asssumption that Vi(xi; !) = vi(xi+ �+!i). However, there are four states of the world at the

level of each client and the analytics become more tedious.

Hereafter , we focus on the case where only the idiosyncratic risk is taken into consideration

i.e. we assume that the individual demands are independent. From the perspective of the �rm

supplying gas to this population of clients, the stochastic demand at time t�� is therefore a sum

of independent (but not identically distributed) Bernouilli random variables exi where :
exi =

8<: xi

�
p; p

�
+ xi

�
p; p

�
with probability �i

xi

�
p; p

�
with probability 1� �i

The aggregate demand consists of a deterministic term
PI
i=1 xi

�
p; p

�
and a random termPI

i=1 xi
�
p; p

�
. The �rst term is the aggregate advance purchase while the second terme is the
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aggregate purchase on the spot market. Both are in
uenced by the two dimensional price policy�
p; p

�
.

In some cases, it will be useful to replace the exact aggregate demand by its Gaussian approximation15.

We do it in the case of the residential aggregate demand but the same argument applies in the case

of the aggregate industrial demand. If :PI1

i=1 �i (1� �i) (�1+�i + (1� �i)1+�)(xi(!i))2+�

(
qPI

i=1 �
2
i )
2+�

!
I!1

0

we deduce from the Lyapounov 's central limit theorem that if I is large enough, X
�
p; p

�
�PI1

i=1

�
xi

�
p; p

�
+ xi

�
p; p

��
behaves approximatively as a Gaussian random variable N(�; �) where

� =
I1X
i=1

�i with �i = xi

�
p; p

�
+ �ixi

�
p; p

�
for all i = 1; :::; I1

� =

vuut I1X
i=1

�2i with �i =
q
�i(1� �i)xi

�
p; p

�
for all i = 1; :::; I1

3 The Monopoly Optimal Policy

The main contribution of this section is to derive the optimal capacity reservation and pricing

policy of the monopoly. On the one hand, the monopoly has to decide how much capacity to

reserve in advance. Two events may occur. If the capacity can match the realized demand, then

there is no need to buy extra capacity on the spot market. Otherwise, the monopoly will be

obliged to buy on the spot market the missing capacity. The unitary prices of these two markets

are regulated and denoted respectively c and c for advance and spot capacity reservations. We

assume that there is no possible resale for capacities i.e. that there is no secundary market, any

unused capacity is worthless. On the pricing side, the monopoly o�er two contractual options to

its clients : any unitary quantity of gas purchased �rmly in advance is sold at the price p while any

unitary quantity purchased a day in advance is sold at the price p. We assume that the monopoly

can credibly commit on its prices.

The aggregate demand is stochastic. This implies two sources of randomness : on the sales

side, the revenues are uncertain and on the costs side, the �nal cost is also dependent upon the

amount of extra capacity that the operator may have to buy on the spot market. As it will bve

transparent below, we will separate the input decision (advance capacity reservations) from the

15Any Gaussian variable takes negative values with positive probability. Since demand is non negative, we will
have to be careful with that implication of the approximation.
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pricing decisions. we ignore here the other part of the cost incurred by the monopoly, namely

the purchase of gas at some entry point. Under the assumption that this cost is constant and

governed by long term contracts (say with importers), the extension of our results to this setting is

straightforward : the optimal relative markups are the same as without this additional cost. This

assumption is realistic for the case where the monopoly is the the part of the historical monopoly

after unbundling. It is less realistic in the case where the monopoly is a new entrant which does

not access to these long term arrangements and can be obliged (besides gas release arrangements)

in some circumstances to buy gas on the "march�e de gros".

Since the pro�t of the monopoly is random, it is important to know how it evaluates risky

strategies. Denoting by e� the random pro�t, a good and simple utility function f to describe that

feature is given by the CARA class. Precisely :

f(�) = �e���

where � is a positive parameter representing its absolute aversion towards risk. A computatinal

advantage o�ered by this class is that we can demonstrate that if e� is a Gaussian random variable

N(�; �), then the certainty equivalent objective is simply :

�� ��2

2

The solution of the problem is already complicated in that case16. This is why, we will focus

for the moment on the case where the monopoly is risk neutral

3.1 The General Formulation

We denote by e� �p; p� the monopoly pro�t. It is the random variable de�ned as follows :

p

24 I1X
i=1

xi(p; p) +
I2X
j=1

xj

�
p; p

�35+ p
24 I1X
i=1

exi �p; p�+ I2X
j=1

fxj �p; p�
35

�cz � cez
where z is the capacity reserved in advanced and :

ez =
8<: 0 if

PI1

i=1 exi(p; p) +PI2

j=1fxj �p; p� � zPI1

i=1 exi(p; p) +PI2

j=1fxj �p; p�� z if PI1

i=1 exi(p; p) +PI2

j=1fxj �p; p� > z

We deduce that the expected pro�t of the monopoly is equal to :

16Preliminary results are available upon request from the authors.
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p

24 I1X
i=1

xi(p; p) +
I2X
j=1

xj

�
p; p

�35+ p
24 I1X
i=1

�ixi
�
p; p

�
+

I2X
j=1

�jxj
�
p; p

�35
�cz � c

Z +1

z

0@ I1X
i=1

exi(p; p) + I2X
j=1

fxj �p; p�� z
1AP (dex)

where P denotes the distribution of the aggregate random demand ex where
ex � I1X

i=1

exi(p; p) + I2X
j=1

fxj �p; p�
Under the Gaussian approximation, the expected pro�t simpli�es to :

p

24 I1X
i=1

xi(p; p) +
I2X
j=1

xj

�
p; p

�35+ p
24 I1X
i=1

�ixi
�
p; p

�
+

I2X
j=1

�jxj
�
p; p

�35
�cz � c

Z +1

z

� ex� z � 1

�
p
2�
e�

(ex��)2
2�2 dex

R+1
2 (x� 2)2 1

�
p
2�
e�

(x�1)2

2�2 dx

where ex is the Gaussian random variable N(�; �) with :

� � �1 + �2 et � =

vuuut I1X
i=1

�2i +
I2X
j=1

�2j

Under the assumption that the monopoly is risk neutral, then its optimal policy
�
p�; p�; z�

�
is

solution of the program :

Max
(p;p;z)

p

24 I1X
i=1

xi(p; p) +
I2X
j=1

xj

�
p; p

�35+ p
24 I1X
i=1

�ixi
�
p; p

�
+

I2X
j=1

�jxj
�
p; p

�35
�cz � c

Z +1

z
(ex� z) 1

�
p
2�
e�

(ex��)2
2�2 dex

The �rst order condition with respect to z leads to the fondamental equation :Z +1

z

1

�
p
2�
e�

(ex��)2
2�2 dex = c

c

i.e. the optimal reservation of transport capacity z�(p; p) at time t�� satis�es :

1p
2�

Z z��
�

�1
e�

t2

2 dt = 1� c

c
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or equivalently :

z� = �+ ��(1� c

c
)

where � (�) is the unique solution to the equation :

1p
2�

Z �(�)

�1
e�

t2

2 dt = �

For the record, table 2 below provides a sample of values of � (�).

� 0:8 0:9 0:95 0:99

�(�) 0:845 1:285 1:645 2:325

Table 2

Then after solving for z, the monopoly choice problem simpli�es to the following two dimensional

problem :

Max
(p;p)

p

24 I1X
i=1

xi(p; p) +
I2X
j=1

xj

�
p; p

�35+ p
24 I1X
i=1

�ixi
�
p; p

�
+

I2X
j=1

�jxj
�
p; p

�35
�c
�
�+ ��(1� c

c
)

�
� c

Z +1

�+��(1� c

c
)

�ex� �� ��(1� c

c
)

�
1

�
p
2�
e�

(ex��)2
2�2 dex

where :

� =
I1X
i=1

�
xi

�
p; p

�
+ �ixi

�
p; p

��
+

I2X
j=1

�
xj

�
p; p

�
+ �jxj

�
p; p

��
and

� =

vuuut I1X
i=1

�i(1� �i)x2i
�
p; p

�
+

I2X
j=1

�j(1� �j)x2j
�
p; p

�

For the sake of calculus, it is useful to observe17 that :Z +1

z
(ex� z) 1

�
p
2�
e�

(ex��)2
2�2 dex = �

Z +1

z��
�

(1� F (t))dt

where :

F (x) �
Z x

�1

1p
2�
e�

t2

2 dt

17The equality follows from a straightforward integration by parts.
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This reduced form indicates that the vector of prices
�
p; p

�
in
uences the objective through

direct channels like the classical demand and cost components. The analysis here is complicated by

the fact that the optimal technological choice which consists here in a mix of advance transportation

capacity reservations and spot transportation capacity reservations cannot be separated from the

pricing decisions. Under suitable second order conditions, the determination of the optimal policy�
p�; p�

�
is solution of the two �rst order conditions attached to these variables. The analytical

derivation as well as the interpretation of these equations is quite tricky in the general case. In the

next section, we o�er a complete analysis in the case where the total population of clients consists

of two homogenous groups..

3.2 Two Homogeneous Classes of Clients

Hereafter, we assume that the populations of residential and industrial clients of this monopoly are

homogeneous : all the residential clients on the one hand and all the industrial clients on the other

hand display the same characteristics concerning their needs/tastes for gas consumption and the

volatility of their demand. As it should be clear, this binary assumption accomodates of course

many alternative illustrations like for instance the case of a monopoly whose clients are all either

residential or industrial but partitioned into two groups. Formally, we assume that :

�i � �1, vi � v1; !i � !1 for all i = 1; ::::; I1

�j � �2, vj � v2; !j � !2 for all j = 1; ::::; I2

The problem of the monopoly simpli�es to :

Max
(p;p)

264 p
�
I1x1

�
p; p

�
+ I2x2

�
p; p

��
+ p

�
I1�1x1

�
p; p

�
+ I2�2x2

�
p; p

��
�cz�

�
p; p

�
� �c

R+1
z�(p;p)��

�

(1� F (t)) dt

375
The �rst order conditions are as follows :
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p

24I1@x1
�
p; p

�
@p

+ I2
@x2

�
p; p

�
@p

35+ hI1x1 �p; p�+ I2x2 �p; p�i

+p

24I1�1@x1
�
p; p

�
@p

+ I2�2
@x2

�
p; p

�
@p

35
�c

24@z�
�
p; p

�
@p

35� c
240@1� F (z�

�
p; p

�
� �

�
)

1A @z�
�
p; p

�
@p

35
�c

0@1� F (z�
�
p; p

�
� �

�
)

1A @�

@p

�c

24Z +1
z�(p;p)��

�

(1� F (t)) dt+

0@z�
�
p; p

�
� �

�

1A0@1� F (z�
�
p; p

�
� �

�
)

1A35 @�
@p

= 0

and

24I1@x1
�
p; p

�
@p

+ I2
@x2

�
p; p

�
@p

35+ p
24I1�1@x1

�
p; p

�
@p

+ I2�2
@x2

�
p; p

�
@p

35
+
h
I1�1x1

�
p; p

�
+ I2�2x2

�
p; p

�i
�c

24@z�
�
p; p

�
@p

35� c
24�1� F (z� �p; p�� @z�

�
p; p

�
@p

35
�c

0@1� F (z�
�
p; p

�
� �

�
)

1A @�

@p

�c

24Z +1
z�(p;p)��

�

(1� F (t)) dt+

0@z�
�
p; p

�
� �

�

1A0@1� F (z�
�
p; p

�
� �

�
)

1A35 @�
@p

= 0

Remembering that :

z�
�
p; p

�
= �+ ��(1� c

c
)

where here :

� = I1
�
x1
�
p; p

�
+ �1x1

�
p; p

��
+ I2

�
x2
�
p; p

�
+ �2x2

�
p; p

��
� =

r
I1�1(1� �1)

�
x1
�
p; p

��2
+ I2�2(1� �2)

�
x2
�
p; p

��2
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we obtain after simpli�cations and substitutions :

p

24I1@x1
�
p; p

�
@p

+ I2
@x2

�
p; p

�
@p

35+ hI1x1 �p; p�+ I2x2 �p; p�i

+p

24I1�1@x1
�
p; p

�
@p

+ I2�2
@x2

�
p; p

�
@p

35
�c@�

@p
� c

"Z +1
z�(p;p)��

�

(1� F (t)) dt+ c

c
�(1� c

c
)

#
@�

@p

= 0

and

p

24I1@x1
�
p; p

�
@p

+ I2
@x2

�
p; p

�
@p

35+ p
24I1�1@x1

�
p; p

�
@p

+ I2�2
@x2

�
p; p

�
@p

35
+
h
I1�1x1

�
p; p

�
+ I2�2x2

�
p; p

�i
�c@�

@p
� c

"Z +1
z�(p;p)��

�

(1� F (t)) dt+ c

c
�(1� c

c
)

#
@�

@p

= 0

Using the fact that :

@�

@p
= I1

@x1
�
p; p

�
@p

+ I2
@x2

�
p; p

�
@p

+ I1�1
@x1

�
p; p

�
@p

+ I2�2
@x2

�
p; p

�
@p

@�

@p
= I1

@x1
�
p; p

�
@p

+ I2
@x2

�
p; p

�
@p

+ I1�1
@x1

�
p; p

�
@p

+ I2�2
@x2

�
p; p

�
@p

@�

@p
=

�
I1�1(1� �1)x1

�
p; p

�
@x1(p;p)

@p + I2�2(1� �2)x2
�
p; p

�
@x2(p;p)

@p

�
rh

I1�1(1� �1) (x1)2
�
p; p

�
+ I2�2(1� �2) (x2)2

�
p; p

�i
@�

@p
=

�
I1�1(1� �1)x1

�
p; p

�
@x1(p;p)

@p + I2�2(1� �2)x2
�
p; p

�
@x2(p;p)

@p

�
rh

I1�1(1� �1) (x1)2
�
p; p

�
+ I2�2(1� �2) (x2)2

�
p; p

�i
we obtain after some rearrangements :
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�
p� c

�24I1@x1
�
p; p

�
@p

+ I2
@x2

�
p; p

�
@p

35+ (p� c)
24I1�1@x1

�
p; p

�
@p

+ I2�2
@x2

�
p; p

�
@p

35
= �

h
I1x1

�
p; p

�
+ I2x2

�
p; p

�i

+c

"Z +1

�(1� c

c
)
(1� F (t)) dt+ c

c
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or equivalently :
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where for i = 1; 2 :
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These two fundamental equations describe in reduced form the optimal pricing policy of the

monopoly. They express the di�erential between the two prices and the unit cost c for reserving in

advance i.e. at time t�� some transportation capacity. In matrix form, they are as follows :

A
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B

!
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35
A closed form solution as well as an interpretation of these equations is not immediate in this

general two class case. Note however that as formulated, the system is ready for calibration as the

market shares and elasticity parameters playing a major role in the determination of the prices are

identi�ed.

� The parameters �1 and �2 measure the respective market shares of the two groups of clients
on the advance-purchase markets.

� The parameters �1and �2 measure the respective magnitude of the advance-purchase and spot
sales for the two groups of clients.

� The di�erent direct and cross price elasticities : e1; e2; f1; f2; g1, g2, h1and h2.
� The respective volatilities of the two groups of clients measured by the parameters �1 et �2.

The volatility is measured here through the quantity j �i � 1
2 j.
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It would be interesting to look at a calibrated model based on a reasonable set of values for the

parameters in order to evaluate di�erences in prices proposed by european pipelin operatord for

di�erent terms (month, year) of transportation capacity. Note however that these parameters are

not independent as we should anticipate for basic consumer or producer theory. Further, as in the

case of Ramsey-Boiteux prices, they don't represent, strictly speaking, a solution as the parameters

depend themselves upon the pair of prices. In the next section, we continue this examination in

the simplest one class case i.e. with an homogeneous population of clients.

3.3 The Optimal Prices in the Homogeneous Case

In order to highlight the main ingredients shaping the derivation of the optimal pricing policy�
p�; p�

�
, we examine the fundamental equations in the case where the population of clients consists

of one, instead of two, homogeneous group of I clients. Each client is characterized by the triple�
�; x

�
p; p

�
; x
�
p; p

��
and we denote simply by e; f; g; h the four direct elasticities introduced in

the preceding subsection. To derive the optimal prices in a more transparent way, we �rst look

back to the total cost function of the monopoly. Remember that it results from an optimization

process through the adequate choice of the capacity reservation z. If the monopoly knows that the

aggregate stochastic demand ex is described by a Gaussian random variable N(�; �), the optimal

choice of z results from the following minimization problem :

Min
z
cz + c

2664Z +1

z
(ex� z) e�(

ex��)2
2�2

�
p
2�

dex
3775

As already demonstrated, the total cost can be expressed alternatively as :

cz + c�

Z +1

z��
�

(1� F (t))dt

The optimal capacity reservation satis�es :

c = c(1� F (z � �
�

)) i.e. z� = �+ ��(1� c

c
)

The cost function of the monopoly is therefore :

C(�; �) = c�+

 
c�(1� c

c
) + c

Z +1

�(1� c

c
)
(1� F (t))dt

!
�

This formulation of the cost function emphasizes the contribution of the aggregate �rst and

second moments of the total gas consumption at time t. We note that it is linear with respect to

both � and �. The constant marginal costs of both variables are respectively :
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To trace back the marginal cost of the individual demands
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the following expressions of � and � :

� = I
�
x
�
p; p

�
+ �x

�
p; p

��
and

� = x
�
p; p

�q
I� (1� �)

The �rst order conditions describing the optimal policy
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After substitution, we obtain :
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For the sake of notational simpli�cation, let us denote respectively by q and q the expressions

p � c and p �
�
c+

�
c�(1� c

c) + c
R+1
�(1� c

c
)
(1� F (t))dt

�q
(1��)
�I

�
. In matrix form, the two �rst

order conditions simplify to :0@ @x
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We obtain :
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or more compactly, in terms of direct and cross elasticities and market shares :
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R � px
�
p; p

�
and R � px

�
p; p

�
These two formulas provide the optimal relative markups of the monopoly on the two markets.

They point out immediately the respective roles of the four elasticities e; f; g and h as well as

the relative value of transactions R
R on both markets. The knowledge of the parameters could

follow from an econometric analysis of the demand for natural gas. While doing so, it should be

mentionned that there are some structural implications of the demand theory that we are using that

should be pointed out. In the homogeneous case considered in this subsection, these implications

are easy to derive. We limit ourselves to the case where all the clients are households purchasing

gas on both markets. The two �rst order conditions describing the optimal interior purchase plan�
x�
�
p; p

�
; x�

�
p; p

��
of a generic household are :

�v0(x+ x) + (1� �)v0(x+ !) = p

v0(x+ x) = p

Denoting by � the inverse of v0, we obtain :

x = �

�
p� �p
1� �

�
� !
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from which we deduce :
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The sign inequalities follow from the fact that � is decreasing. We note that the quantities

of gas bought on the advance-purchase and spot markets are substitutes18. Moreover, up to the

normalization by �, we obtain the Slutsky 's symmetry conditions :
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Finally, we also obtain19 :
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In terms of elasticities, these restrictions translate as follow :

f = �g
R

R

18This, together with the inequality below, implies that both markups are positive : the monopoly does not
underprice strategically one of the product to gain more on the other.
19The inequality does not hold in general and is a peculiar implication of our speci�cation of utility.
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�
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These behavioral restrictions should be of course tested against empirical data. For the time

being, we just notice that irrespective of whether they are true or not, the optimal pricing policy

is characterized by the pair of equations derived above. The fundamental question to be answered

now is to understand under which circumstances the ratio p
p of prices is larger or smaller than the

ratio of access costs c
c . While, as already noted, there is a positive markup on both markets, an

inequality like p
p >

c
c could be interpreted as a biais towards the spot market. Finally, when the

right hand side of the above sytem of equations is equal to 0, the corresponding prices

p = c and p = c+

 
c�(1� c

c
) + c

Z +1

�(1� c

c
)
(1� F (t))dt

!s
(1� �)
�I

are the optimal prices from the perspective of a regulator maximizing social surplus. If the

unit costs were themselves true marginal costs derived from technological constraints, then the

comparison between p
p and

c
c would also be of some interest. In the case where � =

1
2 and I = 1,

we obtain :

p

p
= 1 + �(1� c

c
) +

c

c

Z +1

�(1� c

c
)
(1� F (t))dt

Table 3 below reproduces a sample of ratios.

c
c

3
2 2 5 10

p
p 1:5454 1:7979 2:3998 2:7550

Table 3

We may wonder for which value(s) of cc , the ratio
p
p=

c
c reaches its highest value. This amounts

to look at the maximum of the function ' de�ned as follows :

'(x) � 1

x
+
1

x
�(1� 1

x
) +

Z +1

�(1� 1
x
)
(1� F (t))dt

Since :
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)
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we deduce that :

'0(x) = 0 i� �(1� 1

x
) = �1 which implies x = 1:19

It can be veri�ed that in such case, the ratio p
p exceeds the ratio

c
c by 8.4%.

4 Concluding Remarks

In this paper, we have developed a simple model to predict the pricing behavior of a �rm selling

gas in a regulated market environment. To re
ect the current situation, as experimented in France

but also in some other countries, we have assumed that the access prices to the pipelines network

were decided by the regulator. The term network should be interpreted in a broad sense including :

entry/exit capacities and intermediate transportation ones. Of course, the e�ectiveness of the access

to these facilities is essential in an opening market situation. At a given point in time, these facilities

cannot be adjusted and, therefore, there is a maximal supply which acts as a constraint. European

gas pipeline companies o�er a wide variety of contractual arrangements to sell these capacities.

Operators have the possibility to make reservation for a year, a month or a day. In each case,

the contract speci�es the daily amount of gas which is permitted to enter, circulate or exit. Some

variability is allowed but it is rather limited. For each of them, the allocation rules describe how

many days ahead these reservations must be introduced and, at any time t, to whom the available

residual capacity is assigned during the all period preceding the termination of the process. Besides

o�ering �rm capacities, most of European gas pipeline companies also o�er interruptible capacities

and sometimes impose some clauses of restoration when the capacity share of an operator exceeds

20% of the total. Any operator is constrained to balance its gas 
ows; any major departure from

that balancing constraint results in penalties. Finally, a kind of secondary market to exchange

capacities is organized but, while transparent in terms of posting all the relevant informations, it

is not yet very e�ective. In practice the service consists only in an electronic bulletin board that

provide anonymous listing of supplies and demands for transport capacity.

In this paper, we have concentrated our attention on the case of a shipper selling gas to a

captive population of clients. To handle the supply service, the shipper has to subscribe to the

network operator a transportation capacity adapted to the global need of its portfolio. Therefore,

the determining of the relevant booking strategy becomes crucial. We have assumed that any client

does not know in advance for sure what will be its gas consumption: many uncertain events may

increase or decrease its consumption at any time during the contractual period. Some clients may

have very predictable consumption while others may display a signi�cant volatility. This second

class of clients is really problematic from the perspective of the shipper trying to plan its optimal

capacity reservations. To simplify the analysis, we have assumed that the shipper could either make
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annual reservations or daily reservations. He will propose to its clients two kinds of linear tari�s :

a �rst tari� applies to the gas purchased in advance and a second tari� applies to the gas which is

purchased during the considered period.

This model paves the way for a better understanding of the reactions of some of the economic

agents acting on the market for natural gas. This little step has concentrated on the relationship

between the prices to access to the transportation network (under the control of the regulator)

and the prices by a monopoly delivering natural to a (captive) population of residential and (or)

industrial customers. Obviously, it can be generalized in many directions.

One �rst direction could consist in removing the monopoly assumption and replace it by a true

model of imperfect competition between a limited number of �rms. This game theoretical setting

raises a number of new and challenging questions as the oligopolists compete on several markets

and may face problems of capacities. From that perspective, we can see the contribution of this

paper as the determination of the best response of an agent in this competitive world.

A second direction of research would consist in an examination of a problem analogous to the

one examined in this paper but where the two contractual instruments would be replaced by two

other ones. A possible suggestion along these lines could be to consider two two-part tari�s: one

with a large �xed component and a small variable component and another one with a smaller �xed

part but a larger variable one. This would be consistent with the current practice on the retail

market : three di�erent two-part tari�s are o�ered together (for clients with large consumption)

with a three-part tari� which includes a third component based on an annual capacity reservation.

The per unit price of gas of a client varies with the contractual arrangement that he has selected

and its real consumption. In the context of uncertainty considered here, the clients will partition

themselvelves into several groups depending upon the expected volumes of consumption but also

volatility parameters. It seems worthwhile to look at the optimal pricing behavior of a monopoly

in this environment.

A third promising direction of research would consist in reintroducing the gas markets at the

entry and exchange points. We could assume that any �rm selling gas can either buy gas through

long term contracts with gas producers or buy (or sell) on some "march�e de gros". There are only

three such markets in Europe with limited scope in terms of volumes but also �nancial instruments

but this picture may change rapidly. In such richer environment, the joint impact of the cost of

gas and the cost of capacity reservation would become more intricated.
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