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1 Introduction

We determine the optimal exploitation time-paths of two energy resources, one being de-
pletable and carbon-based, ¢.e. polluting with regard to climate change, namely a fossil
fuel (coal, oil or gas), the other being renewable, clean and non-biological® (e.g. solar en-
ergy directly converted via photovoltaic cells, or indirectly converted as in the case of wind
energy). These optimal paths are considered along with the two following features. First,
the cumulative atmospheric pollution stock is set not to exceed some critical threshold,
above which the induced environmental damage cost would be unbearable. Second, the
pollutant emissions produced by the use of fossil fuel use can be reduced at source, and

stockpiled in a natural reservoir, referred to here as a carbon sink?.

In its latest report (IPCC, 2005), the IPCC recommends recourse to the capture and
sequestration of carbon (CCS) to reduce anthropogenic CO9 emissions to the atmosphere.
CCS consists in filtering the CO4 fluxes at the source of emission, that is, in fossil energy-
fuelled power plants, by means of scrubbers installed on top of chimney stacks. Carbon
may be sequestered in geological reservoirs, among which are discussed coal mines, depleted

3 as well as deep saline aquifers, and even the ocean itself (IPCC,

oil and gas reservoirs
2005). The respective potential capacities of these carbon sinks as well as their efficiency

are still under assessment?.

To our knowledge, there are no analytical studies that clearly demonstrate the trade-
offs between the management of an exhaustible fossil resource, the accumulation of the
related pollution and sequestration of limited capacity. Nonetheless, the possibility of
sequestering some fraction of the pollution has motivated a number of empirical studies, via
complex integrated assessment models (see Mc-Farland et al. 2003; Edmonds et al. 2004;
Kurosawa 2004; Gitz et al. 2005). These studies generally stress that the implementation
of sequestration leads to a substantial decrease in the cost of environmental externality,

which thus favor the early introduction of such measures.

!See Chakravorty et al. (2005a) for the specificities of the substitutions between fossil and bio-energies.

2A carbon sink sometimes refers to biological sequestration, that is, carbon captured by photosynthesis
of trees or plants. This is not the focus of the present paper.

3Carbon sequestration in partially or totally depleted oil deposits has been carried out in the North
Sea since 1996 by the Norwegian company Statoil. The enhanced oil recovery consists in injecting gas into
the oil well, thus increasing pressure and improving the extraction productivity.

4Oceanic storage, despite its enormous potential as a sink, comprises several limitations including the
issue of sequestration permanence and problems of acceptability since it may also lead to toxicity risks due
to water acidification and threats to marine ecosystems (See Herzog et al., 2003).



Such a generic abatement option can take several forms: sequestration by forests,
pollution reduction at source, etc. In this study, we are only concerned with the capture
and direct disposal of carbon, while taking into consideration the size and access cost of

the reservoir.

We introduce four features into the standard Hotelling model of exhaustion. The first is
the possibility of providing the economy with a cleaner backstop in the form of an abundant
energy flow. Following an optimal path in such an economy, the resource price has two
components: its marginal extraction cost and the Hotelling rent, which necessarily grows
at a rate equal to the interest rate and which drives the prices up over time. When this
price reaches the marginal cost of the backstop, which is assumed to be constant, only the
renewable source is used. Thus, the two energy sources are used one after the other and

the backstop is only introduced when the fossil resource has been exhausted.

The second feature is the ceiling placed on cumulative carbon emissions from the con-
sumption of a fossil energy resource. The changes in its consumption drive the dynamics
of pollution accumulation as well as the ultimate transition to a cleaner technology, since
each extraction trajectory generates a cumulative emission trajectory. This ceiling con-
straint adds a third component to the expression of the fossil fuel price: the externality
cost associated with the accumulation of pollution in the atmosphere. In this context, it is
crucial that there should be a certain amount of natural regeneration reducing the level of
pollution, thus allowing some use of the fossil fuel to continue whilst at the ceiling. We then
show that the optimal consumption path consists of four phases. Firstly, only the fossil
fuel resource supplies the economy. During this phase, the scarcity rent of the resource and
the shadow cost of carbon emissions are both increasing. Hence, the energy price increases
and the fossil fuel consumption (and hence the emission flow) decreases, assuming that

. However, the amount of pollutants in the

the demand function is stationary over time
atmosphere increases because the emission flow is larger than the regenerated flow. Once
the ceiling is attained, the fossil fuel consumption is limited by the natural regeneration
process. When the pollution stock is at its ceiling level — as induced by natural regen-
eration flow — it is just in balance with the emission flow. Fossil fuel consumption and

energy price both remain constant. Because of the increasing Hotelling rent (in current

value), the shadow cost of the constraint on carbon emissions must decrease during this

SFor the much more complex case of non-stationary demand functions, see Chakravorty et al. (2005b).



phase at the ceiling. This second phase ends when the shadow cost finally drops to zero.
During the third phase, the price increases once again, driven only by the increase in the
scarcity rent, rising until it is equal to the marginal cost of the backstop and the fossil
fuel becomes exhausted. Meanwhile, emissions are decreasing, the ceiling constraint is no
longer limiting and the path reverts to the benchmark Hotelling level. Lastly, during the
fourth phase, the backstop supplies the whole demand. This scheme holds as long as the
energy price, defined at the ceiling when only fossil fuel is used, is higher than the marginal
cost of the clean substitute. If this marginal cost is lower and the clean resource is abun-
dant, the clean energy would be substituted for the fossil fuel at the precise time when
the ceiling is attained. At that time, its full marginal cost (i.e. the sum of the marginal
extraction cost, the Hotelling rent and the shadow cost of the carbon constraint) must be
equal to the marginal cost of the clean technology. At the ceiling, emissions are balanced
by the regeneration process, some part of the supply is provided by the renewable resource
and the energy price is equal to the marginal cost of the renewable resource as shown in
Chakravorty et al. (2004). Both resources have to be exploited simultaneously because,
at this price, even if the renewable is competitive, the fossil resource remains less costly
(excluding the cost of externality) and thus has to be used jointly. At the ceiling, the fossil
fuel supply is indirectly restricted by the regeneration flow. During this phase, the increase
of the Hotelling rent is compensated by the decrease of the (positive) shadow cost of the
carbon ceiling, so that the energy price is constant and equal to the marginal cost of the
renewable energy. On complete exhaustion of the fossil fuel, the shadow cost of carbon
becomes nil and the renewable resource supplies the entire demand. In this case of low-

cost substitute, there is no longer any pure Hotelling phase.

The third feature corresponds to the capture and storage of some fraction of the carbon
emissions. This carbon sequestration could leave room for the continued intensive use of
fossil fuels by alleviating the environmental consequences of their combustion, which are
especially implicated in the climate change process. Such a mitigation option would also
lead to less stringent Kyoto-type constraints on greenhouse gases emissions, even if, as
discussed below, the optimal policy may not be consistent with the type of policy laid
down by the Protocol.

However, the alleviation option is not available free of charge. To sequester carbon

incurs some additional costs depending on the characteristics of the sink, especially its



size. Chakravorty et al. (2005b) evoke a generic abatement activity in which carbon sinks
are of unlimited capacity. This simply implies that an emission processing cost component
should be considered when determining the resource price. More interesting is the case
where the capacity of the carbon sink is limited. The marginal cost of consuming one unit
of fossil fuel compatible with some environmental preservation objective is thus four-fold:
it includes the monetary cost of exploiting the resource, the cost of carbon processing,
the scarcity rent of the resource and the rent associated with the limited capacity of the
carbon sink, both rents being endogenous. This overall cost needs to be compared with the
supply cost of the renewable energy, this cost being generally higher than the exploitation
cost of the fossil fuel alone. If the cost of the renewable energy is higher than the sum
of the cost of fossil resource exploitation and the cost of carbon sequestration, then it is
better to exploit the depletable resource before the renewable one. We then show how
the application of a capture option at the source of pollution emission leads to earlier
competitiveness of the clean substitute. Carbon sequestration thus relaxes the constraints
on fossil fuel consumption. An immediate implication is that the non-renewable resource
is exhausted earlier, and the renewable one kicks in earlier. Finally, the optimal path
is shown to consist of five phases. As long as the ceiling is not reached, only the fossil
resource is used and the pollution stock continues to increase. Once the ceiling is attained,
carbon sequestration takes place until complete filling of the sink. The next phase occurs
at the ceiling without sequestration. The two following phases are identical to the three

last phases that occur in the case of a pollution stock ceiling without any sequestration.

Let us assume that the clean renewable substitute is scarce, meaning that, at a price
equal to its marginal cost, the market demand is greater than the available flow. In
this case, even without any pollution constraint, the resources are no longer exploited
sequentially. Once the fossil fuel price (i.e. the sum of the extraction cost and the Hotelling
rent) is equal to the marginal cost of the renewable substitute, renewable energy becomes
competitive and has to be exploited. But since the available flow cannot satisfy the whole
demand, in order to clear the market, the residual demand must be supplied by the fossil
resource. During this phase of simultaneous use of both resources, prices should vary
according to the same rule as in the first phase because the scarcity rent of the fossil is
still growing at the interest rate. Thus, the discrepancy between the energy price and the

marginal cost of the renewable resource increases at a rate higher than the interest rate.



This is a consequence of the non-storability of the resource, excluding any intertemporal
arbitrage, which allows the rent of the renewable resource to grow faster than the rise in
interest rate. The share of consumption supplied by the fossil fuel decreases continuously
until complete exhaustion of the resource. The backstop finally supplies the whole demand.
When a cap is set on carbon accumulation, the use of the clean renewable substitute begins
before the pollution ceiling is reached provided the energy price at that time is higher than
the marginal cost of the substitute. By the same token, use of the substitute will begin
after pollution reaches the ceiling if the energy price is lower than the marginal cost of the
substitute. Furthermore, if there is an opportunity for sequestration, whether it is applied

before or after using the renewable resource depends upon their respective costs.

The paper has the following structure. In section 2, we present the general formulation
of the model. We then describe in section 3 the characteristics of the solution when carbon
sequestration is not an option. In section 4, we provide a simple test to check the optimality
of the sequestration option, and then determine the optimal sequestration policy depending
on whether the size of the reservoir is large or small, this property being endogenous in the
sense defined in this study. In section 5, we analyze the implications of a limited availability
of the renewable resource, which may be alternatively expensive or cheap in relation to
the price of energy compatible with maintaining a pollution ceiling. We conclude briefly

in section 6.

2 The model

2.1 Assumptions and notations

We consider an economy in which the instantaneous gross surplus or utility, measured in
monetary units and generated by an instantaneous energy consumption ¢; 6, is given by

the following standard function wu.

Assumption A.1 : u:IR,, — IR, is a function of class C? strictly increasing and strictly

concave satisfying the Inada condition, i.e. limgjou'(q) = 400, where v/(q) = du/dqg.

5Strictly speaking, ¢; is a power, so assuming that g; is differentiable, the energy consumed over a time
interval [t,t + dt] is equal to (g + ¢¢) dt, where ¢ = dq./dt.



We sometimes use p to denote the marginal surplus u’ as well as (by a slight misuse of
formal notation) the marginal surplus function: p(¢q) = u/(¢). The direct demand function

d(p) is merely the reciprocal of p(g), as usually defined.

Energy needs may be supplied by two resources, either a dirty non-renewable resource,
such as coal, or a clean renewable resource, such as solar energy. If X° represents the
initial coal stock of the society, X; the stock of coal available at time t (X = X°) and z;

the instantaneous coal consumption, we can write:
Xt = —T¢. (].)

We assume that the average cost of transforming coal into energy directly usable by
the final users is constant and equal to c¢;, hence ¢, is also the constant marginal cost.
This cost should be regarded as the sum of the extraction cost sensu stricto, the cost of
industrial processing of the extraction output and the cost of transportation, all of which
must be borne so the energy supply can match the demand by end users.

Let = denote the flow of non-renewable resource to be consumed, assuming an infinite
available stock of the non-renewable resource XY, so that no rent would have to be charged.

Thus, Z is the solution of u/(x) = ¢,, that is, & = d(c).

Using coal potentially generates a pollutant flow. Let ¢ be the unitary carbon content
of coal so that, without any abatement policy, the instantaneous carbon flow released
into the atmosphere would be equal to (x;. However, let us assume that some carbon
sequestration device is available. Let s; be the part of the potential carbon emission flow

that is sequestered, so that the effective flow, denoted by z;, amounts to:
2zt =Cxy — s with s >0 and (xy— s > 0. (2)

We assume that the unit sequestration cost is constant (hence also the marginal cost) and
equal to c,, so that the total monetary cost of sequestration is given by cgs;. S denotes
the capacity of the so-called carbon sink, S° the initial stock of carbon contained in the

sink and Sy the stock at time ¢ (Sp = S°), we can write:

S;=s, and S-S >0. (3)

Without any loss of generality, we postulate that S° = 0.



Let Z° be the stock of carbon in the atmosphere at the beginning of the planning
period, Z; the stock at time t (Zyg = Z°) and a (> 0) the instantaneous proportional rate
of natural regeneration, assumed to be constant for sake of simplicity (see Kolstad and
Krautkraemer, 1993)7 so that:

Zi = 2z — o (4)

Self regeneration is merely a scheme for natural sequestration into a sink of sufficiently
large capacity. By that, we mean that, whatever the quantity of carbon needing to be
sequestered, it still can still be buried in the so-called sink.

We assume that this stock of carbon cannot be larger than some threshold Z:
Z—7;>0 and Z-27°>0. (5)

This constraint should be considered as some kind of damage function. The damage
generated at each point of time by the stock of atmospheric carbon is equal to 0, provided

that Z < Z, but jumps to infinity when Z = Z 8.

In the following,  denotes the flow of non-renewable resource that could be used at
the ceiling, without any sequestration scheme, that is, the solution of Zy = Cxy — 8¢ —
for s, = 0 and Z; = Z, hence T = aZ /(. We use p, to denote the corresponding price,
Pz = v/ (Z). Clearly, if p, were lower than ¢,, there would be no ceiling problem since, even
if the resource rent would be nil, the optimal consumption of the polluting resource would

remain below . Thus, we assume:

Assumption A.2 : p, > c;, which is equivalent to T > T.

However, if sequestration needs to be used, we must consider an even stronger assump-
tion: the total marginal cost of a clean consumption of coal, ¢, + ¢;(, must be lower than
Pz If not, it would always be better to stay constrained at Z rather than relaxing the

constraint by sequestering some part of the emission flow.

Assumption A.3 : p, > c; + ¢sC.

"It is essential for the results that the natural regeneration flow should be some increasing function f
of the pollution stock. The specification f(Z) = aZ is assumed for the sake of analytical tractability. For
a discussion of the problems raised by non-increasing functions, see Tahvonen and Salo (1996), Tahvonen
and Withagen (1996) and Toman and Withagen (1996).

8For standard results on optimal mining with a smooth damage function, see Tahvonen (1997).



As discussed in section 4 (subsection 4.1), Assumption A.3 is a necessary but not a

sufficient condition.

The other resource is a renewable resource that can be made available to the end users
at a constant average cost c, (hence the same constant marginal cost). The cost of the
renewable resource is the total cost of supplying the good to the final users, so that the
non-renewable and the renewable resources are perfect substitutes for the users. Let us
assume that g is the constant instantaneous flow of renewable resource available at each
point of time, and that this resource is non-storable in the long term, except at a prohibitive
storage cost. Let y; be the part of the available flow consumed at time ¢, so the part ¥ —

of the flow that is not immediately consumed is definitely lost.

Concerning the monetary costs alone, i.e. those not involving any scarcity rents, we
assume that the cost of the non-renewable resource is lower than the cost of the renewable
resource. In the present case, this corresponds to the main renewable energies’ and the

main non-renewable energies.

Assumption A.4 : ¢, < c,.

Let 4 be the flow of renewable resource society would have to consume once the non-
renewable resource is exhausted, provided that g is sufficiently large. ¥ is the solution of
u'(y) = ¢y : § = d(cy). Chakravorty et al. (2004) showed that, for § < ¢ and without
any sequestration opportunity, we may have many different optimal paths since a rent
has to be charged for the use of the renewable resource even before the exhaustion of the
non-renewable resource. For the sake of simplicity, we first assume in sections 3 and 4 that
the renewable resource is abundant. By abundant, we mean that, at the marginal cost ¢y,
the quantity to be supplied is, at the very most, equal to j. We also assume that ¢, > p,
so that, when the coal consumption is bounded at the ceiling, the renewable resource is

not competitive.

Assumption A.5 : § >y and ¢, > p,.

Under A.4 and A.5, the phase of active sequestration always precedes the phase of

renewable resource use as shown in section 4. To obtain a phase of active sequestration

9An important exception is hydroelectricity.



combined with the use of renewable energy, we must assume not only that § < ¢, but also
that ¢, < Pyy where Py = v/(Z +7) < py. Hence, when the stock of pollution is at the
ceiling, the renewable energy is competitive since ¢, < pgy, and, moreover, both resources
have to be used. In this case, the non-renewable resource is limited at & by the pollution
stock constraint and the renewable resource is constrained at ¢ by the available supply.

Thus, by using p, to denote the marginal gross surplus at 7, we can assume alternatively:

Assumption A.6 : § < yand § < Z, or equivalently p,, > ¢, and p, > Dgy. Furthermore,

Day > Co + csC.

Under A.6, we must add another constraint: the renewable energy consumption cannot
be higher than ¥:
y—y = 0. (6)

Let us assume that the instantaneous social rate of discount, p > 0, is constant and the
objective of the social planner is to choose the resource and abatement trajectories that

maximize the sum of the discounted instantaneous net surplus.

2.2 Problem formulation

The social planner problem can be expressed as follows (P):

o0
P — — — —Ptdt
(P) (o ﬁ};)){,tzo} /0 [w(xy + yt) — CsSt — CxTe — Cyle] €

st. (1) to (6), Xo=X° Zy=2°<2,8°=0,5 >0, 2, >0and y; > 0.

Let £ be the current value Lagrangian for the problem (P):

L = u(wi+y) — st — Cat — CylYr — Ny + St + Vst [5 - St]
e [Coe — st — aZy) +vzy [ Z — Zy| + Vst [Ce — s¢] + Ystse

FYwtTe + Yyt [T — Ye] + YVye e

10



The first-order conditions (FOCs) and complementary slackness conditions are:

OL/Ost =0 & co =1 — fit — Vst + Vst (7)
OL/Oxy =0 & (x4 y) =co+ M — pul — ¥stC — Vat (8)
OL/Oy: =0 & u(zp+ye) = ¢y + Tyt — Yyt (9)
Yot >0 and s [Cor — s¢) =0 (10)
st 20 and  ygase =0 (11)
Yot 20 and  ypwe =0 (12)
Yyt >0 and Y[y — ) =0 (13)
Yyt >0 and ey = 0. (14)

Note that, under the assumption A.1, A.4 and A.5, the condition (9) implies that x;+y;
is at least equal to § and that y; is at most equal to § < ¢ '°. Thus, Yyt must be equal to

0,t>0.

The dynamics of the costate variables must satisfy:

}\t = P>\t — 85/8)( <~ ).\t = ,0>\t (15)
ne=pm — OL/OS & 0= pme+ Vst (16)
(e = ppuy —OL/OZ & = (a+ p)ue + vzt (17)

with the following associated complementary slackness conditions:

Vst Z 0 and Vst [S — St] =0 (18)

vz >0 and vy [Z — Zt] =0. (19)

Note that (15) implies that A\; = A\ge?’. Hence, the transversality condition for X; takes
the following form:

lime "\ Xy = Ao lim X; = 0. (20)
tToo tToo

The other transversality conditions are:

lime S = 0 (21)

lime 'z, = 0. (22)

1orf y¢ > 0 then vy = 0, thus u'(mt + y¢) = ¢y + Fyt. Since u’ is decreasing, the highest value of y;
solution of (9) is obtained for z; = 0 and for 7,; = 0, which is possible under the abundance assumption
A.5. Thus, in this case, y; is precisely equal to §.

11



Clearly the costate variables 7; and u; are non-positive. Furthermore, given that S is
non-decreasing and starting from Sy = SV = 0, there must exist some time interval [0,7)

during which S; < S, hence vg; = 0, so that integrating (16) we get:

n =mnoe’t ,te [0,%). (23)

By the same type of argument, we get for any time interval [tg, ;) during which Z; < Z,
we obtain:

pe = pyg€@TPET0) e Trg ). (24)

Since Z° < Z, there must exist some initial interval with to = 0 and ¢; > 0, so that
e = uoe(a+p)t, t € [0,t1). Note also that, since X° is finite, there must be some time t5

from which Z; < Z, t > tg, so that ju; = 0, t > to.

3 Hotelling and optimal paths without any carbon sink

3.1 Pure Hotelling paths
Without any ceiling constraint and under A.5, the FOCs (8) and (9) would be:

u'(zy +y) = e+ Xoe” — u (25)
U e+ y) = ey — vt (26)

together with the complementary slackness conditions (12)-(14). Thus, if both z; and v
were strictly positive over some non-degenerated time interval, we would have u/'(z;+y;) =
¢z + Aoe” = ¢, over the interval, which is clearly impossible. Hence, the resources have
to be exploited sequentially; first, the less costly one, i.e. the non-renewable resource, and
next, the more costly one, i.e. the renewable resource. Moreover, the initial value of the

coal rent Ao, is at most equal to ¢y — c;.

For any Ao € (0,¢y — ¢z), let tf (o) be that time at which ¢, + Age?’ = ¢y, and let
di'(No) = d(ce + Xoe), t € [0,t7(Ng)). The optimal value of Ao, A, is given as the

unique solution of the cumulative demand-initial endowment balance equation:

" (Xo)
/ di(No)dt = X°.
0
The optimal consumption would then be the standard Hotelling solution:

dft (\f) e <t () 0, t<td(\)
Ty = and y =

. (27)
0 , IO <t g, tHOE) <t

12



All the optimality conditions are satisfied by the following values of v,; and vy:

0 , t <t
Yot = ;

1 cy — ¢z — Aoeft , t <tH(\E)
and 7y =
cx + Aot — ¢, , () < Y t

As a function of X0, NI strictly decreases with !!:

lim M =¢, —c, and lim A =o0.
X050 0 v X0Too 0

Let ZH ()\o) be the trajectory of the carbon stock generated by the coal consumption
flow dff (\o). Z(\o) is the solution of:

Zy = (dit (No) — aZy, t € [0,t7 (M),

together with the initial condition Zy = Z°. Here, we define Z()\g) as the maximum

quantity of atmospheric carbon over the interval [0, tH ()\0)) 12,

Z (M) = sup { Z[1(Xo), t € [0,¢7 (X)) } -

Under A.2, when )\ is sufficiently low (that is, X is sufficiently high), then ZX()\g) >
Z'. Let Xo be the value of X, for which ZT (A\g(X")) = Z. Taking into account the
ceiling constraint, it can be easily seen that, for X° lower than Xy, the constraint would
never be tight and the optimal consumption path would be above the standard Hotelling
path as given by (27). In the following, we assume that the ceiling constraint would be

violated along the pure Hotelling path.

Assumption A.7 : X? > X0,

3.2 Optimal paths with no active abatement opportunity

Let us assume that there is no abatement opportunity apart from the natural regeneration
process. It has been shown by Chakravorty et al. (2004) that, under A.1, A.2, A4 and

A5, the optimal consumption path is a four phases path as illustrated in Figure 1 below.

Upirstly, t (\o) is a strictly decreasing function of Ao with limy, ot = co and lim g1 (e, —ca) t? =0,
and secondly, for any ¢ > 0, limy, o dff =% and limxg1(ey—ca) df =o.

2 After " (\o), the use of coal is nil, hence Z; is decreasing.

BFor Ao = 0, df (0) = &, t > 0, hence Z; = (& — aZ:, Zo = Z°, yielding the solution Z; = (Z/a +
(2° - ¢&/a) e, so that limyjecZt = Z = (#/a. Under A.2, & > 7, hence Z > Z.

13



During the first phase [0,¢1), the constraint is slack and only coal has to be used:
g = x¢ = d(cp + N — uoe<a+ﬂ>tg), with Ao and |pg| sufficiently low so that z; > Z.
Since z; > T and Z; < Z, then Z; is increasing because (z; > aZ;: the emission rate is
higher than the natural regeneration flow. At ¢;, the carbon ceiling is reached and the full

marginal cost of coal, ¢, + \ge”t — uoe“”””(, is equal to p,.

The second phase [t1,%2) occurs at the ceiling, when the coal consumption — the only
energy being used — is constrained to . Thus, the energy price is constant and equal to
Pe. Since py = Pp = o+ Aot — poe@tP¢ then |p¢| must be decreasing during this phase.

At t9, ur = 0 and the ceiling constraint will no longer be active from to onwards.

The third phase [t2,t3) is a pure Hotelling phase during which only coal is used: p; =
ce + Moe?t and ¢ = x; = d(p;). Thus, the coal consumption decreases, as seen during
the first phase, and the stock is exhausted at the end of the phase. Then, the price must

become equal to the marginal cost of the renewable resource c,.

During the last phase [t3,00), only the renewable resource is used, ¢; = y; = ¢ and the

price is constant at c,.

Both price and quantity paths are illustrated in Figure 1. The hatched surface under

the z; curve must be equal to X?.

Figure 1 here

We need to determine the optimal values Aj®, pg®, t1%, t5° and t5° (ns stands for no

sequestration, which is forced here) of the five fundamental variables Ao, po, t1, t2 and t3

that solve the following system of five equations:

— The cumulative coal consumption-initial stock balance equation:
t1 t3
/ d (cx + et — uoe((”p)tg‘) dt + [ty — t1]z + / d (cx + )\Oept) dt = X9,
0 to

— The price continuity equation at ¢;:

co + Aot — poel @t = .

14



— The pollution stock continuity equation at £;:
Zi,(Mos o) = Z,
where Z;(Ao, o) is the solution of:
Z = cd (cm + et — Moe(aﬂ)tg) —aZi, Zo=7".
— The price continuity equations at to and t3:

cx + Ao’ =P, and ¢, + Ao = ¢,

Chakravorty et al. (2004) demonstrated that, solving the above system of equations
for for AG?, ug?, t17, t5° and t5° provides values of the other multipliers that satisfy all the

optimality conditions.

4 The case of an abundant renewable substitute

Although the coal consumption is constrained over a certain time interval [¢1,¢9) under
assumption A.6, as shown in subsection 3.2 and illustrated in Figure 1, it is not clear
a priori whether it is worth relaxing this constraint by sequestering the carbon because
sequestration is costly. We first show that there is a very simple test of the optimality of
sequestration for relaxing the ceiling constraint. Assuming that it is optimal to sequester,
we next determine the optimal policy according to whether the sink or reservoir capacity
S is large (in subsection 4.2) or small (in subsection 4.3). Large and small capacities are
endogenous characteristics of the sink that depend upon all the other fundamentals of the

model.

4.1 Testing the optimality of the sequestration opportunity

Let us consider the optimal paths determined in subsection 3.2 under a forced condition
of no sequestration, and assume two hypothetical values ¢, and ¢ (where ¢, < ¢Z) of the
marginal cost of sequestration. We assume ¢ is so low at ¢ that ¢, + Ap%e?* + ¢,( is lower
than p,, while ¢? is so high at ¢7* that ¢, + A\j®e”* + /¢ is higher than p,, as illustrated

in Figure 1.
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In the first case, where ¢, + )\gsept?s + ¢.{ < Py, there is a certain time interval
[t7e, 105 + 5(c)), 6(c) > 0, during which ¢, + A§*eft + ¢ is lower than p, while Z; = Z.
Thus, over this interval, the instantaneous marginal gross surplus generated by Z, that is
Dz, is higher than the full marginal cost of supplying a “clean” coal to the final users (that
is c; + A\b%e”! + c/¢) provided that the shadow cost charged to the use of the sink is nil.
Whatever the capacity of the sink, this capacity will not be saturated if the sequestration
rate is sufficiently low. Hence, slightly augmenting the coal consumption within the interval
would still allow the net social welfare to increase even if coal consumption would have
to be reduced later. For example, increasing the coal consumption by dx; > 0 at time
t within the interval and decreasing it by the same amount at some date ¢’ within the
interval (t5°%,t45*), results in a net benefit equal to [(py — (cz + ¢,C)) e Pt — X3*] day > 0

(in value at time 0).

In the second case, the marginal cost of clean coal consumption, ¢, + A\3¥e”’ + ¢, is
always higher than the marginal gross surplus of the energy consumption. Thus, resorting
to a sequestration scheme cannot increase the optimized value of the objective function of

problem (P).

Clearly, there exists some critical value of the sequestration marginal cost, denoted by
Cs, below which relaxation of the ceiling constraint must be used, and above which it must

be abandoned. This threshold value is the solution of ¢, + /\gsept?s + ¢sC = Py, that is:
Cs = [px — (cgC + )\gse”t?s)] /C.

Assumption A.8 : ¢; < ;.

In the following, we assume that A.8 applies.

4.2 The large reservoir case

In this case, even if no rent is charged for the use of the sink capacity, the reservoir capacity
constraint S — Sy is never active, hence 7; = 0, ¢ > 0. We note that for 7; = 0 and for

s¢ > 0 implying that 5 = 0, then the optimality condition (7) becomes:

—Ut = Cs + Yst-
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Next, substituting the above value of —pu; into the optimality condition (8), bearing in

mind s; > 0 implies that x; > 0, hence v,; = 0. We thus obtain:

u(x4) = cp + csC + N, (28)
which, in turn, implies that:

e =d (cw + ¢+ )\oept) )

However, only part of the emission flow, represented by ( [d (cm + csC + )\oept) — :f], has
to be sequestrated. When the ceiling constraint is binding, the instantaneous marginal full

cost of a clean unit of coal is denoted by ¢,:

cx + Aoe?! , T < X
Cm = (29)

Co + M€t +c( 1> T
For z < Z, the regeneration rate aZ is higher than the emission rate, whereas the

opposite holds for x > & so that society has to sequestrate the emission at the margin.

The determination of x; during the sequestration phase is illustrated in Figure 2. Note
that, as time passes, ¢, + Aoe” and ¢, + csC + Mge?! are shifted vertically and upwards.
Hence, the sequestration phase is necessarily followed by a phase during which ¢, 4+ Age”* <
U/ (Z) < ¢z + csC + AoeP? so that it becomes optimal to consume Z. Although the ceiling is
constraining the coal consumption, it is no longer optimal to sequester carbon emissions.
This phase at the ceiling is itself followed by a pure Hotelling phase during which z; < z,
once t is sufficiently high so that the «/(z) curve intersects the horizontal line c, + Aget

before 7.
Figure 2 here
Thus, the optimal path consists of five phases as illustrated in Figure 3.
Figure 3 here
During the first phase [0,1), which takes place below the ceiling, p; = ¢, + Age?t —

poel® TP < cp 4+ Noeft + c¢ < Pa, and ¢ = x; = d(p;) > Z, so the pollution stock is

increasing. At the end of the phase, p; = c; + Aoe”* + cs¢ and the ceiling is attained.
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The second phase [t1,t2) is a phase at the ceiling: p; = ¢y + Xoe?t + ¢cs¢ < P, and
gt = vy = d(pt) > T. A part ([d(p:) — ] of the potential emission flow is sequestered so

that the pollution flow is equal to (Z. At the end of the phase, p; = p,.

The third phase [ta,t3) is at the ceiling, but without sequestration: p; = p, and
gt = x¢ = T, during which |g| is decreasing. At the end of the phase, p; = 0.

The fourth phase [t3,t4) is a pure Hotelling phase: p; = ¢, + Aoe?t and q; = x; = d(py).
At the end of this phase, the price of energy is just equal to the marginal cost of the

renewable resource c, and the coal is exhausted.
The last phase [t4,00) is a phase during which the only renewable resource is used.

We now need to determine the values of the six variables Ao, uo, t1, t2, t3 and t4. They

are provided by solving the following system of six equations:

— The cumulative demand-supply balance equation, which is written here as:

to

t1
/ d (cx + et — uoe(‘”p)tC) dt + / d (cz + Aoe” + ¢5C) dt
0 t1

ta
+[t3—t2]:z+/ d(cy + Xoe”)dt = X°.

t3
— The price continuity equation at ¢;:
cx + NoePtt — ,uoe(a+p)t1C = ¢z + M€t + (.
— The pollution stock continuity equation at t;:
Zt, (Nos po) = Z.
— The price continuity equations at to, 3 and #4:

Cz + )\Oeth + CSC = Pz
Cy + /\oeptS = Dz

ta _
Ce + Ao’ = ¢y.

Let A, ,uf{ and tl{ to tl[ (Ir stands for large reservoir) represent the values obtained by
solving the above system of equations. In the Appendix, we show that, for these values of

Ao, Mo, t1 to tg, the other multipliers have values satisfying all the optimality conditions.
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We can now give a precise definition of a large reservoir. A reservoir or a sink is said to
be large if it allows for the carbon to be effectively sequestered as prescribed by the above

policy, that is:
_ ty
5> / [d (cz alrest 4 csc) _ x} dt.
t

lr
1

The reservoir will be said small if such a carbon mass cannot be sequestered.

4.3 The small reservoir case

If the reservoir is small, its shadow cost 7; cannot be nil. We know that, as long as
the reservoir is not saturated, the absolute value of 7, is increasing at the social rate of

t'4: n, = noert. Thus, the full marginal cost of clean coal is given by ¢, + Aoe?t +

(Cs - erpt) C.

discoun

As in the case of a large reservoir, the optimal path consists of five phases. The only
difference is that p; = ¢, + Aoe?! + (cs — noept) ¢ during the second phase [t1,t2), when it is
optimal to sequester part of the potential emission flow represented by ¢ [d(p;) — Z]. Also

at to, the carbon reservoir capacity S must be saturated, i.e. Sy, =S and S; < S, t < to.

We now have to determine the values of the seven variables Ag, pg, 10 and 1 to t4.

They are obtained by solving the system of seven equations below:

— The cumulative demand-supply balance equations:
to

t
Jo et o = a1 et [ P et N+ (e ) )
0 t

1
tq

+[ts — 2]z + / d (cz + o) dt = X°.
t3
— The price continuity equation at ;:
cx + Ao — pge TP = ) + NgePt + (cs — moe”™) ¢.
— The pollution stock continuity equation at £;:

Zs, (Mo, po) = Z.

This equation is the same as in the previous case of a large reservoir.

14Remember that ne < 0.
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— The price continuity equation at ta:
o + Noe”? + (cs — 7706pt2) ¢ = Py.

— The reservoir capacity saturation equation at ts:
to _
¢ [d(ca+ Aoe” + (cs —moe™) ¢) — z] dt = S.

t1

— The price continuity equations at ¢3 and ¢4:
cx + Ao’ =P, and ¢, + Aoe™t = ¢y,
These continuity equations are the same as in the case of a large reservoir.

As in the previous case, for these values of Ay, o, 1o and t1 to t4, we show that the
other multipliers have values satisfying all the optimality conditions (see Appendix). The
main conclusion of the analysis is that, if sequestration needs to be implemented under
A5, it must occur before using the renewable resource. As discussed in the next section,
the optimal policy may be different when solar energy — although relatively inexpensive —

is not abundant.

5 The case of a rare renewable substitute

Let us assume that the renewable energy is not abundant and that A.6 is valid. In that case,
without any sequestration opportunity, it would be optimal to use the renewable resource
at the ceiling. We first show how to modify the optimality test of the sequestration option.
Given that the test is positive, indicating it is optimal to sequester, we next show that
there are two types of optimal policy, according to whether the sequestration phase should

begin before starting use of the renewable clean substitute. Otherwise, the opposite must

apply.

5.1 Testing the optimality of the sequestration opportunity

To test the optimality of the sequestration opportunity in the present case, we first have
to determine the optimal policy in the absence of an opportunity. In the case of a rare
renewable substitute, as well as with an abundant substitute, the decision to sequester or

not is endogenously determined.
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The first point to be noticed is that, since ¥ < g, although the renewable resource is
competitive at a price p. > ¢, it cannot supply the entire market, at least for prices not
too far from ¢,. To determine the optimal policy, let us define dy(pe) as the part of the
energy needs that has to be supplied by the non-renewable resource. The other part, if

any, is represented by d(pe) — dn(pe) and has to be supplied by the renewable resource:

d(pe) y Pe < Cy
dn(pe) = dPe) =Y » ¢y < Pe < Dy
0 ) py S pe

Under A.6, pry > ¢y, which means we can have two types of optimal paths according
to the value of Z°. Along the first type of path (see Figure 4), which would appear only
for sufficiently low values of Z°, the initial price pg is lower than cy. Hence, the initial
period during which p; = ¢, + Aoe?t — ppe®tP)t and Z, < Z can be split into two phases.
During the first phase [0,¢1), when p; < ¢y, coal must be the only energy source, and
qt = ¢ = dyp(pt) = d(pt). On the other hand, during the second phase [t1,t2), both coal
and solar energy must be used, with z; = d,(p;) and y; = y. The phase at the ceiling
[t2,t3) begins at ta, when p; = pgy; throughout this phase, p; = pyy and ¢ = z + ¥, while,
at the end, p; = 0. This phase is followed by a pure Hotelling phase [t3,t4) as far as prices
are concerned: p; = ¢z + A\ge”t, xp = dn(pt) and yy = §. At tg, pr = Dy, ¢ = 0 and coal is
exhausted. During the last phase [t4, 00), only the renewable resource is available, so that
pt =Py and ¢t =y = Y.

The values of the six endogenous variables characterizing this type of path are deter-

mined by solving the following six-equation system.

— The cumulative coal consumption-initial stock balance equation, written here as:

to 2}
/ d, (cm + MoePt — ,uoe(aer)tC) dt + Z[ts — ta] + / dnp (cr + )\oept) dt = XY,
0 t3
— The pollution stock continuity equation at to:

Zg ()\Oa ,UO) = Zv

where Z[' (Ao, o) is the solution of the differential equation'®:

15Since dn(pe) is discontinuous at p. = cy, then technically Z{* is obtained by solving first: Zt =
¢d (cw + doe”t — uoe(“”’)t() —aZ, Zo = Z°. Let Zt(l) be the solution of this differential equation and
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2y = Cn (e + doe? = poe@H0C) —azy, 2y = 2°,
— The four price-continuity equations:

Co+ Aot — poel @I =) ey 4 NP2 — poel T2 =

ey + AoePts = Doy and cp + Aoelts = Dy-

The corresponding optimal paths are illustrated in Figure 4, where the hatched surface

under the curve z; is equal to X?°.
Figure 4 here

Now, let us assume that {(p¢, z¢,;),t > 0} is an optimal path for initial values X" and
ZY of the state variables, and X; and Z; represent, respectively, the remaining coal stock
and the pollution stock generated by z;. We also consider a given date ' > 0 and the
problem (P) with initial conditions Xy and Zy. Let {(p},x},y;),t > 0} be the solution of
this new problem. Then, this solution corresponds simply to p, = py.¢, ) = 2y and
y; = yp1¢. Bearing this in mind, we can see that there is a second type of optimal path
starting with pp > ¢, in which the renewable resource has to be used from the beginning.
These paths have only four distinct phases, since there is no longer any first phase as
defined in the previous five-phase optimal path model. Clearly, the second type of path is
optimal under A.6 when Z° is sufficiently high but nevertheless lower than Z.

Let ty, denote the time at which p; = pgy. Along paths of the first type, t;, = t2 at
the end of the second phase, whereas, along paths of the second type, ¢z, = t1, since pay
is reached at the end of the first phase [0,¢1). The optimality test of the sequestration
option is the same as for an abundant renewable substitute, except that p,, must be taken
here as the reference price instead of p,. The corresponding curve c;, + Age”t + ¢, must

be located at t = ¢4y, as illustrated in Figure 4.

Zt(ll) be the value of Z{" at time t; at which ¢, + Aoe”* — poe®t?¢ = ¢,. Next, by solving: Z, =
¢ [d (cz + Aoe?t — uoe(o‘+p)t§) — :E] — oy, iy, = Zéll), we obtain Zt<12) as the solution of this equation.

Then, we can write:

Zi) L 0<t<th
7y =

Z0 L <t<ts
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The threshold value ¢; represents the average sequestration cost below which it is

optimal to sequester and above which it is not. In this case, is here equal to:
6o = [Py = (o + 257 ) | /0,

where A\j® is the optimal value of Ao under a forced no-sequestration policy.

Assumption A.9 : ¢ < ;.

In the following, we assume that A.9 is valid.

5.2 Optimal paths for beginning sequestration before using the renew-
able substitute

Under A.6, when sequestration is not applied, use of the renewable resource must always

begin before reaching the ceiling as shown in the preceding section. However, when se-

questration has to be used, it may happen that — once at the ceiling — sequestration can

be the first scheme required to relax the ceiling constraint. Then, sequestration and the

renewable substitute are used jointly, and, finally, only the renewable resource on its own.

This case is illustrated in Figure 5, which assumes a small reservoir.

Figure 5 here

In Figure 5, the price path, the demand functions d(p.) and d,(p.), and the resource
consumption paths are drawn in the North-East, the North-West and the South-East
quadrants, respectively. The South-West quadrant is a purely technical device to show

how the quantities are derived from the price at the same time.
The optimal path consists of six phases.

The first phase [0,¢;) is the usual phase of coal consumption under the ceiling: p, =
Cx + Noeft — ,uoe(o‘“’)tg < ey + Aot + (cs — ngept) (. At the end of this phase, the ceiling
is reached and py, = ¢z + AoePtt + (cs — noeptl) C.

The second phase [t1, t2) takes place at the ceiling, during which only coal is consumed,

with some part of the potential emissions being sequestered: p; = ¢, +Age”t+ (cs — noept) ¢,
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xr = dp(py) = d(p¢) and s; = [dn(pe) — 7] /¢. At the end of this phase, p;, = ¢, and the

renewable energy becomes competitive.

During the third phase [t2, t3), the constraint is relaxed by the joint use of sequestration
and solar energy consumption: p; = ¢, + Aot + (cs — ngept) ¢, as in the previous phase.
But because some part of the energy demand is satisfied by the solar energy, the proportion
of the emission flow that has to be sequestered is lower: xy = d,(pt) = d(pt) — T, st =
[dn(pt) — 7] /¢ and y = §. At the end of the phase, py, = pay and the capacity of the sink

is saturated, S;; = S, so sequestration is no longer of any help.

The fourth phase [t3,t4) is at the ceiling with both coal and solar energy, but without
sequestration: p; = Pyy, ¢4 = T and y; = §. At the end of this phase, us, = 0.

During the fifth phase, the price path is a pure Hotelling path, p; = ¢, + Age”t, but with
part 4 of the energy consumption supplied by the renewable resource. The contribution
from non-renewable energy d,(p;) decreases to zero at the end of the phase, so the price

Pts is equal to py. At this time, coal is exhausted.

The last phase [t5,00) is the usual phase of renewable energy consumption: p; = py,

zy =0and y; = 3.

Note that now a rent has to be borne by the user of the renewable energy, starting
from 0 at ¢t = ?2 and increasing up to pgy — ¢y at t = t3, constant at this value during the
fourth phase [t3,t4), increasing again up to p, — ¢, during the fifth phase [t4, ¢5), and then

afterwards remaining constant at this level.

Such a path is characterized by values of the eight variables Ao, po, 10 and t; to ts,

obtained by solving a system of eight equations similar to the preceding systems.

5.3 Optimal paths for beginning use of the renewable substitute before
sequestration

Figure 6 illustrates the case in which implementation of the renewable resource must begin

before resorting to sequestration, assuming that the reservoir is small.

Figure 6 here
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As in the preceding case, the optimal path consists of six phases. During the first phase
[0,1), only coal is used and p; = c; + Aoe?t — poel @A g = xp = dn(pt) = d(pe). At
the end of the phase, p; = ¢, so the renewable substitute becomes competitive while the
ceiling is slackened, Z, (Ao, o) < Z.

During the second phase [0,%1), both coal and solar energy are being used, while the
expression of the price remains the same because the pollution stock Z; lies below Z, but
now with z; = d,,(p1) < d(p:) and y; = y. At the end of this phase, the pollution constraint
becomes binding and ¢, + A\ge”?? — ,u,oe(a“)t?( = ¢z + AoePt2 + (cs — noeP2)(. The last four

phases are similar to the last four of the preceding case.

It is possible to have paths that involve using the renewable resource immediately at
time t = 0. These would correspond to optimal paths where the initial values X° and Z°
of the state variables X; and Z; would be equal to their values at ¢’ € [t1,t2) following the
path illustrated in Figure 6. The argument for this scenario is based on the same concept

of time consistency developed in sub-section 5.1.

6 Conclusion

We stress the potential role of carbon sequestration in allowing an environmental policy
to maintain the atmospheric carbon concentration below some threshold level. We show
that, whatever the sink capacity, sequestration should be implemented once the pollution
ceiling is reached. In addition, our analysis suggests that the polluting fossil fuel will
be exhausted in a finite time, after which the market will be supplied by the renewable
substitute'®, whether or not its capacity is constrained. However, in contrast with the other
cases, when the capacity of the renewable resource flow is constrained, and is initially very
affordable, the renewable resource must be used before the ceiling is reached. In this latter
scenario, the renewable resource could be regarded as a mid-term option for alleviating
pollution, while sequestration allows for further emission reductions on the longer term.
But, more generally, the lack of sequestration before the ceiling is reached should not be

seen as weakening the preventive short-term role of sequestration usually advocated as an

6This resource exploitation and sequestration scheme, obtained with constant average costs, is robust
to alternative specifications for the cost functions. As far as the sequestration or extraction costs are
concerned (see Lafforgue et al., 2005, who also studied the case of multiple sequestration sinks), these
specifications may depend upon the cumulative sequestered carbon or the cumulative extracted fossil
resource, respectively, as in Heal (1976).

25



option for such a climate-change mitigation. Indeed, whether or not the renewable resource
is scarce, the optimal environmental policy affects the extraction of the exhaustible resource
anyway, with extraction decreasing until the pollution ceiling is reached. This reduction in
consumption should be attributed to the opportunity cost of emitting one unit of carbon
before the ceiling, as well as the opportunity cost of sequestering one unit once at the

ceiling, these costs being added to the overall exploitation cost of the resource.

Finally, it is noteworthy that our model does not consider the possibility of carbon
leakage, since geological or even oceanic sinks may only represent temporary storage options
(cf. Herzog et al., 2003; Paccala, 2003). This leakage phenomenon, if continuous over time,
would have no short-term incidence on the optimal solution. The phase with sequestration
on its own would then be extended to the entire pollution ceiling phase: once the storage
capacity has been filled, sequestration would simply allow for compensating the leakage at

each moment of time.
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Appendix

Let pf{ = ¢, + Aoe?! be the Hotelling price path, p; = pfl - uoe(a“’)t( the optimal price

path preceding the ceiling and p; = pf + (

noe’ ) ¢, the optimal price path followed

within the sequestration phase. In the small reservoir case, the complete solution of (P)

is17:
d (pr)
d (pt)
Tt = x
d (pi')
0

Vst

Vat

7yt

uiz

et

Vzt

,t e [O,tl)
t t1,t
, tEG[[tZ t23)) Yt = { 0 ,t€0t) st = { 0 b & [t1,t2)
,tE [tg’t4) Yy 7t€ [t4700) C[d(pt)—{[‘] 7t€ [tl,tQ)
,t € [t4, OO)
(30)
Associated Lagrange multipliers are:
Cs + /’Loe(a+p)t - "70€pt ) te [07 tl)
0 , t € [tr,ta)
- n ’ St — 07 t > O 31
CS+(p£I_p:v)/< , t € [tg,tg,) t ( )
Cs ) t e [t35 OO)
0 , t € [O,t4)
- 32
{piH_Cy 7t€[t4aoo) ( )
Cy—ﬁt s tE[O,tl)
cy =Pt 5 tE[ti,ta)
= Cy —Pe 1t E [ta;13) (33)
Cy - pz{{ 3 te [tg, t4)
0 , L€ [t4, OO)
noe’ , t € 0,t2)
- = >
{ 0 | t € [t2,00) , vse=0,t20 (34)
poe TPt tel0,t1)
770€pt — Cs ’ te [tlatQ)
- 5 35
(P = Pa)/C s t € [ta,t3) (35)
\ 0 S [t37 OO)
0 ’ [0 tl)
_ ) (atp)es —ange L€ [t 1) (36)
(51T — (+ p) (P! — 52)] /¢, t € [ta,t3)
0 ) [t3’ )

Given (30), it is easy to check that if Ao, po, 1o, t1, t2, ts and t4 satisfy the system

'"For the large reservoir case, just set no = 0.
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of seven equations described in section 4 (subsection 4.3), then the Lagrange multipliers
defined by (31)-(36) are such that conditions (7)-(19) hold. In other respects, since the
non-renewable resource stock X; is exhausted at t4, the transversality condition (20) is
satisfied. In the same way, since 1; = 0 and S; = S for t > ¢ on the one hand, y; = 0 and
Z; < Z for t > t4 on the other hand, then conditions (21) and (22) are valid.
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Figure 1: Optimal paths without any sequestration opportunity
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Figure 6: Optimal paths with a rare renewable resource. Sequestration implemented after
the renewable substitute
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