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Abstract

We determine the optimal exploitation time-paths of two energy resources, one
being depletable and polluting, namely a fossil fuel, the other being renewable and
clean. These optimal paths are considered along with the two following features.
First, the cumulative atmospheric pollution stock is set not to exceed some critical
threshold and second, the polluting emissions produced by the use of fossil fuel can
be reduced at the source and stockpiled in several carbon sinks of limited capacity.
We show that, if the renewable resource flow is abundant, optimal sequestration only
has to be implemented once the ceiling is reached. Moreover, the reservoirs should be

completely filled by increasing order of their respective sequestration costs.

*University of Toulouse 1 (INRA and LERNA), 21 Allée de Brienne, 31000 Toulouse, France. E-mail:
glafforg@toulouse.inra.fr.

TPaul Scherrer Institute (LEA), CH-5232, Villigen, PSI, Switzerland. E-mail: bertrand.magne@psi.ch.

HUniversity of Toulouse I (IUF, IDEI and LERNA), 21 Allée de Brienne, 31000 Toulouse, France.



1 Introduction

Greenhouse gases emissions essentially result from the use of fossil, carbon-based, energy
resources'. Numerous technical and regulatory devices allowing for emission abatement
are readily available. Their implementation may arise sooner or later depending on their
respective costs. One of the now commonly advocated mean to mitigate the atmospheric
pollution consists in capturing the dirty particles at the source of emission and storing

it underground, either in natural reservoirs or in depleted mine sites that will be called

carbon sinks in the remainder of the text?:3.

In the present study, we first intend to determine the optimal starting date and pace of
this carbon sequestration mode that has been the focus of a recent IPCC* special report
(IPCC, 2005). Second, we want to characterize how the recourse to such an abatement
option on the flow of pollution emissions alters the optimal time path of fossil depletable
resources, when the cumulative atmospheric concentration of carbon has to be maintained

below some given critical threshold, in accordance to the Kyoto Protocol®.

The possibility of sequestering some fraction of the carbon dioxide emitted by the
combustion of fossil resources has motivated numerous empirical studies (see for example
the results of integrated assessment models from Mc Farland et al., 2003, Edmonds et al.,
2004, Kurosawa, 2004, Gerlagh 2006, Gerlagh R. and van der Zwaan, 2006, Gitz et al.,
2005, Riahi et al., 2004). The level of complexity of such operational models, aimed at

defining some climate policy, may be required so as to take into account the numerous

! Among others, animal and human wastes, the reduction of forest cover and the extensive agricultural
practices also constitute non negligible emissions sources and favor carbon release from shallow soils.

2The carbon sinks also refer to biomass carbon storage, e.g. in soils, plants and especially trees (See
for example IPCC, 2001). Biomass carbon storage is not the focus of the present analysis.

3Captured gases may also be injected again in oil deposits so as to enhance the oil recovery, and thus
increasing the oil resource base. This process is already being operated in the North Sea by the Norwegian
oil company Statoil. The economic analysis of such a storage process poses some specific problems that
are here eluded.

“Intergovernmental Panel on Climate Change.

®Even though the ultimate goal of the IPCC consists in stabilizing the atmospheric concentration on
greenhouse gases, the Kyoto Protocol does not prescribe the level of such a target. It rather prescribes some
constraint on the maximum flow of carbon emissions for the industrialized countries. More precisely, their
emissions shall be reduced down to their levels of the reference year 1990, at the end of the commitment
period ¢.e. year 2012. Would an atmospheric stabilization target be set, this kind of agreement would
remain ineffective until each participating countries’ effort has not been set. This classical question of
the cost of a public good and its breakdown among agents is made more complex in the present setting
because of the dynamic nature of the problem. Since the key variable is the accumulation of greenhouse
gases (we will restrain our analysis to the case of carbon dioxide), the most straightforward way of tackling
the problem is to set an upper bound on the state variable.



interactions at hand. We here take a radically different approach and use a highly stylized
model so as to exhibit the main driving forces that usually tend to be blurred by the

multiple retroactions of more complex settings.

To go straight to the point, we assume that there are final users that consume two
primary energies: a polluting and scarce fossil resource, and a clean and renewable backstop
resource. The users derive their utility from the use of energy in its final form, and thus face
an energy cost that comprises all the costs incurred through the transformation process
of the primary energy source. With this respect, the two types of energies are perfect
substitutes for the final users. Moreover, in accordance with current technologies, we
assume that the useful energy obtained from the non renewable resource is cheaper than

the energy obtained from the renewable one.

To assume the existence of an atmospheric concentration ceiling, this pollution stock
being in addition partially eliminated owing to natural decay or absorption®, implicitly con-
strains the instantaneous rate of consumption of the polluting resource once the threshold
is reached, absent any pollution capture and storage option. Two observations then deserve

to be mentioned.

First, along the optimal path, the time interval during which the flow of fossil con-
sumption is constrained is endogenous. The carbon ceiling is reached at a date that is a
function of the fossil consumption path from the initial time period on. As a consequence,
the cap imposed on the carbon accumulation affects the entire time path of the fossil re-

source exploitation, as well as the one of the backstop because they are perfect substitutes.

Second, two options are available to the society if she wants to relax the constraint
on fossil fuel use once at the ceiling. She may either substitute the dirty resource for the
clean one, or sequester some fraction of the polluting flow generated by the fossil resource
use. Each of those options entails some monetary cost. The renewable resource is more
expensive than the non-renewable one. To capture the carbon dioxide is also costly. But

each of these options also exhibits some specific opportunity cost.

5This process can be interpreted as some natural carbon sequestration by a sink of very large size, e.g.
typically the oceans (For more details, see IPPC, 2001).



A scarcity rent is to be associated to the consumption of the fossil resource, as is the
case for every non-renewable resource. To this rent augmented by the extraction and pro-
cessing cost of the fossil, we must add now the shadow cost of the atmospheric carbon stock
and, when pollution is abated at the source of emissions, the cost of capturing the carbon
augmented by the shadow cost of the sink”. To set down a cap on the accumulation of
pollution, possibly removable by sequestration, results in having de facto two carbon stor-
age deposits at disposal. The first one is the atmospheric reservoir of temporary bounded
capacity, but of infinite long run capacity thanks to the natural progressive regeneration.
But to take advantage of this infinite long run capacity, the carbon emission flow has to be
restrained when the temporary capacity is saturated. Hence some rent has to be charged
for the use of this capacity, even before it is reached as shall show. The second reservoir
is the sink, which itself can be of limited capacity so that another rent must be charged
for its use. Clearly at each point of time, some part of the emission flow can be sent in
some reservoir, thus having to bear the corresponding rent, while the other part is sent
into the other reservoir, having to bear the other rent. The dynamics of these two rents
obey two different rules and their trajectories diverge over time. Note that the renewable
resource would also entail a scarcicity rent if the exploitable carbon-free flow is not suffi-
ciently abundant. For the sake of simplicity, we assume here that the renewable substitute

is abundant.

In order to characterize the dynamics of those various rents, we assume that all the
marginal monetary costs are constant over time, as well as the natural regeneration rate,

the utility of energy consumption and the generated surplus functions.

The article is organized as follows. Section 2 presents the model. In section 3, we
determine the optimal exploitation time-paths of the two resources if sequestration is not
allowed. In section 4, we examine the optimal paths when the stockpiling capacity of a
single sink is large enough so as to store as much carbon as needed. Such carbon sinks
are said to be “large”. We show in section 5 how the optimal trajectories are altered when
the carbon deposit is “small”. The size of the deposit, either small or large, is thus an

endogenous characteristic. The way the results are ordered can be seen as an algorithm

"With this respect, the problem is similar to the case of industrial and residential wastes management
treated in Gaudet et al. (2001), but here the cost of waste before any dispensing into some discharge must
include the Hotelling rent mine (Hotelling, 1931). Note also that, contrary to Gaudet et al. (2001), we do
not assume any sunk fixed cost for activating the discharge.



aimed at determining whether a deposit is small or large. We generalize our analysis to
the case of multiple storage deposits that are differentiated by their access costs and their
storage capacities. We show that those deposits have to be exploited by increasing order
of access cost, no matter their capacity, and we identify the most costly deposit having
to be used. We also show how this multiple deposits model can be interpreted as the
approximation of a more realistic model where the cost of sequestration in each deposit is

an increasing function of the cumulative stored carbon. We briefly conclude in section 6.

2 The model

2.1 Assumptions and notations

We consider an economy in which the instantaneous gross surplus, or utility, generated by
an instantaneous energy consumption® g; is given by u(g;), where function u(.) has the

following standard properties:

Assumption (A.1): u : IRy, — IRy is a function of class C? strictly increasing and

strictly concave, satisfying the Inada conditions: limg|ou/(¢q) = 400, where u/(q) =

du/dq.

We also use p to denote the marginal surplus ' as well as, by a slight abuse of notation,
the marginal surplus function: p(q) = v/(g). The direct demand function d(p) is the inverse
of p(q), as usually defined. We denote by u” the second derivative of u. Under (A.1),
u'(q) > 0 and u”(q) < 0, Vg > 0.

Energy needs may be supplied by two resources, either a dirty non-renewable resource,
a fossil resource such as coal, or a clean renewable resource, such as solar energy. We
assume that these two energy sources are perfect substitutes, so that if x; denotes the
instantaneous consumption of the fossil resource and ¥, the instantaneous consumption
of the renewable resource, then the surplus generated by the total consumption (xy,y;) is

w(xe + i), ie. @ = xr + Yy

The average cost of transforming coal into directly usable energy is constant and equal

to ¢z, hence ¢, is also the constant marginal cost?. Let # denote the flow of fossil resource

8Strictly speaking, ¢ is a power, so assuming that g; is differentiable, the energy consumed over a time
interval [¢,t + dt] is equal to (g + §¢¢)dt, where ¢, = dg./dt.
9This cost include all the processing costs for delivery to the final users.



to be consumed in order to equalize the marginal surplus to the marginal monetary cost

of the resource. Thus, Z is the solution of u/(x) = ¢, that is, & = d(cy).

Let X° be the initial fossil resource stock and Xy, the stock available at time ¢, so that:
X, = -2, Xo=X°% X; >0 and z; >0, t > 0.

Using coal potentially generates a pollutant flow. Let ¢ be the unitary carbon content
of the fossil resource so that, without any abatement policy, the instantaneous carbon flow
released into the atmosphere would be equal to (xy.

Let Z; be the stock of pollutant in the atmosphere at time ¢, z; the flow of emissions
and a, o > 0, the instantaneous proportional rate of natural regeneration, assumed to be
constant for the sake of simplicity (see for instance Kolstad and Krautkraemer, 1993) so
that:

Zt =z — oty

We assume that this stock of carbon cannot be larger than some threshold Z. Let Z°
the stock of carbon in the atmosphere at the beginning of the planning period, assumed

to be smaller than Z. We thus have:
Z—7,>0,t>0 and Zy = 2°.

However, let us assume that some carbon sequestration device is available. The po-
tential pollution flow can be reduced at the source of emission and stockpiled in n carbon
sinks, or reservoirs, indexed by i, ¢ = 1,...,n. Each sink ¢ is characterized by its unitary
sequestration cost cg; and its capacity S;. By convention, the n reservoirs are ranked by
strictly increasing order of costs: cg1 < ... < cg; < ... < cg. Capacities and sequestration
costs are independent a priori and the theory developed here remains compatible with any
form of relationship. Let S? be the initial stock of pollutant in reservoir . Without any

loss of generality, we postulate that SY =0, i = 1,...,n. We thus have:

n

ZtZCﬂft—ZSit, t>0

i=1
where s;; is the part of the potential carbon emission flow that is sequestered into reservoir

1 at time ¢, so that:

Sit = Sit, S;0 =0 and s3>0 ,i=1,....,n and ¢t >0

S; — 8 >0 ,i=1,..,n and t>0.



Once the ceiling Z is reached, we must have Z; = 0. Then, the flow of fossil resource
that could be consumed at the ceiling without any sequestration scheme is z = aZ /(. We
use P to denote the marginal utility of Z: p = u/(Z). If sequestration in reservoir i needs to
be implemented, we postulate that the total marginal cost of a “clean” consumption of the
fossil resource, ¢, + ¢s;C, is lower than p. If not, we would always be better off remaining
at T rather than relaxing the constraint by sequestering any part of the emission flow in

reservoir 1.
Assumption (A.2): Vi=1,...,n: ¢; + ¢c5i¢ < D.

The other resource is a non-polluting renewable resource that can be made available to
the end users at a constant average cost c¢,. The cost of the renewable resource is the total
cost of supplying the good to the final users, so that the non-renewable and the renewable
resources are perfect substitutes for the users. We assume that ¢, > p since, if ¢, was lower
than p, condition Z — Z; would never constrain the energy consumption.

Let y be the constant instantaneous flow of this renewable energy available at each
point of time. We denote by 4 the flow of renewable resource that the society would
have to consume once the fossil resource is exhausted, provided that g is sufficiently large.
Then, g is the solution of v/(y) = ¢, : § = d(c,). We assume that the available flow of the
renewable resource is abundant, i.e. at least equal to g, so that no rent has to be charged

for the use of this resourcel?.

Assumption (A.3): p<cyand § < 7.

Let us assume that the instantaneous social rate of discount, p > 0, is constant. The
objective of the social planner is to choose the resource and sequestration trajectories that

maximize the sum of the discounted instantaneous net surplus.

2.2 Problem formulation and optimality conditions

The social planner problem (P) can be expressed as follows:

n
w(ay +ye) — Z CsiSit — Caty — Cyye | € Phdt (1)
i=1

00
(P) max /
{(sit, i=1,...,n, zt,y¢),t>0} Jo

0The case of a constrained flow of renewable resource is analyzed in Lafforgue et al. (2005).




subject to constraints:

Xy = —x4, Xo= X" > 0 given (2)

X >0 (3)

Sit = sit, Sio =0, i=1,...n (4)

S; — Sy >0, i=1,...n (5)

Zy = Coy — zn:sit —aZy, Zy= 7" < Z given (6)

Z-z30 7
n

(xy — Zsit >0 (8)
=1

sit > 0, i=1,..,n (9)

x¢ >0 and y > 0. (10)

Let £; be the current valued Lagrangian for the problem (P)!!:

n n
L: = u(xe+y) — Z CsiSit — CaTt — Cylt — Nt + Z NitSit

i=1 =1
n n
+ue |y — Zsit —aZy| + ZVit [Si — Sit] + vz | Z — Z4]
i=1 i=1
n n
st | (ot — Z Sit | + Z YitSit + YetTe + VytYt-
i=1 i=1
The first-order conditions of (P) are:
0L/0sit =0 & csi =Nig — fe — Vst + Vit , 1=1,..,n (11)
OL )0z, =0 & u(z+y) =co+ M — € — YstC — Vat (12)
a[,t/ayt =0 & u'(xt + yt) = Cy — VYyt; (13)

with the following associated complementary slackness conditions:

n
st 20 and g [Ciﬁt - Z Sit] =0 (14)
vt >0 and sy =0, - i=1,..,n (15)
Yot =20 and  ygwe =0 (16)
Yt >0 and vy =0. (17)

1 As is customary in such problems, we neglect the constraint X; > 0 in the Lagrangian expression.



The dynamics of the co-state variables must verify:

).\t = p)\t — 8£t/6Xt = ).\t = ,0)\t = )\t = )\Oept (18)
Nit = Pit — 8£t/85fit S Me=pat+vie, 1=1,..,n (19)
fu = ppe — 0L)0Zy & i = (a+ p)pe + Vzt, (20)

with the following complementary slackness conditions:

vig >0 and vy [S;— Su] =0, t=1,..,n (21)

vze >0 and vz [Z— Z] =0. (22)

The other transversality conditions write:

lim A X, = X lim X, = 0 (23)
g]glo e P Sit = 0, i=1,..,n (24)
lim e~ 2y = 0. (25)

First, we note that n;; < 0, n;; being the instantaneous marginal value of the carbon
stock which is already sequestered into sink ¢ at time ¢. If the storage capacity of this sink
was limited and if at date t, S;; was increased by an exogenous amount dS;; > 0, then
the optimal value of the objective function of (P) would diminish!?. Second, as long as
reservoir 4 is not completely filled, i.e. for any t such that S; — S;; > 0, v = 0, so that
from (19) it comes:

Si — Sit > 0= ni = nige’. (26)

By the same type of argument, p; < 0, y; being the instantaneous marginal value of
the carbon stock in the atmosphere at date ¢. Since the stock of carbon in the atmosphere
is also limited, if at date ¢, Z; was increased by an exogenous amount dZ; > 0, the optimal
value of the objective function of (P) would, at best, remain constant, and would decrease
in the worst case. Furthermore, since Z° < Z, there must exist an initial time interval
during which the stock of carbon in the atmosphere is below the ceiling, hence vz; = 0 so
that integrating (20), we get:

pe = poel o). (27)

The difference in the dynamics of n;, ¢ = 1,...,n and of p; can be explained as follows.

On the one hand, the decision to resort to the storage capacity of reservoir i is irreversible

121f the capacity of the sink is sufficiently large, then 7 = 0, t > 0, cf. section 4.



since S; is implicitly a monotonous and non-decreasing function. On the other hand,
owing to the natural regeneration, the stock of pollutant in the atmosphere Z; can either
increase or decrease. On that account, whatever the sequestration policy may be, Z; will
be induced to decrease since the fossil resource stock is finite. As it will be seen in the
next sections, such an asymmetry strongly governs the optimal solution.

Finally, if there exists ¢ such that for any ¢ > ¢ the ceiling constraint is no more binding

forever, then pu; =0, t > t.

3 Hotelling and optimal paths without any carbon sink

3.1 Herfindahl-Hotelling paths

Absent the ceiling constraint, the optimal solution would be the well-known Herfindahl-
Hotelling path!3:14,

For any Ao € (0, ¢, — ¢;), define p (X\o) as the price path along which the coal rent is
increasing at the discount rate p, pff(\g) = cz + Aoe?’; TH(X\g) as the time at which
pf(X\o) is choking the average cost of the abundant renewable substitute, 77 ()\g) =
% [In(cy — cz) — In Ao]; dF (Xo) as the corresponding instantaneous energy demand, dif (\g) =
d (pf (Xo)) and z{7(Xg) as the generated polluting flow, zff (Xg) = (dff (\o); last DI (Xo) as
the cumulative demand, Df (\o) = [ d (Ao)dr.

Trivial calculations would show that D ()\g) = D?H(/\O)(Ao) is a strictly decreasing
function with limy, 0 D (\g) = 400 and 1 ey —co) DH()\g) = 0, so that the equilibrium
equation:

D () = XV

has a unique solution /\6{ which is the optimal value of Ag.
Thus the optimal path is a two phases path. During the first phase [0, TH ()\6] )], the

energy demand is supplied only by the fossil fuel, and the energy consumption is decreasing

13Herfindahl (1967), Hotelling (1931).
“Without such a constraint the objective function of program (P) writes:

/ [w(ze +y1) — come — cyye] e P'dt
0

and the constraints (4)-(9) vanish. The first order condition (11), the conditions (14), (15), (19)-(22) and
(24)-(25) also vanish and, from (18), the condition (12) becomes:

' (zt + ye) = co + Mo’ — var.

The conditions (13), (16), (17) and (23) remain the same.

10



from d¥ (\o) = d(cz + Aog) down to dgH()\H) = d(cy). From TH(A\) onwards, the energy
0

consumption is stationary and equal to d(cy), supplied by the renewable source.

The pollution emission flow is commanding the pollution stock trajectory. Let Z{(\g)

be the pollution stock induced by the emission flow:

o (o), e [0, (M)
2t ()\0) = I
0 , te [T ()\0), +OO) s
that is!®:
20t 4 ¢ [T dH (No)e - Tdr Lt e [0,TH (o))

Z{ (o) = H TH (Xo)
Z0e—0t 4 g=a(t=T"(X))¢ Lo " df(No)e *tTdr | te [TH(Xo), +00) .

Let ZH(Xg) = max {ZT(\o),t > 0}. Clearly:

dZ" (M)

g <0

and there exists some critical value X9 of X9 such that:
ZH(X% =Z and DT()\y) = X°.

For X% < X0 the ceiling constraint is never active, Z// (\f) < Z, and for X° > XV there
must exist some time interval within which ZH (Afl) > Z thus violating the constraint.
We assume from now that the initial amount of fossil fuel is sufficiently large in such a
way that, without any ceiling constraint, the critical level of the pollution stock would be

overshot over some time interval.

Assumption (A.4): X° > X0

3.2 Optimal paths when X° > X°, without any abatement opportunity

Under (A.4) and with no active abatement opportunity, it is well known that the optimal

consumption path is the four-phase path'® illustrated in Figure 1.

15At time t, Z7(\o) is the sum of Z% ™) this part of the initial pollution stock not yet naturally
regenerated at this time, and the different ¢d¥ (M\o)e =™, 7 € [0,¢], this part of the emission flow
of time 7 not yet regenerated. After T (o), there is no new emission and the stock smoothly decline
according to e_"‘(t_TH“O))Z?H(AO)(/\o), done to 0.

6See Chakravorty et al. (2006-a, 2006-b) for detailed studies of these paths.
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During a first phase [0, ¢1), the constraint is slack and only the fossil resource has to be
used: ¢ = x¢ = d (cz + Noe?' — uoe(aﬂ))tC), with A\g and |up| are sufficiently low so that
x; > ¥. Since x; > 7 and Z; < Z, the flow of pollutant emissions (z; is higher than the
natural regeneration flow aZ; and Z; increases. At the end of the phase, at 1, the carbon
ceiling is reached and the full marginal cost of the fossil resource, ¢y + Age?t — poel@tPIC,

is equal to p.

The second phase [t1,t2) is a constrained phase at the ceiling. The fossil consumption
is bounded by Z, ¢ = x; = T and the energy price is constant and equal to p. Since
P = ¢z + A€t — C, then |p;| must be decreasing during this phase. At ta, uy = 0 and

the ceiling constraint will no longer be active so that . is nil from ¢o onwards.

The third phase [t2,t3) is a pure Hotelling phase during which only the fossil resource
is used: p; = pf(N\o) = ¢z + Aoe? and ¢ = dff (N\o) = x4 = d(cx + )\oept). The fossil
resource consumption thus decreases and the stock is exhausted at the end of the phase.

At t3, the price pff(\) is equal to the marginal cost of the renewable resource Cy-
During the last phase [t3,00), only the renewable resource is consumed, ¢ = y = ¢
and p; = ¢.

Figure 1 here

The optimal values of the five fundamental variables A\g, po, t1, t2 and t3 are determined

as the solution of a five-equation system detailed in Appendix A.1.

4 The case of a single large reservoir

In this section, we assume that the sequestration device consists in a single carbon sink!”

and that the capacity of the sink is "large". Large capacity is an endogenous characteristic

7If there is only one reservoir, we can neglect the index on s; and S;. The objective function of the
program writes now:

oo
/ [u(ze + yi) — co8t — cas — cyys] € Phdt.
0
Constraints (4)-(9) become:

St:St, SUZSO,S'*StzO, Z't:C:ctfstfaZt
Cxt — st > 0and sy >0

12



of the sink that depends upon all the other fundamentals of the model, as it will be seen
at the end of the section. For the moment, the reservoir capacity is said to be sufficiently
large so that no rent has to be charged, meaning that its capacity will never an active
constraint. Hence, the sequestration cost is ¢;¢ for each unit of consumed fossil resource.
Discounting implies that this cost must be borne as late as possible. Hence, it is optimal

to sequester only once the stock of pollutant in the atmosphere is reaching the ceiling Z.

We first note that for n; = 0 since the reservoir capacity constraint is never active. If
furthermore some part of the carbon emissions is sequestered, i.e. sy > 0 implying that

~vst = 0, then the optimality condition (11) becomes:
Cs = — Ut — Vst = — bt = Cs + Vst

Next, substituting the above value of ; into the optimality condition (12), bearing in mind

s¢ > 0 implies that x; > 0, hence v,; = 0, we obtain:

(1) = ez + ¢C + Aoe, (28)
which, in turn, implies that:

zp = d (g + csC + Aoe) . (29)

If for any phase during which only the fossil resource is used, the ceiling constraint
Z — Z; > 0 is active and a part of the carbon emissions is sequestered, then the resource
consumption must be equal to d (cx + csC + /\oept) S0 as to satisfy the first order conditions.
However, it does not mean that the totality of the emission flow is necessarily captured.
Minimization of costs implies that only part of emissions that exceeds the ceiling has to
be stockpiled, so that:
st =C[d(co + (4 Aoe) — 7] .

Hence, that affects some first order conditions in the following way:

(11) Cs =Mt — Mt — Vst + Vst

(14) st > 0 and s¢[Cxe — ) =0
(15) st > 0 and vses¢ =0

(19) e = pne + Vst

(21) vse > 0 and vg[S — S¢] = 0
(24) lim e "*n: Sy =0

tToo

and 7; = noe”* as long as S — S; > 0.

13



This equation implies firstly that s = 0 since s; > 0, and v, = 0 since z; > 0,
secondly that 45 = 0 because (x; — s; > 0, the emissions being not entirely sequestered.
Thus we get from (11): ¢; = —puy, hence the expression (28) of condition (12) for those

particular values of —pu, ¥st, Vst and v, and for y, = 0.

When Z; = Z, the full marginal cost of the energy satisfying the ceiling constraint is a
two-step function, equal to the monetary extraction cost augmented by the rent if x; < Z,

at which the abatement cost c;¢ must be added if z; > Z:

¢ + Aoe?t ,ife <z
Cm =
Co + NPt + e ¢, if 2 > T

Figure 2 here

Figure 2 illustrates why, at the ceiling, it is optimal first to abate and to sequester and
next not to abate. In Figure 3 the marginal cost curves are drawn for three dates t, t/,
t" t <t < t”, sufficiently spaced but not too much, when the economy is at the ceiling.
At date t, the inverse demand function is crossing the upper branch of the marginal cost
curve at xy, implying that the part {[x; — Z] of the emission flow has to be sequestered. At
t’, the inverse demand function is going between the two steps of the marginal cost curve
at x, implying that the optimal consumption must amount to z and that abating is too
costly. At time t”, the inverse demand curve is crossing the lowest part of the marginal
cost curve, so that the optimal consumption is lower than . Then, Z; is decreasing and

the path is the Hotelling path forever.
To sum up, the optimal path consists in five phases as illustrated in Figure 3.

During the first phase [0,¢1), the pollution stock is increasing, the resource price is
equal to the full marginal cost, ps = ¢z + Age? — poe@ ¢, and only the fossil fuel is used:
q: = x4 = d(py). At the end of the phase, p; = c; + Xoe?t + ¢s(, the marginal cost of a

clean fuel consumption, and the ceiling is attained.

The second phase [t1,t2) is a phase at the ceiling during which only the fossil resource
is used and some part of the potential emission flow is sequestered: p; = ¢, + Age” + ¢,C,

gt = x¢ = d(p¢) and s; = ( [d(p:) — Z]. At the end of the phase, p; = p.

14



The third phase [to,t3) is still a phase at the ceiling during which p; = p, and only
the fossil resource is consumed, ¢ = x; = &, but the emission flow is no longer stockpiled,
being just balanced by the natural regeneration. During this phase, |u| is decreasing and

becomes nil at the end of the phase.

The fourth phase [t3,4) is a pure Hotelling phase, p; = pf’(\o), only the fossil resource
has to be used, ¢ = z; = d(p;) and since x; < Z the pollution stock starts to decrease. At
the end of this phase, the energy price is just equal to the marginal cost of the renewable

resource ¢, and the fossil resource is exhausted.

The last phase [t4,00) is a phase during which only the renewable resource is used:

qt =yt =y and p; = cy.

Figure 3 here

The values of the six variables Ag, po, t1, to, t3 and t4 characterizing such an optimal

path are provided by solving the following six-equation system:

The cumulative demand-supply balance equation for the fossil resource, which is now:

t
/ d (cx + Aoe?t — poel ¢ ) dt + / d (cx + doe™ + ¢5() dt
0

tq
+[ts — to)T +/ d(ce +Xoe™)dt = X°.
t

3

e The price continuity equation at #;:

Co + Noet — ,uoe(a+p)t1C = ¢p + M€’ + ¢

The pollution stock continuity equation at tq:

t1
Z0emoh 1 C/ d <c$ + A€ — C,uoe(CH'P)t) e~ =gt = 7.
0

The price continuity equations at to, t3 and #4:

o+ Moe” +e( =P
co + A€’ =

¢
Cx + A€’ = ¢y.
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We can now give a precise definition of a “large” reservoir. Consider a price and fossil
resource exploitation paths that verify all the optimal conditions described above. Then,

the stockpiled carbon mass, denoted by C¥, is:

to
C*=C [ [d(ca+ roe™ +csC) — 7] dt.
t1
A reservoir is said to be large if C* < S. Then, society can effectively sequester as much as
carbon as needed instead of releasing in the atmosphere, so that no rent has to be charged

for the mere use of the reservoir.

In the following section, we examine the optimal paths in the case where such a carbon

mass is larger than S, the case of “small” sink capacity.

5 The case of a single small reservoir

If the sink capacity is limited, its use implies an opportunity cost in addition to the seques-
tration cost cs. In other words, the "shadow cost" 7y of S; cannot be nil. We know (cf.
section 2) that, as long as the reservoir is not filled, the absolute value of 7; is increasing
at the social rate of discount: S; < S = 1, = noet. Substituting for 7; into condition (11)

and given that v4 = 0 provided s; > 0, we get:
cs = M0’ — iy — Yst = —pr = s — e’ + Yt

Next, we can substitute for —u; into (12). Given that v, = 0 provided x; > 0, and after

simplifications, we must have'®:
u/(xt) =cCg+ >\0€pt + (Cs - erpt) ¢

The full marginal cost of the fossil resource when at the ceiling, Z; = Z, and given that

the sequestration capacity of the sink is not saturated, takes now the following expression:
¢z + Aoet cifoy <o
Cm =

¢ + Moeft + (cs — noept) ¢ ,ifxy >

The optimal consumption path of the fossil resource for the active sequestration phase

is similar to corresponding phase in Figure 3, excepted that c; 4+ Age”* + cs¢ must be

18Remember that 7o < 0 so that c¢s — npe”’, the full marginal cost of sequestration, is increasing over
time.
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replaced by c; + Aoe?t + (cs — noept) ¢. As in the large reservoir case, only the part of the
potential emission flow that exceeds the natural regeneration should be sequestered, that
is:

st =C[d (co + Moe” + (cs —moe™) () — z] .
Since the full marginal cost, ¢, + Aoe”* + (cs — noe?”) ¢, is increasing over time, this se-
questration phase should precede a phase during which the fossil resource exploitation is
constrained by the natural regeneration capacity of the atmosphere at the ceiling, that is

a phase during which ¢ =y = Z and p; = p for Z; = Z.

As in the large reservoir case, the optimal path consists in five phases. However, the
price path differs until the date at which sequestration is no longer optimal. The new

optimal price path is illustrated in Figure 4.
Figure 4 here.

The five phases of the optimal trajectories are the following.

The first phase [0,¢1) is a phase during which the ceiling is reached and only the
fossil resource is used. The difference with the large reservoir cases is that, at the end of
the phase, the energy price must be equal to ¢, + Age?’ + (CS — noe/’t)§ rather than to
cx + Noe’t + cC.

The second phase [t1,t2) is a phase at the ceiling with sequestration, similar to the
second phase of the large reservoir case, except that the marginal additional cost of se-
questration is now cs — noe?! instead of cs.

The other phases are strictly identical to the previous case since during these phases,

sequestration is no longer active.

The values of the seven endogenous variables Ag, 1o, 7o, t1, to, t3 and t4 characterizing

this type of optimal path are determined by solving the following seven-equation system:

e The cumulative fossil resource consumption-initial stock balance equation:

t t
(e e = poc )tk [T e 0 4 (e - e Q)
0 t

1
tq

+([t3 — t2]T + / d (cz + Aoe) dt = X°.

t3
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e The price continuity equation at #;:

Co + Aoe”™ — el TN = ¢ 4 Age + (cs — moe”™) ¢.

The pollution stock continuity equation at t;:

t1 _
70—t | C/ d (Cx + et — Cuoe(wp)t) ealt=t) v — 7
0

The price continuity equation at ts:

Co + AoePt2 + (Cs - noept2) ¢ =p.

e The saturation equation of the carbon sink capacity at to:
to _
¢ [d(ca+ Aoe” + (cs —moe™) ¢) — 2] dt = 5.
t1

The price continuity equations at t3 and t4, similar to the ones coming from the large
reservoir case:

e+ e’ =p  and ¢y + Aeft = Cy-

For these values of Ao, o, 1o, t1, t2, t3 and t4, we demonstrate in Appendix A.2 that

the other multipliers take values satisfying all the optimality conditions.

6 The multiple reservoirs case

We first examine the case of the optimal use of two reservoirs and generalize the analysis

to any number of reservoirs.

6.1 The problem setup

Consider the case where two different sequestration devices can be used. Let us assume
first that the least costly reservoir, indexed by 1, is large. Since reservoir 2 will never be
used, the analysis is the same than in section 4, i.e. in the case of a single large reservoir,

but with a sequestration cost ¢y = cq41.

Next, let us assume that reservoir 1 is small in the sense that a rent —ny; = —njoe”
would have to be charged for its use if only this reservoir was available. As in the small

reservoir case, the two first phases of the optimal price paths would be p; = ¢, + Age?! —

18



poe TP over [0,t1) and py = i + Aoe?t — poel TP 4 (cs1 — m1oeP?)C over [ty,to), with

the following associated continuity conditions:
Co + A€t — ppe@tPNC = ¢ 4+ AgePt — ppel®TPNC 4 (e — mioeP™)C

and

Cr + M€ — ppe PR 4 (e — migef2)C = P

Consequently, we would follow a continuous and increasing marginal cost path, from

¢z + Ao at t =0 up to p at to, and then:

e cither c; + Age”t + cs2C > ¢z + Mo + (cs1 — moe”?)¢ over the interval [t1,2) and
in this case, reservoir 2 will never be used despite the limited capacity of reservoir
1. The full marginal cost of the now "clean" fossil resource, owing to sequestration,
into reservoir 1 would always be smaller than the marginal cost when sequestering

into reservoir 2, even if for this last reservoir, the rent |ng;| was nil;

e or there exists a date ¢ < t, such that:
Co + Mo’ 4 ol < o + M€ + (cs1 — moe”)C, t <

and in this case, reservoir 2 must also be used though the sequestration cost in this

sink, cg2, is larger than the sequestration cost in reservoir 1, cg;.

Given this last possibility, we have to consider two alternatives: either reservoir 2 is

“large”, in a sense that will be defined later, or reservoir 2 is “small”.

6.2 The case of an additional large reservoir

The second reservoir is said to be large if it allows for the carbon that is not already
stockpiled in reservoir 1 to be effectively sequestered in reservoir 2, even if no rent is
charged for the use of the capacity of this sink. Clearly, provided that the capacity of
reservoir 1 is saturated, the time period during which sequestration in reservoirs 1 and 2

occurs, but also the carbon mass sequestered in reservoir 2, are endogenously determined.

The point to be noticed here is that, at the optimum, the two sinks should never be

used simultaneously. If it was not the case, i.e. if s > 0, i = 1,2 over an interval (¢',t"),
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t' < t”, we would have v; = 0, and v;; = 0,'” i = 1,2 over the same interval and then,
from (11):
— g = Csi — Mo’ + s, t € (U1, i=1,2.

Substituting for u in (12), we obtain:
U,($t + yt) =cCy + >\0€pt + (Csi - Uioept)c, te (t,a t”)v 1=1,2
so that:
cs1 — moe” = ca2 — maoe’, t € (t,1")

which is clearly impossible if ¢51 < ¢5o for any —n;0 > 0, i =1, 2.

The only case in which we can get a phase during which the full marginal cost of the
clean fossil resource by sequestering in reservoir 1 is smaller than the cost involved by
sequestering in reservoir 2 and another phase during which the inverted inequality holds,

is the case where —ny9 < —mn19. Thus the stockpiling phase into reservoir 1 must always

precede the stockpiling phase into reservoir 2, whatever the reservoir 2 capacity.

Taking this remark into account, the optimal path consists now in six phases:

Phase 1, [0,¢1), rise of the pollution stock to the ceiling without any sequestration;

Phase 2, [t1,t2), at the ceiling with active sequestration in reservoir 1;

Phase 3, [t2,t3), at the ceiling with active sequestration in reservoir 2;

Phase 4, [t3,t4), at the ceiling without any sequestration;

Phase 5, [t4,t5), pure Hotelling path, with a pollution stock under the ceiling and

forever;

Phase 6, [t5,00), renewable resource exploitation.

The values of the eight variables Ao, o, M0, t1, t2, t3, t4 and t5 characterizing this type

of path are determined by solving the following eight-equation system:

191f 554 > 0 over (¢',t"), then Si; < S; from which v;; = 0 and n;; = ni0e™.
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e The cumulative fossil resource consumption-initial stock balance equation, here:

t t
R O L A e e L
0 t

1
ts

t3
+/ M@+Mw+%gwuﬁr4mw/iM%+Nﬂﬁﬁ—xq
t

2 ta

The price continuity equation at ¢1:

Co + )\OePh _ Iuoe(aJrP)th =y + )\Oepn 4 (csl _ nerpt1)<~

The pollution stock continuity equation at tq:

t1 _
Z0e—at1 4 C/ d <C$ + /\Oept . CMOe(a+p)t> ect=t) v — 7
0

The price continuity equation at ts:

Co + M€ + (cs1 — 771()6’0t2)< = ¢y + Mo”2 + ¢

The saturation condition of reservoir 1 at to:

to

¢ [d (cx + Xoe” (cs1 — n1t2€pt2)C) — :E] dt = 57.

t1

e The price continuity equations at ¢3, t4 and t5:

Cy + )\Oept3 + cs2( = P,
Ce + Mot = p,

¢
Co + Ao’ =¢y.

As mentioned above, “large” and “small” capacities are endogenous characteristics of
the sinks. Reservoir 2 is said to be “large” if, given \g, o, 110, t1, to, t3, t4 and t5 solutions
of the equation system above, the carbon mass to be sequestered in this sink does not
exceed its capacity: .

2

¢ | [d(ce+Aoe” +cs2() — Z] dt < Ss.

t1

Reservoir 2 will be said “small” if it does not allow for the sequestration of such a carbon

mass.
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6.3 The case of an additional small reservoir

If the additional reservoir is small, a rent has to be charged for its use. The only difference
with the previous case is that, during the phase of active sequestration into reservoir 2, the

full marginal cost of the clean fossil resource, i.e. its price, is ¢, + Aoe?t + (cso — m20e?t)C.

The optimal path is characterized by determining the values of the nine variables Ag,
o, 110, M20, t1, to, t3, t4 and ts, solutions of a nine-equation system. Eight of those
equations are the same as in the previous case, except that we must include a rent for the
use of the reservoir 2 in the expression of the price path over [to, t3]. In addition to these
eight equations, we must add a saturation equation for reservoir 2 at ts:

i3
¢ | [d(ca+ Aoe” + (cs2 — maoe™)C) — z] dt = Ss.

)

The corresponding optimal price path is illustrated in Figure 5.

Figure 5 here

6.4 The case of n reservoirs

The previous analysis can be easily extended to the case of n reservoirs. Let the sinks
be indexed by strictly increasing order of sequestration costs: cg1 < ... < ¢gi < ... < Cgp.
We assume that the m first reservoirs, m < n, are together small in the sense that, if
the sequestration opportunity can only be exercised by filling these m reservoirs, the rent

h

which is charged for the use of the m!" reservoir, as well as the m — 1 previous ones, is

positive: —n,0 > 0. Reservoir m should be used over [ty,,t,+1) and at the end of this
sequestration phase, we must have c; + A\ge”'™+1 + (csm — Nmoe?™+1)¢ = p. Hence, there

are two alternatives:

e cither ¢, + Ao + csmi1C > ¢z + MoePt + (Csom — Nmoe?t)¢ over the interval [t,,, ty,1)

and in this case, the m + 1*" reservoir should not be used;
e or there exists a date t < t,, 1, such that:
Co + Moe”" + comi1C < o + M€ + (Com — Nmoe”™)C, t > T
so that the m + 1 sink should also be used.
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In the last case, either reservoir m + 1 is "large", or it is "small", the definitions of
a large and a small reservoir being the same than the ones established for reservoir 2 in
section 6.2. If reservoir m + 1 is large, the remaining sinks m + 2, ..., n should not be used
and if not, we have to implement again the sequestration opportunity test as described
above. For a finite number of reservoirs, we obtain an algorithm that converges to a finite

step number.

6.5 The model as a model of sequestration cost increasing with the
cumulated sequestration
Until now, we have assumed that the average cost of sequestration in each sink i, cg;,
is constant and thus equal to the marginal cost. Since the higher the amount of stored
carbon the higher is the pressure in the reservoir, and since this high pressure makes the
incremental carbon unit more costly to be stored, one has to assume that the sequestration
cost is an increasing function of the carbon mass already injected. In other words, one
may state that for each deposit i, cs; = ¢(S;) and dcs;/dS; > 0, where S; is the carbon

mass already stored into the sink i.

The model analyzed so far could be seen as a model where the functions cg(.) are
approximated by step functions, the more numerous the steps, the more accurate the
approximation. Let m; be the number of steps chosen to approximate the function cg;(.)

and let 1;, ..., h;, ..., m; be the indexes of those various steps, by increasing order of average

sequestration cost for each step, ci,; <. < c?; << c?{ being the average (marginal)
cost of sequestration at step h;. Note that AS’;” is the absorption capacity for the step h;

so that > )" ASM = 5.

Would there be a single sequestration sink, the sink i, the identification to the pre-
ceding model is straightforward. The optimal exploitation rule for differentiated average
sequestration costs prescribes that it is necessary to exploit them by increasing order of
their costs. Let us apply this rule to the only sink i, decomposed in m; differentiated
sub-sinks. The rule in question leads to the first exploitation of the sub-sink whose cost is
then if necessary, the second sub-sink whose cost is c?; and

ci; and whose capacity is ASL

st
whose capacity is AS?Z?, and so and so forth... In other words, it is necessary to exploit

the sub-sinks in the natural order of filling the sink 3.
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Let us consider now the case of m different sinks, their respective cost functions being
themselves approximated by a step function. Let us build the sequence of theoretical sinks
j = 1,...,m by sorting again the whole steps of the various sinks indexed by increasing
order of their costs and by grouping the capacities of the steps whose costs are identical.
We denote by ! the average cost of the theoretical j-ranked sink whose sequestration

capacity is S7: ¢l < ... < d<.. < cy'. Those theoretical sinks are built by recurrence as

follows. For j = 1:
1

¢ = min {cii, 1 =1, ,m} .

Let I(1) be the set of indexes of sinks for which ¢!’ = ¢l. Then:

S'= > AS\.
i€l (1)
Let us take out the steps whose costs are ¢! and start the procedure again. Since the
cardinal of the set of steps is finite, the defined procedure includes a finite number of stages.
The number of theoretical sinks, m, is at most equal to > ,_; m;. It would precisely be

equal to this sum if the costs at the steps of the effective sinks were all differentiated.

The order by which one shall optimally use the theoretical sinks is the order of their
costs. By proceeding in such a manner, the order of exploitation of the various steps of
a single sink is the natural order of filling this reservoir. Moreover, all the effective steps
that constitute a theoretical j-rank sink can be used simultaneously. At the optimum,
the carbon shall thus be stored in several sinks at a time. Note that some part of a
given reservoir may be used at some stage and next, other reservoirs used before going
back the first one. Such “va et viens” between different deposits are neither generated
by fixed costs as in Gaudet et al. (2001) or Hartwick et al. (1986), nor by different
final uses of the fossil resource as in Chakravorty et al. (1994, 2005, 2006), nor by capacity
restriction on the extraction rates of the non-renewable and of the renewable, as in Amigues
et al. (1998), Favard (2002), Holland (2003), nor last for non-renewables having different
pollution contents, as in Chakravorty et al. (2006-c) and Smulders et al. (2005)2°.

200n the order of extraction of non-renewable resources, see also Kemp and Long (1980, 1984) and for
semi-renewable ones, see Gaudet et al. (2006).
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7 Conclusion

We have studied the economic rationale of capturing and sequestering the carbon, so as to
maintain its atmospheric stock below some threshold level. Consuming a fossil resource,
capturing and sequestering the pollution which is generated, is like consuming a resource
coming simultaneously out of two mining sites: the proper underground site of extraction
and the sequestering site, the rent to be charged for each one having to growth at the
interest rate since both must satisfy the Hotelling arbitrage condition. In this paper, we
insisted upon the multiplicity of sequestering sites. Clearly, a generalization along the
Herfindahl (1967) line of analysis of the case of different mining sites is immediate. We
have shown that such a policy ought to be implemented only once this critical level has
been reached, whatever the cost of sequestration is, 7.e. independently from the number

of deposits, their access costs and their retention capacities.

Moreover, it stems from our analysis in section 6 that the optimal resources exploitation
and the sequestration implementation, obtained with constant average costs, are robust to
other costs functional specifications that would depend on the flow and/or the cumulative
sequestered carbon and/or the resource extraction as far as the carbon deposit and the

exhaustible resource are respectively concerned (see Heal, 1976).

The absence of sequestration in the short run does not mean the absence of environ-
mental policy in the short run. On the contrary, even before its implementation, the
sequestration option affects the optimal pace of the exhaustible resource exploitation that
has to be reduced until the ceiling is reached. The consumption reduction is attributable
both to the opportunity cost of emitted pollution before the ceiling and to the opportunity
cost of pollution sequestration once the ceiling is reached, those costs adding up to the

total delivery cost of the resource.

Finally, our definition of the storage process does not include the possibility of some
leakage that would result in sending the carbon back to the atmosphere (see Herzog et
al., 2003 and Paccala, 2003). This leakage phenomenon, would it be continuous over time,
would not have any incidence on the optimal solution in the short run. In this case, only
the length of the capture and storage phase would be extended to the entire phase at the

ceiling, the sequestration activity exactly compensating the leakage at each date.

25



Appendix

A.1. Determining the solution of the constrained path: the case of no
abatement opportunity

The values of the five variables of the model, ug, Ao, t1, t2 and t3 solve the following

five-equation system:

e The cumulative demand of fossil fuel must balance the available stock:

t1 t3
/ d (cx + Mgt — uoe“””)t) dt + [to — t1]T + / d (co + Aoe™) dt = X°.
0

t2

The full marginal cost of the fossil fuel must be equal to the ceiling price p at t;:

o + AoePtt — Cuoe(‘”’))tl =p.

At t1, the pollution stock is attaining the ceiling:

ty
A C/ d (Cx + Aot — C,er(mrp)t) et = 7.
0

At to, the shadow cost of the ceiling constraint must be nil, so that:

e + Noe2 = p.

At t3, the end of the extraction period of the fossil resource, its price must choke the

average cost of the clean renewable substitute:

¢
Cx + A€’ = ¢y.

It can be easily checked that the values of ug, Ao, t1, t2 and t3 solving the above system
provide values of the other multipliers that satisfy all the optimality conditions (11)-(25)
(see Chakravorty et al., 2006-a).

A.2. Determining the solution of the constrained path: the case of a
single small reservoir

Let pff = ¢, + Aoe?! be the Hotelling price path, p; = pff — uoe(o‘+p)t§ the optimal price
path preceding the ceiling phase and p; = ptH + (cs — noept) ¢, the optimal price path
followed within the sequestration phase. In the single small reservoir case, the complete

solution of program (P) is:
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(30)

(33)

(34)

(35)

(36)

Given (30), it is easy to check that if Ao, po, Mo, t1, t2, t3 and t4 satisfy the system of

seven equations described in section 5, then the Lagrange multipliers defined by (31)-(36)

are such that conditions (11)-(22) hold. In other respects, since the fossil resource stock

X, is exhausted at t4, the transversality condition (23) is satisfied. In the same way, since

ntzoandSt:

S for t > t5 on the one hand, ue = 0 and Z;

the other hand, then conditions (24) and (25) are also satisfied.
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Figure 1: Optimal price path without any sequestration opportunity
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Figure 4: Optimal price path — The small reservoir case
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