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Abstract

Consider a symmetric two-player zero-sum game with integer payo¤s.
We prove that if there exists an integer such that all upper-diagonal payo¤
entries have the same non-zero reminder when divided by this integer, then
the game has a unique equilibrium in mixed strategies.

1 Introduction

La¤ond, Laslier and Le Breton (1997) proved that if the o¤-diagonal payo¤
entries of a �nite symmetric two-player zero-sum game are odd integers, then the
game has a unique equilibrium in mixed strategies. This result was generalizing
itself a former result demonstrated by Fisher and Ryan (1992) and La¤ond,
Laslier and Le Breton (1993) for the special case where the o¤-diagonal entries
are either equal to 1 or to -1.
The purpose of this note is to o¤er one more curiosity along the same lines.

Precisely we prove that if the upper-diagonal payo¤ entries of a symmetric
two-player zero-sum game are integers satisfying a certain congruence property,
then the game has a unique equilibrium in mixed strategies. The congruence
property is a generalization of the oddness condition and therefore the result
in La¤ond, Laslier and Le Breton (1997) follows from this result. The proof
uses only elementary linear algebra and number theory. We also argue that

�I would like to thank John Duggan, Hideo Konishi, Jean François Laslier, Richard MacK-
elvey and Arunava Sen for their comments on the content of this note. This note is dedicated
to Louis-André in memory of our many conversations on various topics of game theory.
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the plurality game in Political Science may have payo¤ entries satisfying this
congruence property.

2 The Result

A two-player zero-sum game is a triple (X1; X2;m) where X1(resp. X2) denotes
the set of pure strategies of player 1 (resp. 2) and m : X1�X2 ! < denotes
the payo¤ function of player 1 (The payo¤ function of player 2 is �m). It
is �nite if X1 and X2 are �nite sets. It is symmetric if X1 = X2 � X and
m(x1; x2) +m(x2; x1) = 0 for all (x2; x1) 2 X �X:
Consider a �nite two-player zero-sum game (X1; X2;m). A mixed strategy

for player 1 (resp. 2) is a probability distribution over X1(resp. X2). Denote
by P (X1) (resp. P (X2)) the set of probability distributions over X1(resp. X2).
A pair (p1; p2) in P (X1) � P (X2) is an equilibrium (in mixed strategies) if it
satis�es the following inequalities :

X
x12X1

X
x22X2

p1(x1)p2(x2)m(x1; x2)

�
X
x12X1

X
x22X2

q1(x1)p2(x2)m(x1; x2) for all q1 2 P (X1)

and

X
x12X1

X
x22X2

p1(x1)p2(x2)m(x1; x2)

�
X
x12X1

X
x22X2

p1(x1)q2(x2)m(x1; x2) for all q2 2 P (X1)

Since X1 and X2 are �nite, there exists equilibria in mixed strategies and
since it is zero-sum the set of equilibria is a product space P1 � P2 � P (X1)�
P (X2). Hereafter a strategy in P1 (resp. P2) will be referred to as an optimal
play for player 1 (resp. 2). We denote by Supp(p) the support of a proba-
bility distribution p. An equilibrium in mixed strategies (p1; p2) is quasi-strict
(Harsanyi (1973)) if Supp(p1) (resp. Supp(p2) is the set of pure-stategy best
responses to p2 (resp. p1). When the game is symmetric P1 = P2 and we will
drop the reference to the player number. Our main result is the following:

Theorem 1 Let (X;m) be a �nite symmetric two-player zero-sum game with
integer payo¤s. If there exist an ordering � of X and integers d and r such that
r 6= 0 and m(x; y) = r (mod d) for all (x; y) 2 X � X such that x � y, then
(X;m) has a unique equilibrium in mixed strategies.

Remark 2 We cannot replace the condition in the theorem by the weaker (
when d � 3) condition : there exist an ordering � of X and an integer d such
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that m(x; y) 6= 0 (mod d) for all (x; y) 2 X �X such that x � y. For instance
all the o¤-diagonal payo¤ entries of the symmetric two-player zero-sum game
represented by the matrix below are relatively prime with 3 and however it is
easy to verify that there several optimal plays. The game has 4 strategies. It
is tedious but elementary to show that if the game has only 3 strategies then
whenever the o¤-diagonal payo¤ entries are di¤erent from 0, the game has a
unique equilibrium which is either pure or completely mixed.

0BB@
0 1 1 �2

�1 0 1 �1
�1 �1 0 1
2 1 �1 0

1CCA
Remark 3 The condition of the theorem is veri�ed when all the o¤-diagonal
payo¤ entries are odd integers. In that case the ordering � does not matter.
Otherwise the ordering of the strategies may matter as illustrated by the sym-
metric two-player zero-sum game represented by the matrix below.

0@ 0 �3 7
3 0 �8

�7 8 0

1A
Remark 4 The equilibrium is quasi-strict. This follows easily from the Equal-
izer Theorem (Rahgavan (1994)).

Remark 5 The number of strategies in the support of the optimal play is odd.
This follows from Gale, Kuhn and Tucker (1950) or Kaplansky (1945).

Remark 6 A number of �arti�cial� generalizations of theorem 1 can be pro-
vided. Let (X1; X2;m) be a �nite square (#X1 = #X2) two-player zero-sum
game with integer payo¤s. The proof technique of theorem 1 shows that if all
diagonal entries are multiples of a nonzero integer d and all upper diagonal (or
lower diagonal) entries have the same nonzero reminder r when divided by d,
then (X1; X2;m) has at most one completely mixed equilibrium. The same as-
sertion even holds for �nite square two-player games (not necessarily zero-sum)
with a unique vector of equilibrium payo¤s, a property satis�ed by two-player
zero-sum games but by other games as well e.g. almost strictly competitive
games (Aumann (1961)).

Theorem 1 is can be used for the analysis of some games arising in Political
Science. Consider the situation where two political parties compete for the votes
of an electorate through their political platforms chosen in X. Denote by V the
electorate and for all v 2 V; let Pv be the preference of voter v over X: We
assume that Pv is a linear order and denote by L the set of linear orders over
X. Finally we assume that each party is interested in maximizing its electoral
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support1 . To summarize, we are considering a symmetric two-player constant-
sum game where X is the set of pure strategies of both parties and the payo¤
of party 1 when it plays x and party 2 plays y is VP (x; y) where VP (x; y) �
# fv 2 V : xPvyg2 . It is straightforward to see that this game is strategically
equivalent to the symmetric two-player zero-sum game (X;m) where m(x; y) �
VP (x; y)� VP (y; x).
Since for all x 6= y, m(x; y) = 2VP (x; y) �#V , we observe that all the o¤-

diagonal payo¤ entries inherit the parity of #V: Debord (1987) has proved3 that
any skew-symmetric matrix whose o¤-diagonal entries are either all odd or all
even can be obtained through this construction.
This result justi�es the interest of our theorem for the analysis of the plurality

game. Indeed take a skew-symmetric matrix satisfying the congruence property
in the theorem and multiply by 2 all the entries. From Debord�s result such
matrix describes a plurality game for a particular electorate and preferences
within the electorate. We are done since the game obtained by multiplying all
the entries by 2 is strategically equivalent to the original game.

3 Proof of the Theorem.

Let n = #X. For notational simplicity the elements of X are labelled from 1
to n and without loss of generality we assume that the order � is the natural
order. Further m(i; j) is denoted simply by mij .
Claim 1: Let p be an optimal play. We have :X

i2Supp(p)

mijpi = 0 for all j 2 Supp(p)

Claim 2: If there are several optimal plays, there are several optimal
plays with the same support.
The two claims follow from standard results on two-player zero-sum games

(see e.g. Rahgavan (1994))4

By assumption, for all i and j such that i � j there exists an integer dij such
that : mij = dijd + r. Without loss of generality we may assume that d and
r are relatively prime since if they were not, we would obtain two new integers
relatively prime and satisfying the conditions of the theorem by dividing d and
r by their common divisors.
From claim 2, it is enough to prove that there does not exist two optimal

plays with the same support. Suppose on the contrary that there exist two
optimal plays with the same support, say without loss of generality f1; 2; :::::; kg.
Then we deduce from claim 1 that the homogenous system of linear equations :

1This is the so-called plurality game (see e.g. La¤ond, Laslier and Le Breton (1994) or
Ordeshook (1988)).

2VP (x; x) � #N
2

for all x 2 X.
3For the sake of completeness, a short alternative proof of Debord�s theorem is provided

at the end of the manuscript.
4The value of a symmetric two-player zero-sum game is equal to 0.
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kX
i=1

mijqi = 0 for all i = 1; :::::; k:

and
kX
i=1

qi = 0

has a non-zero solution i.e. that the nullspace of the linear operator from
<k to <k+1 described by the matrix A below has a dimension at least equal to
1.

A �

0BBBBBB@
0 m12 : : m1k

�m12 0 : : m2k

: : : : :
: : : : :

�m1k �m2k : : 0
1 1 : : 1

1CCCCCCA
This implies that RankA � k�1 i.e. that all the k�k determinants extracted

from A are equal to 0. We show now that this is not possible. Consider the
determinant D of the matrix extracted from A by deleting the kth line of A i.e.
:

D �

������������

0 m12 : : : m1k�1 m1k

�m12 0 : : : m2k�1 m2k

: : : : : : :
: : : : : : :

�m1k�1 �m2k�1 : : : 0 mk�1k
1 1 : : : 1 1

������������
By using the linearity of D with respect to the �rst column, we obtain :

D = d

������������

0 m12 : : : m1k�1 m1k

�d12 0 : : : m2k�1 m2k

: : : : : : :
: : : : : : :

�d1k�1 �m2k�1 : : : 0 mk�1k
0 1 : : : 1 1

������������
+

������������

0 m12 : : : m1k�1 m1k

�r 0 : : : m2k�1 m2k

: : : : : : :
: : : : : : :

�r �m2k�1 : : : 0 mk�1k
1 1 : : : 1 1

������������
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The �rst term in the above sum is a multiple of d. Now consider the second
determinant in the sum. By using the linearity of this determinant with respect
to its second column, we obtain that it is the sum of a determinant which is
a multiple of d and another determinant. After a repeated application of this
argument, we obtain :

D = multiple of d+ rk�1

������������

0 1 1 : : 1 1
�1 0 1 : : 1 1
: : : : : : :
: : : : : : :

�1 �1 �1 : : 0 1
1 1 1 : : 1 1

������������
By using a straightforward induction argument, it is easy to show that :������������

0 1 1 : : 1 1
�1 0 1 : : 1 1
: : : : : : :
: : : : : : :

�1 �1 �1 : : 0 1
1 1 1 : : 1 1

������������
= (�1)k�1

To summarize : D = multiple of d + (�r)k�1. Since d and r are relatively
prime, d and (�r)k�1 are relatively prime too. This implies, as desired that
D 6= 0

4 Proof of Debord �s Theorem.

Let M be a skew-symmetric matrix of order n such that either mij is even for
all i 6= j or mij is odd for all i 6= j. We prove5 that there exists a �nite set
V and a function P from V into L such that : mij � VP (i; j)� VP (j; i) for all
i 6= j:
Case 1 : mij is even for all i 6= j.
To every pair (i; j) be such that i 6= j andmij > 0

6 we associate the following
two linear orders denoted respectively by P 1ij and P

2
ij ,where ePij is an arbitrary

linear order over Xn fi; jg.

iP 1ijj; iP
1
ijk and jP

1
ijk for all k 6= i; j and kP 1ijk` i¤ k ePijk` for all k; k` 6= i; j:

iP 2ijj; kP
2
iji and kP

1
ijj for all k 6= i; j and kP 1ijk` i¤ k` ePijk for all k; k` 6= i; j:

5The proof is inspired by the proof of Mc Garvey (1953) for the case of digraphs.
6 If all the entries mij are equal to 0, then just take an electorate with two voters having

opposite preferences.
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. Now consider an electorate V = [
fi 6=j:mij>0g

Vij where the sets Vij are

pairwise disjoints and #Vij = mij . Partition Vij in two sets V 1ij and V
2
ij of equal

size and for each v 2 Vij , let Pv = P 1ij if v 2 V 1ij and Pv = P 2ij if v 2 V 2ij . It is
straightforward to verify that : mij � VP (i; j)� VP (j; i) for all i 6= j.
Case 2 : mij is odd for all i 6= j.
Let M ` be the matrix M +N where :

N �

0BBBB@
0 1 : : 1

�1 0 : : 1
: : : : :
: : : : :

�1 �1 : : 0

1CCCCA
From case 1, we deduce that there exists V ` and P ` from V ` into L such

that : m`ij � VP `(i; j) � VP `(j; i) for all i 6= j. Now add to V ` one individual
v with preference Pv de�ned by : iPvj i¤ i > j: It is easy to verify that :
mij � VP (i; j)� VP (j; i) for all i 6= j

5 References.
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