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Abstract
Human beings want to believe that good outcomes in the future are more likely,

but also want to make good decisions that increase average outcomes in the future.
We consider a general equilibrium model with complete markets and show that when
investors hold beliefs that optimally balance these two incentives, portfolio holdings
and asset prices match six observed patterns: (i) because the cost of biased beliefs are
typically second-order, investors typically hold biased assessments of probabilities and
so are not perfectly diversified according to objective metrics; (ii) because the costs of
biased beliefs temper these biases, the utility cost of the lack of diversification are lim-
ited; (iii) because there is a complementarity between believing a state more likely and
purchasing more of the asset that pays off in that state, investors over-invest in only
one Arrow-Debreu security and smooth their consumption well across the remaining
states; (iv) because different households can settle on different states to be optimistic
about, optimal portfolios of ex ante identical investors can be heterogeneous; (v) be-
cause low-price and low-probability states are the cheapest states to buy consumption
in, overoptimism about these states distorts consumption the least in the rest of the
states, so that investors tend to overinvest in the most skewed securities; (vi) finally, be-
cause investors with optimal expectations have higher demand for more skewed assets,
ceteris paribus, more skewed asset can have lower average returns.
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This paper studies portfolio holdings and asset prices in an economy in which people’s

natural tendency to be optimistic about the payout from their investments is tempered by

the ex post costs of basing their portfolio decisions on incorrect beliefs. We show that this

model can generate the following three stylized facts.

First, households’ portfolios are not optimally diversified according to various theoretical-

based measures (Marshall E. Blume et al. (1974), William N. Goetzmann and Alok Kumar

(2001) , Laurent E. Calvet et al. (2006), Stephanie Curcuru et al. (forthcoming)). The costs

of this lack of diversification appear to be modest. Most households hold a well-diversified

portfolio of mutual funds and also a significant amount of one or two additional stocks.1

Second, and part of the evidence for the first fact, household portfolios are tilted to-

wards stocks with identifiable attributes, and in particular towards holdings of individual

stocks with positive skewness. Further, undiversified households hold individual stocks that

have relatively high idiosyncratically skewed returns and their portfolios have relatively high

idiosyncratically skewed returns (Todd Mitton and Keith Vorkink (forthcoming)).

Finally, positively skewed assets tend to have lower returns. This is true for stocks in the

US stock market in general (Yijie Zhang (2005)) as well as for specific well-studied examples,

such as the value-growth premium and the long-run underperformance of IPOs.2

This paper argues that these three patterns are observed because human beings both

want to believe what makes them happier and want to make good decisions that lead to

good outcomes in the future. We consider an exchange economy with two periods and

complete markets in which households with log utility invest in the first period and consume

in the second period. We show that these patterns arise in this economy when investors

hold beliefs that optimally trade-off the ex ante benefits of anticipatory utility against the

1Further, and complementary evidence for our purposes, household income risk is not fully-insured by
households across groups of households, where moral-hazard would seem an implausible reason for this failure
(Orazio Attanasio and Steven J. Davis (1996)).

2There is also complementary evidence from gambling behavior. Lotteries are highly skewed assets, and
the demand for lottery tickets rises with probability controlling for expected return. And, in parimutuel
betting on races, in which the bettors determine returns in equilibrium, long-shots have lower expected
returns than favorites.
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ex post costs of basing investment decisions on biased beliefs.

Our model of beliefs follows the optimal expectations framework of Markus K. Brun-

nermeier and Jonathan A. Parker (2005). We assume that people behave optimally given

their beliefs, choosing portfolios that maximize their expected present discounted value of

utility flows.3 Because investors care about expected future utility flows, they are happier

if they overestimate the probabilities of states of the world in which their investments pay

off well. But such optimism would lead to suboptimal decision making, and lower levels of

utility on average ex post. Optimal beliefs trade-off these competing forces: people’s beliefs

maximize the objective expectation of their well-being, the average of their expected present

discounted value of utility flows. This economic model of beliefs balances the anticipatory

benefits of optimism against the costs of basing actions on distorted beliefs. Because the

costs of small deviations from optimal behavior are of second order, and the anticipatory

benefits of biases in probabilities typically are of first-order, optimal subjective and objec-

tive probabilities differ. Christian Gollier (2005) and Brunnermeier and Parker (2005) study

portfolio choice and asset prices in incomplete markets (and a two-state complete market

example). This paper derives a general characterization in a complete markets economy.

In terms of portfolios, we show in Section I that an investor with optimal expectations

does not fully diversify its portfolio but instead biases upwards (a lot) its subjective beliefs

about the likelihood of one state and biases downward (a little) its subjective beliefs about the

likelihood of all the remaining states. It does this because there is a natural complementarity

between believing a state more likely and purchasing more of the asset that pays off in that

state. Once a state is perceived as more likely, one wants more consumption in that state, and

once one has more consumption in that state, one wants even more to believe that that state

is more likely. We further show that an investor chooses to be optimistic about the states

associated with the most skewed Arrow-Debreu securities: either the least expensive state

3Annette Vissing-Jorgensen (2004) shows that differences in investor’s self-reported beliefs about future
market returns (or internet stock returns) are highly significantly correlated with the share of their portfolio
in equities (or in internet stocks).
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(when states are equally likely) or the least likely state (when state prices are actuarially fair)

or the least expensive and least likely state when these coincide (in general). This happens

because low-price and low-probability states are the cheapest states to buy consumption

in, and so distort consumption in the rest of the states the least (for a given bias). Thus

portfolios are not perfectly diversified, households overinvest in the most skewed assets, and

household portfolios have positively skewed returns.

In general equilibrium, we show in Section II that investors tend to be optimistic about

different states. Thus investors’ portfolios have idiosyncratically skewed returns and con-

sumption insurance appears to be incomplete. In terms of asset prices, this preference for

skewed returns has price effects. Ceteris paribus, states with relatively small probabilities

tend to have relatively low expected returns.4

All proofs are contained in the appendix.

I. Portfolio choice with optimal expectations

The economy has two periods. There are S possible states of the world in period 2, with

state s having objective probability πs > 0. An investor with subjective beliefs π̂s allocates

his wealth among a complete set of Arrow-Debreu securities in the first period and consumes

the payoff from this portfolio in the second period. A person’s investment choices, c =

{c1, c2, .., cS}, maximize his expected utility given his subjective beliefs, π̂ = {π̂1, π̂2, .., π̂S}:

V1 = max
c

∑S

s=1
π̂s ln (cs) subject to

∑S

s=1
pscs = 1 and cs ≥ 0, (1)

4Nicholas C. Barberis and Ming Huang (2005) show that exogenous belief distortion as proposed by
Prospect Theory can lead to similar investment and price patterns. Gollier (2005) shows that in an incomplete
markets investment problem with a stock and a bond, optimal expectations imply that the investor biases
up the probability of the states in which the risky asset’s returns are the highest and the lowest, as implied
by Prospect Theory. Thus, in this situation, overweighting extreme events is an endogenous outcome of the
trade-off between the benefits of anticipatory feelings and the suboptimality actual outcomes, rather than
being an exogenous characteristic of human beings.
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where ps > 0 is the price of the Arrow-Debreu security yielding one unit in state s, and

initial wealth is normalized to unity.5 Optimal portfolio choices exist and are unique:

c∗s (π̂) =
π̂s

ps

. (2)

Optimal beliefs. But what are the investor’s subjective beliefs? One assumption is

that people hold rational expectations, an extreme assumption typically made both for its

tractability and for the discipline it provides. Further, the argument goes, since rational

beliefs lead to the best decisions and thus the highest average present discounted value of

utility, people have the incentive to acquire information and learn rationally so that their

beliefs should have a general tendency to converge to objective probabilities.

But in fact, rational beliefs do not lead to the highest expected present discounted value

of utility flows. An investor can increase V1 by holding quite irrational beliefs, trading

on these, and then anticipating high average future utility. But non-rational beliefs come

at a cost. A person that makes objectively poor investment decisions has lower utility ex

post, V2 = ln c, on average. Our theory balances these effects – it trades off the anticipatory

benefits of optimism against the utility losses caused by decisions based on optimistic beliefs.

Further, this approach provides discipline: biases in beliefs are determined endogenously by

the economic environment.

Formally, each investor’s beliefs maximize his well-being, defined as the average expected

utility across periods 1 and 2 when actions are optimal given subjective beliefs. That is,

π̂ maximizes 1
2
E [V1 + V2] subject to the constraints that the π̂s are probabilities and that

portfolio choices are optimal given π̂. This wellbeing function is similar to that proposed in

Andrew J. Caplin and John Leahy (2000), and analogous arguments support our use of this

5While here we assume ps > 0, Section II endogenizes prices and derives this as a result.
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function. Optimal beliefs maximize the Lagrangian

L =
∑S

s=1 π̂s ln c∗s (π̂) +
∑S

s=1 πs ln c∗s (π̂)− µ

[
S∑

s=1

π̂s − 1

]
(3)

(and subject to π̂s ≥ 0). Beliefs impact well-being directly through anticipation of future

flow utility and indirectly through their effect on portfolio choice.6

Because c∗s (π̂) is continuous in subjective probabilities, L is also; and since probability

spaces are compact, optimal beliefs exist. Further, if π̂s = 0, c∗s (π̂) = 0 and the investor

would get infinite negative utility if state s is realized.

Proposition 1: (Existence of interior optimal beliefs)

Optimal subjective probabilities, π̂∗, exist and are positive: 0 < π̂∗s < 1 for all s.

Turning to the characterization of behavior, the first-order conditions for beliefs are

πs

π̂s

− ln
πs

π̂s

= µ− 1 + ln
ps

πs

for all s. (4)

And the second order conditions (reorganized) are

π̂s

[
1− πs′

π̂s′

]
≤ π̂s′

[
πs

π̂s

− 1

]
for all s 6= s′. (5)

The first-order conditions are displayed in Figure I.1, which plots the left-hand-side and

the right-hand-side of the equations against πs/π̂s. The left-hand-sides of the first-order

conditions are all identical convex curves with minima at rationality, π̂s = πs; the right-

hand-sides are horizontal lines, independent of beliefs, that are higher for states that are

more expensive per unit of probability. By Proposition 1, we know that µ is such that the

left-hand-side of each first-order condition intersects the right at least once (with 0 < π̂s < 1

6This approach is a ‘frictionless extreme’ in the sense that only ex-post costs limit biases in beliefs.
Additional factors might also constrain biases.
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Figure I.1: First-order conditions for optimal beliefs

for all s). Thus, each first-order condition has one or two solutions.7 If for state s, the

right-hand side equals one, then rational beliefs are the only possible solution. Otherwise,

the right-hand side is greater than one, and, by the concavity and linearity of the two sides,

there are two solutions to the first-order condition, one with a positive bias and one with

a negative bias. From the second-order condition if beliefs about the probability of s′ are

biased upwards, so that πs′/π̂s′ < 1, then πs/π̂s > 1 for all s 6= s′ so that beliefs about the

probabilities of all other states are biased downwards. Further analysis of the program shows

that rational beliefs are optimal beliefs only if S = 2 and π1 = π2 and p1 = p2.

Proposition 2: If S = 2 and π1 = π2 and p1 = p2, rational beliefs are optimal. Otherwise:

(i) one and only one state has upward-biased subjective probability, all other states have

downward-biased subjective probability: ∃ s′ such that π̂∗s′ > πs′ and π̂∗s < πs for all s 6= s′,

(ii) among states with downward-biased subjective probabilities, states with larger price-

probability ratios (economy-wide stochastic discount factors) are biased down by larger fac-

7Equations (4) are Lambert W functions in πs/π̂s and in general no closed-form solution exists.
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tors: for s′′, s′ ∈ {s : π̂∗s < πs}, πs′/π̂
∗
s′ > πs′′/π̂

∗
s′′ iff ps′/πs′ > ps′′/πs′′ and πs′/π̂

∗
s′ = πs′′/π̂

∗
s′′

iff ps′/πs′ = ps′′/πs′′ .

The result that the investor biases upward the probability of only one state comes from

a natural complementarity between the subjective belief about a state and the level of con-

sumption in that state. Once a state is perceived as more likely, one wants more consumption

in that state, and once one has more consumption in that state, there are greater benefits to

believing that that state is more likely. The second part of the proposition is driven by the

same force. An investor purchases less consumption in a more expensive state, and so has a

greater incentive to believe that the more expensive state is unlikely to occur.

For the remainder of this section, we rule out the knife-edge case that delivers rationality.

Assumption 1: Either S > 2 or πs 6= 1/2 or p1 6= p2.

We now characterize which state an investor is optimistic about. The benefits of optimism

about a state are related to the consumption purchased in that state and the costs are related

to the objective misallocation of consumption across states. The costs are second-order, so

for an infinitesimal change in beliefs a person should bias upwards the probability of the

state in which they have the most consumption. Starting from rational beliefs, this is the

cheapest state in terms of price-probability ratio.

Analogously, optimal expectations, which are not infinitesimal deviations from rational-

ity, tend to bias upward the probability of the cheapest state because extra consumption in

that state requires the least decrease in consumption in the remaining states, where ‘cheap’

refers to a combination of low price and low ratio of price to probability. If all states have

the same ratio of price to probability, the investor biases upwards the probability of the

lowest price (and probability) state. If states have equal objective probabilities but vary in

price, then the investor overestimates the probability of the least-expensive state because

this requires the smallest reduction in consumption in the other states.8

8Other effects are present – the elasticity of consumption to beliefs, and the curvature of the utility
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Proposition 3: (i) If all states have the same price-probability ratio, ps/πs = m for all s,

the investor overestimates the probability of (one of) the state(s) with the lowest probability.

(ii) If all states are equally likely, πs = π for all s, then the investor overestimates the

probability of (one of) the state(s) with the lowest price-probability ratio.

(iii) If one state has both the lowest probability and the lowest price-probability ratio,

then the investor overestimates the probability of this state.

(iv) For any state, there exist m̄ and m, such that for a sufficiently low price ps ≤ mπs

optimal beliefs overestimate the probability of this state, π̂∗s > πs, and for a sufficiently high

price ps ≥ m̄πs optimal beliefs underestimate the probability of this state, π̂∗s < πs.

The labels of ‘optimism’ and ‘pessimism’ in Figure I.1 denote the actual optimal beliefs

when states have equal probability: the state with the lowest price per unit of probability

is viewed with optimism and the remaining states are viewed with pessimism (Proposition

3(ii)). Figure I.2, discussed subsequently, displays the first-order conditions when states are

priced fairly.

Optimal portfolio choice. While beliefs are interesting, our ultimate interest is in

explaining prices and quantities, that is, returns and portfolios.

Consider first the case of actuarially fair prices, ps/πs = m for all s. Under rational

beliefs, the optimal portfolio is risk-free. For optimal beliefs, Equations (2) and (4) imply

first-order conditions 1/mcs + ln mcs = µ− 1 + ln m for all s, where the Lagrange multiplier

µ is such that c̄πs′ + c
∑

s6=s′ πs = 1/m and (c, c̄) are the two solutions to this equation: c̄ is

the consumption level in the state with positively-biased subjective probability, and c is the

consumption level in the remaining states. This can be seen in Figure I.2, which displays

the first-order conditions when prices are actuarially fair. Because the right-hand-sides are

identical, all pessimistic biases are identical. The following corollaries follow directly.

Corollary 1: (Preference for skewness) If ps/πs = m for all s, then the investor prefers

function matter – but this is the strongest effect here.
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Figure I.2: First-order conditions when states are priced fairly

the most skewed assets: the investor buys c̄ of one of the Arrow-Debreu securities that pays

off with the smallest probability and c < c̄ of each of the remaining securities.

Corollary 2: (Two-fund separation) If ps/πs = m for all s, then the investor holds a

portfolio consisting of the risk-free asset (an equal amount of all Arrow-Debreu securities)

and an additional positive amount of one and only one of the most skewed securities.

These Corollaries match two of the empirical findings described at the start of the paper.

First, investors are well diversified except for investing in one asset. Second, both the return

on the additional asset they hold and the return on their portfolios are positively skewed.

When prices are not actuarially fair, investors still do not optimally diversify and in-

vest more than the rational investor in securities with skewed returns. The latter occurs

both because investors tend to be optimistic about states with low probabilities and prices

(Proposition 3) and because pessimism is more severe for states with high prices (Proposi-

tion 2(ii)).In general, diversification, preferred by a rational agent, would destroy skewness,

preferred by an agent with optimal expectations.
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As we now show, equilibrium prices tend to make different investors optimistic about

different states, and so portfolios in equilibrium tend to be heterogeneous and have idiosyn-

cratically skewed returns.

II. Asset pricing in an exchange economy with optimal expectations

We consider an exchange economy with a unit mass of investors, S > 2, and aggregate per

capita endowment in each state of Cs. Due to space constraints, we consider an example

that illustrates the general characteristics of optimal expectations equilibria. In this economy,

portfolios are heterogeneous across investors, portfolio returns are idiosyncratically skewed,

and securities with positively skewed returns have lower expected returns.

Definition: An optimal expectations equilibrium is a portfolio ci and beliefs π̂i for each

agent i and prices p such that: (i) each agent’s portfolio is optimal given his beliefs and

prices; (ii) each agent’s beliefs maximize his well-being; (iii) the market for each asset clears.

Before analyzing a more complex environment, consider first an economy with equally

probable states, πs = π, and no aggregate risk, Cs = C = 1. Suppose that prices are

actuarially fair, ps = p. Each investor biases upward the subjective probability of one state,

purchases c̄ of the Arrow-Debreu security associated with this state, and purchases c < c̄ of

the Arrow-Debreu security associated with the remaining downwards-biased states (where

c̄ and c are as defined in the previous section). This is an equilibrium if an equal share

of agents are optimistic about each state, so that demand for consumption is equal across

states, and each asset’s price is p = 1/S. This equilibrium is locally stable, in the sense that

a small change in prices would lead all investors to bias up the subjective probabilities of

the cheapest states (Proposition 3(ii)), which would lead to excess demand for consumption

in these states and a (relative) increase in price for the cheapest states.

Consider now similar economies in which the variation in the aggregate endowment across

states is ‘not too large.’ An equilibrium with actuarially fair prices exists as long as there exist
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different shares of agents that are optimistic about each state so that the demand for each

asset matches the supply. Thus, in economies with equally probable states and low aggregate

risk, prices are fair and agents hold heterogeneous beliefs, overinvest in different skewed

assets, and thus hold portfolios with idiosyncratically skewed returns. In the corresponding

rational expectations equilibrium, investors’ portfolios would be homogeneous and perfectly

diversified, cs = Cs. Further, also unlike in the rational expectations equilibrium, aggregate

risk, in limited amounts, is not priced.9 People have an interest in risk, and a small amount of

aggregate risk satisfies this desire without changing prices. Finally, as aggregate endowment

risk increases beliefs become less heterogeneous.

Proposition 4: (Heterogenous portfolios and idiosyncratic skewness) For πs = π,

there exists a set of aggregate endowment vectors, including (C, C, ..., C), such that prices

are actuarially fair and a fraction λs′ of investors buys c̄ of the Arrow-Debreu security that

pays off in state s′ and c of the security for every other state. C =(C1, ..., CS) is in this set

if there exists shares of agents, λs, such that
∑S

s=1 λs = 1 and Cs′ = λs′ c̄ +
(
1−∑

s6=s′ λs

)
c

for all s′ where c and c̄ are defined in Section I with ps = p = 1/ ((S − 1) c + c̄).

Having established this result, we now construct our example that matches all three styl-

ized facts discussed in the introduction. Consider an economy with some unlikely states and

some likely states. At actuarially fair prices, each investor would bias upward his probability

of one of the unlikely states. Analogously to Proposition 4, this is an equilibrium if there

exists shares of investors that are optimistic about each unlikely state such that the market

clears. For example, if πs = πA and Cs = CA := 1
s
c̄ +

(
1− 1

s

)
c for s ≤ s and πs = πB > πA

and Cs = CB := c for s > s, then an equilibrium with fair prices exists in which 1/s investors

bias up their probabilities for states s ≤ s. But if the endowments across states are not so

different, then prices in the unlikely states must be relatively higher so that demand for

9The equality of probabilities across states is key for this results. With unequal probabilities, aggregate
risk is typically priced.
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output is also relatively lower in these states, and hence the expected returns of the most

skewed Arrow-Debreu securities are lower.

Proposition 5: (Underperformance of skewed assets) For a small reduction in

CA − CB such that ps does not change for s > s, ps increases for s ≤ s so that: (i)

the securities with the more skewed returns have lower expected returns than in a rational

expectations equilibrium; and (ii) the securities with the more skewed returns have relatively

lower expected returns, πA/ps < πB/ps′ for all s ≤ s and s′ > s.

This equilibrium fits all three stylized facts: (a) portfolios are heterogeneous and not

perfectly diversified; (b) each investor overinvests in one security that is more skewed than

the average security and his portfolio return is more skewed than the market return; (c) more

positively skewed securities have lower returns. These results relate to the use of co-skewness

as a pricing factor. As CA varies (and in richer environments), the relative importance of

idiosyncratic skewness and aggregate skewness for asset prices varies. Finally, consumption

insurance appears incomplete, but not because of missing markets or moral hazard, but

rather because households optimally choose to hold risk.

How important are the assumptions of our example? First, if the low-probability states

have much larger endowments than the other states (Cs > CA), then we still match (a) and

(b), but the expected returns on the most skewed assets are higher for the usual reason that

investors discount payouts in states with high aggregate endowment. However, even in this

case, Proposition 5(i) implies that the returns on the most skewed assets are lower than in a

rational expectations equilibrium. Second, the assumption that some probabilities are equal

is not essential. If probabilities differ among high-probability states, nothing changes. If

probabilities differ among low-probability states, prices would have to be higher for lower

probability states for investors to remain indifferent among (perhaps a subset) of states and

for portfolios to be heterogeneous.

The desire for skewness can also impact the market return. If bad aggregate states have

12



low probabilities, as for disasters or Peso problems, then it is possible for the desire for

skewness to increase the equity premium, as investors seek to avoid negative skewness.

In conclusion, the natural human tendency towards optimism tempered by the real costs

of poor decisions, implies that people hold heterogeneous, underdiversified portfolios to attain

skewed returns, and that this behavior reduces the returns of positively skewed assets.
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Appendix: Proofs

A. Proof of Proposition 1

Define the set Π =
{

π̂ : 0 ≤ π̂s ≤ 1,
∑S

s=1 π̂s = 1
}

. Optimal consumption choices given be-

liefs are continuous in probabilities on Π (Equation (2)). The objective for beliefs (Equation

(3)) is thus continuous in beliefs on Π since L is linear in π̂ and continuous in c. Since Π

is compact, a maximum exists on Π. To see that the optimum requires 0 < π̂s < 1 for all

s, note that for π̂ such that π̂s = 0 for at least one s, c∗s = 0, and thus the objective for

beliefs has value negative infinity and this cannot be optimal since the objective is finite on

the interior of Π.¥

B. Proof of Proposition 2

To establish the results, we first prove four lemmas. Without loss of generality, we choose

units so that
S∑

s=1

ps = 1.

This implies that ps/πs = m = 1 for all s for actuarially fair prices.

Lemma 1: The subjective belief of at most one state is biased upwards.

Proof of Lemma 1 : The second-order condition, Equation (5), implies

π̂2
s [π̂s′ − πs′ ] ≤ π̂2

s′ [πs − π̂s] for all s 6= s′. (B.1)

Thus if beliefs about the likelihood of s′ are biased upwards, so that π̂s′ − πs′ > 0, then

π̂s − πs < 0 for all s 6= s′.¥

The proof of Lemma 1 also directly implies Lemma 2.

16



Lemma 2: If the subjective belief of one state is biased upwards, then the subjective

beliefs of all other states are biased downwards.

Lemma 2 corresponds to result (i) in Proposition 2, except that we still need to prove that

rational expectation cannot be optimal except in the case in which prices are actuarially fair,

probabilities are equal, and there are only two states. We first examine the case of actuarially

unfair prices.

Lemma 3: If prices are not actuarially fair, rational beliefs cannot be optimal.

Proof of Lemma 3 : The first-order conditions (4) for rational beliefs are

1 = µ− 1 + ln
ps

πs

for all s

which cannot be satisfied for all s if ps/πs 6= ps′/πs′ for some s and s′.¥

Combining lemmata 2 and 3 implies that there is one, and only one, state whose proba-

bility is biased upwards when prices are actuarially unfair. In the remaining proof of result

(i), we assume that prices are actuarially fair.

Lemma 4: If prices are actuarially fair, ps/πs = 1 for all s, then the investor biases his

beliefs for all states with downward-biased subjective probabilities by a common factor: For

one state, s′, cs′ = c̄ ≥ 1 and π̂s′ = c̄πs′ ≥ πs′ , and for all other states, s 6= s′, cs = c ≤ 1 and

π̂s = cπs ≤ πs, where (c, c̄) are the two solutions to

1

c
− ln

1

c
= µ− 1 (B.2)

with µ such that c̄πs′ + c
∑

s6=s′ πs = 1.

Proof of Lemma 4 : Equation (B.2) is the first-order conditions for optimal beliefs written

in terms of consumption using Equation (2). If µ = 2, cs = 1 for all states, in which case

beliefs are rational and the Lemma holds trivially (c = c̄). If µ > 2, every first-order condition

has the same two possible solution, so that cs = π̂s/ps = π̂s/πs is the same among all states
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whose likelihood is biased down. For these states let c := c∗s (π̂). Then Lemma 1 implies

that there is at most one state perceived as more likely than it is, and let its consumption

level be c̄. We note µ < 2 is not possible by Proposition 1.¥

We now prove that the one specific case has rational expectations and part (i) for actu-

arially fair prices by using these Lemmas to analyze the program given by Equation (3).

Let π denote the probability of the state whose probability is biased upwards, and let

c be the consumption level in that state, which is denoted s′. By Lemma 3, we know that

the consumption level is a constant c in all other states. Using the fact that π̂ = cπ, we can

rewrite the Lagrangian objective for beliefs as a function of only c̄ and π:

L =
∑S

s=1 csπs ln cs +
∑S

s=1 πs ln cs − µ

[
S∑

s=1

csπs − 1

]

= πc̄ ln c̄ + (1− π) c ln c + π ln c̄ + (1− π) ln c− µ [c̄π + (1− π) c− 1]

= π (c̄ + 1) ln c̄ + (2− π (c̄ + 1)) ln

(
1− πc̄

1− π

)
:= U (c̄, π)

where the last step imposes the constraint by substituting in c = 1−πc̄
1−π

. U (c̄, π) is maximized

over the choice of state to bias upward and consumption level in that state. We proceed in

two steps.

Suppose that we know the state, and thus its objective probability π, whose belief is

biased upwards. We determine the optimal bias c in the following way. Notice first that

U(1, π) = 0 and that

∂U

∂c̄
(c̄, π) = π ln

c̄(1− π)

1− πc̄
+ π

1− c̄

c̄(1− πc̄)
.

Evaluating Uc̄ at c̄ = 1 and c̄ = (1− π)/π, we obtain that

∂U

∂c̄
(1, π) = 0,
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and

∂U

∂c̄
(
1− π

π
, π) = 2π ln

1− π

π
+

2π − 1

1− π
.

The second derivative of U with respect to c̄ is:

∂2U

∂c̄2
(c̄, π) = −2π2 (c̄− 1)(c̄− 1

2π
)

c̄2(1− πc̄)2
. (B.3)

When π = 1/2, the right-hand side of the above equality is negative, implying that U is

concave in c̄. Combining this with Uc̄(1, 1/2) = 0 directly implies that c̄ = 1 (and so π̂ = π) is

optimal if π = 1/2. This sheds light on the special case with only two states that are equally

likely. In that case, the choice of the state whose probability would be biased upwards is

arbitrary, and we have just shown that it is optimal not to distort beliefs. We now argue

that in all other cases, π̂ 6= π.

First, we show that if we consider π < 1/2, then c̄ > 1/2π so that π̂ > 1/2 > π. When π is

less than 1/2, we see from (B.3) that U is alternatively concave, convex and concave (in c̄) over

the intervals ]0, 1], [1, 1/2π] and [1/2π, 1/π]. Combining this with U(1, 1/2) = Uc̄(1, 1/2) = 0

implies that the optimal solution has a c̄ larger than 1/2π.

Second, we show that given π, the optimal c̄ has c̄ ≤ (1 − π)/π, or equivalently that

π̂ ≤ 1− π. This follows from

q(π) =
∂U

∂c̄
(
1− π

π
, π) = 2π ln

1− π

π
+

2π − 1

1− π

being negative when π is less than 1/2.10 This implies that c̄ ≤ (1− π) /π or π̂ ≤ 1−π which

10This is because q(1/2) = 0, and

q′(π) = 2 ln
1− π

π
+

2π − 1
(1− π)2

,

q′′(π) =
2(2π − 1)
π(1− π)3

,

so that q′(1/2) = 0 and q′′ has the same sign than π−0.5. This implies that q has the same sign than π−0.5.
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implies that the state perceived as more likely than it is necessarily has π ≤ 1/2. Combined

with the first result, we know that if the optimal π 6= 1/2, we have π̂s 6= πs for all s (“for all

s” follows from Lemma 2).

What we still need to show is that π 6= 1/2 when there are more than 2 states with one

state having probability 1/2. We do this by showing that the function V (π) = maxc̄ U(c̄, π)

is symmetric and U-shaped with a minimum at 1/2. Thus, as long as there exists a state with

probability different from 1/2, π̂ 6= π. V is symmetric around π = 1/2 from the definition

of V . By the envelop theorem, we have that

V ′(π) =
π

(
c̄− 1−π

π

)
(1− c̄)2

c̄(1− π)(1− πc̄)
,

where c̄ maximizes U (c̄, π). Suppose that π is less than 1/2. We have seen above that it

implies that c̄ is larger than 1/2 but smaller (1 − π)/π, yielding V ′(π) < 0. This shows

that the optimal state to bias upwards is the objectively least likely one. Except the case

π1 = π2 = 1/2, this state has a π less than 1/2, which implies that c < 1 < c. This concludes

the proof of result (i) in Proposition 2.

The above proof also directly implies Lemma 5, used in the proof of Lemma 6.

Lemma 5: If prices are actuarially fair, ps/πs = 1 for all s, then π̂s′ ≥ 1/2 where s′ is the

state whose probability is biased upwards.

Proposition 2(ii) follows directly from the first-order conditions, Equation (4). Given

that one selects the solution with πs/π̂s > 1, the left-hand side is increasing in πs/π̂s and

the right-hand side is increasing in price-probability ratio, ps/πs.¥

C. Proof of Proposition 3

Proposition 2 implies the pattern of belief distortion but does not specify which is the state

that has its probability biased upwards.
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The proof of part (i) relies on the function V (π) defined in the proof of Proposition 2(i)

as the value of holding beliefs that are optimistic about state s′ where π is the probability

associated with this state. The proof of Proposition 2(i) shows that this function, V (π), is

symmetric and U-shaped with a minimum at 1/2. Further, the proof of Proposition 2(i)

shows that the optimal s′ is necessarily such that π ≤ 1/2. Thus, V (π) is maximized by

choosing to bias upwards the probability of (one of) the smallest probability state(s).

To prove part (ii), we show that the local maximum in which subjective probabilities

satisfy the first-order conditions and the budget constraint with an arbitrary optimistic state

is dominated by the same set of subjective probabilities in which the subjective probability

of this state and the cheapest state are interchanged.

Let states 1to s̄ be the least expensive states, ps = ps′ < ps′′ for s′, s ≤ s̄ and s′′ > s̄. Let

π̂∗ (s′′) denote the vector of subjective probabilities that satisfy the first-order conditions,

sum to one, and have π̂s′′ > πs′′ and π̂s < πs for all s 6= s′′ and let L (π̂∗ (s′′) ,p) denote the

associated value of the objective for beliefs:

L (π̂∗ (s′′) ,p) :=
∑S

s=1 π̂∗s (s′′) ln

(
π̂∗s (s′′)

ps

)
+

∑S
s=1 πs ln

(
π̂∗s (s′′)

ps

)

where p denotes the vector of prices.

Consider taking π̂∗ (s′′) for some s′′ > s̄ and switching the subjective probability for state

s′′ (π̂∗s′ (s
′′)) with the subjective probability some state s′ ≤ s̄ (π̂∗s′ (s

′′)),

(π̂∗1 (s′′) , ..., π̂∗s′′ (s
′′) , ..., π̂∗s̄ (s′′) , ..., π̂∗s′ (s

′′) , ..π̂∗S (s′′)) := π̂Switch (s′′)

This is feasible because it is still the case that probabilities sum to one and as a result the

budget constraint is also satisfied. For notational simplicity, for the moment, let π̂∗s = π̂∗s (s′′).
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Since well-being differs only in states s′ and s′′,

L (
π̂Switch (s′′) ,p

)− L (π̂∗ (s′′) ,p) = (π̂∗s′′ + π) ln
π̂∗s′′
ps′

− (π̂∗s′ + π) ln
π̂∗s′
ps′

+ (π̂∗s′ + π) ln
π̂∗s′
ps′′

− (π̂∗s′′ + π) ln
π̂∗s′′
ps′′

= (π̂∗s′′ − π̂∗s′) ln
ps′′

ps′
> 0

where the sign follows from the initial assumptions that ps′ < ps′′ and that optimism is

focussed on state s′ so that π̂∗s′′ (s
′′) > π > π̂∗s′ (s

′′).

Since π̂Switch (s′′) is not optimally chosen for the situation in which the investor biases

upward his beliefs about state s′, these probabilities may not satisfy the first-order conditions

and so are weakly worse than those that are optimally chosen conditional on being optimistic

about state s′:

L (π̂∗ (s′) ,p) ≥ L (
π̂Switch (s′′) ,p

)

Thus we have,

L (π̂∗ (s′) ,p) ≥ L (
π̂Switch (s′′) ,p

)
> L (π̂∗ (s′′) ,p) for all s′′ > s̄ and s′ ≤ s̄

which completes the proof of part (ii).

For part (iii), we make a similar argument. Let states 1to s̄ be the least expensive and

lowest probability states, ps = ps′ < ps′′ and πs = πs′ < πs′′ for s′, s ≤ s̄ and s′′ > s̄. Consider

taking π̂∗ (s′′) for some s′′ > s̄ and switching the subjective probability for state s′′ (π̂∗s′ (s
′′))

with the subjective probability some state s′ ≤ s̄ (π̂∗s′ (s
′′)) and let this vector be denoted
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π̂Switch (s′′). Since well-being differs only in states s′ and s′′,

L (
π̂Switch (s′′) ,p

)− L (π̂∗ (s′′) ,p) = (π̂∗s′′ + πs′′) ln
π̂∗s′′
ps′

− (π̂∗s′ + πs′) ln
π̂∗s′
ps′

+ (π̂∗s′ + πs′) ln
π̂∗s′
ps′′

− (π̂∗s′′ + πs′′) ln
π̂∗s′′
ps′′

= (π̂∗s′′ − π̂∗s′) ln
ps′′

ps′
+ (πs′′ − πs′) ln

ps′′

ps′

where the sign follows from the initial assumptions that πs′′ > πs′ , ps′ < ps′′ and that

optimism is focussed on state s′ so that π̂∗s′′ (s
′′) > π > π̂∗s′ (s

′′).

Analogously to part (ii), since π̂Switch (s′′) is not optimally chosen for the situation in

which the investor biases upward his beliefs about state s′:

L (π̂∗ (s′) ,p) ≥ L (
π̂Switch (s′′) ,p

)

Thus we have,

L (π̂∗ (s′) ,p) ≥ L (
π̂Switch (s′′) ,p

)
> L (π̂∗ (s′′) ,p) for all s′′ > s̄ and s′ ≤ s̄

which completes the proof of part (iii).

For part (iv) of Proposition 3, we first note that, for any problem, there is a lower bound

placed on µ by the requirement of real solutions to the first-order conditions (Proposition

1). Thus,

µ ≥ µ := max
s

{
2− ln

ps

πs

}
(C.1)

Second, for any problem, there is an upper bound placed on µ by the requirement that the

π̂s′ < 1 in the solution to the first-order condition for the probability that is positively-biased

state. Thus, for state s′ to have π̂s′ > πs′ , we require

µ < µ̄ (s′) := 1 + πs′ − ln ps′ .
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Consider first m. As one decreases ps′ , µ increases (at least once ps′/πs′ is the minimum),

µ̄ (s′) increases, and µ̄ (s) for s 6= s′ does not change. Thus, there is an ms′ such that for

ps′ = ms′πs′ , µ̄ (s′) > µ and µ̄ (s′) < µ for all s 6= s′. Thus, the agent must be optimistic

about state s′. Then m = mins′ {ms′}.
In terms of m̄, as one increases ps′ , there is an m̄ such that for ps′ = m̄πs, µ̄ (s′) < µ

and µ̄ (s′) > µ for some s 6= s′. Thus, the agent must be pessimistic about state s′. Then m̄

= maxs′ {m̄s′}.¥

D. Proof of Proposition 4

Proof by construction in the text.

E. Proof of Proposition 5

This Proposition is not trivial because, while an increase in the price of a given state decreases

the demand for the asset that pays off in that state, an increase in the price of a state for

which π̂∗s < πs decreases the demands for the assets that pay off in all other states that are

viewed with pessimism. Following the proof of Proposition 5, we prove two Lemmata that

characterize these price effects in Section F.

We start with the following Lemma.

Lemma 6: In any equilibrium with actuarially fair prices:

S∑
s=1

(
π̂2

s

π̂s − πs

)
> 0. (E.1)

or equivalently

πs′

(
c̄2

c̄− 1

)
+

∑

s 6=s′
πs

(
c2

c− 1

)
> 0 (E.2)

Proof: By Lemma 4, there are two consumption levels such that π̂s/πs = c and π̂s′/πs′ = c̄
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for all s 6= s′. Since subjective probabilities sum to one,
∑

s6=s′ π̂s = 1− π̂s′ , and the budget

constraint at fair prices implies

1 = c̄πs′ +
∑

s6=s′
cπs

c =
1− πs′ c̄

1− πs′

c =
1− π̂s′

1− πs′
.

Using these relationships, our term of interest becomes:

S∑
s=1

π̂2
s

π̂s − πs

=
π̂s′

1− πs′
π̂s′

+
∑

s 6=s′
π̂s

(
1

1− c−1

)

=
π̂2

s′

π̂s′ − πs′
+ (1− π̂s′)

1

1− 1−πs′
1−π̂s′

=
π̂2

s′

π̂s′ − πs′
+

(1− π̂s′)
2

1− π̂s′ − 1 + πs′

=
2π̂s′ − 1

(π̂s′ − πs′)

which is positive if π̂s′ > 1/2. This follows from from Lemma 5.¥

For notational simplicity, let a index the states s ≤ s so that πs = πa and Cs = Ca for

for s ≤ s, and let b index the S− s states with πs = πb and Cs = Cb. Let a′ be the state, less

than or equal to s, that is viewed as more likely than it is; this state differs across investors

but all a-states are symmetric so we can impose that pa′ = pa.

To prove Proposition 5, we write the conditions for the initial equilibrium with fair prices,

totally differentiate the system for a small increase in the aggregate endowment in the a-

states, dCa, imposing that dpb = 0, show that dpa > 0, and check that dCb < 0. Because

there is a discrete interval between πa and πb and because the wellbeing functions evaluated

for different choices of s′(the state such that π̂s > πs) are continuous in prices, small enough

changes in pa and pb do not change the relative rankings of the wellbeing as a function of s′.
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Thus, locally the pattern of a′ across investors remains unchanged.

E1. Equilibrium conditions at fair prices

The exogenous variables are S, s, πa. Given these three, πb is given by the fact that

probabilities sum to one

sπa + (S − s) πb = 1.

For actuarially fair prices that (normalized) sum to one, we have

pa = πa

pb = πb.

Optimal beliefs are given by the investor first-order conditions,

πa′

π̂a′
− ln

πa′

π̂a′
= µ− 1 + ln

pa

πa

(E.3)

πa

π̂a

− ln
πa

π̂a

= µ− 1 + ln
pa

πa

for a 6= a′

πb

π̂b

− ln
πb

π̂b

= µ− 1 + ln
pb

πb

(note that at fair prices, the last two imply and πa

π̂a
= πb

π̂b
), and the fact that subjective

probabilities sum to one,

π̂a′ + (s− 1) π̂a + (S − s) π̂b = 1. (E.4)

These equations can be used to solve for π̂a′ , π̂a, π̂b and µ, which we know exist and are

unique. Note that c = π̂a

πa
= π̂b

πb
and c̄ =

π̂a′
πa′

.

Finally, the two remaining exogenous variables that deliver fair prices in equilibrium, Ca
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and Cb, are calculated from market clearing conditions:

Ca =
1

s

π̂a′

pa

+

(
1− 1

s

)
π̂a

pa

(E.5)

Cb =
π̂b

pb

.

We have three exogenous variables that are chosen to generate an initial fair-prices equi-

librium, πb, Ca, and Cb, six endogenous variables (µ, π̂a′ , π̂b, π̂a, pa, pb), and nine equations.

E2. Totally differentiated equilibrium conditions

We totally differentiate the system (E.3), (E.4), and (E.5) allowing Ca and Cb to vary and

imposing dpb = 0:

π̂a′ − πa′

π̂2
a′

dπ̂a′ = dµ +
1

pa

dpa

π̂a − πa

π̂2
a

dπ̂a = dµ +
1

pa

dpa for a 6= a′

π̂b − πb

π̂2
b

dπ̂b = dµ + 0 (E.6)

dπ̂a′ + (s− 1) dπ̂a + (S − s) dπ̂b = 0

p2
adCa =

1

s
(padπ̂a′ − π̂a′dpa) +

(
1− 1

s

)
(padπ̂a − π̂adpa)

dCb =
dπ̂b

pb

− 0 (E.7)

Now we want to study dpa, dCb, and dCb around an equilibrium with fair prices, i.e., with

pa

πa
= pb

πb
= 1.
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E3. Signing dpa, dCa and dCb around a fair price equilibrium

Set dCa = 1 (so that implicitly dx is dx/dCa), and re-write the equations using c̄ =
π̂a′
πa′

and

Cb = π̂b

pb
and replace prices with probabilities:

c̄− 1

c̄2

1

πa

dπ̂a′ = dµ +
1

πa

dpa

Cb − 1

C2
b

1

πa

dπ̂a = dµ +
1

πa

dpa for a 6= a′

Cb − 1

C2
b

1

πb

dπ̂b = dµ

dπ̂a′ + (s− 1) dπ̂a + (S − s) dπ̂b = 0

1

s
(dπ̂a′ − c̄dpa) +

(
1− 1

s

)
(dπ̂a − Cbdpa) = πa

pbdCb = dπ̂b

Now using the first three equations (the first-order conditions) to eliminate beliefs in the

third-to-last and the second-to-last equations gives:

(πaα + πbβ) dµ + αdpa = 0 (E.8)

απadµ +

(
c̄

c̄− 1
+ (s− 1)

Cb

Cb − 1

)
dpa = sπa

where

α =
c̄2

c̄− 1
+ (s− 1)

C2
b

Cb − 1

β = (S − s)
C2

b

Cb − 1

Note that β < 0 since Cb− 1 = π̂b/πb− 1. In the current notation, the inequality of Lemma

6 is

πa

(
c̄2

c̄− 1

)
+ (s− 1) πb

(
c2

c− 1

)
+ (S − s) πb

(
c2

c− 1

)
= πaα + πbβ > 0
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Together these two inequalities imply that α > 0. Thus dµ and dpa have opposite signs.

Combining equations (E.8) gives

dpa =
sπa

c̄
c̄−1

+ (s− 1) Cb

Cb−1
− α2πa

πaα+πbβ

To show that dpa < 0, we note that the numerator is positive and that

c̄

c̄− 1
+ (s− 1)

Cb

Cb − 1
= α− c̄− (s− 1) Cb

so that the sign of the denominator is given by the sign of:

(
c̄

c̄− 1
+ (s− 1)

Cb

Cb − 1

)
(πaα + πbβ)− α2πa

= (α− c̄− (s− 1) Cb) (πaα + πbβ)− α2πa

= −c̄ (πaα + πbβ)− (s− 1) Cb (πaα + πbβ) + πbβα < 0

From equation (E.8), we have that dµ > 0, and from equations (E.6), we have that

dπ̂b < 0, and so from equation (E.7), we have dCb < 0.

Thus, reversing signs, for a small reduction in aggregate risk – a decrease in Ca and an

increase in Cb – such that the expected returns on the less-skewed assets do not change,

dpb = 0, the expected returns on the more skewed assets rises, dpa < 0.¥

F. Lemmata on the effects of prices on demands

Lemma 7: (Law of demand for fair prices) For πs/ps = 1 for all s, c∗s (π̂∗ (p) ,p) =

c∗s (π̂∗s (p) , ps) is decreasing in ps.

Proof of Lemma 7 : Let t be the (only) state for which price increases. If π̂ > π and

switches to π̂ < π, then we have our result. Otherwise, using Equation (2), the change in
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portfolio for a small change in pt is

dct

dpt

=
1

pt

dπ̂t

dpt

− π̂t

(pt)
2 . (F.1)

We thus want to show that

dπ̂t

dpt

<
π̂t

pt

.

Totally differentiating each first-order condition (Equations (4)), gives

dπ̂t

dpt

=

(
π̂2

t

π̂t − πt

)(
dµ

dpt

+
1

pt

)
(F.2)

dπ̂s

dpt

=

(
π̂2

s

π̂s − πs

)
dµ

dpt

for all s 6= t. (F.3)

Summing across all states and imposing that
∑S

s=1 dπs/dpt = 0 gives

dµ

dpt

= −

(
π̂2

t

π̂t−πt

)

∑S
s=1

(
π̂2

s

π̂s−πs

) 1

pt

which can be plugged into equation (F.2) to give

dπ̂t

dpt

=
π̂t

pt

(
π̂t

π̂t − πt

) 
1−

(
π̂2

t

π̂t−πt

)

∑S
s=1

(
π̂2

s

π̂s−πs

)

 .

Thus, we have our result iff

1 >

(
π̂t

π̂t − πt

) 


∑
s6=t

(
π̂2

s

π̂s−πs

)

∑S
s=1

(
π̂2

s

π̂s−πs

)

 .

If π̂t > πt, then
∑

s 6=t

(
π̂2

s

π̂s−πs

)
< 0, and our result follows if

S∑
s=1

(
π̂s

1− πs

π̂s

)
> 0
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which is true by Lemma 6.

If π̂t < πt, then our result also follows if this inequality is satisfied because that implies

∑
s6=t

(
π̂2

s

π̂s−πs

)
> 0.¥

Lemma 8: (Cross-price effects for fair prices) For πs/ps = 1 for all s and t such that

t 6= s , c∗s (π̂∗s (p) , ps) is increasing in pt if π̂∗s > πs or π̂∗t > πt, otherwise it is decreasing in pt

as long as it remains true that π̂∗s < πs.

Proof of Lemma 8: If the investor switches to become optimistic about state s as we

increase the price of the state previously viewed with optimism, then we have our result.

Increasing the price of another state cannot cause the investor to switch their optimism from

the state viewed with optimism.

So under the assumption that the investor remains optimistic about the same state, using

Equation (2), for any s 6= t, the change in portfolio for a small change in pt is

dcs

dpt

=
1

ps

dπ̂s

dpt

.

We thus the sign of dcs

dpt
is the same as that of dπ̂s

dpt
> 0.

Totally differentiating each first-order condition (equations (4)), gives

dπ̂t

dpt

=

(
π̂2

t

π̂t − πt

)(
dµ

dpt

+
1

pt

)

dπ̂s

dpt

=

(
π̂2

s

π̂s − πs

)
dµ

dpt

for all s 6= t. (F.4)

Summing across all states and imposing that
∑S

s=1 dπs/dpt = 0 gives

dµ

dpt

= −

(
π̂2

t

π̂t−πt

)

∑S
s=1

(
π̂2

s

π̂s−πs

) 1

pt
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which can be plugged into equation (F.4) to give

dπ̂s

dpt

= −

(
π̂2

s

π̂s−πs

) (
π̂2

t

π̂t−πt

)

∑S
s=1

(
π̂2

s

π̂s−πs

) 1

pt

.

From Lemma 6, we have that
∑S

s=1

(
π̂2

s

π̂s−πs

)
> 0, thus dπ̂s

dpt
> 0 if π̂s > πs or π̂t > πt otherwise

it is negative.¥
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